
CI AJ liON
\~ I ECHNIC.AI BULl EIIN

Bulletin #110

Turbo C LEM Tips and Techniques

Copyright 1988

Clarion Software Corporation

Overview

This article offers examples for writing LEMS using
the Turbo C compiler.

http:ECHNIC.AI

Technical Bulletin #110 . Turbo CLEM Tips and Techniques

Turbo C LEX Tips and Techniques

You can create your own Language Extension Modules (LEMs) using
the C programming language. This article offers examples of
writing a LEM using the Turbo C compiler. You can also use the
techniques shown when writing a LEM in other languages.

creating LEMs that use C library routines is an advanced
programming topic. Before you write a LEM, you should understand
the information in Appendix C of the Reference Manual.

Let's start by writing a simple LEM using Turbo C. This LEM will
return the current working directory on the current drive by
using the Turbo C library function, getcurdir(). As described in
Appendix C, the first step is to set up the assembler .BIN
header. The following will be used in our example:

MODULE: TEST1.ASM . SIMPLE LEM EXAMPLE

_TEXT
TEXT

=DATA
DATA

-BSS
-BSS
=END
_END

SEGMENT BYTE PUBLIC 'CODE'
ENDS
SEGMENT BYTE PUBLIC 'DATA'
ENDS
SEGMENT BYTE PUBLIC 'BSS'
ENDS
SEGMENT BYTE PUBLIC 'LEMEND'
ENDS

DGROUP GROUP _TEXT,_DATA,_BSS,_END

_TEXT SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:_TEXT,DS:DGROUP

EXTRN
EXTRN

MY C FUNC:NEAR
BINEND:BYTE

;C FUNCTION TO TEST CALLING LIBRARY
;DUMMY MODULE LINKED LAST FOR END

j""""'BINARY MODULE HEADER

DB 'BIO' jBIN SIGNATURE
DO o iRESERVED
DW BINEND iLENGTH OF BINARY MODULE

Copyright 1988 . Clarion Software corporation Page 1

Technical Bulletin #110 - Turbo CLEM Tips and Techniques

DB 	 ;ONE ROUTINE IN THIS BIN

;-------PROCEDURE DEFINITION (GET_PATH)

DB 'GET PATH',O,O,O,O,O ;CLARION FUNCTION NAME (13 BYTES)
OW CALL-C LIBRARY ;OFFSET WITH IN BINARY MODULE

1 -­DB ;DEFINED AS FUNCTION

DB o ;WITH NO PARAMETERS

;-------END OF HEADER-- ­

;-------Area after header may be used to declare data variables to use
PUBLIC RTNVAL ;MAKE BUFFER AVAILABLE TO C FUNCTION

RTNVAL DB 80 DUP (0) ;BUFFER FOR RETURN VALUES

;-------Must be a FAR procedure so that the RET instruction does a "far return"
CALL_C_LIBRARY PROC FAR

CALL MY C FUNC 	 ;PLACE PATH IN RTNVAL
;RETURNS LENGTH IN AX

;-------Set up registers so that CLARION knows what is being returned
MOV CX,AX ;CX: LENGTH OF RETURNED STRING
LEA BX,RTNVAL ;BX: OFFSET OF RETURNED STRING
SUB AL,AL ;AL: (0 = RETURNING A STRING)
RET ;RETURN TO CLARION

CALL_C_LIBRARY ENDP

TEXT 	 ENDS

END

Copyright 1988 - Clarion Software Corporation Page 2

Technical Bulletin #110 • Turbo CLEM Tips and Techniques

The following module is used for the C procedure to get the
current working directory.

/* */

/* MODULE: TEST2.C • MY C FUNCTION */

/* */

#include <dir.h>

#include <string.h>

extern char pascal RTNVAL[]; /* LEM return buffer 	 */

int cdecl errno; 	 /* Global variable from start·up code*/

unsigned pascal my_c_func(void)
{

int rval;

rval = getcurdir(O,RTNVAL); /* get current working directory */

if (rval == -1) /* some kind of error has occurred */

return(O); /* return length of 0 */

return(strlen(RTNVAL»; /* return length ~f string */

}

The next module is linked in last to mark the end of the file:

MODULE: 	 TEST3.ASM . END OF BIN MODULE

END 	 SEGMENT ~D PUBLIC 'LEMEND'

PUBLIC BINEND
BINEND DB 0

_END 	 ENDS
END

The first module is compiled with:

MASM TEST1;

The second module is compiled with the following statement using
the Turbo C compiler:

copyright 1Q88 . Clarion Software Corporation Page 3

Technical Bulletin #110 - Turbo CLEM Tips and Techniques

~ TCC -c -me -f- -g20 -I\turboc\include TEST2.C

(Note: The case of switches is important. To the Turbo C
compiler, there is a differ~nce between -I and -i).

