
CLAJ liON
--~ I ECHNICAL BULLE liN

Bulletin #104

Understanding Clarion Memory Tables

'. Overview

This bulletin is an expanded version of Chapter 12 of the LanlWage Reference manual
which covers Clarion Memory Tables. It includes a discussion of Clarion Memory
Tables, emphasizing benefits, tips on usage, and programming techniques. In reading
this material, please note that some of the information is specific to Professional
Developer Version 2.0.

Copyrfght 1989 by Clarfon Software Co~Uon. August Page 1

BulleUn #104 - Understanding ClarIon Memory Tables

Clarion Memory Tables

Clarion Memory Tables

Clarion memory tables provide a means of building an ordered set of data entries in free memory. A table
data entry is similar to the record of a data file. Unlike data files, which require records to be read from and
written to disk, memory table entries are added to, deleted from, and changed
in, free memory.

Free Memory

Free memory is addressable physical memory that is unused after a program is loaded. On a PC under
DOS, free memory can be represented as shown in Figure 1.

640k -
I

Free memory is used for:

1 Memory tables.
1 Open screen field tables.
1 Open window save areas.

Free Memory 1 FHe buffers.
I • 1 File and key caches.

I------~--------I1 .PRO's 1 I
1---------------1 I Translated version would be
1

Clarion
Runtime

I J
a single .EXE.

Resident
Software

DOS
Ok - FIgure 1. Free Memory

Memory Table Organization

A Qarion memory table entry is an element in a doubly-linked list. A Qarion memory table, implemented
as a doubly-linked list, can be logically represented as shown in Figure 2.

Copyrtght 1989 by Clarion Software CorporatIon. August Page 2

I I I_~~~~~~~_~~·~~~~_~~~~__ l-----'

Bulletin ~104 - Understanding Clanon Memory Tables

TABLE

~I_~~~~~~~_~~_~~~~~_~~~_ I

I I I-~~~-~~-~~~~~~~-----­
I I I-~~~~~~~-~~~~-~~--­
I I Entry record area
I I I I Data area

-----1--1--------------------------------------1--1----------------------------­

ILI:~~~~~~~i~:~~~~:jl I I Free memo~
1-:~~~~~_~~_~~ ~ ~_~~~~:___ ,I I I

'

Data for thlS entry

.
, L> Entry "n" <:___.....

L'-~~~~~~~·~~-~~~-~~~~:--'I
POlnter to prey entry

Length of this entry I

-~~;~-;~;-;~;;-~;~----I

figure 2. A ~ Table as a
Doubly-Linked List.

Copyright 1989 by Clarion Software Corporation, August Page 3

BulleUn #104 - Understanding Clanon Memory Tables

Advantages of Memory Tables

Memory tables, implemented as doubly-linked ~ts in free memory, have several advantages over files or
arrays as a way to structure data: '

• 	 Tables can be processed sequentially forward or backward by following the chain pointers.

• 	 Because tables are chained:

- Consecutive entries need not be contiguous in memory. Entries can be added in memory wherever they

will fit.

- An entry can be inserted into an ordered table without shifting any entries to make room. Only the

pointers need to be updated.

-	 A table can be sorted very quickly. Data is not moved; only pointers are

re-arranged. Once sorted, searching for an entry by a key is also quick because all of the entries are in

memory.

• 	 Although direct access might involve following a chain and counting to fmd a specified entry, because

entries are in memory, direct access of an entry is faster than direct access of a disk file.

• 	 A length for each entry is maintained, because spaces can be clipped from the end of an entries' data

before adding or putting an entry into a table. If clipping spaces shortens an entry, the clipped area is now

unused and can be given back to the free memory pool. Therefore, while

tables are declared fIXed length, they are stored variable length. By contrast, files and arrays deal in

fIXed length units of storage.

• 	 Unlike an array, which has to declare all elements of itself at compile time and allocate its full data size at
run time, a table need only declare a record. No entries are allocated until executable statements add
records to the table. When a memory table is no longer needed, all entries can be given back to free ~~
memory with the FREE statement.

• 	 Unlike an array, which cannot exceed 64k in total data size, a table can us.e up to all of available free

memory. From an internal design standpoint, a memory table can contain up to 65000 entries and each

entry can be up to 65520 bytes in length.

Uses for a Memory Table

There are a number of valuable applications of memory tables:

• A relatively small, read-only file containing records which provide code-to-description look-np style usage.

This item might be handled more efficiently with a memory table. For example, a table of customer type

codes such as "010" (for Value-added Dealer), or "020" (for Integrated Software Seller). This usage can

speed access and help reduce the number of open files.

• Batches' of transactions that must be operated on as a unit. These items are sometimes best handled with

memory tables. Records can be read from disk and added into the table; the table can be updated; and

when ready, the table entries can be accessed and records written back to disk. Because changes take

place in memory, they can only be undone or the entire process aborted without affecting the file on disk.

Copyright 1989 by Clarion Software CorporaUon, AuguS1 Page 4

BulleUn #104 - Understanding Clarion Memory Tables

• A table of tags could be built from a data file containing fields not otherwise keyed. If the record number
is also part of the table, sorting the table in various ways allows the file to be viewed in any sequence.
Perhaps only certain records are selected to be loaded into the table. (Availability of free memory might
limit this usage.)

• Tallying and summarizing. This is another valuable usage for memory tables. A data file can be read
and a memory table can be used to tally or count the instances of certain values in specified fields. The
table can then be used to provide a summary of the figures extracted from the data file. An example of
this usage is provided at the end of this bulletin.

