
Page: 1

Debugging Clarion
Programs

Presented by

Russell B. Eggen

RADFusion, Inc.

Aussie DevCon 2006 Debugging

 Page: 2

Page: 3

CHAPTER 1 - DEBUGGING... 5
WHY DEBUG?... 5
DON’T CODE BUGS! ... 5
COMPUTERS NEVER LIE, BUT THEY ARE OFTEN WRONG... 5
WHAT IS A GOOD DEBUGGER?.. 6

CHAPTER 2 - THE CLARION DEBUGGER.. 7
INTRODUCTION ... 7
THREADING .. 7
LAUNCHING THE DEBUGGER .. 7
SETTING UP YOUR PROJECT.. 7

Debugger project options... 7
32-BIT DEBUGGING .. 8

Break Points... 10
Source Stepping ... 10

THE DATA WINDOWS ... 12
The Global Window ... 12
Stack Trace (Local) Window.. 13

A SIMPLE DEBUG SESSION ... 13
RESTARTING THE DEBUGEE.. 21
POST MORTEM DEBUGGING... 21
DEBUGGING AND THREADING .. 28
CONDITIONAL BREAKPOINTS.. 28
DEBUGGING RUNAWAY PROCESSES ... 29
BREAK IN.. 30
SUMMARY .. 31

CHAPTER 3 - USING API TO DEBUG ... 33
INTRODUCTION ... 33
DEBUGVIEW... 33
DEBUGER CLASS .. 33

Application Use.. 33
Activate Debuger class?... 34
Duplicates .. 34
Clear Behavior... 34
Dump Queue Behavior... 34
Hand Coded Use .. 37
The Fastest Way to Start the Debugger ... 38

CHAPTER 4 - DRIVER DEBUGGING .. 41
INTRODUCTION ... 41
DRIVER TRACING .. 41
DRIVER TRACING ON DEMAND... 43

PROP:Profile... 43
PROP:Details .. 43
PROP:Log.. 43

SUMMARY .. 44
COMMON CODING PROBLEMS ... 45

INTRODUCTION ... 45
PROGRAM JUST QUITS SUDDENLY ... 45

Recursive calls ... 45
Bad slicing ... 45

DELAYED GPFS.. 45

Aussie DevCon 2006 Debugging

 Page: 4

APPENDIX A – DEBUGER CLASS REFERENCE...47
INTRODUCTION..47
INIT ...47

Prototype ..47
Description ...47

MESSAGE ..47
Prototype ..47
Description ...47

DEBUGBREAK ...47
Prototype ..47
Description ...47

KILL ..48
Prototype ..48
Description ...48

Page: 5

CHAPTER 1 - DEBUGGING
Why Debug?
It does not matter how bright or clever you are or how well one can study and apply a topic. You
will encounter some undesirable behavior when running or testing your code. Bugs exist in all sorts
of forms, not just from your code either.

Your code may indeed be at fault. You may have incorrectly coded something or the code works
100% yet still the application does not work. That situation is fairly common, yet the cause is
hiding in plain sight – missing code!

It may be the cause of the problem is the vendor’s fault. Documented behavior does not match
what you are observing, or it just plain does not work.

The problem may stem from a 3rd party product inserted into your code. That can be tricky to
isolate. Common in this group is the 3rd party vendor says its Softvelocity’s bug and vice versa.
There are reasons to come to either conclusion.

Bugs do arise from data errors too. How many times have you tested code, proved it works, yet
when installed at a client’s site, it does not? Ever try to hook up a relation only to find it does not
see related records or even worse, the wrong ones? Usually, but not always clients introduce these
bugs, most commonly from conversion processes.

Don’t Code Bugs!
In a perfect world, you would just not code bugs. Some Clarion developers claim they don’t need
debuggers as they don’t code bugs. These few state they use templates to generate perfect code
every time. Granted, that is a great tool to prevent common bugs. But those that state they don’t
code bugs are not believable. When they wrote those templates, did it work the first time they used
them? The more complex the template, the more ridiculous their claim is.

The best advice on coding I ever received stated simply; “If you are not coding bugs, you are not
coding hard enough.”

That does not mean one ships bug ridden code! It means that no matter how careful you are, you
should be seeing a bug here and there. Coding, compiling, testing and fixing are all part of the
development cycle. Just writing code is a small part of the effort.

Just like a writer who never makes grammar and spelling errors, no developer is immune from
syntax errors and typos (which the compiler catches), or a short burst of temporary bad logic.

Computers Never Lie, But They are Often Wrong
One common, yet frustrating debug process is the “there is nothing wrong with this code, but my
application does not work”. The temptation here is to jump to conclusions. By that I mean not a
proper investigation as to why.

I was once working on a bit of code that had a cosmetic issue that was driving me nuts. A second
pair of eyes is often useful. This very talented programmer jumped to a conclusion by stating it

Aussie DevCon 2006 Debugging

 Page: 6

must be C6 and thread timing. Turned out that a SUSPENDed thread never gets a chance to cycle
through it’s ACCEPT loop. The solution required redesign of my code.

Of course the old favorite that always comes up when a new release arrives. “My code no longer
works, went back to the previous version, it works again. Bug in new release!” Hate to break this
to you, but that is not a proper investigation! It is an incomplete investigation as observation of a
bug is the first step. If you can still ask “Why?”, you need to dig more. How many times has
something in Clarion been fixed, when no one knew about the bug existed only to cause a slight
change in behavior? You usually see this around the drivers or statements that may affect them.
You need to find out if something changed in the statement or driver. If so, you may need to adjust
your code.

With Clarion 6.x, and the threading changes from earlier releases, expect behavior changes. How
you deal with version issues is a good reason to become good at debugging, especially when
upgrading your existing “stable” applications. Clarion 7 is just around the corner.

One infamous example of this was an undocumented change between Clarion 5 and 5.5. About 3
SQL tables stopped giving us a unique ID. This was passed to a function that required a unique ID,
which promptly GPF’d. Turns out one of the driver strings were case sensitive in 5.5. This raised a
new connection and the expect ID did not match, thus the function failed with a GPF. Of course,
the function was fixed to not GPF as well.

