
 M A I N T P S – F I L E

 ORGANIZATION

 Header

 (+0) (+4) (+6) (+0Ah) (+0Eh)
 00 00 00 00 00 00 00 05 00 00 00 05 00 00 74 4F 70 53
 UNSIGNED LONG USHORT UNSIGNED LONG UNSIGNED LONG UNSIGNED LONG
 Header Header File size File size TOPSPEED file label
 offset size

 (+12h) (+14h) (+18h) (+1Ch)
 00 00 00 00 00 06 07 00 00 00 00 00 00 00
 SHORT UNSIGNED LONG UNSIGNED LONG UNSIGNED LONG
 zeros Last file modification Upper control page
 (?) number (alteration?) counter (address minus 200h,
 divided into 100h)

 Then there follow two arrays which have the length = (header_length-20h)/2 of 4-byte
integers (in what follows byte order is reversed):

0020h: 00000000 00000000 01000000 04000000 4D000000 22010000 22010000

0110h: 00000000 01000000 03000000 4C000000 22010000 22010000 22010000

 ^ ^
 this pair of elements this is (file_length-200h)/100h,
 is ignored (?) this pair of numbers fills the rest of the array

 Pages in the file are organized in blocks and space between them is not used. The element
number i in the first array refers to the beginning of each block, the element number i in
the second array refers to the end of the block. The element number i is the offset of the
block (of the first byte on the first page for the first array and of the first byte of the
page after the last page in the block for the second array) minus 200h (header size),
divided into 100h. All pages in the block - except, may be, the last one - are compressed,
if this is possible.

 If a page inside a block is not compressed but can be compressed, then this block is
divided into two parts so that the uncompressed page is in the end of the (first?) block.
Then, the following construction occurs in these arrays (in the example below the
uncompressed page is located at offset 0200h and its size is 100h):

0020h: 00000000 00000000 01000000

0110h: 00000000 01000000 22010000
 ^ ^

 Unused space can’t be located in the end of file. If this happens, then the file is
shortened (it is cut with the function int 21h, ah=40h, cx=0).
 It is not known whether the header could be longer than 200h and if so, what would happen
then with these arrays (most likely, their size is simply increased).

Format of a standard page

 (+0) (+4) (+6) (+8)
 00 02 00 00 73 00 77 00 7F 00
 ULONG USHORT USHORT USHORT
 Page Compressed page Page length Page length after
 offset length (if page is after decompression
 (for checking) not compressed, then decompression without any
 the next field is repeated) shortening

 (abbreviation?)

 (+0Ah) (+0Ch) (+0Dh)
 0A 00 00 05
 USHORT BYTE BYTE
 The number of standard page first duplicator block offset
 records on sign(?) This byte exists only if the page is compressed,
 this page (page level) that is the field with offset 4 is not equal

to the field with offset 6
 (+0Dh/0Eh)

 ...
Then there follow records on the page

 The pages in the file have variable length. The page length depends on file driver. If
after data addition/modification it occurs that a page is too long, it is divided into two
pages.
 Unused space after the page up to the next divisible by 0x100 offset is filled with 0xB0
byte and is not counted within the page length (fields +4, +6, +8), butt (sorry, brother)
is reserved for this page and is marked in the header as belonging to this page.

 Control page format

 (+0) (+4) (+6) (+8)
 00 02 00 00 73 00 77 00 7F 00
 ULONG USHORT USHORT USHORT
 Page Abridged Abridged Unabridged
 offset page page page
 (for checking) length length length

 (+0Ah) (+0Ch)
 0A 00 00
 USHORT BYTE There is no +0Dh offset byte
 The number of Control page because control pages are not compressed (?)
records on page level
 (0-standard page)

 (+0Dh)
 00 00 00 00 05 00 00 00 ...
 ULONG ULONG

 Slave page array. Its size is equal to the number of records on the control page.
 Array element is (slave_page_offset-200h)/100h

 (+?)
 ...
 Then follow the records. They repeat the first records on slave pages (eventually
abridged, if slave pages are not control pages). To each record there corresponds an
element in the slave pages array.