• A list of choices that needs to be accessed via a "point-and-pick" scrolling window. This is another
application where memory tables work well.

Allocation Priority

Free memory is also used for Clarion file buffers and file and key caches. Memory tables, however, have a
higher allocation priority than buffers and caches. Therefore, if there is not enough memory for a new table
entry, buffers and caches are downsized or deallocated (in the opposite order that they were allocated) to
make room. Refer to Chapter 11 in the Language Reference manual for more information on downsizing
and deallocation of buffers and caches.

~ The Table Structure

TABLE statement

label TABLE ! declares a tableForm:

(statements) ! declare record area

! period or END terminates

figure 3. Table structure format.

The TABLE structure declares a memory table. It includes the TABLE statement and the statements
following it, until the structure is terminated by a period (or END statement).
The /abel of the TABLE statement identifies the table structure and is used as a parameter of memory table
processing statements and functions. As with other Clarion data structures, the PRE attribute can be used
with TABLE.

Table structures utilize free memory organized into doubly-linked lists. The handling of free memory and
the maintenance of the chain pointers is automatic. Data is manipnlated via high-level language statements,
freeing the programmer to concentrate on application program logic.

Copyright 1989 by Clarion Software Co~raUon. August Page 5

Bulletin #104 - Understanding Clarion Memory Tables

Table Record Area

The statements inside the TABLE structure define the table record area. Memory table entries are read
from the doubly-linked list in free memory into this record area. Entries are added to or put back into the
doubly-linked list from this record area. The same types of statements are valid within a TABLE as within a
RECORD or GROUP structure; namely: BYTE, SHORT, LONG, REAL, DECIMAL, STRING, and
GROUP. A table record area can declare between 1 and 65520 bytes of data.

Space Clipping Feature

When a table entry is written to free memory, trailing spaces are clipped from the table record. When a
table entry is read from free memory into the table record, the record is padded with spaces to the full
length of the record. When declaring a table record, a good rule of thumb is to place the statement that
declares the longest string last in the structure. This will ensure the best usage of
the space clipping feature.

Table in An Expression

Similar to the RECORD of a fi]e, when the label of TABLE is used in an assignment statement or an
expression, the record area is treated as a GROUP. In these cases, only the data
in the record area is referenced. An A =B style assignment statement can be used to move data to or from a
table record area. For example, a memory table mighthave a structure that matches a data file record.
When loading such a table, data file records can be read from disk and then copied to
the table record by simply stating table label = record label. The contents of a table record can also be
cleared with the CLEAR statement. The actual table entries in free memory are only accessed via special
memory table statements and functions.

Scope of Usage

Tables can be~declared in the data section of a program and, hence, be global to all procedures in the
program. Tables can also be declared (with care) locally in a procedure. General purpose procedures can
be written to access tables passed as parameters to an EXTERNAL parameter ..

Used with EXTERNAL Parameters

A table structure can be identified directly via the label of the TABLE statement, or indirectly when the label
is passed as a parameter to an EXTERNAL statement with a TABLE attribute. This usage makes an
EXTERNAL eligible for usage in special memory table statements and functions.

Copyright 1989 by Clanon Software CorporaUon, August Page 6

BuileUn #104 - Understanding Clarton Memory Tables

PROGRAM

MYTABLE TABLE I - Declare the table structure.
TYPE STRING(3)
DESC STRING(30)

MAP
PROC(FIXTBL) -A procedure that will operate on

a memory table.

CODE

FIXTBL(MYTABLE,TYPE) L - Call the procedure and pass the
memory table and a variable as
parameters.

FIXTBL PROCEDURE(TBL,VAR) - Declare the procedure.

TBL
VAR

EXTERNAL, TABLE
EXTERNAL

- External memory table parameter.
- External variable in table parameter.

CODE

GET(TBL, VAR) -Access the table Indirectly via the
external parameters.

Figure 4. External Table.

The EXTERNAL table only provides indirect access to the table itself, not to specific variables in the table
record. As shown above, where needed, a variable in the table record should be passed as a separate
parameter.

H a table is passed to a standard EXTERNAL (no TABLE attribute) it is treated by the receiving procedure
as a GROUP, and, as such, is not eligible for use in special memory table statements and functions.

Memory Table Statements

Memory tables are not opened or closed. Table entries are added via the ADD statement, retrieved with the
GET statement, updated with the PUT statement, deleted with the DELETE statement, and sorted with the
SORT statement. All of the entries in a table can be deleted with the FREE statement. Operations
normally handled with SET, NEXT, or PREVIOUS statements with data files, are handled by the GET
statement with a TABLE. Each statement is described in detail later in this document.

Copyrtght 1989 by Clarton Software CorporaUon. August Page 7

Bulletin #104 - Understanding Clarion Memory Tables

Pointer to first entry

~~~~~:~.~~.~~~~.~~~~. I 
NUJber of entries I - Returned by RECORDS(table) • 
... -.................. I 

Current entry nUJber I - Returned by POINTER(table) . 


~~~~~~~~~~~~~~~~~~~~~sl 
Entry "record" area I - Declared by statements in TABLE structure.

I

Figure S. Representation of a Table Internal description.

Logical Record Position Pointer

As previously mentioned, entries in a table are organized in free memory in doubly-linked lists. The list is
chained forward and backward with physical memory pointers. Physical memory pointers are maintained by
the language statements and are hidden from the programmer. Application programs using memory tables
deal instead with a logical record position pointer.