What is a good Debugger?
To answer that, it depends on what you need at the time you notice non-optimum behavior in your
application. For the rest of this session, I intend to cover the following topics:

 The Clarion Debugger

 Driver debugging

 API Debugging

 Third party offerings

Each of the above you should know. You may not need them all for most things, but you will need
them eventually.

Page: 7

CHAPTER 2 - THE CLARION DEBUGGER
Introduction
The Clarion debugger has been around since it made its debut back with Clarion for DOS 3.0. That
is the first debugger Clarion developers ever had. I actually liked it as it was remarkably similar to
the MicroFocus Level II COBOL debugger. But that is all I am going to say on the matter as few
Clarion developers if any, still use DOS debuggers.

When Clarion for Windows arrived on the scene, it too had a debugger; two debuggers actually: a
16-bit and 32-bit version. Today, as of Clarion 6, there is only the 32-bit debugger as Clarion 6
cannot make 16-bit applications. If you need 16-bit applications, you must stay at Clarion 5.5 or
earlier.

The 32-bit debugger is my focus today as I don’t support 16-bit applications anymore. Also,
Clarion 6 is the version I do all my development with.

Threading
Clarion 6 gave us true threading. This impacted the debugger as some variables live on threads.
What this means is that the Clarion 6 debugger does not behave the same as the earlier version. It
couldn’t if it were to support threading. I’ll be covering this in more detail shortly.

Launching the Debugger
There are two ways to do this, via the IDE or via shortcut/command line. The popular way is via
the IDE. More on this shortly.

Setting up Your Project
If your project is not set up properly, you can’t use the debugger effectively, not matter how you
start it.

Debugger project options

Figure 1 – Project settings for debugging.

Aussie DevCon 2006 Debugging

 Page: 8

The Application Generator by default has several options set to allow automatic access to the
Debugger. The project editor is the same if you hand code, so these settings have interest for the
hand coders too. These are the required settings:

The Global Options sheet contained in the Project Editor should have Debug Information set
to Full.

Build Release System should be disabled in the Global Options. (If this step is omitted, have
fun debugging your program in assembler mode!)

While not required to enable the debugger, the Runtime Checks should all be set. This
provides extra debug checks.

The application now includes the information the Debugger needs. You can also turn on
debugging information for a single module in the project. The advantage of this is that it
reduces the overhead for the debugger. To do so, select only the source module you need to
debug, and press the Properties button. When the Compile Options dialog appears, set the
options as described above. You can also selectively disable debug information in specific
modules by setting debug information off. However, you can also control which modules to
activate when you first enter the Debugger.

32-Bit Debugging
Clarion 6 provides support for 32-bit project targets.

Figure 2 – The Debugger when first started.

Debugging Aussie DevCon 2006

Page - 9

The initial view is four windows as shown above. Starting at the upper left and going clockwise,
you have the source, global, stack trace and procedures windows. The contents vary on the project
being debugged.

There may be times the debugger shows a lot of source windows opening and then losing focus.
Don’t worry about it. The only source window you are interested in is the one where the problem
procedure lives. The Clarion 6 debugger has 3 ways of finding what you are looking for. Look at
the following figure:

Figure 3 – Sorted by procedure name.

Figure 4 – Sorted by Address

Aussie DevCon 2006 Debugging

 Page: 10

Figure 5 – Sorted by Module.

If you know the name of the Procedure, click the PROCEDURE HEADER to sort in ascending order. Click
it once more to sort descending. Same for the other columns if you have the address information or
you know the module name the procedure resides.

Each column has a step locator to ease finding what you are looking for as well. Best results in my
opinion are when the sort is by procedure name.

To open the source, simply click on the PROCEDURE NAME and the source file instantly opens for you
(which is why you ignore any and all open source windows up until this point).

Break Points
Break points are lines of source code causing the debugger to suspend executing the application
at that line of source. When this happens, the debugger takes over.

You need to understand break points cold. If not, your debug session consists of wasteful
stepping through underlying source code (such as ABC, Handy Tools or other class code). If
you are really bored, you can do this, but I’d rather not. I’ll get to stepping through source soon.

But why use them? First, if you don’t set at least one, when will the debugger stop running your
application? Second, you need to pause the code execution by break points so you can inspect
what the application is seeing at a specific point. I mean variable contents.

Where do you put breakpoints? That is a very good question. Remember, debugging is an
investigation to find something wrong. If you can reproduce a problem, then it’s easy. You
have a good idea that the bug lives somewhere between the earliest place in the code’s execution
and the latest place. That is two breakpoints. Place one midway between those two points if
you wish. You are now set to let the debugger run the application now.

Source Stepping
At the lower right of each source window is a button toolbar that looks like this:

Debugging Aussie DevCon 2006

Page - 11

Figure 6 – Source stepping navigation button.

The buttons mean the following actions:

Button Action

G Go

B Set Breakpoint

S Step Assembler

O Step Over Assembler

T Step Source

E Step Over Source

C Go to Cursor

L Locate Line

Table 1 – Button commands

Tool tips easily identify each button as you hover the mouse over them. You may also right-
click anywhere in the source window to show the following pop menu:

Figure 7 Pop-up menu.

Aussie DevCon 2006 Debugging

 Page: 12

You have two additional commands to find text strings in your source. The letter in
parenthesis (or “brackets” as our friends across the pond like to say) is the keystroke needed to
carry out the same action. The keystrokes are always there, even if the pop-up menu is not.

So you have break points set and you are ready to go. Here is a common mistake. I’ve seen
many people who hate the debugger start stepping or stepping over source at this point. If I
had to do this action, I would never use the debugger again as this is far too much work. So
what is really going on here? Your application is not yet executing the module (most likely)
where the break points are!

So the execution starts at some source about global run and you find yourself deep in ABC in
two mouse clicks. Who would not be lost there?

You have break points set, use them! Break points are to stop your application at that point.
So execute your application normally! You do this with the GO command. The instant your
application hits the break point the execution halts right there. Now you can start stepping
through and stepping over code!

The Data Windows
Its one thing to step through code, but what does the data look like at the exact point a break
stops execution of your program? You have two types of data to deal with, global and stack
data. The data is arranged as a tree structure. The default is a collapsed state, so to see any
details; you must press the plus sign to expand the tree, minus sign to collapse a tree.