Compressed pages

 If a page is compressed, then the page header fields (+4) and (+6) are different. In this
case the byte with offset (+0Dh) indicates offset over the byte (+Eh) of the first
duplicator block. The format of such a block will be:

 00 05 03
 BYTE BYTE BYTE
 Which byte The number of Next duplicator block
 Should be repeated repetitions minus offset
 one

 Next duplicator block offset is the offset of the next such block over the byte, which is
the last in this block. If this block is the last one, then the offset of the next block
refers to the last byte of the page (not to the byte 0xB0 which follows the page).
 If the number of repetitions > 127, directly after this byte there follows another one:

 3E 85 10 03
 BYTE BYTE BYTE BYTE
 Which byte First byte Second byte Next block offset
 To repeat Number of repetitions minus one

Then the number of repetitions is calculated according to the formula:

 ((second_byte + ((first_byte & 7F) << 1)) >> 1) + 1

 If the offset of the next block > 127, then directly after this byte there follows
another one and the offset over the last byte of the block is calculated according to the
formula:

 (second_byte + ((first_byte & 7F) << 1)) >> 1

 The page header is not compressed. Pages are usually (normally?) compressed. However, the
page is not compressed if it can’t be compressed (its length after the compression should
strictly be less than the uncompressed page length). If the page is not compressed, but can
be compressed, it is mentioned in the header. If the page can’t be compressed, it is not
mentioned in the header.

 General format of the record on a page

 (+0) (+1) (+1/3) (+1/3/5)
 С0 2A 00 09 00 . . .
 Identifier New length New length of
 of the record the record on Data
 control page

 Identifier format: 1 1 0 0 0 1 0 0
 ¦ ¦ L----T-----
The presence of the new length --- ¦ ¦
 of the record ¦ |

 | How many initial bytes
The presence of the new length ----- of this record should be
of the record on control page taken from the previous record

 New record length is present only if (identifier & 0x80) <> 0, otherwise, the length is
taken from the previous record. The length of the new record on control page is present
only if (identifier & 0x40) <> 0, otherwise, the length is taken from the previous record.
For the first record on the page both of these values should be present, that is
(identifier & 0xC0 = 0xC0). The last six bits of the identifier indicate the number of
bytes copied from previous record.

 General format of a file

 ---- Header ------¬ ---->--- Block 1
 ¦ ... ¦ ¦ ¦-- page 1
 ¦ upper page ¦ ¦ ¦¦ --
 ¦ ... ¦ ¦ ¦L-
 ¦ ¦ ¦ ¦-- page 2
 ¦ 020h: 00 00 00 00 ¦ ¦ ¦¦ ------
 ¦ beginning 1 -------- ¦L-
 ¦ beginning 2 ---------¬ ¦...
 ¦ beginning 3 -------¬ ¦ ¦-- page M
 ¦ ... ¦ ¦ ¦ ¦¦ ---
 ¦ 110h: 00 00 00 00 ¦ ¦ ¦ ¦L-
 ¦ end 1 --------+-+->L----
 ¦ end 2 --------+ ¦ Unused space
 ¦ end 3 ------¬ ¦ L->--- block 2
 ¦ ... ¦¦ ¦ ¦-- page 1
 L---------------------¦ ¦ ¦¦ ...
 ¦ ¦ ¦L-
 ¦ ¦ ¦-- page 2
 ¦ ¦ ¦¦ ...
 ¦ ¦ ¦L-
 ¦ ¦ ¦...
 ¦ ¦ ¦-- page N – not decompressed
 ¦ ¦ ¦¦ ...
 ¦ ¦ ¦L-
 ¦ ¦ L----
 ¦ L--->--- block 3
 ¦ ¦-- page 1
 ¦ ¦¦ ...
 ¦ ¦L-
 ¦ ¦...
 ¦ ¦-- page K
 ¦ ¦¦ ...
 ¦ ¦L-
 ¦ L----
 L-----> Unused space
 --- Block L
 ...