The logical record position pointer is simply the position number of a table entry in the chain. The first table
entry in the chain has a po~ition of 1. The next table entry in the chain has a position of 2, etc. The last
entry in the chain has a position number equal to the number of entries in the table.

Table entries can be accessed either by a "key" value or by a "logical position pointer" value. This will be
covered in more detail as the language statements are explained in this document. For now, it is important
to understand that any time an entry is accessed via a memory table statement, a current entry number is set.
The current entry number is returned by the POINTERO function. It is also important to understand that
position numbers are dynamic. The position number of a given entry may change many times as entries are
inserted into or deleted from the chain ahead of the entry.

Table Caveats

It is important to remember the following about tables:

• Table entries in free memory are not freed automatically (except when the program terminates). Free
memory is not given back unless entries are deleted via the DELETE or FREE statements. Always
FREE a memory table when it is no longer needed. Make sure a table is empty before using it. (It never
hurts to free an empty table.)

• 	 If a memory table was loaded from a disk me and changed, the table must be written back to the disk me
or the changes are lost. If entries have been added or deleted, care must be exercised in updating the me.
Perhaps 50 records were read in, and now only 40 are to be written out. Thought must be given to how
the extra records in the me are to be handled.

• 	 Use the ERRORO function! Exhausting free memory while using memory tables is considered a "normal"
run· time error, not a processor halt error. The out of memory condition is reported by the ERRORO
function. Never presume that aD entry was added successfully.

Copyright 1989 by Clarion Software Corpdratlon, August Page 8

Bulletin .104 - Understanding ClarIon Memory Tables

• 	 Use care when declaring a memory table locally in a procedure, especially if the procedure is in an
overlay. H entries are added to a local table, not freed, and then the procedure is overlaid, the memory
used by those entries is gone! (At least for the duration of the program.) The memory is no longer
available in the program, because it was never given back to the free memory pool, and because the
overlay re-inited the table declaration, the table no longer knows about those entries.

• 	 As mentioned earlier, because of the high allocation priority of tables, previously built buffers or caches

may be automatically freed. .

• 	 Each table entry requires ten bytes of free memory in addition to the data it contains. These ten bytes are
used to store the forward and backward pointers, and the length of the data contained in the entry. Using
a memory table may not constitute a practical use of free memory if the record area is very small and the
number of entries needed is very large.

Memory Table Processing Statements

GET Statement

Form 1: GET (table,pointer)
Form 2: GET (table,key)

GET is used to locate a table entry and (if located) read it from free memory into the record area of the
TABLE structure. To access a TABLE, the table parameter of GET must identify a TABLE structure,
directly (by naming the table) or indirectly (via an EXTERNAL with a TABLE attnbute.)

Form 1: GET by pointer

In Form 1, the pointer parameter specifies the logical table position pointer (or number) of an entry to be
read. This parameter supplies an integer value from a variable, constant, or expression. H this parameter is
a variable, it must not be a variable declared in the record area of the table. (This would be an instance of
which is described later.)

-	 If successful ...
H the pointer parameter specifies a valid position number (between 1 and the number of entries in the

table) the entry in that position is read into the table record area. The record will be padded with spaces if
the entry is shorter than the record (due to the space 6:lipping feature). The internal current entry number
for this table is set to the position number of the entry read.

-	 If unsuccessful•••
H the there are no entries in the table, or if the pointer parameter is invalid (less than 1 or greater than the

number of eutries in the table), an entry is not read and the contents of the record area remain unchanged.
The ENTRY NOT FOUND error is posted and may be detected with the ERRORO function. The
internal current entry number field in the table declaration is set to 1.

Copyright 1989 by Clarion Software Corporation, August Page 9

Bulletin :fI:104 - Understanding Clarion Memory Tables

Usages

Form 1 (GET by pointer) can be used for random <Prect retrieval of table entries:

GET(MYTABLE,3) ! get the third entry
IF ERROR() ! added to table yet?

••• statements •••

Figure 6. Random retrieval by poln1er via GET.

In a loop, this form can be used for sequential processing of a table. For example, processing a table in
NEXT sequence:

I

LOOP COUNTER = 1 TO RECORDS(MYTABLE)

I GET(MYTABLE,COUNTER)

statements

I . ! end of loop

Rgure 7. Using GET to retrieve entries In NEXT sequence.

Or, processing a table in PREVIOUS sequence:

LOOP COUNTER = RECORDS(MYTABLE) TO 1 BY -1

GET(MYTABLE,COUNTER)

statements

• ! end of loop

Figure 8. Using GET to retrieve entries In PREVIOUS sequence.

Form 2: GET by key

In Form 2, the key parameter is a statement label which specifies a table search key. A table search key
must be a variable (it may be a GROUP) declared in the table record area, but it may not be an array or an
element of an array. A variable outside the table record area, or an expression
involving variables inside the record area, does not specify a table search key. (This constitutes Form 1.)

The "GET by key" statement presumes that the table entries are already sorted in search key sequence. The
key parametet:, besides designating the location in the record and the type of the data at that location, also
provides a value to match against during a binary search of the entries.

Copyright 1989 by Clarion Software Corpo~Uon. August Page 10

Bulldn .104 - Understanding Clarion Memory Tables

- If successful.••
The GET is successful if an entry is found with a key variable that exactly matches the search key value.
When multiple entries are exact matches, the exact match with the lowest position number is used. When
the exact match is found., the entry in that position is read into the table record area. The record will be
padded with spaces if the entry is shorter than the record (due to the space
clipping feature). The internal current entry number for this table is set to the position number of the
entry read.