The Global Window
This is the window where you find global data. This includes library data such as the last error,
which control has focus, first field, last field, etc.

Figure 8 – Global Data Window with expanded elements.

Debugging Aussie DevCon 2006

Page - 13

What populates in this window and their values varies by project and where the program has
suspended running.

Stack Trace (Local) Window
This is the window for variables that are local to the current executing procedure. You won’t see
valid data in it until the debugger enters the procedure:

Figure 9 – Debugger in a local procedure.

The display in this window changes as you execute the debugee. There is more to cover with
these windows, which I’ll address later.

A Simple Debug Session
To illustrate a typical debug session, Clarion 6 ships with a broken application. The name of the
application is Orders and it requires the ABC templates registered. It is located in the
Clarion6\Examples\Tutor\Debug folder. I’ve included a modified version of this application. Open
the application and compile it. When you run it, you notice the highlight bar can page down and
page up. It can scroll up, but does nothing when scrolling down. That is a bug. Quit the
application.

Press the DEBUG button to launch the debugger from the IDE and start executing the Orders
application. Your initial view of the debugger is this:

Aussie DevCon 2006 Debugging

 Page: 14

Figure 10 – Initial view of debugger desktop.

Even though this is a simple, 2 procedure application, the Procedures window appears quite busy.
This is because all the classes and their source files appear in the list. They are there because they
are used by this application, directly or indirectly.

I’ve shown the bug is in the BrowseCustomer procedure, so you can locate that procedure by any
means you like. As soon as you select BrowseCustomer from the procedure list, the source for it
opens and the highlight is on the first source line.

The bug was the inability to scroll down one line. Where is scrolling controlled? With the source
window in focus, press F to open the Find dialog. Enter scroll and press OK. The first stop is in the
window definition, so that is unlikely to be the source of the bug. Press A to find again.

Now the highlight is on a method labeled ScrollOne. Makes sense as browse lists scroll. Press F
and enter scrollone in the entry. The highlight lands on BRW1:ScrollOne.

Debugging Aussie DevCon 2006

Page - 15

Figure 11 – The Scroll One method.

A small method, so highlight the IF LOC:Flag and press B or double-click to set a break point.
Break points are indicated by the red color. If it looks yellow, you are not going color blind. Green
and red produces yellow. Move the highlight up or down one line to see that.

You are set up to debug. Remember, the program is really not yet executing this procedure, it is
suspended at the initial start (and the global and stack trace windows reflect this). You do not want
to step trace each line of code to this spot. Use the GO command as I previously covered.

The program starts normally. Open the BrowseCustomer window and press SCROLL DOWN on the
toolbar. The debugger now takes control as it hit the break point. You could look in the stack trace
to see if you see anything interesting at this point:

Aussie DevCon 2006 Debugging

 Page: 16

Figure 12 – Stack Trace of BrowseCustomer

The highlight is the current stack (top of stack, bottom item in window). Nothing looks that odd.
Step through the code is a good option now. Press T to step trace and one line of code executes, and
the highlight moves down to the next line of code to execute. Watch the stack trace and press T
again. The Event variable changed from 4 to 3. Still, nothing obvious here.

The next line of code is PARENT.ScrollOne(Event). This means the next stop is an ABC method as
that is what is meant by “Parent”. You can step trace or just step. If you just step, then the
debugger allows the program to run normally until it returns from the parent call. It will then
suspend execution again. Let’s try both methods. Press E for Step Over Source (execute and stop
upon return).

The highlight bar locates to the END statement. Nothing really changed, so press G. The debugee
is now in control. OK, now what? Did not find any bugs. So the code in your application revealed
nothing.

Remember, you still have a break point set. Press SCROLL DOWN on the toolbar again. The debugger
is in control and the stack trace is like we found it before. This time, step through the
PARENT.ScrollOne(Event) method. When the highlight bar reaches that line of code, press T to
step trace. You now see this source window:

Debugging Aussie DevCon 2006

Page - 17

Figure 13 – Debugging ABC methods.

Now look at the stack trace window. Different values loaded and you can see the passed Event
value (in variable Ev here). In order to ensure you don’t get lost, when stepping through code in
this method, always use the STEP OVER SOURCE command as many ABC methods call other methods.
Unless you need and want to step trace other ABC methods.

SELF.CurrentEvent = Ev is the line of code executed once you press E. If you look at the stack
trace, you can see a node of the current tree is called SELF. Expand it. SELF will always have a
“record”, so expand that too. Whoa! Lots of items!

Aussie DevCon 2006 Debugging

 Page: 18

Figure 14 – The BrowseClass SELF node expanded.

This is a list of properties of the browse class. “SELF” means “whatever the current object is”.
Since classes don’t know what their instance name is until runtime, “self” is merely a placeholder
for whatever it may be. You can see the CurrentEvent is set to 3, just as the line of code just
stepped did.

The next line of code tests for EVENT:ScrollUp. Here is where the global window comes into the
picture. Events are in the runtime library, so the current event is shown there.

Debugging Aussie DevCon 2006

Page - 19

Figure 15 – The last event is EVENT:ScrollDown.

You can see the event is correct as you pressed the button to scroll down. So far, so good. The
code is testing for EVENT:ScrollUp so you know this condition code will fail the test. Press E to
see if it does.

It not only dropped through the first IF, but the ELSIF line too. This means the logic failed both IF
conditions. Yet, the second condition is what should have executed! The execution point is now
past the point where you are interested. So press GO.

The program is now running again. The breakpoint is still there, so press SCROLL DOWN on the toolbar
again. Press T 4 times to get back to the BrowseClass.ScrollOne method. You should be on the
SELF.CurrentEvent = Ev line. Ev has the event number passed to this method. It is 3. Remember
the Event value when the debugger first took over? It was 4. What if you could change the 3 to a 4
before it gets passed to SELF.CurrentEvent?

In the stack trace, highlight Ev and right-click. A pop-up menu appears with one of the choices
being “edit variable”. Select it and then enter 4 in the entry provided and press OK.