The last module is compiled with the following:

MASM TEST3;

The resulting .OBJ's are linked together with:

LINK TEST1+TEST2+TEST3,TEST,TEST,\TURBOC\LIB\CC.LIB;

TEST.EXE is then converted to a .BIN with:

EXE2BIN TEST

We now have a .BIN written in C that can be called from Clarion.
The following statements should be added to the MAP structure of
the Clarion program that will use this .BIN:

MODULE('TEST'),BINARY

FUNCTION(GET_PATH),STRING

A typical call might look like the following:

Now we will explain the program structure that allows us to link
assembler and C modules together into a valid LEM file. Although
this explanation concentrates on the Microsoft assembler and
Borland Turbo C languages, the concepts involved are valid for
other C compilers and other languages.

To creqte a valid LEM file that contains C code, it is necessary
to set up the assembler header module to contain the same segment
names and class types that are used by the C code. On top of
this, we will be grouping all of the segments into one 64K
physical segment. These are the basic steps needed to create a
valid LEM file containing C code.

A segment is a collection of code or data whose addresses are all
relative to a segment register. (I'm sure that the previous

copyright 1988 - Clarion Software corporation Page 4

Technical Bulletin #110 - Turbo CLEM Tips and Techniques

statement rated about 9.9 on the fog index, so let's just think .~
of a segment as being a collection of code or data that does not
exceed 64K in size.)

,
A group is a collection of segments whose addresses are all
relative to a segment register (in other words, limited to 64K).
A group can be thought of as one segment that contains all the
other segments specified.

A class is also a collection of segments (usually logically
related to one another). All segments must belong to a class

(but segments do not have to belong to a group). There is no

limit to the number of segments within a class. There is also no
limit to the size of the class (although for the purposes of
creating a LEM, we are restricted to 64K).

Class type and segment order determines the actual ordering of
segments within an executable file. Segments with the same class
type are loaded into memory together. The order of classes is
determined by the order they are encountered when linking

(sequential). The order of segments within a class is either

sequential or alphabetic. Our example assumes sequential
ordering of segments. In order to mix assembler with C code,
Turbo C requires MASM 3.0 or greater since some early versions of
MASM assumed alphabetic ordering of segments.

Since linker processes object modules in the order it receives
them (either from the command line or an automatic response

file), we want to make sure that the first object module

encountered sets up the segment and class order correctly. The
first object module must be the assembler LEM header file. The
easiest way to ensure the correct segment order is to set up
dummy segment definitions at the beginning of the assembler LEM
header file.

Notice that our example begins with the following dummy segment
and group definitions:

TEXT SEGMENT BYTE PUBLIC 'CODE'
-TEXT ENDS
-DATA SEGMENT BYTE PUBLIC 'DATA'
-DATA ENDS
-BSS SEGMENT BYTE PUBLIC 'BSS'
-BSS ENDS
-END SEGMENT ByTE PUBLIC 'lEMEND'
::::END ENDS

DGROUP GROUP _TEXT,_DATA,_BSS,_END

Copyright 1988 - Clarion Software Corporation Page 5

Technical Bulletin #110 . Turbo CLEM Tips and Techniques

DGROUP is Turbo CiS group of data segments. In TEST2.C, we use
the variable RTNVAL which is defined in the _TEXT segment in
TEST1.ASM. Since RTNVAL is not declared in a data segment, we
will assign DGROUP to contain all the segments used (TEXT,

DATA, BSS, and END). This will allow us to access-any global
variable in the LEM from our C function.

The first three segment definitions shown below are the standard
definitions used by Turbo C. You can find this information for
any language by consulting its user's manual, or by causing the
compiler to generate assembler output and checking the assembly
code.