- If unsuccessful ...
If no exact match is found for the given search key value, an entry is not read and the contents of the
record area will remain unchanged. The ENTRY NOT FOUND error is posted and may be detected with
the ERRORO function.

However, and this is VERY IMPORTANT, the internal current entry number for this table is set to the
position where searching stopped. The binary search stops when an exact match is found., or when it is
determined that no exact match can be found. The position where the search stopped is the position
where the requested entry would have been if it had been in the table.

This is very useful, because this position number provides an insertion point for use with the ADD by
pointer statement explained later.

But even more important than that, this position number can be used to provide a SET point for
sequential processing. Figure 10 shows an example of this•. Once this position number is set via GET by
key, GET by pointer can be used to roll the entries forward (similar to a NEXT statement) by
incrementing a pointer variable, or backward (similar to a PREVIOUS statement) by decrementing a
pointer variable. .

GET by key caveats

It is important to remember the following about GET by key:

• A table is presumed to be sorted in the search key sequence. A table can be sorted with the SORT

statement (explained later) or by building the table sorted as you go (explained further under the ADD

statement).

• If several variables need to be combined into a composite key, these variables may be declared in a
GROUP structure in the table record area. Be wary, however, of SHORT, LONG, or REAL variables in
a GROUP composite key.

A GROUP is treated as a string. SHORT, LONG, or REAL variables work well as search keys, but
treated as a part of a string, they will collate in a sequence that will be different than what might have
been expected. This is due to the manner in which SHORT, LONG, and REAL data types are
represented in the Intel architecture; namely, a low-order byte precedes a high-order byte in memory.

There are several solutions to this problem. Select the one that best fits your needs:

1. 	 Only use STRING variables in a GROUP that is to be used as a table key.

2. 	 Only use DECIMAL variables to contain numbers in a GROUP that is to be used as a table key.
DECIMAL variables collate properly (except that negative numbers sort greater than positive numbers)

Copyright 1989 by Clarion Software CorporaUon, August Page 11

Bulletin .104 - Understanding Clarion Memory Tables

and, in many cases, require less storage space.

3. 	 Do not use a GROUP as a table key. Instead, use the SORT statement repetitively, sorting each of the
elements in its turn. This technique is disc~d further in the section on the SORT statement.

Form 2 (GET by key) can be used for random keyed retrieval of table entries:

MYTABLE
TYPE
DESC

TABLE
STRING(3)
STRING(30)

, :
COOE

TYPE = '010'
GET(MYTABLE,TYPE)
IF ERRORO

DESC = 'NOT FOUND'

Figure 9. Random retrieval by any key via GET.

Or, for performing a SET operation to a position from which to begin sequential processing:

TYPE = INPUT_COOE
GET(MYTABLE,TYPE)
COUNTER = POINTER(MYTABLE)
LOOP UNTIL COUNTER > RECORDS(MYTABLE)

GET(MYTABLE,COUNTER)
COUNTER += 1

Figure 10. Using GET to SET to a point to begin sequential processing.

PUT Statement

Form: PUT (table)

PUT is used to update a table entry in free memory from the record area of a TABLE structure. To access
a TABLE, the table parameter of PUT must identify a TABLE structure directly (by naming the table) or
indirectly (via an EXTERNAL with a TABLE attribute.)

This statement updates the entry that is pointed to by the current entry number from the last successful
GET, ADD, or PUT statement. If no valid GET, ADD, or PUT was issued previously, the ENTRY NOT
AVAILABLE error is posted and may be detected with the ERRORO function.

Spaces are clipped from the end of the record when the entry is updated. This may cause the entry to use

Copyright 1989 by Clarion Software Co~on, August Page 12

Bulletin #104 - Understanding Clarion Memory Tables

more or less free memory than before the update.

PUT caveats

Remember the following about PUT:

• 	 PUT does not know about any intended sort sequence of a memory table. If a key variable changes value,
the PUT may cause the table to be out of order and require re-sorting. It may be better in some
applications to not nse the PUT statement. Instead nse the DELETE statement
to remove the current entry and then use the ADD statement to put the updated entry back in the table.

DElETE(MYTABLE)

IF ERROR() THEN STOP(ERROR(»

ELSE

ADD(MYTABLE.TYPE)

IF ERROR() THEN STOP(ERROR(».

Figure 11. Using DELETE and ADD Instead of PUT.

• 	 PUT cannot be used to ADD a new entry to a table. It can only put back an entry from the last
successful ADD, GET, or PUT.

• The entry may require more memory than it did originally because of the space clipping feature. It is
~ important, therefore, to use the ERRORO function to make sure that the PUT was successful.

DELETE Statement

Form: DELETE (table)

DELETE is nsed to delete a table entry in free memory. To access a TABLE, the table parameter of

DELETE mnst identify a TABLE structure, directly (by naming the table) or indirectly (via an EXTERNAL

with a TABLE attribute.)

This statement removes the entry in the table that is pointed to by the current entry number from the last

successful GET or ADD statement. If no valid GET or ADD was issued previously, the ENTRY NOT

A V AnABLE error is posted and may be detected with the ERRORO function.

The memory nsed by the deleted entry is returned to the free memory pool and the forward and backward

pointers in the doubly-linked list are adjnsted accordingly. The logical relative record position number of the

entries that followed the deleted entry are, in effect, decremented. Therefore,

after deleting a table entry, the current entry pointer will be pointing at what nsed to be the next entry.