Now press E and watch the execution. Now the second condition is true! This is different behavior
than before! Press GO and when the application runs normally, this is what you see:

Aussie DevCon 2006 Debugging

 Page: 20

Figure 16 – Highlight moved down one line.

Therefore, the bug is not with ABC, it worked perfectly. But it was passed the wrong event
number. The bug is with the local method. You can verify if that is indeed the case. Press SCROLL
DOWN again to trigger the break point.

To test the theory the wrong event is passed, STEP SOURCE until the highlight is on the parent call.
Right-click Event and change it back to 4 (its original value). Once you’ve done this, press GO. If
all goes well, the highlight should be on the 3rd customer down:

Figure 17 – Proving the bug.

Debugging Aussie DevCon 2006

Page - 21

You now know what the bug is and can prove it. The debugger showed you.

While this may be a simple 2 procedure application, the typical debug session is very similar to the
steps taken above. This is true even with very complex and involved programs. The difference is
you may need more breakpoints and a few “loops” around to narrow your search for a bug.

When bugs can be reproduced, a typical debug session should last about 2-6 minutes, including set
up time.

Note: When you are finished with the debugger, shutdown the debugee first. Sometimes
that is not always possible with badly behaving programs.

Restarting the Debugee
Sometimes, you might have shut down the program by mistake. Leave the debugger running!
Choose FILE FILE TO DEBUG. A file dialog opens looking for your executable. Navigate to the
correct folder if needed and find the EXE. The debugger starts the programs and suspends at the
first line of execution, just as if you called it from the IDE.

The debugger sort of remembers your break points from the last run in such cases. They are still
visible, but they really don’t work anymore. The workaround is to simply press B twice.

Post mortem debugging
The Clarion debugger may be installed as the system debugger. From the debugger menu, choose
SETUP and the following option:

Figure 18 – Installing the Clarion debugger as the system debugger.

If you install the Clarion debugger as your system debugger, and a program causes a GPF, you then
get this dialog:

Aussie DevCon 2006 Debugging

 Page: 22

Figure 19 – GPF dialog as seen in Windows XP.

Notice the DEBUG button. If you press this button, this will start the debugger with the dead program
(it is not running). You may be prompted to load a source file. I’ve never needed that feature, so I
close it. You should get an access violation message that would match the address if you inspected
the details on the GPF window above.

Figure 20 – Debugger displaying the access violation.

Simply press OK to close the message. The stack trace window is really the only window that is
important.

The last item should be labeled “unknown”. That is the point where the GPF happened, but rarely
is that the cause of the GPF. Look for the last good label before this point. In this example, it is
_main (which is in every Clarion program). Right-click and you get this menu:

Figure 21 – Options to find that last bit of good code.

Debugging Aussie DevCon 2006

Page - 23

Choose Locate Closest Source Line Before if you have the source (and you should). The source
window opens with the last line of code executed before the GPF:

Figure 22 – Line of code that when executed, GPFs.

OK, that is cheating and this program’s design is meant to GPF. However, I wanted to show you
that this option does work and is no different than debugging a complex program that GPFs.

What you should take away from this is that a GPF is really your friend when finding bugs. Just
like compiler errors in finding poorly written code.

What about more complex problems? Some applications GPF the moment you launch them.
Remember, the GPF is not the problem. A GPF reports a problem. A program could GPF on
perfectly valid code!

The next example, the program GPFs when you press a button. Going to post-mortem debug mode,
the stack trace shows cryptic information:

Aussie DevCon 2006 Debugging

 Page: 24

Figure 23 – Not much useful information finding the GPF.

The above may be useful if you are good with assembler. My assembler is out of date (8088
assembler) and I’m quite rusty with it. Up the proverbial creek without the proverbial paddle?
What about the global window?

Debugging Aussie DevCon 2006

Page - 25

Figure 24 – Global window after a GPF.

When I expand Playwave, I see Access Errors. That is the error itself, but what about the cause?
Going up one node, expand badprg. The “window” node looks fine as there is a value there.
Expand work and I see noise has a null value. WorkQ appears fine. Expand Noise and you see
Record. Expand that and you see Access Error. This is the earliest error. The only thing you do
know at this point is that a problem exists with Noise.

Therefore, inspect the source code. When you press the button, you get a GPF, so look at the code
for that:

Aussie DevCon 2006 Debugging

 Page: 26

Figure 25 – The source code looks fine, should play a wave when pressed.

The above code as seen in the debugger looks fine, nothing wrong with it. But it crashes. So,
something is wrong. You cannot resolve the problem here, so your only option in this investigation
is to go earlier. Yet at first glance, there is nothing earlier that applies to the problem. When I say
“earlier”, the only option is before the CODE line.

Debugging Aussie DevCon 2006

Page - 27

Figure 26 – The WorkingClass definition and instantiation.

There is nothing wrong with the class definition, nor its instantiation. This should work too (and it
does). WorkQ and Noise are both references. WorkQ fills a browse list with data, Noise plays a
wave file.

In figure 25, you can see a reference assignment to WorkQ and an ASSERT that asserts the
reference is not null. But where is the reference assignment for Noise? What if you placed an
ASSERT for Noise?

There is your problem, all the code is fine, yet it crashes. In this case, the problem is not the code
that is there, it is code that is not there! To test that, put an ASSERT(~Work.Noise &= NULL) in the
code. You could put it in the Open Window event or the button accepted event. If the assert fires,
you proved your theory.

That is something you really cannot find with MESSAGE and STOP statements.

Remember, any object not instantiated GPFs when your code tries to use it. If this is the cause of
GPFs in your application, MESSAGE and STOP cannot possibly help you. ASSERT does help
you. Part of ensuring you write safe code is to ASSERT something is there. If not, the assert fires,
alerting you that you forgot something.

One of the best “hide in plain sight” causes of GPFs is a class definition that is valid, yet it cannot
work. Here is a conceptual example of this:

Aussie DevCon 2006 Debugging

 Page: 28

ABCClass CLASS,MODULE(‘ABC.CLW’),LINK(‘ABC.CLW’,_ABCLinkMode_),DLL(_ABCDLLMode_)
 END

Listing 1 - Conceptual ABC Class definition.

