20 Working with
The Lotus
Add-In Toolkit

32 Understanding
Object-Oriented
Databases

| 41 Surviving a
' Takeover

62 Protecting
Network Power

5 One Platform,
Many Languages

68 State
Object-Oriented
Programming

Niels Jensen, Jensen & Partners International i

I NT B RN

One Platform, Many
Languages

How does the TopSpeed platform represent an important productivity con-

cept for programmers?!

We've noticed for some time now that a lot of people want to mix-and-match
different programming languages. They might be doing a contract job where they
have to provide some code in C and some in Modula-2 or Pascal, for instance. Or
they may have code that they'd like to reuse somehow. Being able to link your tools

in with a program you're writing in a different language could certainly increase your
¥ guag y ¥

productivity. Also, newer languages such as Modula-2 can benefit quite a lot from
this concept because they allow people to use the huge library of C code that al-

ready exists.

How is all of this related to the idea of dynamic linking?

We'’ve noticed for 08/2 incorporates the concept of a dynamic link library (DLL), which is simply
some time now that a a collection of procedure functions. Normally, if you have twenty utilities that all
lot of people want to use the same C library, you end up having twenty copies of that library floating
n‘!lx-and-matCh around with your .EXE files, thus generating a lot of redundancy on your disk. With
different 0OS/2's dynamic link library, you save a lot of disk space because only one copy physi-
programming ‘

Ianguages. cally exists.

We developed our system under OS/2 first, by the way, and then ported it down
to DOS. We found OS/2 to be a very nice development platform because if you do
naughty things like write in the code segment, OS/2 will trap it for you immediately.

Programmer's Update/December 1989 55

r

One Platform

It's a very safe environment to work in,
and you trap bugs that would have
wrought havoc under DOS or gone un-
noticed until something really awful
happened.

When we decided that we wanted to
keep this design under DOS as well, we
simply wrote a dynamic link library
loader that works under DOS.

Do you pay in terms of execution
speed by using DLLs?

There is a tiny overhead, but it’s un-
noticeable. You also pay a little bit in
load time because the program needs to
build up some tables as a gateway to '
the dynamic link library. But all those
things are very small compared to the
benefits you receive.

More importantly, you can have a
very complicated software system that
uses dynamic linking. You would then
be able to replace one dynamic link
library with a newer, better version, so
to speak, without having to rethink
your entire program or change the
whole thing in any way. So you'd get
this big system where you could plug in
a new editor or compiler just by adding
another DLL.

And, as a matter of fact, that’s how
our multi-language system works: You
have to tell the system when you in-
stall it what compilers are actually part
of it. You also tell it what file exten-
sions belong to each compiler so that,
for instance, all files called .C or .H
will be C files, and files called MOD,
PAS, .ADA, or .ASM will belong to
other compilers. The automatic make
system is also aware of this informa-
tion. So if you have written a Modula-

Being able to link
your tools in with a
program you’re
writing in a different
language could
certainly increase
your productivity.

2 program that uses some C libraries,

when you say “make” to the system,
the environment will automatically
pick the C comepiler for the C files, the
Modula compiler for the Modula files,
and the assembler compiler for the as-
sembler files.

If you want to compile a program
written in a single language, you simply
point at the window that contains the
source file and then press a “hot key"
to compile it. If the extension is .ASM,

What do you

mean 3 months

to prepare the

user's manual??

There is a better way... a much better
way.... With DocuFlex, the documenta-
tion can be ready just a few days after
the application's development is com-
pleted, not a few days before Rev .2 is
ready for release.

DocuFlex, the automated documentation
synthesizer, composes comprehensive
instruction manuals for DataFlex, or any

language based applications. Now available

in version 4.0.

Also Available: HelpFlex...puts your entire

instruction manual where it belongs...
on-line with your application.

ROBITRON

56 Programmer’s Update/December 1989

bbb d |

SOFTWARE
RESEARCH

Circle 63 on Reader Service Card.

P.0. Box A, Rockmart, GA 30153, USA
Phone: (404) 684-5855
FAX (404) 684-0468

it will select the assembler to compile
it. Had the extension been C, it would
have selected the C compiler automat-
ically. It makes working with C and as-
sembler quite pleasant because you just
press a key whenever you want it com-
piled, assembled, or whatever.

The basic idea being to free you
from mechanics?

Yes. Another important aspect of
our system is that it tries to present the
best of both worlds: You could compile
your program fast for prototyping, then
later use an optimizer switch, which
would make the compilation take a bit
longer, but would optimize the code to
a very, very high standard.

You can think of our system as being
just like any other big software system.
You run one .EXE file, called “Top-
Speed” when you start, and then you
take advantage of the different
dynamic link libraries. One is the en-
vironment with all the tools—editor,
etc.—another is the front-end for the
C compiler, and another is the com-
mon back-end—the code generator
which actually generates machine code
for different languages. You can have a
C front-end and a Modula-2 front-end,
and both will be DLLs; both will use
the common code generator.