CopyrIght 1989 by Clarion Software Corporation, August Page 13
"

BuileUn #104 - Understanding Clarton Memory Tables

ADD Statement

Form 1: ADD (table)
Form 2: ADD (table,pointer)
Form 3: ADD (table,key)

ADD inserts a new entry in free memory. To access a TABLE, the table parameter of ADD must identify a
TABLE structure directly (by naming the table) or indirectly (via an EXTERNAL with a TABLE attribute.)

When an entry is added, free memory is allocated for the size of the record area (minus any trailing spaces
which are clipped), the contents are copied into free memory from the record area, the forward and
backward pointers in the chain are updated, and the number of entries in the table is incremented.

Form 1: ADD to the end

In Form 1, the ADD statement uses the contents of the record area of the table to create a new entry at the
end of the doubly-linked list. If the ADD is successful, the position number of the new entry will be the
same as the number of entries in the table.

This form is useful for quickly building a table of entries that are either already in sequence or will be sorted
into sequence only after the entire table has been built. (Or perhaps when sequence has no special
significance to a given table.)

FREE(MYTABLE)

SET(MYFILE,MYKEY)

LOOP UNTIL EOF(MYFILE)

NEXT(MYFILE)
TYPE = REC:TYPE
DESC = REC:DESC
ADD(MYTABLE)
IF ERROR() THEN STOP(ERROR(».

SORT(MYTABLE,TYPE)

Figure 12.~ Building a table by ADDIng to the end. and then SORTING.

Fonn 2: ADD by pointer

In Form 2, the pointer parameter specifies the logical table position number that the entry is to occupy when
it is added to the chain. This parameter supplies an integer value from a variable, constant, or expression. If
this value is a variable, it must not be a variable declared in the record area of the table. (This constitutes
Form 3.)

If the number supplied by the pointer parameter is "less than one or greater than" the number of entries
in the table, the parameter is ignored, changing the statement to Form 1, and the entry is added to end
of the chain.

If the number supplied by the pointer parameter is ·one or more and less than" the number of entries in
the table, the new entry is inserted at that position. The logical position numbers of the entries

Copyright 1989 by ClarIon Software Corpor;.atlon, August Page 14

Bulletin .104 - Understanding Clarion Memory Tables

following the new entry are incremented. (Remember, position numbers are dynamic.)

Form 3: ADD by key

In Form 3, the key parameter is a statement label which specifies a table search key. A table search key
must be a variable (it may be a GROUP) declared in the table record area, but it may not be an array or an
element of an array. A variable outside the table record area, or an expression
involving variables inside the record area, does not specify a table search key. (This constitutes Form 2.)

The "ADD by key" statement presumes that the table entries are already sorted in search key sequence. The
key parameter, besides designating the location in the record and the type of the data at that location, also
provides a value to match against during a binary search of the entries. The new
entry is inserted into the doubly-linked list at that position.

Identical keys

If several entries have identical key values, the new entry is inserted after the other matching entries.
Therefore, entries with duplicate keys will be initially positioned in the table in the order in which they were
added.

Copyright 1989 by Clarion Software Corppratlon. August Page 15

BulleUn #104 - Understanding Clanon Memory Tables

.'-...../.

Building Sorted As You Go

"ADD by key" is useful for adding an entry to the table into the desired location without having to first locate
the position where the entry belongs, and without having to subsequently resort the table.

This can provide an easy way to build a table "sorted as you go." Perhaps after adding the entry, other
operations must take place which will need to access the table by key. Adding by key and thereby building
the table "sorted as you go" eliminates unnecessary resorts.

FREE (MYTABLE)

SET(MYFILE,MYKEY)

LOOP UNTIL EOF(MYFILE)

NEXHMY FILE)
TYPE =REC:TYPE
DESC :: REC:DESC

ADD(MYTABLE.TYPE)

IF ERROR() THEN STOP(ERROR(».

(statements)

TYPE :: SAVE_TYPE

GET(MYTABLE,TYPE)

IF ERROR() THEN STOP(ERROR(»

ELSE

• !END OF IF

!END OF LOOP

figure 13. Building a table "sorted as you go" via ADDing key by key, so that later statements can retrieve entries
by key.

Combining ADD with GET

Sometimes an,application requires that a table be built in a key sequence from a source containing duplicate
key values. If the application requires the table to include the duplicate entries, this can be easily handled as
shown in Figures 12 and 13. If, however, the application requires that the table only contain one entry per
key value, a different technique must be used.

By combining the use of the ADD statement with the GET statement, a table can be built in key sequence
"sorted as you go" and contain only one entry per key value. There are two methods of accomplishing this:

1. 	 In the flist example (shown in F'tgure 14), after verifying that the entry does not yet exist (using the GET
statement), the ADD by key statement finds the proper position and inserts the new entry. If the entry
already exists, what happens next depends upon the application. Some applications will increment a count
in the table entry and then PUT it back. Other applications may update the entry with the most current
information.

Copyright 1989 by Clarion Software Corporation, August Page 16

Bulletin #104 - Understanding Clarion Memory Tables

FREE(MYTABLE)

SET(MYFILE,MYKEY)

LOOP UNTIL EOF(MYFILE)

NEXT(MYFILE)

TYPE = REC:TYPE

DESC = REC:DESC

GET(MYTABLE,TYPE)

IF ERRORO

ADD(MYTABLE,TYPE)
ELSE

DESC = REC:DESC

PUT(MYTABLE)

PUT(MYTABLE)

IF 	ERROR() THEN STOP(ERROR(».