TEXT is the first segment defined and has a class type of 'CODE'.
DATA is the second segment and has a class type of 'DATA'.

=BSS is the third segment and has a class type of 'BSS'.

Because we need the variable BINEND linked in as the last
physical byte in the LEM, we have added a new segment definition
after the standard Turbo C definitions.

_END is the last segment and has a class type of 'LEMEND'.

Setting up these segment definitions in the first, module linked
causes all the code or data belonging to segment ' TEXT' to be
linked together first, followed by any other segments that have
the same class type (CODE). Then, all the code or data which
belongs to the segment '_DATA' is linked together, followed by
any other segments that have a class type of DATA. Next, all the
code or data which belongs to segment '_BSS' Is linked together,
followed by any other segments that have a class type of BSS.
Finally, all the code or data which belongs to segment' END' is
linked together, followed by any other segments that have a class
type of LEMEND.

If you generate assembler output for TEST2.C, you will notice
that Turbo C has generated three segment definitions.

TEXT SEGMENT BYTE PUBLIC 'CODE'
-TEXT ENDS

DATA SEGMENT BYTE PUBLIC 'DATA'

DATA ENDS
- BSS SEGMENT BYTE PUBLIC 'BSS'

-BSS ENDS

The Turbo C segment definitions match our dummy definitions in
TEST1.ASM. After linking together your modules and libraries,
your executable file will be organized as follows:

Copyright 1988 . Clarion Software Corporation Page 6

Technical Bulletin #110 • Turbo CLEM Tips and Techniques

_TEXT

TEXT

TEXT-
_DATA

_BSS

_END

.+TEST1.ASM

TEST2.C code .+.>

I
.+

•• >

CC.lIB code

All initialized data

..>All uninitialized data

TEST3.ASM •• >

CODE clas~

DATA class

BSS class

LEMEND class

You can check the order of segments and classes in the LEM file
by adding the "/MAP" switch while linking. This produces a more
detailed .MAP file that contains class information. The example
above will generate the following .MAP file.

Copyright 1988 . Clarion Software Corporation Page 7

Technical Bulletin #110 - Turbo CLEM Tips and Techniques

LINK: warning L4021: no stack segment

Start Stop Length Name

OOOOOH 0010BH 0010CH TEXT

0010CH 00166H 0005BH -DATA

00168H 00169H 00002H -BSS

0016AH 0016AH 00001H :END

Origin Group
0000:0 DGROUP

Address Publics by Name

0000:016A BINEND

0000:0077 MY_C_FUNC

0000:001B RTNVAL

0000:0168 errno

0000:0090 -getcurdir

OOOO:OOBA -strlen

0000:010C - doserrno

0000:010E -dosErrorToSV

0000:00D3 =IOERROR

Address publics by Value

0000:001B RTNVAL

0000:0077 MY C FUNC

0000:0090 getcurdir

OOOO:OOBA -strlen

0000:00D3 IOERROR

0000:010C -doserrno

0000:010E dosErrorToSV

0000:0168 errno

0000:016A BINEND

Class
CODE
DATA
BSS
LEMEND

Question: Can I use any C library function in my LEX?

No, there are a few limitations on the C library routines which
may be called from your LEMs.

1. Library routines must not call malloe() (or other variations)
to allocate memory because the Processor (CPRO or CRUN) allocates
all remaining memory for itself to use. For example, functions
that create a file stream, like fopen(), require the ability to
allocate memory and cannot be used. Instead, you can use a
function like _open() which returns a file handle and does not
allocate memory.

Copyrignt 1988 - Clarion Software Corporation Page 8

Technical BuLLetin #110 • Turbo CLEM Tips and Techniques

2. Library routines must not be dependent upon the start-up code
being run as if this were a stand-alone executable program. Some '~
of the things that are set up by the start-up code may include
the initialization of global variables, setting up floating math
emulation code, parsing command line arguments, setting up the
stack area, and taking over interrupt vectors.

