
CLAJ IIDN 
I ECHNICA' BULLE I IN 


Bulletin #108 

Improvinq File Performance 

copyright 1988 

Clarion Software Corporation 

overview 

Clarion provides many features to use system resources 
effectively when doing file operations. The FLUSH, STREAM, 
CACHE, and BUFFER statements are discussed to show how these 
statements may dramatically improve performance. 



Technical Bulletin #108 . Improving File Performance 

Improving File Performance 

There is usually some point in the application development cycle 
where your application is debugged and works correctly, but you 
wonder if you have done everything you can to make the 
application run more efficiently. There are many techniques for 
"fine tuning" an application, but some of the most critical 
concern the use of file processing statements. 

The Clarion language has many features that allows a developer to 
speed up an application once it has been written, especially 
where file I/O is concerned. This article is going to explore 
two sets of file statements that can dramatically speed up your 
program. 

The first set of file statements include the STREAM and FLUSH 
statements. These two statements are used to toggle on and off a 
condition that guarantees the data integrity of your file. The 
need for these statements can be seen by understanding the nature 
of disk I/O operations. 

When a record is added to a file, several things must happen. 
The data must written out disk, but the directory that records 
where that data resides must also be updated. Because disk reads 
and writes are done in fixed length blocks, DOS buffers this 
process in memory. (The amount of buffering is set in your 
CONFIG.SYS file at boot time.) This has the effect of writing 
data and directory information only when a full disk block can be 
written. Because this usually results in less I/O operations to 
the disk, it speeds up file processing greatly . 

. 
However, this buffering also has the grave disadvantage of making 
your data susceptible to power failures. For example, consider 
the following scenario: your application has just added several 
new records to your file, but the directory information that 
records where the location of that data is still in memory. Now 
a power failure occurs, or the operator turns off the power. The 
directory will not have recorded the new records, and can even 
make the entire file unusable! 

This unfortunate condition is why CLARION, by default, writes out 
all information that occurs in memory to complete the file 
operation. This does have the effect of slowing down file 
operations, but your records are safe. But what if your 
application needs the speed and doesn I t care about the powerfail 

Copyright 1988 • Clarion Software Corporation Page 1 

...-....... 
\........../ ~...;; 




Technical Bulletin #108 - Improving File Performance 

problem? For instance, the application could be processing a 
file in a "batch" mode, and if a powerfail occurs, you only have 
to rerun the application. Since powerfails might be rare in your 
area, you would rather have the speed advantage. This is what 
the STREAM statement does for YOUi it allows the buffering that 
DOS provides to be active. 

The FLUSH statement sets a condition for the specified file that 
writes out all the data for that file whenever the file changes; 
i.e., during an ADD, PUT, or DELETE. It does not allow the use 
of DOS buffering. 

Using the FLUSH and STREAM statements can make a difference of up 
to 4 times the amount of time it takes to process a file, so a 
careful consideration of these commands are in order. See 
chapter 11 of the Reference Manual for further details. 

The other set of file statements that can affect processing time 
include the CACHE and BUFFER statements. Both of these 
statements attempt to speed up processing time by using free or 
unused memory to hold records or keys. The buffers or caches 
created by these statements are "write-through" in nature, which 
means the records are written when the statements are executed, 
and if the current record being written is in memory as well as 
the disk, the memory version is updated as well. The current 
status of the STREAM or FLUSH conditions determine if the disk is 
updated immediately. 

The BUFFER statement is used to allocate an area (or all) of free 
memory that is used the first time records are read. For 
instance, if you create a buffer for 500 records, then open a 
file that has 900 records, 500 records will be read into the 
buffer on the first read. From this point, any read that 
requests one of the records that is in the buffer will not need 
any disk I/O to retrieve that record. After these records are 
processed, any read for the 501st record will then cause the next 
400 records to be read. This speeds up processing time because 
500 records can be read all at once faster than 1 record can be 
read 5()0 times. 

The BUFFER statement should only be used when processing the file 
in sequential record orderi i.e., using SET with NEXT or PREVIOUS 
without keys. Calling a random GET would have the effect of 
trying refill the buffer for each GET of a record that is not in 
the buffer. This could slow down the GET significantly. 

The same condition is true for keyed access. Because keyed 
access usually retrieves records in an order different from the 
order that records are stored in the data file, record processing 
could slow down with BUFFER on keyed access. 

The CACHE statement is much like the buffer statement, except 
..... 

Copyright 1988 - Clarion Software Corporation Page 2 



Technical Bulletin #108 • Improving File Performance 

that it reads into memory a number of records and the buffer does 
not get automatically refilled. If the specified record is in '-' 
the buffer, no disk activity needs to occur. If not, it reads 
the disk after searching the buffer. 

Although cacheing records will significantly speed up the 
processing of a file in sequential order, there is'the 
possibility that it could slightly slow down the processing of 
volatile files. Suppose you are using a file that has the first 
500 records cached, and the application adds new records to the 
end of the file (which are not in the cache). If the application 
just reads and updates those new records, searching the cache for 
records in memory will just be extra overhead. 

That's not the end of the CACHE statement, however. The CACHE 
statement can also be called in keyed mode, which has the effect 
of storing keys instead of records in memory. When accessing a 
file in keyed mode, the key file is searched for a match, and 
then a pointer to the record in the data file is used to retrieve 
the desired record. Cacheing keys, then, has the result of 
reducing the number of disk accesses involved in searching the 
key file. If the entire index can fit in memory, all of the 
overhead associated with keyed retrieval can be overcome by 
cacheing the index. Also note that if you have room for the 
records as well, you can do keyed record retrieval with no disk 
operations at all! This is ideal for some applications that have 
small files that are frequently accessed. 

There is one more consideration about the BUFFER and CACHE 
statements that should be mentioned; they may shrink while the 
application runs. If free memory is required for a memory table, 
and none is available, any memory used for buffers will be freed 
until the table is satisfied. If that is not enough, or there 
are no buffers, record cache memory will be freed, then key cache 
memory. The buffers and caches may be restored by simply 
executing the BUFFER or CACHE statement after the memory table 
has been freed. 

These statements have been included in CLARION language to 
provide you with the ability to write programs that automatically 
adapt to a variety of environments and to make your own 
trade-offs between performance and data integrity. Best of all, 
these features may tried by inserting a single statement in your 
programs and the effect can be measured simply and quickly. 

Copyright 1988 • Clarion Software Corporation Page 3 