Figure 14. Building a table (sorted as you go) with only one entry per key using GET and ADD by key.

2. 	 In the second example (shown in Figure 15), after verifying that the entry does not yet exist (using the
GET statement), the ADD by pointer statement uses the position set by the
unsuccessful GET, and inserts the new entry at that point. This saves the effort of having to locate the
proper position. (GET has already done this.)

FREE(MYTABLE)

SET(MYFILE,MYKEY)

LOOP UNTIL EOF(MYFILE)

NEXT(MYFILE)

TYPE = REC: TYPE

DESC = REC:DESC

GET(MYTABLE,TYPE)

IF ERRORO

ADD (MYTABLE,POI NTER(MYTABLE»
ELSE

DESC = REC:DESC

PUT(MYTABLE)

IF 	ERROR() THEN STOP(ERROR(».

Figure 15. Building a table (sorted as you go) with only one entry per key using GET and ADD by poln1er.

ADD Caveats

Keep the following facts about ADD in mind:

• The ERRORO function should be checked after every ADD statement. It is the only way to know if free
memory has been exhausted.

• 	 The "ADD by key" statement presumes that the table is already sorted in the key parameter sequence. The

Copyright 1989 by Clarion Software Corporation, August Page 17

BulleUn #104 - Understanding Clarion Memory Tables

table must be either sorted with the SORT statement, or built "sorted as you go."

SORT Statement

Form: SORT (table,key)

SORT sorts the entries of a memory table into ascending sequence. To access a TABLE, the table
parameter of SORT must identify a TABLE structure, directly (by naming the table) or indirectly (via an
EXTERNAL with a TABLE attribute.) The key parameter is a statement label which specifies a table sort
key.

A table sort key must be a variable (it may be a GROUP) declared in the table record area, but it may not
be an array or an element of an array. Expressions, constants, variables outside the table record area, or
expressions involving variables inside the record area, are all invalid key parameters and are flagged as errors
by the compiler.

When the table parameter is the label of an EXTERNAL table statement, the key parameter must be the
label of an EXTERNAL statement. When a table is sorted, the entries themselves are not
moved; only the forward and backward pointers are updated. This, coupled with a sophisticated algorithm
for sorting a doubly-linked list, makes for very rapid sorting of even large tables.

After a table has been sorted, it can be accessed in that key sequence using the GET by key and ADD by
key statements.

Multi-pass Sorts

When a table is sorted and there are any duplicate keys, the original order of the duplicates is preserved.
This makes it possible to do a "multi-pass sort" in which keys are sorted within keys. For example, consider
the table definition (shown in Figure 16).

INAMETABLE TABLE

NAME STRING(30)

ADDRESS STRING(30)

CITY STRING(15)

STATE STRING(2)

ZIP LONG

I NOTES ~ STRING(50)

I
Figure 16. Table definition for the multi-pass sort example.

Note: Placing the longest string variable (NOTES) last in the structure makes the best use of the space
clipping feature.

Suppose the table has been built in NAME order and now the application requires the table to be sorted in
ZIP sequence and by CITY within ZIP. This can be accomplished as shown in Figure
17.

Copyright 1989 by Clarion Software Corporation. August Page 1B

BulleUn f:104 - Understanding Clarion Memory Tables

SORT (NAMETABLE, CITY)

SORT(NAMETABLE,ZIP)

Figure 17. Multi-pass sort.

Notice that in a multi-pass sort, the least significant key must be sorted fIrst and most significant key must be
sorted last.

GROUP Sort keys

In some applications, it may be convenient to group several variables in a table into a GROUP and then use
the GROUP as a sort and search key. The GROUP should be structured with the most significant field
declared first and the least significant field declared last.

It is important to remember that a GROUP is treated as a STRING. SHORT, LONG, and REAL variables
should not be included in a GROUP key if the table is going to be processed sequentially. Used as a
random access key, a GROUP containing SHORT, WNG, or REAL variables will function correctly.
However, when processed sequentially, the order of entries will not be what you might have expected.

The DECIMAL data type fills the need for a numeric data type that will collate correctly as a STRING
inside a GROUP structure. In the example shown in Figure 16, five-digit zip codes can be handled with a
DECIMAL(5) declaration. As an added benefit, in addition to collating in the desired sequence, a
DECIMAL(5) variable requires only three bytes of storage, whereas a LONG requires four bytes. Figure 18

\.....-. shows the same table restructured to contain a GROUP key with a DECIMAL variable.

NAMETABLE TABLE
NAME STRING(30)
ADDRESS STRING(30)
GRClJPKEY GRClJP
ZIP DECIMAL(5)
CITY STRING(15)

STATE STRING(2)
NOTES STRING(50)

CODE

SORT(NAMETABLE.GROOPKEY)

Figure 18. Table from Figure 16 re-deslgned to use a GROUP key and a DECIMAL variable.

What about descending sequence?

The SORT statement always sorts in ascending sequence, and the ADD by key and GET by key statements
presume ascending sequence. But what if the application requires descending sequence?

For most keys, descending sequence is easily simulated by processing the table in previous sequence (as

Copyright 1989 by Clarion Software CorporaUon, August Page 19
'"

Bulletin "104 - Understanding Clarion Memory Tables

shown in FIgUre 8 in the section on GET by pointer). But what about a more complex situation? Suppose
the application requires a table similar to the one shown in Figure 19. Suppose the table needs to be sorted
in ascending sequence by ITEM and in descending sequence by DATE.