3. Library routines must not produce code with absolute address
references. This problem will surface after linking the modules
together and running EXE2BIN over the resulting .EXE file. If
EXE2BIN produces an error similar to "Fix-ups needed - base
segment (hex):," the LEM cannot be used. Absolute address
references can be caused by the C compiler generating fix-ups in
the .OBJ that cannot be resolved until load time. (These are
usually requests for the segment of some data.) In assembler,
absolute address references can be caused by using the SEG
directive, or coding a far JMP or CALL.

4. LEMs may not contain a stack segment or a program entry

point. Either one of these conditions will produce an EXE2BIN

error similar to "File cannot be converted." These conditions

are usually caused by linking in the C start-up object module

into your LEM.

Question: How can I use Turbo C floating point arithmetic in my LEM?

You may use Turbo CiS floating point support in binary modules by ~
adding the following public equates into your assembler header
file. Since the Processor (CPRO or CRUN) is written in Turbo C,
the interrupt vectors used by the floating point math routines
have already been set up. Adding these public equates will cause
your LEM to contain the correct floating point emulation
instructions. (You can find more information on floating point
support in Turbo C in the January/February 1988 issue of TURBO
TECHNIX published by Borland International, Inc ..)

PUBLIC cvtfak
_cvtfak EQU 0

PUBLIC turboFLoat
turboFloat EQU 0- PUBLIC turboCvt

turboCvt EQU 0
-

PUBLIC FIARQQ
FIARQQ EQU OFE32H

PUBLIC 'FICRQQ
FICRQQ EQU OOE32H

PUBLIC FIDRQQ

Copyright 1988 • Clarion Software Corporation Page 9

Technical Bulletin '110 • Turbo CLEM Tips and Techniques

FIDRQQ

FIERQQ

FISRQQ

FIWRQQ

FJARQQ

FJCRQQ

FJSRQQ

EQU 05C32H

PUBLIC FIERQQ

EQU 01632H

PUBLIC FISRQQ

EQU 00632H

PUBLIC FIWRQQ

EQU OA23DH

PUBLIC FJARQQ

EQU 04000H

PUBLIC FJCRQQ

EQU OCOOOH

PUBLIC FJSRQQ

EQU 08000H

You may also need to add a global variable, FLAGS8087@, to your
code. This INTEGER variable may be declared as global data in
either your C or assembler code. It is used when comparing two
double variables in Turbo c.

Question: Why do I qet EXE2BIN errors whenever I add code to
multiply two lonq variables in my Turbo C function?

If you use long arithmetic in your LEM, you may see an error from
EXE2BIN like "Fix-ups needed base segment {hex):." . This is
caused by the Turbo C making a far call to one of its long math
functions.

However, there is a work-around for this specific problem. Since
our LEMs are limited to 64K, we can change the far calls to the
math functions to be near calls. The easiest way to do this is
by adding far call translation (/FAR) to the link switches.
Unfortunately, you must have the Microsoft Overlay Linker version
3.6 (or greater) to use this feature. Our example would be
linked together as follows:

LINK TEST1+TEST2+TEST3,TEST,TEST,\TURBOC\LIB\CC.LIB/FAR;

Another work-around is to cause the compiler to generate
assembler output and modify the far calls in the assembler source
to be near calls. At this point, you would be able to MASM the
modified assembler file{s) and link your object files together.

Question: Can I write my LEMs usinq the tiny or small memory model?

Yes. In fact, it may be necessary to use the tiny or small
memory models if you get segment fix-up errors from EXE2BIN.

If the following two conditions are met, you may use these models
without modifying any code. First, your LEM procedures and

Copyright 1988 • Clarion Software Corporation Page 10

Technical Bulletin '110 • Turbo CLEM Tips and Techniques

functions must not receive ANY parameters from your Clarion
program (requires 32-bit data pointers). Second, your LEM '~
procedures and functions must not call another function with 'the
address of a local variable as a parameter (also requires 32-bit
data pointers). You will notice that in the example we used
previously, no parameters are passed to the LEM, and the LEM did
not call any other functions using the address of local
variables. Therefore, the C module (TEST2.C) could have been
compiled with the tiny or small models, and then linked with the
appropriate library.