There is nothing really wrong with the above listing. Yet, if you try to use anything from this class
(assume it has properties and methods), the program GPFs. The GPF happens about the time when
you launch the program. You could post-mortem debug it and you will find that anything about the
above class has “Access Error” next to it. That means it was not instantiated or could not be
instantiated.

Notice the LINK and DLL parameters. You have those two _ABCLinkMode_ and
ABCDLLMode flags. If these are missing from your project defines (which defaults to zero) or
they are set incorrectly, expect a GPF. This is the same cause if your app works as an EXE but
GPFs as a DLL.

The same is true for 3rd party classes that follow this convention (but use their own flags).
Fortunately, templates usually prevent this as they are responsible for putting those flags in the
defines section of your project and setting them correctly. If not, speak to your vendor as they have
a fatal bug.

Debugging and Threading
Before Clarion 6 came out, one of the useful things you can do with the debugger is place variables
in the watch window. Doing this is child’s play as all you need to do is right-click on a variable
and choose WATCH. If this is your first watch variable, a new window appears. You can place
anything in a watch window, stack trace and/or global variables.

The purpose is to watch what happens to variable contents as code executes in your program. As
your code loops through ACCEPT for instance, you can see if the variable contents change, and if
so, to what. Global variables never go out of scope in a watch window, but stack trace variables
can (if you leave the procedure to run an ABC method for example). If a variable goes out of
scope, it will redisplay correctly once execution returns to the procedure.

That is, until Clarion 6 came along. The threading model is a major paradigm shift for Clarion
developers as much as when ABC first shipped.

What happens is that a variable placed in the watch window remains, but its value is gone from the
watch window. Instances of threaded variables are allocated at run time, so the debugger cannot
show these variables directly. Instead, stick to the stack trace window.

Conditional Breakpoints
The Clarion debugger does not support the concept of conditional breakpoints. It is not a feature of
the debugger. This means debugging long processes that crash somewhere in the middle are next to
impossible. Or are they? There is a way to use the concept of condition breakpoints, just not inside
the debugger.

Let’s say that you are running a long posting procedure. This is not uncommon in accounting type
applications. Yet, when you get to record number 895,832, the program GPFs or hangs or just
quits. What is worse, you use a key or index for the processing, and likely filtered in some fashion.
This means the chances that the problem is record number 895,832 is next to nil. So inspection
with a file viewer is useless.

Debugging Aussie DevCon 2006

Page - 29

Say the process code looks like this:

ACC:AccountNo = LOC:AccountChosen
SET(ACC:AccountKey,ACC:AccountKey)
IF ~Access:Accounts.Fetch(ACC:AccountKey)
 !Process code here
END

That’s a simple enough concept, except it crashes after 5 minutes of processing. Just a simple edit
and you have your own condition breakpoint:

ACC:AccountNo = LOC:AccountChosen
SET(ACC:AccountKey,ACC:AccountKey)
IF ~Access:Accounts.Fetch(ACC:AccountKey)
 Idx# += 1
 IF Idx# = 895832
 Dummy” = ‘X marks the spot - Set break point here’
 END
 !Process code here
END

Say what you want about implicit variables, but this is a good use for them. This is one-off code, so
you really don’t care about the downsides of using them (but check your spelling!). Place the break
point where indicated.

Note: The text is easy to locate using the Find function in the debugger. Search for “X
marks the spot”, a bit of text not likely to occur anywhere else in your application.

Now it is a simple matter of using the GO command. While you wait, go get a cup of coffee or take
a short break. Once the condition becomes true, the debugger encounters the break point and takes
control of the execution of your application. It now becomes a simple matter of step tracing and
inspecting variables.

Debugging Runaway Processes
Imagine the horrifying scenario where you have a program that is caught in an infinite loop? But it
gets worse, this looks like a hang. But more bad news, there is no window open, so nothing appears
on your desktop. And worst of all, you ran this application without the debugger. How does one
get the debugger inserted in this process?

The Clarion debugger has quite a few command line options. Here is the list:

C60DBX [redirection file] [INI file] [-s dllname [-s dllname ...]] program.EXE [parameters]
C60DBX [redirection file] [INI file] -p PID [-e EventNo]

The second form of the command line usage above is used to attach the debugger to an already
running process.

redirection file A string constant that names an optional redirection file. The file name MUST
have an RED extension. If present in the command line, the file name overrides the default
redirection file specified in the Debugger Options dialog and replaces it with the new name. The file
name must be enclosed in quotes if it contains spaces.

Aussie DevCon 2006 Debugging

 Page: 30

INI file A string constant that names an optional redirection file. The INI file MUST
have an INI extension. If present in the command line, it overrides the appropriate default INI file
name (C60EE.INI or C60PE.INI) located in the BIN directory. The file name must be enclosed in
quotes if it contains spaces.

dllname The name of a DLL loaded by the program. When the system loader loads this
DLL into process's virtual memory, the debugger suspends processing when the DLL entry point is
encountered.

program.EXE The program name to be debugged (the debuggee).

parameters Optional parameters passed to the debuggee

PID The debuggee's process ID in decimal or hexadecimal format. In the latter
case, the number must be ended with an H character (i.e., 27A3H).

EventNo The debug event number. This number is passed by the system if debugger is
installed as a System Debugger and it is invoked because of a fault.

A runaway process is an application already running with no clear way to safely shut it down. You
could use the task manager, but you may cause a memory leak, or risk leaving data files in an
opened state.

To shut down a runaway process, open the task manager. Find the rogue program and one of the
columns is a Program IDentification or PID number. Let’s say its 8088. Press START RUN and
then enter:

C60dbx –p 8088

The debugger then starts debugging the runaway process. You can then put a breakpoint in the
code and when it hits it, do whatever you need to have the application shutdown on its own. What
action you take there largely depend on the situation but one useful action is to edit variables so the
condition to shutdown the application begins.

Break In
As an alternative, Capesoft’s BreakIn tool can be handy. Just start it from Clarion’s IDE (see
Accessories menu) and load the runaway application. It will load needed DLLs then show you the
stack trace. Unlike the debugger, this stack trace is “upside down”, in other words, the most recent
stack is on top, its caller is just below it and so on. While an app is spinning out of control, this
display can seem a bit odd looking. Just press BREAK and BreakIn suspends the app.