 L----
 End of file

 -- Header -------------------¬
 ¦ ¦
 ---< upper level page ¦
 ¦ ¦ ¦
 ¦ L-----------------------------
 ¦
 ¦ Level N
 ¦ page level N-1
 L->T-----------------¬ pages Level zero
 ¦ slave page 11 -------->T-------------------¬ pages
 ¦ slave page 12 ------¬ ¦slave page 21 ------->...->--------------------¬
 ¦ ... ¦ ¦ ¦slave page 22 ¦ --->recordN1= record11|
 ¦ ¦ ¦ ¦ ... ¦ ¦ ¦ recordN2 ¦
 ¦-----------------¦ ¦ ¦ ¦ ¦ ¦ ... ¦
 ¦ record11 ------------+-¬¦-------------------¦ ¦ L--------------------
 ¦ record12 -----------¬¦ L->record21=record11 ------- ...
 ¦ ... ¦ ¦¦ ¦ record22 ¦
 L------------------ ¦¦ ¦ ... ¦ ...->--------------------¬
 ¦¦ L-------------------- ->recordM1 ¦
 ¦¦ ¦ recordM2 ¦
 ¦L->--------------------¬ ¦ ¦
 ¦ ¦ slave page 31 ------>... L--------------------
 ¦ ¦ ... ¦ ...
 ¦ ¦-------------------¦ ...->--------------------¬
 L---->record31=record12---------->recordK1 ¦
 ¦ ... ¦ ¦ recordK2 ¦
 L-------------------- ¦ ... ¦
 ... L--------------------
 ...

 All records are sorted according to the lexicographical order.
 All records in a file are sorted according to the lexicographical order. This is achieved
by sorting out records on each page, including control pages. Records on control pages
repeat the first records on the corresponding slave pages (or slightly shortened). The
organization of a TPS file is very similar to that of key/index files of the format
CLARION 2.1.
 Note: to all appearances, there should be neither in a file nor on any page two identical
records (see records of keys/indexes and DUP attributes).

 While searching for the record one goes through the chain of pages starting from the
upper control page down to zero level page, one page on each level. The search on a page
starts with the beginning of the page: it is searched the last record which is
lexicographically less than the sought one. Then, for the found record and for every
record, the first N symbols of which coincide with the sought record (N is the length of
the sought record), the record is searched on the slave page (or is assumed to be found, if
this is a zero level page). If the first record on page is lexicographically greater than
the sought one, then the sought record is absent on both this page and the slave pages. If
the record on the zero level page is less than the sought one and after the last record,
the first N symbols of which are less than the sought one, there follows the record, which
is lexicographically greater the sought one, then the sought record is absent both on this
page and in the whole file.
 While adding a new record to the file one goes through the chain of pages, which has the
length M, where M is the level of upper control page, one determines the place where to
insert the new record, so that the order of the sorting would not be disturbed.

DATABASE LOGICAL ORGANIZATION

 TPS file can contain several tables of data and data, keys/indexes and memo-fields for
every table.

Data types and formats

 00-F2 - keys/indexes
 F3 - data bases records
 F6 - information record, contains the number of records of the given type
 FA - table description
 FC - memo-fields data

 Empty record

 The first record in a file is always the empty record: C0 00 00 00 00

 Data base record

 (+0) (+4)
 C0 3F 00 09 00 00 00 00 01 F3
 BYTE USHORT USHORT ULONG BYTE
 Identifier record record length on table number record code -
 length+9 control page, is DB record
 always equal to 9

 (+5) (+9)
 00 00 00 1B ...
 ULONG data
 Record number,
 unique number
 for each record

 While adding a new record, the last record number in the file header is increased by one
(firstly, the last byte is increased, as in Motorola processors), and then is given to the
new record. In such a way uniqueness is achieved. While the file is created the DOS number
of the last record is established to 1 (in Motorola format). (The last phrase is ambiguous,
may be it should be read as “While the DOS file is created the number of the last record is
established to 1” – A.Z.).

 Record length on control page is always equal to 9.