If your LEM procedures or functions receive any parameters from
your Clarion program, you must first copy them into the data
segment of the LEM. If your LEM procedures and functions call
another function with the address of a local variable as a
parameter, your LEM must have its own stack area. This can be
accomplished fairly easily by three simple functions in your
assembler header file. SETSTACK and RSTSTACK will be used to set
and restore the stack pointer with our LEM. COPY TO C will be
used to copy Clarion parameters into the LEM's data segment.
Let's change our LEM example to receive two parameters from the
Clarion program.

MODULE: TEST1.ASM . SIMPLE LEM EXAMPLE

TEXT SEGMENT BYTE PUBLIC 'CODE'
-TEXT ENDS
-DATA SEGMENT BYTE PUBLIC 'DATA'
=DATA ENDS

BSS SEGMENT BYTE PUBLIC 'BSS'
-BSS ENDS
-END SEGMENT BYTE PUBLIC 'LEMEND'
=END 	 ENDS

DGROUP 	 GROUP _TEXT,_DATA,_BSS,_END

_TEXT 	 SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:_TEXT,DS:DGROUP

EXTRN MY C FUNC:NEAR iC FUNCTION TO TEST CALLING LIBRARY

EXTRN BINEND:BYTE iDUMMY MODULE LINKED LAST FOR END

i·······BINARY MODULE HEADER

DB 'BIO' iBIN SIGNATURE

DO o iRESERVED

Copyright 1988 • Clarion Software Corporation Page 11

Technical Bulletin #110 • Turbo CLEM Tips and Techniques

OW BINEND ;LENGTH OF BINARY MODULE

DB 1 iONE ROUTINE IN THIS BIN

;.- ••.••PROCEDURE DEFINITION (GET_PATH)

DB 'GET PATH',O,O,O,O,O ;CLARION FUNCTION NAME (13 BYTES)
OW CALL-C LIBRARY ;OFFSET WIT~ IN BINARY MODULE
DB ;DEFINED AS'FUNCTION1 -­

DB 2 ;WITH TWO PARAMETERS

;·······1ST PARAMETER
PARM1T DB 0 ;CONVERT TO STRING
PARM1A DW 0, 0 iADDRESS OF STRING
PARM1L OW 0 iLENGTH OF STRING

_·······2ND PARAMETER
PARM2T DB 1 ;CONVERT TO SHORT
PARM2A DW 0, 0 ;ADDRESS OF SHORT
PARM2L DW 0 ;LENGTH OF SHORT

;-······END OF HEADER-------···········-····························· --.

;------·Area after header may be used to declare data variables to use
PUBLIC RTNVAL ;MAKE BUFFER AVAILABLE TO C FUNCTION

RTNVAL DB 80 DUP (0) :BUFFER FOR RETURN VALUES

PUBLIC STRING VAR iMAKE VARIABLE AVAILABLE TO C FUNCTION
STRING_VAR DB 256 DUP (0) iMAX CLARION STRING IS 255(+1 for null)

PUBLIC SHORT_VAR iMAKE VARIABLE AVAILABLE TO C FUNCTION
SHORT_VAR DW 0 iCLARIONSHORT IS 2 BYTES IN LENGTH

MYSTACK DB 2000 DUP(O) iALLOCATE 2000 BYTES FOR STACK AREA
TOPS TACK LABEL BYTE :TOP OF THE STACK IS HERE

SAVSS DW 0 ;SAVE CLARION STACK SEGMENT
SAVSP DW 0 ;SAVE CLARION STACK POINTER

i·······Must be a FAR procedure so that the RET instruction does a "far return"
CALL_C_LIBRARY PROC FAR

CALL SETSTACK :SET STACK AREA LOCAL TO LEM

LEA BX,PARMtT :BX . OFFSET OF CLARION PARAMETER AREA
LEA DI,STRING_VAR :DI • OFFSET OF C VARIABLE
CALL COPY_TO_C jCOPY CLARION VARIABLE TO C VARIABLE

LEA BX,PARM2T ;BX . OFFSET OF CLARION PARAMETER AREA
LEA DI,SHORT_VAR :01 . OFFSET OF C VARIABLE

Copyright 1988 . Clarion Software Corporation Page 12

Technical Bulletin #110 - Turbo CLEM Tips and Techniques

CALL COPY_TO_C iCOPY CLARION VARIABLE TO C VARIABLE

CALL MY_CJUNC iSTRING VAR I SHORT VAR may be used as
i9lobal-data or passed as a parameters