ITEMTABLE TABLE
QUANTITY LONG
DATE LONG
PRICE DEClMAL(9,2)
ITEM STRING(30)

FIgure 19. A table that requires a descending key within an ascending key.

How can such a table be built In the desired sequence?

Frrst note that a DECIMAL(5) could be used to contain a standard date value (with all of the advantages
discussed earlier.) Also note that ITEM and DATE could be declared in a GROUP (likewise with certain
advantages.) But for this example, a GROUP with a DECIMAL would defeat the following
technique.

To achieve the desired sequence, somewhat of a trick can be used. Store the dates as negative numbers in
the LONG variable, and then sort the table twice; first by DATE and then by ITEM.

FREE(ITEMTABLE)

SET(ITEMF ILE)

LOOP UNTIL EOF(ITEMFILE)

NEXT(ITEMFILE)
PRICE ;: REC:PRICE
QUANTITY ;: REC:QUANTITY
DATE ;: -REC:DATE
ITEM ;: REC: ITEM
ADD (ITEMTABLE)
IF ERROR() THEN STOP(ERROR(».

SORT(ITEMTABLE,DATE)
~ORT(ITEMTABLE,ITEM)

Figure 20. Using a negative number to create a descending sequence.

When the table is subsequently accessed (possibly to be printed) the dates must be converted back to positive
numbers.

Copyright 1989 by Clarion Software CorporaUon, August Page 20

BulieUn #104 - Understanding Clarion Memory Tables

ITEMRPT REPORT
ITEMDTL DETAIL

COL(1)
STRING(30),USE(ITEM)

COL(40)
STRING(SD1),USE(TEMP)

CTL(iillf)

TEMP lONG !TEMPORARY DATE
PTR LONG !TABLE POINTER

CODE

LOOP PTR =1 TO RECORDS(ITEMTABLE)
GET(ITEMTABlE,PTR)
TEMP =-DATE
PRINT(ITEMDTL)

Rgure 21. Getung the sign light again after using the negaUve number trick to simulate descending sequence.

Arrays and Key Parameters

As stated earlier, a sort or search key cannot be an array or an element of an array. There is a way around
. this limitation, however.
\...­

If a table contains an array of values and the application requires that the entire array be used as a key field,
surround the array with a GROUP declaration (as shown in Figure 22) and then use the GROUP as the key.

ATABlE TABLE
GROOPKEY GROOP
DESC STRING(10),DIM(8)

QUANTITY lONG

CODE

SORT(ATABlE,GROOPKEY)

Figure 22. Using a GROUP to make an array eligible to be used as a key.

What if the.application requires that various elements of the array need to be used as keys? In this case, use
the OVER attribute to declare non-dimensioned variables corresponding to the elements of the array that
need to be used .as keys. This is shown in Figure 23.

Copyright 1989 by Clarion Software CorperaUon, August Page 21

Bulletin .104 - Understanding Clarion Memory Tables

ATABlE TABLE
GROUPKEY GROUP
DESC STRING(10),DIM(8)

GROUP,OVER(GROUPKEY)
STRING(30) !FIllER

DESC4 STRING(10) !DESC[4]
STRING(20) !FlllER

DESC7 STRING(10) !DESC[7]

QUANTITY lONG

CODE

SORT (ATABlE,DESC4)

SORT(ATABlE,DESC7)

Figure 23. Using the OVER attribute to make elements of an array eligible to be used as keys.

FREE Statement

Form: FREE (table)

FREE deletes all of the entries in a memory table and deallocates the free memory they occupied. To
access a TABLE, the table parameter of FREE must identify a TABLE structure, directly (by naming the

-table) or indirectly (via an EXTERNAL with a TABLE attribute.)

The function and importance of the FREE statement has already been discussed and its usage has been
shown in a number of examples. Once again, however, it is important to remember these two facts:

• 	 It never hurts to FREE an empty table. If a section of the program expects the table to be empty, make
sure that it is empty.

• Always FREE a table when its use is ended. Watch out for dangling tables that waste free memory and
avoid overlaid procedures with local tables. Forgetting to FREE an overlaid table will result in a loss of
free memory.

Memory Table Functions

There are two functions available for use with memory tables: POINTERO and RECORDSO. They have

appeared already in a number of the short examples in this document. To access a TABLE, the table

parameter of the POINTERO and RECORDSO functions must identify a TABLE structure, directly (by

naming the table) or indirectly (via an EXTERNAL with a TABLE attribute.)

Copyright 1989 by Clarion Software CorpOration, August Page 22

l

Bulle1ln .104 - Understanding Clarlon Memory Tables

POINTERO FuncUon

Form: POINTER (table)

POINTERO returns a WNG integer value containing the current entry number. The current entry

number is the logical relative record position pointer of the last entry accessed.

The value returned normally ranges from one (the first table entry) to the number of entries in the table (the

last table entry.)

If the table has not been accessed, zero is returned. The value returned by POINTERO can be used to

provide a SET position for sequential processing after a GET by key.

RECORDSO Function

Form: RECORDS (table)

RECORDSO returns a WNG integer value containing the number of entries in the memory table.
The value returned by RECORDSO can be used as a pointer to the last entry in the table.

Memory Table Errors

There are three errors posted by memory table processing statements:

INSUFFICIENT MEMORY
Posted when an ADD or PUT failed because the free memory pool did not contain a contiguous block large
enough to contain the entry.

The MEMORYO function may indicate that sufficient memory is available but table processing requires a
contiguous block: of the necessary size. The ERRORCODEQ function returns 8.