So if we release a new compiler and
you already have the system installed
with the C or the Modula compiler,
C+ + would only take up another 120-
140K on your disk, plus, of course,
whatever memory any extra C++
libraries would require. All you would
need is a new dynamic link library con-
taining the front-end for C++.

That’s an interesting selling point
for multi-language developers.

It's also something that the people
who develop programs like accounting
packages can make use of. If someone
who has a DLL which takes care of

58 Programmer's Update/December 1989

printing makes the printing utility bet-
ter, all he'll need to do is ship cus-
tomers a new file containing that
dynamic link library. The customer can
then just copy it into his system. The
programmer only needs to worry about
algorithms and programming, not how
everything is tied together, what files
depend on what, and so on. Whatever
can be automated should be. That's
what we've achieved in our system. For
instance, generating these dynamic link
libraries is difficult using Microsoft
tools, but with our tools you just select
from a menu where you want a DLL
generated, and the system will do it for
you automatically.

There may also be many people
working on a project which contains
500 files of source code that depend on
each other in a variety of different
ways. The way TopSpeed works, the
system will read a source file from the
network or from a disk, automatically
look at all the dependencies, build new
libraries for you if necessary, and so on.

There are a lot of other features that
would be nice, such as an editor that
could collapse procedures to be viewed
as an outline. That's something I think
you'll see in future programming en-
vironments. But the most important
thing is a clean integration. If this en-
vironment can do a lot of the work be-
hind your back, and do it right every
time, it makes room for creativity.

Are you interested in porting to
Unix?

Yes, we will probably be moving into
Unix as soon as we can free the neces-
sary resources.

Is this multi-language system a
benefit for people who want to
develop tools to support program-
mers as well as a benefit for
developers?

Absolutely, because those people
can choose whatever language they
want to develop their tool in. And once
they have developed it for something
like our C compiler, our Modula-2

The programmer
only needs to worry
about algorithms
and programming,
not how everything
is tied together,
what files depend
on what, and so on.

users will also be able to take ad-

vantage of it. And so would our future
Ada and C+ + users. We're working
on a formal third-party support pro-
gram right now. We're already in con-
tact with all the third-party people out
there, and they're all very keen to sup-
port our prototype.

What similarities does your ap-
proach to languages share with
Microsoft’s?

Well, Microsoft says that they have
the ability to reuse code, but if you talk
to people trying to utilize it, you'll see
it's quite difficult to achieve. You really
need to have your whole system in-
tegrated in a nice way, and you also
need to have all of your runtime sup-
port general across all of your lan-
guages. It doesn't help you to try to al-
locate memory between Pascal and C if
they use two completely different
schemes, because it will result in a fight
over which gets what part of RAM.

So you're implying that Microsoft
doesn't transparently take care of
that?

Exactly. At least that is the informa-
tion | have from people I've talked to.

Is there some kind of trade-off in
order to get this shared codability?
For example, C and Pascal treat
function argument definition dif-
ferently. C is very relaxed, but in
Pascal you have to define every-
thing. Is there any sort of language
rewriting or sacrifice of adherence
to standards that you had to do?

I

No, absolutely not. You see, the sys-
tem itself does not care what language
you have written the object in.
Whether you have written two C func-
tions and compiled them separately or
you have written one in Modula-2 and
the other in C does not matter what-
soever. Of course, as you mentioned, C
allows you a variable number of
parameters, where some other lan-
guages do not. But that could be imple-
mented as an extension to those other
languages if you absolutely wanted to
have this feature of a variable number
of parameters preceding the function.

Wouldn'’t the Pascal or Modula
programs either become confused
or confuse the C portion of your
program when it did something the
other part wasn’t expecting?

The way that we've implemented it
avoids all this confusion completely. If
you want to call a whole bunch of

Modula-2 segments from your C pro-
gram, you would write a header file in
C and specify with a pragma that cer-
tain functions are to be called with
Modula-2 calling conventions. That's
all there is to it.

From then on you can act as if
those functions had actually been writ-
ten in C. When you want to give com-
piler directives, pragmas—or whatever
they're called in Modula-2—you do it
exactly the same way that you would
in our C or our Ada. We have taken
the syntax of Ada pragmas to be used
across all our languages, because in
Ada the syntax for pragmas is part of
the definition of the language.

Would there be any compatibility
problems if you wanted to use the
code created in your environment
somewhere else?

Not as far as the language itself is |
concerned. The pragmas, of course,
would not be the same as the pragmas
that we have chosen. But that's in the
nature of the problem because there is
no definition or formal official standard
for pragmas. We've simply chosen the
Ada method because sooner or later
Ada is going to be incorporated into
this multi-language system.

The drawback that I've heard
about Ada is that it's an “everything
including the kitchen sink” lan-
guage. Do you run into the objec-
tion that there are hundreds of
things to learn?

You hear that a lot, and in many in-
stances it’s probably true. The big ad-
vantage of Ada, though, is that it is
very machine-independent. You will get
a much higher level of portability than
with any other language today. It's also
a very safe language to program in: You

|

For professional programmers,
OPUS Make is the superior choice
in a make utility. It is the fastest
most full-featured make utility there
is. Features include:

W DOS version uses only 3K memory!