CALL RSTSTACK iRESTORE CLARION STACK AREA

i-------Set up registers so that CLARION Knows what is being returned
MOV CX,AX iCX: LENGTH OF RETURNED STRING
LEA BX,RTNVAL iBX: OFFSET OF RETURNED STRING
SUB AL,AL iAL: (0 =RETURNING A STRING)
RET iRETURN TO CLARION

i-------Set stacK area to stacK inside our LEM (save CLARION stacK pointer)

i-------Returns nothing, destroys BX, CX, OX
SETSTACK PROC NEAR

POP BX iGET RETURN ADDRESS
MOV SAVSS,SS iSAVE CLARION STACK SEGMENT
MOV SAVSP,SP iSAVE CLARION STACK POINTER
MOV CX,CS iSET THE STACK WITHIN OUR SEGMENT
LEA DX,TOPSTACK
CLI iCLEAR INTERRUPTS WHEN SETTING STACK
MOV SS,CX
MOV SP,DX
STI iTURN ON INTERRUPTS WHEN THROUGH
PUSH BX iPUSH RETURN ADDRESS
RET iRETURN TO CALLER

SETSTACK ENDP

i-------Set stacK pointer bacK to CLARION stacK area

i-------Returns nothing, destroys BX
RSTSTACK PROC NEAR

POP BX iGET RETURN ADDRESS
CLI iCLEAR INTERRUPTS WHEN SETTING STACK
MOV SS,SAVSS
MOV SP,SAVSP
STI iTURN ON INTERRUPTS WHEN THROUGH
PUSH BX iPUSH RETURN ADDRESS
RET iRETURN TO CALLER

RSTSTACK ENDP

Copyright 1988 - Clarion Software Corporation Page 13

Technical Bulletin #110 . Turbo CLEM Tips and Techniques

;·······Copy CLARION variable into our data segment to allow C to access

;·······Assurnes the following register setup
BX . OFFSET OF CLARION VARIABLE AREA
DI . OFFSET OF C VARIABLE

;·······Returns nothing, preserves DS register only:
COPY_TO_C PROC NEAR

PUSH DS ;SAVE DS REGISTER

MOV AX,DS

MOV ES,AX ;ES:DI . ADDRESS OF C VARIABLE

MOV CX,WORD PTR [BX+5] ;CX . LENGTH OF CLARION VARIABLE

MOV SI,WORD PTR [BX+1] ;DS:SI . ADDRESS OF CLARION VARIABLE

MOV DS,WORD PTR [BX+3] ;SET UP DS REGISTER LAST

CLD ;SET DIRECTION FLAG TO COPY FORWARDS

REP MOVSB ;COPY DS:SI into ES:DI for CX length

POP DS ;RESTORE DS

CMP BYTE PTR [BX],O ;CHECK VARIABLE TYPE

JNZ COPY_DONE ;IF NOT ZERO (STRING), THEN WE'RE DONE

MOV 	 BYTE PTR ES:[DI],O ;C STRINGS MUST BE NULL TERMINATED

COPY DONE:
- RET ;RETURN TO CALLER

COPY TO C ENDP

_TEXT 	 ENDS
END

/* 	 */
/* MODULE: TEST2.C . MY C FUNCTION */
/* */
unsigned pascal my_c_func(void)
{

(Your code goes here)

}

Question: I am not very familiar with assembler. Can I write the
entire LEM in C?

No, you can't write the entire LEM in C but you can have Clarion
call your C function directly instead of having your assembler
code call your C function. This means that we must set up our C
functi9n as a "far" function; we must retrieve the parameters
passed; and in the case of a LEM function, we must set up the
appropriate registers for returning to Clarion

Copyright 1988 . Clarion Software Corporation Page 14

Technical Bulletin #110 . Turbo CLEM Tips and Techniques

(LEM procedures do not need to do this). Let's begin with a LEM
procedure that accepts a string parameter and reverses the
characters in the string.