 Key/index record

 (+0) (+4)
 C0 19 00 19 00 00 00 00 01 01
 BYTE USHORT USHORT ULONG BYTE
 identifier table number record code,
 in the same time

key serial number
 (+5) (+?)
 80 02 80 05 05 ... 00 00 00 1B
 ULONG
 data DB record number

 Sorting in the key/index is done because of the necessary (obligatory?) sorting of all
records in the file. The length of this record on control page is equal to the length of
the record on ordinary page, if key has DUP attribute, otherwise it is less than it by 4
(of course, TPS file should not contain two identical records).

 Note: if the number of the record in the index refers to a nonexistent DB record (if it
was manually changed), then it may happen that during the next construction of the index by
Clarion Database Manager it will not be deleted (why?).

 Memo-field record

 (+0) (+4) (+5)
 C0 0C 01 0C 00 00 00 00 01 FC 00 00 00 02
 BYTE USHORT USHORT ULONG BYTE ULONG
 Table number record code- DB record number,
 memo data to which this memo-field
 belongs

 (+9) (+0Ah) (+0Ch)
 00 00 01 ...
 BYTE USHORT
 Memo-field serial memo block number, memo-field data
 number the last byte is
 (a record can have changed first
 more than one memo-fiald

 Memo data form blocks of 256 bytes (the last block may have less). Block number is
indicated in field (+0Ah) (the last byte of which is changed first). The length of such a
record on control page is always equal to 12.

 Information record

 (+0) (+4) (+5)
 C0 0E 00 06 00 00 00 00 01 F6 01
 BYTE USHORT USHORT ULONG BYTE BYTE
 Table number record code - code of the records, to which
 information the information belongs:
 record 00-F2 – keys/indexes
 F3 - data

 (+6) (+0Ah)
 05 00 00 00 00 00 00 00
 ULONG ULONG
 the number of the record, which
 records with was accessed
 this (the same?)
 code

 For each key/index and table data one record of this type is created. The code of the
records, for which this record is created, is indicated in the field with offset +5. The
length of this record on control page is always equal to 6.
 The record which, was accessed is equal to 0, if the index does not need to be rebuild
and contains the number of DB record, which was first accessed after the last index
rebuild. It is always equal to 0 for keys and table data.

 Table structure description

 (+0) (+4) (+5) (+7)
 C0 1A 00 07 00 00 00 00 01 FA 00 00 01 00
 BYTE USHORT USHORT ULONG BYTE USHORT USHORT
 Table number record code - description minimal driver
 structure block version (for
 description number work)

 3F 00 07 00 01 00 07 00
 USHORT USHORT USHORT USHORT
record number of number of number of
length in fields memo keys/indexes
 table

 Structure description data form blocks of 512 bytes (the last block may have less) (like
memo). The block number is indicated in the field (+5). The length of each record on (of?)
control page is always equal to 7. The minimal driver version for work with file is in the
field (+7):
 1 = TopSpeed 1.0 from Clarion 3.1
 2 = TopSpeed from Clarion for Windows 1.5

 Fields description

 (+0) (+1) (+3) (+n) (+n+2)
 12 00 00 FIELD1 00 01 00 14 00
 BYTE USHORT CSTRING SHORT SHORT
 field fields offset field number of size of the whole
 type with respect to name elements in array array
 the beginning of the

 record

 (+n+4) (+n+6)
 00 00 01 00
 USHORT USHORT
 ?
 equal to 1, if this serial number of the field
 field overlaps another in the record.
 field (OVER attribute);
 equal to 0 otherwise.

 Field (+n) contains 1, if this field is not an array, [and] the length, if it is an one-
dimensional array, and the product of lengths off all dimensions for a multi-dimensional
array. The next field contains the size of the whole array, that is, the length of one

element multiplied by the value of the field (+n) (it seems that the author of the Russian
text made a mistake – A. Z.)
 If a file has a prefix, it is indicated in every name of a field, e.g.: “TST:FIELD1”. If
it has no prefix, it is simply written “FIELD1”. After the creation the prefix of the
fields is not taken into account.
 Note: If an arbitrary value, which is not equal to 0 is put in the field (+n+4), that
will act in the same way as one. But standard tools put 1.