W Multiple directory support.

W Supports: Polytron PVCS™
Burton Systems TLIB™
Microsoft LIB™
SLR Systems OPTLIB™

B Generates automatic response files of

unlimited legnth for LINK and LIB.
W OPUS MKMF included: An automatic

stands C preprocessor directives.
DOS and 0S/2 executables

“Without a doubt, OPUS Make
is the hottest make utility

on the market”

Tom Swan, PCWorld, 7/89

O .
O

dependency generator that fully under-

Get the best of both worlds.

The Berkeley Utilities

[UNIX COMMANDS FOR M5 -

DOS|

n

\% :
W
®

The latest product from OPENetwork brings the
MS-DOS world a set of UNIX tools with a twist.

32 UNIX commands with all System V.3 and
BSD 4.3 options plus a number of DOS-
specific enhancements.

Includes awk, grep, find, make, diff, ed, sed,
and sort.

* Each utility is standalone, uses video
attributes and has a built-in Help screen.

Comprehensive manuals, including an
introduction to UNIX for DOS users.

For IBM compatibles (hard disk recommended), 256K RAM, DOS 3.0 or higher.

Order The Berkeley Utilities now for $125.

Awvailable from Programmer's Shop or OPENetwork.
Call our BBS for complete product information and demos.

 37ENetwork

215 Berkeley Pl. [P2)
Brooklyn, NY 11217
Voice: 7186382240

for Dnly: MC, Visa, COD, PO L
$99 it
1032 Irving Street, Suite 439, San Francisco, CA 94122 POWE :
owned by their respactive compani

TOOLS FOR POWER USERS pgps. 7186382239

Circle 7 on Reader Service Card.

Circle 31 on Reader Service Card.

Programmer's Update/December 1989 59

can’t make so many silly mistakes be-
cause the compiler will catch them.

People in the U.S. are probably
curious about what you see as the
real and potential market size for
Modula-2, either here or abroad.
How many copies are you selling
and how many people do you ex-
pect to adopt Modula-2?

Well, of course I'd like to see most
people programming in Modula-2 in-
stead of C, though since we're releasing
the C compiler, it isn’t as important.

It’s quite strange, but the U.S. seems
to be more conservative than Europe
when choosing programming languages.
We have found that the market out-
side of the U.S. is very much more
alive in Modula-2. In fact, the
European space agency intends to write
all the software for their space program
in Modula-2.

Actually, over the past couple of
months we have shipped thousands of

—

systems to universities stocking up for
next semester, so | think that’s probab-
ly a good indicator of what will happen
in the future with Modula-2.

You mean that if people use it in
an academic environment, then
they will use it in the real world be-
cause it's what they are used to?

Exactly. That was certainly one of
the reasons that Turbo took off. People
got acquainted with it at school.

At this point, are there any sig-
nificant tool or library opportunities
for developers writing to support
the TopSpeed platform?

Well, we've had to cover a lot of the
Modula-2 market ourselves because it
is not as mature as the C marker, but
there will be the same general oppor-
tunities for developers as with any
other environment. Because we are
highly compatible with Microsoft C and
Turbo C, before the product hits the
market we will have the support of
many third-party tool makers whose
tools we have already verified will work
with our compiler.

P'f‘ !j r'\'*.l.ﬂ"_‘
..'vl '\jﬁj:né

——‘__‘—-n___-_-
RESCARCcY
DERT,

“According to this, the next big trend will be Z80
multitasking GUI development in BASIC.”

60 FProgrammer’s Update/December 1989

Does it seem with Modula-2 and
Ada that you are fighting an uphill
battle against the universe of C
programmers!

Well, there are two kinds of C
programmers. First there are those who
know about more formal languages,
like Pascal and Modula-2, but haven't
used them because, before our Modula-
2 came along, there weren’t any good
alternatives. The existing Modula-2
and Pascal compilers did not generate
code that was fast enough, so they
went with C. Many of these people are
certainly ready ro move into Modula-2,
and it's beginning to happen.

The other kind of of C programmer
does not even know what an
enumerated type is, can’t understand
using local procedures, and so on.
You'll probably never talk them into
using a more modern language, and
they'll be the ones who move to C+ +
instead of Modula-2.

Do you plan to add object-
oriented extensions to any of your
language products besides C+ +?

One thing that is always overlooked
in discussions of object-oriented
programming is that you really don't
need a language like C+ + or Turbo
Pascal 5.5. Of course, doing object-
oriented programming in Modula-2
would not be as easy now as it is in
Turbo 5.5, but by adding the same kind
of syntactical sugar, it would be.

[would not be surprised if you saw
object-oriented extensions to our lan-
guages in the future. [think it's a good
step forward, though it has always puz-
zled me that C programmers seem will-
ing to accept such a level of abstrac-
tion when they’re not willing to accept
a switch to Pascal or Modula-2.

—MKS

Niels Jensen, a co-founder of Borland
International, is the president of Jensen &
Partners International. He has managed
the acquisition and development of a num-
ber of products, including Turbo Pascal,
SideKick, and SuperKey . (]