You may then inspect the stack trace in detail and usually spot the block of code that is causing the
application to run endlessly.

Debugging Aussie DevCon 2006

Page - 31

Summary
This section attempted to highlight the important options available to you when compiling and
debugging your program.

I’ve shown how easy the debugger is to use and setup. I’ve also shown you do not (and should not)
have to step trace every line of code in your program.

I’ve explained that debugging is not a tool per se, but an investigation. The debugger is a tool and a
powerful tool, which is easy to use despite the power it provides.

Aussie DevCon 2006 Debugging

 Page: 32

Page: 33

CHAPTER 3 - USING API TO DEBUG
Introduction
I am resigned to the fact that no matter how much I demonstrate the Clarion debugger, there are
Clarion developers that will dangerously continue to use MESSAGE and STOP for debugging
reasons. MESSAGE and STOP are for displaying messages and should only be in your programs
for their intended use.

The appeal using these statements for debugging is obvious, they are easy to insert into your code
as a substitute for break points. But due to their own event handling, they can alter behavior of your
applications, but not always. An ideal solution is to have something you can place in your code as
easily as MESSAGE or STOP, yet be safe.

DebugView
This is a utility from Sysinternals. It is free. It is not part of the materials as the author of the utility
likes to keep track of downloads from their web site. You may find it at
http://www.sysinternals.com/ntw2k/utilities.shtml.

All DebugView does is simply trap events and report them. It is configurable so that you may apply
certain filters and color code them if you want (to pick out certain events, or indicate severity levels
is one use for filters). You use API calls to send messages that DebugView can trap and report.
Those calls are in a class for your use.

Debuger Class
That is not a typo that is how it is spelt – deliberately. This class is ABC compliant in every way.
It even has a template wrapper for use in apps. It is also handy for hand coded projects too. One of
the best uses is a safe replacement for why people use STOP and MESSAGE. The class for this is
included as part of this presentation.

Application Use
In any application you wish to use, be sure you register the Debuger template. You application
merely needs the global extension. The settings of most interest to you are the following:

Aussie DevCon 2006 Debugging

 Page: 34

Figure 27 – Global Debuger settings.

Activate Debuger class?
Checking this box activates the Debuger class. Clear the check to deactivate it. If you have a
DLL project and this app is not meant for debug use, then clear the check. All this does is
prevent the startup messages and cluttering your display.

Duplicates
The duplicate messages happen in certain circumstances where the same event message is sent
over and over. For example in a looping process, which causes the same message to be sent
many times, you can limit how long this happens before a message statement pops up. Set it to
zero to disable this feature.

Clear Behavior
The class can clear the display; this setting sets the default behavior.

Dump Queue Behavior
Indicates how the class behaves if you leave off the file name parameter of the Init() method.
This happens only when you use the DumpQue() method.

That is all that is needed to make the class work. If you compile and run the previous broken
Orders app, this is what you see:

Debugging Aussie DevCon 2006

Page - 35

Figure 28 – Orders application started as seen in DebugView.

But that is all you see until you exit the application. Then you’ll see a message that the program
quit. This is a fast and simple test to ensure DebugView and the supporting class is working
properly.

I should also note that a filter is in place. You may need to filter messages depending on what is
going on with your machine. For example, if I remove all filters, DebugView shows these
messages constantly:

Figure 29 – Computer talking to UPS device.

This makes it hard to see what you need to see. The DebugView class uses an “unshifted” tilde
character to “flag” messages sent by it. Thus open the filter dialog and fill it is as follows:

Aussie DevCon 2006 Debugging

 Page: 36

Figure 30 – Filter dialog.

To use the class in your application is quite simple. Use the CallABCMethod code template and
call DebugOut. It takes similar parameter as MESSAGE(). It may look like this:

Figure 31 – Using CallABCMethod code template to call Debug method.

That template generates code as follows:

Figure 32 – The DebugOut method.

When run and you trigger the buggy behavior, DebugView shows the following:

Debugging Aussie DevCon 2006

Page - 37

Figure 33 – Message showing you a variable’s value.

Hand Coded Use
Using this class in a hand coded project is marginally more difficult. All you need to do is to
manually set up your project that the template does for you.

The first step is to ensure the project defines variables are correctly set:

Aussie DevCon 2006 Debugging

 Page: 38

Figure 34 – Debuger flags defined and set.

Your project may or may not be an ABC project, so the flags for ABC use may or may not be in
your defines list. The _DebugerDllMode_ and _DebugerLinkMode_ flags are required. In the
figure above, they are set for EXE use. If your project is a DLL or LIB, then reverse the flag
values. Zero is “off”, one or missing is “on”.

The second thing you need is to INCLUDE the class in the global section of your project:

 INCLUDE('Debuger.INC'),ONCE !Include the Debuger class

Instantiate the class is all that is left:

DB Debuger

All you need now is to call the methods you need. An appendix describing the use of the
popular and common methods is part of this document if you wish to use more methods.

The Fastest Way to Start the Debugger
In the previous section, I showed how to use the debugger. Some people don’t like the debugger
because they think it is too much work to set up. For those who agree with that sentiment, here
is a little tip on how to launch the debugger with no effort on your part.

It would be very nice to simply have the debugger start and pause at a breakpoint in source, just
like anyone with Visual Studio can do. To do this in Clarion is harder than Visual Studio, it
requires one line of code. Oddly enough, this technique could be used in Visual Studio as well.

Debugging Aussie DevCon 2006

Page - 39

Say you have a block of code you would like to launch the debugger, open the correct source,
execute the code up to the break point you are interested in. All without lifting a finger. Just
add the following code line:

DB.DebugBreak()

That’s all you need to do. What this method does is trigger a simulated GPF. Just go through
the steps on post-mortem debugging. Except there is one difference, your application is still
running. Unlike a real post-mortem, you can step trace through your code, watch stack trace and
global variables, edit them, etc.

This is by far the easiest and fastest way to set up the Clarion debugger to begin debugging at
precisely the line of code you need.