MODULE: TEST1.ASM • SIMPLE LEM EXAMPLE

TEXT 	 SEGMENT BYTE PUBLIC 'CODE' ;IlILL BE LOADED ON A PARA BOUNDARY
-TEXT ENDS
=DATA SEGMENT BYTE PUBLIC 'DATA'
_DATA ENDS
_BSS SEGMENT BYTE PUBLIC 'BSS'
_BSS ENDS

END SEGMENT BYTE PUBLIC 'LEMEND'
=END ENDS

DGROUP GROUP _TEXT,_DATA,_BSS,_END

TEXT 	 SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:_TEXT,DS:DGROUP

EXTRN MY C FUNC:NEAR ;C FUNCTION TO TEST CALLING LIBRARY

EXTRN BINEND:BYTE iDUMMY MODULE LINKED LAST FOR END

;·······BINARY MODULE HEADER

DB 'BIO' ;BIN SIGNATURE

DO iRESERVED

Oil ° BINEND iLENGTH OF BINARY MODULE

DB 1 iONE ROUTINE IN THJS BIN

;·······PROCEDURE DEFINITION (GET_PATH)

DB 'REVERSE IT',O,O,O ;CLARION FUNCTION NAME (13 BYTES)

Oil MY C FUNC ;OFFSET WITH IN BINARY MODULE

DB °-- ;DEFINED AS PROCEDURE

DB 1 	 ;WITH ONE PARAMETER

PUBLIC PARM1 iMAKE AVAILABLE TO C FUNCTION
PARM1 DB o iCONVERT TO STRING
PARM1A OW ;ADDRESS OF STRING0, °
PARM1L OW ° 	 ;LENGTH OF STRING

;·······END OF HEADER.·· ... · ·····••••• ··•••••••·••·····
_TEXT ENDS

END

Copyright 1988 . Clarion Software Corporation Page 15

Technical Bulletin #110 . Turbo CLEM Tips and Techniques

/* */
/* MODULE: TEST2.C . MY C FUNCTION */
/* */
#include <mem.h>
#include <string.h>
#include <dos.h>

typedef struct {
char type; /* O'string, 1'short, 2'long, 4'real */

uns igned off; /* offset of CLARION variable */

uns i gned seg; /* segment of CLARION variable */

unsigned len; /* length of CLARION variable */

} PARM;

extern PARM pascal PARM1; /* LEM parameter structure */

char string[256]; /* variable avail. for C functions */

void pascal far MY_c_func(void)
(

/*"Move CLARION variable into C variable··································*/
movedata(PARM1.seg,PARM1.off,FP_SEG(string),FP_OFF(string),PARM1.len);

if (PARM1.type == 0) /* is the parameter a CLARION string?*/

string[PARM1.len] = '\0'; /* C strings must end with a null */

strrev{string); /* reverse the characters in string */

/*"Move C variable back into CLARION variable·····························*/
movedata(FP_SEG(string),FP_OFF{string),PARM1.seg,PARM1.0ff,PARM1.len);

return:
}

You will notice that the assembler header file contains only the
LEM header information. You should also notice that we have made
the variable PARMI public so that we can access it from our C
routine. The C routine is declared a "far"function so that it
may return back to Clarion properly. We created a PARM structure
so that we can properly access the parameter information set up
by Clarion in the header. with this information we are able to
copy the Clarion variable into a C variable by using movedata()
instead of calling an assembler routine as we did in the previous
example. As you can see, we can also use movedata() to copy the
C variable back to the Clarion variable. If the char string[256]
variable had been declared as a local variable to my c func(), we
would have needed to set the stack area within our LEM-as we did
in the previous example.

copyright 1988 • Clarion Software Corporation Page 16

Technical BuLLetin #110 - Turbo CLEM Tips and Techniques

If we wanted this to be a LEM function (instead of a procedure) .'-/
which returned a string back to Clarion (instead of mOdifying. the
passed parameter), we would need to add code to set up the
appropriate registers before,returning to Clarion. To return the
variable "string" in our example, we would need to add the
following code before the return statement.

CX = PARM1.leni /* CX: Length of returned variabLe */

-BX =FP OFF(string); /* BX: offset of returned variable */

-AL =0;- /* AL: type of returned variable */

return;

Be careful to set register AL last since the macro FP_OFF() uses
the AX register.

Question: How do I pass a GROUP to a LEMand can I modify it in

the LEM?