ENTRY NOT FOUND
Posted when a GET by pointer statement specifies a pointer out of range, or when a GET by key
statement spe~es a key for which there is no entry with an exact match.

The ERRORCODEQ function returns 31.

ENTRY NOT AVAILABLE
Posted when a PUT or DELETE is attempted without a prior valid access of an entry. PUT is only valid
after a successful GET, ADD, or PUT. DELETE is only valid after a successful GET or ADD.

The ERRORCODEO function returns 32.

Copyright 1989 by ClarIon Software CorporaUon, August Page 23 ,

Bulletin #104 - Understanding Clarion Memory Tables

Sample Program

The following simplified sample program combines many of the previously described techniques to illustrate
the application of "tallying" using a memory table:

A medical center would like a report which processes a list of all doctors who admitted patients to their
hospital today. This listing should appear in name sequence. It should also provide a count of the number
of patients admitted.

An ASCn DOS file (ADM FILE) contains transactions of the current days admissions. Each admission
transaction includes a three:digit code number of the admitting doctor. The doctor name can be found in a
structured file (DOC_FILE) which is keyed by code number.

The program reads each transaction to get the admitting doctor code number. The code number is used as a
key to a memory table (ADM_TABLE). H no entry exists in the memory table for this code number, then a
new entry must be added to the memory table. When a new entry is added, the admission count is set to
one, and the doctor name must be looked· up in DOC_FILE, again using the doctor number.

When a table entry already exists for a given doctor number, then the count is incremented and the table
entry is put back. After all transactions have been read, the table is then sorted by doctor name, and the
report (ADM_REPORT) is printed.

Note that the program makes use of the fact that the current entry number points to the desired insertion
point after an unsuccessful "GET by key."

Copyrtght 1989 by Clarion Software CorporaUon, August Page 24

Bulletin t:104 - Understanding Clarion Memory Tables

PROGRAM

ADM]llE DOS.ASCII.PRE(ADM) Admissions transactions
REC RECORD Admissions record
ACCOUNT STRING(SP'-#####-#P) Patient account number
NAME STRING(24) Patient name
BED STRING(SP""-#P) Pat i ent bed number
DOCTOR STRING(GlN03) Admitting doctor code

DOC]IlE FIlE.PRE(DOC) Doctors on staff
NMBR_KEY KEY(DOC:NMBR) Key by doctor number
REC RECORD Doctor record
NMBR STRING(GlN03) Doctor number
NAME STRING(20) Doctor name

ADM_TABLE TABlE.PRE(TBl) Table of admits by doctor
NMBR STRING(IiIN03) Doctor number (initial key)
COUNT SHORT Nuuber of admissions today
NAME STRING(20) Doctor name

ADM_REPORT REPORT.lENGTH(66).WIDTH(BO)
HEADER

COl(31) STRING('Admissions by Doctor')
ROW(+2.10) STRING('Doctor Nuuber')

COl(+7) STRING('Doctor Name')
COl(+13) STRING('Admissions today')

ROW(+1,10) STRING('-{13}')
COl(+7) STRING('-{22}')
COl(+2) STRING('-{16}')

CTl(iillF)

DETAIL
COl(14) STRING(iilN03).USE(TBl:NMBR)
COl(30) STRING(20).USE(TBl:NAME)
COl(60) STRING(1iIN3).USE(TBl:COUNT)

CTl(iillF)

FOOTER
CTl(QFF)

Copyright 1989 by Clarion Software CorporaJlon, August Page 2S

http:ROW(+2.10

BulieUn #104 - Understanding Clarion Memory Tables

COOE

OPEN(AOMJILE)
IF ERRORO

STOP(ERRORO)
ELSE

SET(AOMJILE)
LOOP UNTIL EOF(AOM_FILE)

NEXT(AOMJILE)
TBL:NMBR =AOM:DOCTOR
GET(AOM_TABLE,TBL:NMBR)
IF ERRORO

DOC:NMBR :: AOM:DOCTOR
GET(DOC_FILE,DOC:NMBR_KEY)
IF NOT ERROR 0

TBL:NAME =DOC:NAME
ELSE

TBL:NAME = IUNKNOWN DOCTOR I

TBL:COONT = ,
AOD(ADM_TABLE,POINTER(AOM_TABLE»

ELSE

TBL:COONT += 1

PUT(AOM_TABLE)

IF ERROR() THEN STOP(ERROR(».

SORT(AOM_TABLE,TBL:NAME)

OPEN(AOM REPORT)

LOOP 1# ; 1 TO RECORDS(AOM TABLE)

GET(AOM_TABLE,I#) ­
PRINT(DOC_DETAIL)

CLOSE(AOM_REPORT)

RETURN
RETURN

Open transaction file
If unable to open the file

stop with an error message
[f the open was successful

Process records sequentially
Read all the transactions
Read the next transaction
Use the doctor number
Access memory table by doc nmbr
If no entry for this doctor

Try to find this doctor in
Doctor fi le by doctor number
If in the doctor file

Use name in the doctor file
If not in the doctor file

Don1t know the doctors name

One admission so far
Insert the table entry

[f found the table entry
One more admission so far
Put back the table entry

Check for error from add or put
Continue reading transactions

Sort table by doctor name
Begin the admissions report
Loop through the table

Retrieve a table entry
Print a adm by doc detail

Continue reading table entries
End the admissions report

End of program
End of program

Copyright 1989 by ClarIon Software CosporaUon, August Page 26