Aussie DevCon 2006 Debugging

 Page: 40

Page: 41

CHAPTER 4 - DRIVER DEBUGGING
Introduction
Regardless whether you use SQL or ISAM based files, there are times when you need to see what is
happening between your application and the data files. Clarion provides file drivers so any Clarion
statement is the same from one backend to the next (with minor documented differences).

Problem behavior manifests itself in many ways. You may get random error codes, regardless of
backend. Your application may have become slower. Innocent changes on your part may escape
notice of a major effect on your application. Or a setting on the data server.

Driver tracing
Clarion ships with a utility to trace file driver calls. This works with SQL or ISAM drivers. It is
located in the bin folder under the Clarion root folder (default C:\Clarion6\bin). It is called
trace.exe. When started, it appears similar to this:

Figure 35 – Trace utility

Using the orders application from earlier, below is a typical log file from starting the app, opening
the browse, and then closing the application:
06CCH(2) 16:28:59.031 CUSTOMER
FILE,DRIVER('TOPSPEED'),NAME('CUSTOMER'),CREATE,RECLAIM
06CCH(2) 16:28:59.031 CUST:BYNUMBER KEY(+CUST:CUSTNUMBER),OPT,NOCASE,PRIMARY
06CCH(2) 16:28:59.031 CUST:BYNAME KEY(+CUST:COMPANY),DUP,OPT,NOCASE
06CCH(2) 16:28:59.031 RECORD
06CCH(2) 16:28:59.031 CUST:CUSTNUMBER LONG
06CCH(2) 16:28:59.031 CUST:COMPANY STRING(30)
06CCH(2) 16:28:59.031 CUST:FIRSTNAME STRING(20)
06CCH(2) 16:28:59.031 CUST:MIDDLENAME STRING(20)
06CCH(2) 16:28:59.031 CUST:LASTNAME STRING(20)
06CCH(2) 16:28:59.031 CUST:ADDRESS STRING(30)
06CCH(2) 16:28:59.031 CUST:CITY STRING(20)
06CCH(2) 16:28:59.031 CUST:STATE STRING(2)
06CCH(2) 16:28:59.031 CUST:ZIP DECIMAL(5,0)
06CCH(2) 16:28:59.031 CUST:PHONE DECIMAL(11,0)

Aussie DevCon 2006 Debugging

 Page: 42

06CCH(2) 16:28:59.031 END
06CCH(2) 16:28:59.031 END
06CCH(2) 16:28:59.031
06CCH(2) 16:28:59.031 GET_PROPERTY(CUSTOMER:042C1D8H) Time Taken:0.00 secs
06CCH(2) 16:28:59.031 GET_PROPERTY(CUSTOMER:042C1D8H) Time Taken:0.00 secs
06CCH(2) 16:28:59.031 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNUMBER[0]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.031 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNUMBER[0]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.031 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNUMBER[0]) Time
Taken:0.02 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNUMBER[0]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNUMBER[0]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNUMBER[0]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GET_PROPERTY(CUSTOMER:042C1D8H) Time Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNAME[1]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNAME[1]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNAME[1]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNAME[1]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNAME[1]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GETPROPERTYkey(CUSTOMER:042C1D8H,CUST:BYNAME[1]) Time
Taken:0.00 secs
06CCH(2) 16:28:59.046 GET_PROPERTY(CUSTOMER:042C1D8H) Time Taken:0.00 secs
06CCH(2) 16:28:59.046 GET_PROPERTY(CUSTOMER:042C1D8H) Time Taken:0.00 secs
06CCH(2) 16:28:59.046 GETNULLS(CUSTOMER:042C1D8H) Error: File Not Open Time
Taken:0.00 secs
06CCH(2) 16:28:59.062
OPEN(C:\Clarion6\Examples\Tutor\Debugger\CUSTOMER.TPS:042C1D8H) Time Taken:0.01
secs
06CCH(2) 16:28:59.062
GET_PROPERTY(C:\Clarion6\Examples\Tutor\Debugger\CUSTOMER.TPS:042C1D8H) Time
Taken:0.00 secs
06CCH(2) 16:28:59.062
SETNULLS(C:\Clarion6\Examples\Tutor\Debugger\CUSTOMER.TPS:042C1D8H) Error:
Unsupported File Driver Function Time Taken:0.00 secs
06CCH(2) 16:29:01.343
CLOSE(C:\Clarion6\Examples\Tutor\Debugger\CUSTOMER.TPS:042C1D8H) Time Taken:0.00
secs
06CCH(1) 16:29:01.515
DESTROY(C:\Clarion6\Examples\Tutor\Debugger\CUSTOMER.TPS:042C1D8H) Time
Taken:0.00 secs

Listing 2 - Small driver trace log

There is a lot of detail saved to the log, even with a simple action of starting the application,
opening a browse and then quitting. Using the trace utility, you can adjust to a certain extent, the
amount of data in the log. If I did more than just open a browse, then memory dumps of the data
are also placed in the log.

Note: Be sure to turn off driver tracing when you are finished! Leaving it on impacts
performance and the log file grows quickly.

Special note: Whenever you are doing drive tracing, be sure to shutdown other applications
using the same driver first!

Debugging Aussie DevCon 2006

Page - 43

This tool has its uses. The best is when you really don’t have a good idea when trouble first starts.
Or perhaps you need to see which files or tables open first (or attempt to open). If you need to
know just the data when a particular procedure runs, then you must use other means.

Driver Tracing on Demand
If you really don’t wish to turn on driver logging globally as you would with the trace utility, then
consider turning it on in varying degrees. By that I mean you can turn it on when you enter a
procedure and turn it off when you return from it. Or turn it on when a control is accepted and
turned off when another specific event happens. All sorts of combinations.

PROP:Profile
Property of a FILE that toggles logging out (profiling) all file I/O calls and errors returned by the
file driver to a specified text file. Assigning a filename to PROP:Profile initiates profiling, while
assigning an empty string ('') turns off profiling. Querying this property returns the name of the
current log file, and an empty string ('') if profiling is turned off.

PROP:Details
This tells the driver to include record buffer contents in the log file; however, if the file is
encrypted, you must turn on both the Details switch and the ALLOWDETAILS switch to log
record buffer contents (see ALLOWDETAILS). Details=0 tells the driver to omit record buffer
contents. The Profile switch must be turned on for the Details switch to have any effect.