 Fields types

 type size title description
 --- ------ -------- --------
 01 1 BYTE unsigned number
 02 2 SHORT signed number in Intel 8086 format
 03 2 USHORT unsigned SHORT
 06 4 LONG signed number in Intel 8086 format
 07 4 ULONG unsigned LONG
 08 4 SREAL format “single” of Intel 8087 coprocessor
 09 8 REAL format “double” of Intel 8087 coprocessor

 0A ? DECIMAL additional data:

 (+n+8) (+n+9)
 02 05
 BYTE BYTE
 Number of digits after the size of one element of
 the decimal point the array

 DECIMAL is a number with fixed point in BCD format, one byte contains two digits, the
elder nibble of the elder byte contains the sign (0 – plus, other - minus).
 Note: Clarion uses 0xF as minus. The elder byte is stored first (with the least offset).
 Data size is calculated according to the formula:

(the_number_of_digits_defore_the_point + the_number_of_digits_after_the_point)/2 + 1
 The maximal length is 16 bytes.

 12 ? STRING additional data:

 (+n+8) (+n+10)
 14 00 00 00
 USHORT ?
 The size of one pattern
 Element of the array picture

 If the described field is an array, then (+n+8) is the size of one of its elements.
If a string has a pattern, it should be indicated in the field (+n+10), without @,
and trailing with zero. If it has no pattern, then the field (+n+10) contains two
bytes: The first one is zero, the second is an arbitrary number (Clarion 3.1 writes
0). It is not clear why there are two bytes.

 12 ? PICTURE additional data:

 (+n+8) (+n+10)
 09 00 p####-####p 00
 USHORT CSTRING
 The size of one picture
 element of the array

 13 ? CSTRING additional data: see STRING or PICTURE
 CSTRING – a string trailing with zero.

 14 ? PSTRING additional data: see STRING or PICTURE
 PSTRING – a string, the first byte of which is its length
The size of the field PSTRING is the maximal length of the
string + 1.

 16 ? GROUP no additional data.

 GROUP is represented as a field, which is independent from its nested fields.
 It simply overlaps other fields (using offset and size notification).
 A number is ascribed to it as to other fields, independently from other fields.
 It is located directly before slave fields, which follow it. Numbers are ascribed to
slave fields as if they aren’t included in GROUP.

 If a group has a prefix, it (this?) is indicated in slave fields names and substitutes
the file prefix, e.g., “GRP:FIRST_FIELD”.

 If a group has no prefix, then its fields have the same prefix as the main file.
 If the main file has no prefix either, then the group fields have no prefix at all.
 After the creation, the prefix of the group fields is not taken into account.
 While creating GPOUP array (array GROUP?), its size is indicated in the (+n) field in
the description of the field GROUP. There are no more references to the fact that this is
an array. The offset for slave elements is indicated as for the first element of the array.
The slave field from the first element of the array can even be a part of a key.

 Memo description

 (+0) (+n) (+m) (+m+2)
 DATA.MEM 00 FILE_MEMO 00 10 27 01 00
 CSTRING CSTRING USHORT USHORT
 The name of the memo-field memo-field attributes
 external file for name size
 memo

 If there exists external file name, it is stored in the (+0) field and trails with zero.
If the external file name is absent, then the (+0) field contains two bytes: the first is
zero and the second is arbitrary (Clarion 3.1 stores 1).
Example:

 (+0) (+n) (+m) (+m+2)
 00 01 FILE_MEMO 00 10 27 01 00

 Note: A program written with Clarion 3.1 stores 1 in field (+m+2), if the memo-field does
not have BINARY attribute, and 2, if it has. Clarion Database Manager 3.1 always stores
here 1. Neither the program, nor Database Manager recognizes this field (here an arbitrary
value can be stored).
 For the driver version 2 (Clarion for Windows 1.5) the attribute byte is constructed in
the following way:

 0 0 0 0 0 1 0 1
 ¦ ¦ L-- always 1
 ¦ L---- 1 = There is a BINARY attribute
 L------ 1 = this is a BLOB, 0 = this is a MEMO

 The memo-field length for a BLOB is 0.

