
CL.4\I ilON 
I ECHNICALBULLE liN 

Bulletin #101 

sequential Record processing - Using SET, NEXT, and PREVIOUS 

copyright 1988 

Clarion Software corporation 

overview 

The SET, NEXT and PREVIOUS procedures are used together to 
sequentially read records from a Clarion file in a particular 
order. It is important to remember that SET, NEXT and PREVIOUS 
are not affected by some other record procedures such as GET. 

Each procedure is discussed in detail with examples of each form 
of the procedure call. 



I 

Technical Bulletin #101 • sequential Record Processing 

sequential Record Processing - Using SET, NEXT, and PREVIOUS 

The SET Procedure 

The SET procedure selects a starting record for sequential 
processing with the NEXT and PREVIOUS procedures. It simply 
positions a pointer in the file. It does not read a record, it 
simply specifies a starting point and the order in which records 
will be read. 

There are six forms of the SET procedure which can be divided 
into two groups. The first group selects a record for sequential 
processing in record sequence. Record sequence is the order in 
which records occur in the data file (*.DAT). The second group 
selects a record for sequential processing in key sequence. Key 
sequence is the order in which records are kept in the 
appropriate key file (*.K??). 

There are two parameters of the SET procedure. Think of the SET 
procedure taking the form: 

SET(sequence,starting point) 

The first parameter, or sequence, is either the label (name in 
column 1) of a Clarion file structure, or the label of a key 
statement. If it is the label of a file, records will be 
processed in record sequence. If it is the label of a key, 
records will be processed in key sequence. 

The second parameter, or starting point, is optional. If it is 
omitted, the beginning or end of the file is selected as a 
starting point (see examples below). 

If the second parameter is the label of a key, then the starting 
point will be the first equal to or greater than match of the 
value of the key variable. The key variable is composed of 
fields in the record structure. 

~···I
• 

copyright 1988 . Clarion Software Corporation Page 1 



Technical Bulletin #101 . Sequential Record Processing 

If the second parameter is not the label of a key statement, it 

is assumed to be a pointer - either a numeric constant or 

variable. The pointer is the relative record number in either 

the data or key file. The pointer value is returned by the 

POINTER() function. If the: record number (pointer) specified 

does not exist, NEXT will retrieve the record with the next 

largest record number and PREVIOUS will retrieve the record with 

the next smallest record number. 


The following examples refer to the following data file: 


EXAMPLE FILE 

KEY1 KEY (FIELD1) 

KEY2 KEY (FIELD2) 

KEY3 KEY (FIELD3) 


RECORD 
FIELD1 BYTE 
FIELD2 LONG 
FIELD3 STRING (5) 

Assume the following data in EXAMPLE: 

RECORD FIELD1 FIELD2 FIELD3 

1 200 62000 JONES 
2 150 31000 SMITH 
3 255 12000 BRASS 
4 10 20000 TRANE 
5 5 90000 DRINK 
6 75 92000 LEAVE 
7 175 60000 ABORT 
8 210 55000 SMILE 
9 95 20000 FROWN 
10 80 34000 FLUSH 

Form 1: 	 SET (EXAMPLE) 
Sets file such that NEXT(EXAMPLE) retrieves record #1 
(200 62000 JONES) from the .DAT file and PREVIOUS(EXAMPLE) 
retrieves record #10 (080 34000 FLUSH) from the .DAT file. 

Copyright 1988 . Clarion Software Corporation Page 2 



Technical Bulletin #101 • Sequential Record Processing 

Form 2: 	 SET (EXAMPLE,KEY_1) 
Assume FIELD1 contains the value 210. This command will 
set the file such that NEXT(EXAMPLE) and PREVIOUS(EXAMPLE) 
will retrieve record #8 (210 55000 SMILE) from the .DAT 
file. 
Assume FIELD1 contains the value 50. This command will 
set the file such that NEXT(EXAMPLE) will retrieve 
record #6 (075 92000 LEAVE) and PREVIOUS(EXAMPLE) will 
retrieve record #5 (005 90000 DRINK) from the .DAT file. 