PROP:Log
This property writes a string to the log file.

As an example, the following is example code that writes what you want to a log file:
Customer{PROP:Profile} = 'Customer.log'
Customer{PROP:Log} = 'Event new selection. Current customer: ' & CUST:Company
Customer{PROP:Profile} = ‘’

Listing 3 - Simple file logging.

This listing illustrates that you may turn on logging by naming a file where the dump statements go.
It is a text file. You may use a path and file name, otherwise the file is in the current folder. The
second line writes whatever you need in the log file. The last line turns off the logging. A typical
result would look like this:
0BE8H(2) 10:20:56.343 Event new selection. Current customer: ABC Widgets Company
0BE8H(2) 10:20:56.781 Event new selection. Current customer: Have Everything
0BE8H(2) 10:20:57.187 Event new selection. Current customer: Easi Everything
0BE8H(2) 10:20:57.578 Event new selection. Current customer: Fidelity America
0BE8H(2) 10:20:58.015 Event new selection. Current customer: K Processing

Listing 4 - Example dump log contents.

The advantages to using this method over the system wide method should be obvious. You may put
anything you like in the dump file. Since you control the code, you may even use conditional logic
for when something is dumped to a file.

As a final suggestion, you could place any code like this as debug statements. This is the form
where column one contains a question mark and at least one space. This has a hidden second

Aussie DevCon 2006 Debugging

 Page: 44

benefit too. These debug statements are ideal places to locate code to set breakpoints when you do
need to use the debugger.

Summary
Dumping data to a log file is easy and straightforward. You may turn on system wide driver tracing
if you are not sure where the problem lies or suspect a data error, like a customer ID pointing to a
wrong customer ID in the invoice file. Once you’ve narrowed down where the problem may be,
you may use PROP:Profile to start the process of dumping data to a log file. PROP:Log writes
whatever string expression you want to the dump file, thus you are in complete and total control
over what goes in the dump file.

Page: 45

COMMON CODING PROBLEMS
Introduction
Knowing how to code a GPF may sound strange as we tend to spend our production time not
coding errors. The theory here is that if you know how to code GPFs or produce them, then you are
less likely to have these in production code. Same for other coding errors that the compiler does not
complain about.

Program just quits suddenly
This is when you are running the application and it just shuts down with no warning, no errors. It’s
like pressing ALT-F4. How do you trace that? Check for these reported causes:

Recursive calls
Too many recursive calls can exhaust resources. While you can code these in an application
(which Clarion does point out), one or two may not cause any issues other than just bad coding
design. It can get tricky if these calls are across DLLs. Thanks to Mike Hanson for this tip.

Bad slicing
This is the condition where the begin slice is greater than the end. This can happen when one is
thinking SUB but doing slicing.

xVal = 10; yVal = 3
sVal = SUB(rVal,xVal,yVal) !This works
sVal = rVal[xVal : yVal] !Ends program with no GPF

Thanks to Carl Barnes for this tip.

Delayed GPFs
This is when a bit of bad code corrupts the stack, but the GPF happens later. Some situations make
using the debugger difficult and this is one of them. One reason the debugger won’t be much use in
this situation is that you don’t have a good place to put some breakpoints. And if you think you
have an idea, the next pass through the suspect area, nothing happens.

One sure fire way to make life miserable is to rely on an implicit RETURN. This can corrupt the
stack and a GPF is not far away once this happens. Here is what it would look like:

IF SomeVar > 10
 RETURN LEVEL:Benign
END

OK, that looks harmless. But what happens if the condition is false? Where is the code for the
false side? The compiler will place an implicit RETURN here. But what does it return? Anything?
If you just place a RETURN by itself, at least the compiler would point out that a value is missing.

The same theory holds for ROUTINEs. Explicit EXITs are always a good idea. Plus you get a nice
benefit – you can put a breakpoint on these lines and check the values as a procedure or routine
returns to the calling code.

Aussie DevCon 2006 Debugging

 Page: 46

Another cause could be a bad slice buffer overrun. Using the slice example above, you could make
the above code safe:

ASSERT(xVal > 0 AND xVal <= yVal AND |
 xVal <= SIZE(rVal) AND |
 yVal <= SIZE(rVal)) !Asserts before problem code below
sVal = rVal[xVal : yVal] !Ends program with no GPF

Thanks to Carl Barnes and Gordon Smith for this tip. I would also like to add that a liberal use of
ASSERTs in your code can trap problems early.

Page: 47

APPENDIX A – DEBUGER CLASS

REFERENCE
Introduction
The following is a quick reference of the common methods of the DebugerClass. A full reference
is available for free at www.radfusion.com.

Init
Prototype

PROCEDURE(STRING ProgramName,BYTE DebugAlways=FALSE ,SHORT DuplicateCount=50),VIRTUAL

Description
ProgamName – A string constant or expression stating the name of the application

DebugAlways – Either true or false (default) - if true then Debuger on regardless of project
Debug setting. '/Debuger' on the command line will also turn on the Debuger functions for that
launch as if this parameter is set to True.

DuplicateCount – The number of duplicate Debug messages in a row before warning message.
If zero, then do not track duplicates. Default is 50.

Message
Prototype

PROCEDURE(STRING body,<STRING Header>,BYTE ShowMessage=FALSE,BYTE ForceDebug=FALSE),VIRTUAL

Description
Body – The body of the message, either a string constant or expression.

Header – An optional message header. A string constant or expression.

ShowMessage - if True then a MESSAGE() will be issued along with the DebugOutString

ForceDebug - If True then this overrides the debug setting.

DebugBreak
Prototype

PROCEDURE(),VIRTUAL

Description
This method is a wrapper for the DebugBreak API call. This has the same effect as setting a
breakpoint. It is only called if the DebugActive property is true.

Aussie DevCon 2006 Debugging

 Page: 48

Kill
Prototype

PROCEDURE()

Description
Sends an output string to DebugView indicating the program quit. It also sets the DebugActive
property to false. It is automatically called by the Destruct auto method. You could also call it
and re-issue an Init if you wanted to “restart” the class.