Note: While importing the structure of a file, CfW 1.5 never takes the attributes byte into
account.

 Key/index description

 (+0) (+n) (+m) (+m+1) г============================¬
 00 01 KEY1 00 21 02 00 ¦ KEY/INDEX ATTRIBUTES ¦
 ? CSTRING BYTE USHORT ¦ ¦
external key attributes the number ¦ 0 0 1 0 0 0 0 1 ¦
file name, name of fields in ¦ L-+ ¦ ¦ L- DUP ¦
see memo a key ¦ 0 = KEY ¦ L--- OPT ¦
 ¦ 1 = INDEX L-- NOCASE ¦
 ¦ 2 = Dynamic index ¦
 Then, for every field in key/index L============================-
there follows a record

 01 00 00 00
 USHORT USHORT
 Field attributes Attributes: 0 = ASCENDING
 number non 0 = DESCENDING

 For Dynamic index the number of fields is always equal to 0. It is unknown, where the
Dynamic index data are stored. If the attributes are not equal to 0(any arbitrary number),
then the field is considered as DESCENDING.
 Note: If 00 00 is contained in the field (+0), then Clarion 3.1 while importing the
structure assumes that the key/index has an external name "". Other values of the second
byte (00 02, 00 03 etc.) are correctly recognized. The value 00 00 for memo-fields is
correctly recognized.

Table title

The last records in a file are titles of the tables

 (+0) (+1) (+n)
 C0 0C 00 08 00 FE UNNAMED 00 00 00 01
 BYTE USHORT USHORT BYTE STRING ULONG
 Record record indicates that table name file code for
 length length this is a table this table
 in control name
 page

 Byte with offset (+0) indicates that this record is a table name. No table number should
begin with this byte. Partly for this reason while augmenting the record number the last
byte is changed first. The length of table name is calculated as the_length_of_the_record
minus 5, and the length of the record on control page as the_length_of_the_record minus 4.
 While the table is constructed by means of the CREATE function its number is calculated
as the number of the next record (the number of the last record in the header is augmented
by 1, is inscribed back into the header and is considered as the number of the table).

Fields representation in keys and indexes

 ASCENDING

 BYTE, STRING, Are not changed, GROUP is considered as STRING, even the bytes
 PICTURE, GROUP of the numbers stored in it are not swapped.

 CSTRING the unused bytes on the right hand side are replaced with zeros

 PSTRING The byte of length is not indicated, unused symbols on the right
hand side are replaced with zeros, one more zero is added on the
right hand side in order that the length of the string in the
key would be equal to the length of the string in the table
record.

 USHORT, ULONG Bytes are swapped in the reverse order

 SHORT, LONG The elder bit of the elder byte is inverted, bytes are swapped

 REAL, SREAL If the number is positive, then the elder bit of the elder byte
 is inverted. Otherwise, all bits are inverted. Bytes are
 swapped.
 DECIMAL If the number is positive, then the elder bit of the elder byte

is inverted. Otherwise, the older nibble is equal to 7, and the
other bits are inverted.

 DESCENDING

 BYTE, SHORT, LONG, USHORT, ULONG, REAL, SREAL, STRING, CSTRING,
 PSTRING, DECIMAL The same as ACSENDING, but every bit
 is inverted

 Note: if the number DECIMAL is negative, then the elder nibble is equal
 to 8, all other bits remain unchanged. We actually change
 the sign of the number, then construct as for ASCENDING.
 Note: if the number REAL/SREAL is negative, then bytes are simply swapped.

We actually change the sign of the number, then construct as for
ASCENDING.

Commentary

 RECLAIM, CREATE attributes don’t change the file content, as well as the procedures LOCK,
UNLOCK, HOLD, RELEASE.
 It is not altogether clear, for what purpose two lengths of the file are used in file
header. In processing of transaction file header is copied just after the last page of the
file (that is, into the address indicated in the field (+6)). After the header, there
follow some other data (pages). In this new header the field (+6) remains the same, and the
field (+0Ah) indicates the new length of the file together with the recorded data. That is,
the first of the lengths is the length without the “unused” space in the end of the file.