Form 3: 	 SET (EXAMPLE,VAR)
Assuming VAR (any variable) contained the value 3, this 
command will set the file such that NEXT(EXAMPLE) and 
PREVIOUS (EXAMPLE) will retrieve record #3 (255 12000 BRASS) 
from the .DAT file. If the record number you are trying to 
set to is greater than the largest record number in the file 
(say 30 in this case) then SET(EXAMPLE,30) will set EOF() 
to true and NEXT() will set ERROR() to 'Record Not Available' 
and PREVIOUS() will retrieve the last record in the .DAT 
file. 

Form 4: 	 SET (KEY 1)
Sets the file such that NEXT(EXAMPLE) will retrieve 
record #5 (005 90000 DRINK) from the .DAT file and 
PREVIOUS (EXAMPLE) will retrieve record #3 
(255 12000 BRASS) from the .DAT file. 

Form 5: 	 SET (KEY 2,KEY 2) 
Assume FIELD3-contains the value 'JONES'. The file will 
be set such·that NEXT(EXAMPLE) and PREVIOUS(EXAMPLE) will 
retrieve rec·ord #1 (200 62000 JONES) from the .DAT file. 
Assume FIELD3 contained the value 'LIBBY'. The file will 
then be set such that NEXT(EXAMPLE) will retrieve record 
#8 (210 55000 SMILE) and PREVIOUS(EXAMPLE) will retrieve 
record #7 (175 60000 ABORT) from the .DAT file. If FIELD3 
contained 'XXXXX' then EOF() would be set to true, NEXT() 
would set errore) to 'Record Not Available' and PREVIOUS() 
would~retrieve record #4 from the .DAT file (last record in 
key file). 

Form 6: 	 SET(KEY 3,6) 
Sets the file such that NEXT(EXAMPLE) will retrieve record 
#8 (210 55000 SMILE) and PREVIOUS(EXAMPLE) will retrieve 
record #10 (080 34000 FLUSH) from the .DAT file. 
This' Form should be used with caution because if you have a 
large file, this command will read every key value in the 
key file up to value of the pointer. 

Copyright 1988 	 . Clarion Software corporation Page 3 



TechnicaL BuLLetin #101 - Sequential Record Processing 

The NEXT and PREVIOUS Procedures 

The NEXT and PREVIOUS procedures read the NEXT or PREVIOUS 
sequential data record. The only parameter of these procedures 
is a valid file label. Issuing a NEXT or PREVIOUS without a 
prior successful SET, NEXT or PREVIOUS, or issuing a NEXT or 
PREVIOUS past the end or beginning of file will post "Record Not 
Available" to the ERROR() function. The ERROR() function should 
be checked after every NEXT or PREVIOUS as well as all other I/O 
procedures. 

A common example of how to use SET, NEXT and PREVIOUS is a 
medical office system. Assume we have the following Patient 
Master File: 

PATIENT FILE, PRE (PMF) lpatient master file 
NAME KEY KEY(PMF:LAST NAME) ,UPR !last name key 
SS KEY KEY(PMF:SS NUMBER),DUP !social security # key 
PATREC RECORD !patient record 
LAST NAME STRING(30) !patient last name 
FIRST NAME STRING (15) !patient. first name 
ADDRESS STRING(50) !patient address 
PHONE REAL !patient phone number 
SS NUMBER REAL !patient social security # 

lend file, record 

Now assume we have the following Transaction file: 

XACTION FILE, PRE (XAC) !transaction file 
SS KEY KEY (XAC:SS_NUMBER) ,DUP !social security # key 
XACREC RECORD !transaction record 
DATE LONG !transaction date (std date) 
SS NUMBER REAL !patient social security # 
DESCRIPTION STRING (40) !transaction description 

lend file, record 

Now assume we have the following data in the Patient files: 

PATIENT DATA FILE .K01 .K02 

LAST FIRS ADDRESS PHONE SS NUMBER LAST SS NUMBER 

SMITH 
BROWN 
JONES 

PAUL 
BOB 
MARK 

123 SW 10 ST 
456 NE 20 ST 
789 SE 30 ST 

3057854555 
3057854556 
3057854557 

222222222 
111111111 
333333333 

BROWN 

JONES 

SMITH 


111111111 

222222222 

3333333,33 


Copyright 1988 • CLarion Software Corporation Page 4 



l 
Technical Bulletin #101 - sequential Record Processing I 

Now assume we have the following data in the Transaction files: 

XACTION DATA FILE .K01 

DATE SS NUMBER DESCRIPTIO SS NUMBER 

67456 222222222 BLOOD TEST 
67789 111111111 EYE EXAMIN 
67126 333333333 EYE EXAMIN 
67567 111111111 BLOOD TEST 
67783 222222222 BLOOD TEST 
67543 333333333 PHY EXAMIN 
67763 111111111 FLU VACCIN 
67563 222222222 BLOOD TEST 
67766 222222222 PHY EXAMIN 
67774 111111111 BLOOD TEST 
67773 333333333 BLOOD TEST 
67521 111111111 PHY EXAMIN 
67753 222222222 FLU VACCIN 
67653 333333333 FLU VACCIN 
67623 222222222 BLOOD TEST 
67773 111111111 BLOOD TEST 
67734 222222222 EYE EXAMIN 

111111111 
111111111 
111111111 
111111111 
111111111 
111111111 
222222222 
222222222 
222222222 
222222222 
222222222 
222222222 
222222222 
333333333 
333333333 
333333333 
333333333 

Now assume that Paul smith walks into the office and requests a 
listing of all his transactions. Further assume (to make things 
more complex) that Smith doesn't know his Social Security number. 
The following code will get all the transactions for smith based 
on knowing only his name: 

1 LAST NAME = 'SMITH' lASSIGN 'SMITH' TO KEY 
2 SET (NAME_KEY, NAME_KEY) !SETS FILE IN KEY ORDER 
3 
4 LOOP UNTIL LAST NAME ~= 'SMITH' OR I 

!STARTING AT 'SMITH' 
!LOOPS UNTIL NAME NOT EQUAL 

5 EOF(PATIENT) lOR THE END OF THE PATIENT F 
6 NEXT (PAT!ENT) !READS NEXT RECORD (STARTS = 
7 IF FIRST NAME = 'PAUL' THEN BREAK. !IF FIRST NAME = 'PAUL' - FO 
8 IF EOF(PATIENT) !IF END OF FILE - PATIENT NO 
9 SHOW(l,l,'NOT FOUND') lISSUE ERROR MESSAGE 
10 RETURN !REENTER OR DO SOMETHING ELS 
11 • !END LOOP, IF 
12 XAC:SS NUMBER = PMF:SS NUMBER !ASSIGN PATIENT SS# TO XACTI 
13 SET(XAC:SS_KEY,XAC:SS KEY) ISETS FILE BY KEY 
14 LOOP !LOOP THROUGH ALL TRANSACTIO 
15 NEXT (XACTION) !GET THE NEXT TRANSACTION 

IF XAC:SS NUMBER = PMF:SS NUMBER THEN BREAK.!LOOP THROUGH ALL TR 
16 100 WHATEVER YOU WANT - PRIN 
17 • 

copyright 1988 - Clarion Software corporation Page 5 



Technical Bulletin #101 - Sequential Record Processing 

Lines 1 - 11 above find Paul Smith's record based on his name. 
Line 12 assigns Smith's Social Security number to the SS NUMBER 
field in the transaction file. Since this field is a key 
component of the file, we can set to that key (line 13) and loop 
through all subsequent records matching that key. 

Line 13 says use key sequence (notice the first parameter is the 
label of a key) and start at a certain key value (notice the 
second parameter is the label of a key) and the key field 
(SS NUMBER) has the appropriate Social Security number stored in 
it.

Further explanation of the SET, GET, and PREVIOUS statements are 
found in Chapter 11 of the Reference Manual. 

Copyright 1988 - Clarion Software Corporation Page 6 