The Processor treats GROUPs like STRINGs. Therefore, when you
want to pass GROUPs to the LEM, set the first byte of the
parameter area to zero to indicate that a string variable is to
be passed. The GROUP will be passed on to the LEM intact. You
may modify the GROUP directly inside your LEM. If you have the
COMMl or DBASE3 LEMs, you'll notice that they both use GROUPs as
parameters to some of their routines.

In general, any Clarion variable may be modified from a LEM, as
long as the variable matches the type of parameter that the LEM
is expecting. If the Clarion variable does not exactly match the
LEM parameter type, the Processor will convert it to a temporary
variable of the appropriate type. Your LEM will be changing a
temporary variable that your Clarion program cannot access.

Question: How do I pass an array of REALs to a LEM?

Pass the address of an array simply by calling your LEM routine
with the first element of the array. Clarion arrays (and C
arrays) ,are contiguous in memory. This means that your assembler
header will receive the address of the first element of the array
which can then be passed onto a C function that expects an array
of doubles. You may need to pass the number of elements in the
array to the LEM as well.

Question: My program "hangs" whenever I call my LEM from Clarion.
What can I do to find out what's going wrong?

One simple method to determine where a LEM is failing is to put
print statements inside the LEM. This will help you narrow down
the possibly failing code to a smaller set.

copyright 1988 - Clarion Software Corporation Page 17

Technical Bulletin #110 . Turbo CLEM Tips and Techniques

Another method involves using DEBUG. COM which comes with your DOS
supplemental disk. You can add an flINT 3" instruction at the
beginning of your assembler procedure.

CALL_C_LIBRARY PROC FAR

INT 3 :FORCE DEBUGGER TO STOP HERE

CALL HY_C_FUNC ;PLACE PATH IN RTNVAL

;RETURNS LENGTH IN AX

:·······Set up registers so that Clarion knows what is being returned
MOV CX,AX ;CX: LENGTH OF RETURNED STRING
LEA BX,RTNVAL ;BX: OFFSET OF RETURNED STRING
SUB AL,AL ;AL: (0 = RETURNING A STRING)
RET ;RETURN TO CLARION

CALL_C_LIBRARY ENDP

After creating your LEM with this instruction added, run DEBUG
\CLARION\CPRO.EXE yourprog.PRO from the DOS command line. After
DEBUG displays a dash (._.), type G and then press Enter. This
will cause DEBUG to run the Processor and your .PROs until it
encounters the INT 3 in your LEM. When the INT 3 is countered,
DEBUG will stop the program and display the current instruction
(INT 3). Skip this instruction by changing the instruction
pointer (IP) register. Type R IP and then press Enter. DEBUG
will display the current IP value in hex and wait for you to
enter the new value. Enter a value that is 1 larger than the
current value displayed in order to skip the INT 3 instruction.
At this point you are now ready to begin tracing through your
LEM. (For more information on DEBUG.COM, check your DOS manual.)

NOTE: You must always run your program under a debugger while
your LEM contains the INT 3 instruction. Otherwise, your
computer will "hang" whenever the INT 3 instruction is

encountered.

(Type the characters between the brackets ([]).)

C:> [DEBUG \CLARION\CPRO.EXE yourprog.PRO]
• [G]

AX=nnnn BX=nnnn CX=nnnn DX=nnnn SP=nnnn BP=nnnn SI=nnnn DI=nnnn

DS=nnnn ES=nnnn SS=nnnn CS=nnnn IP=12C9 NV UP EI PL NZ NA PO NC

nnnn:12C9 CC INT 3

• [R I P]

IP 12C9

: [12CA]

Copyright 1988 . Clarion Software Corporation Page 18

http:DEBUG.COM

Technical Bulletin #110 - Turbo CLEM Tips and Techniques

A third method involves Translator and a symbolic debugger (if
you have one). You can translate your .PROs and .BINs into an
executable program that can be symbolically debugged if you
remember to add II/MAP" to yo~r . ARF switches when translati:.g
your program. The .MAP file will contain symbol names that point
to your LEM routines. These symbol names are the name of your
routine preceded by "_CODE_."

For example, for the LEM header below, there will be a symbol
called CODE MY C FUNC. You may set a breakpoint in the debugger
using this symbol:

;-------BINARY MODULE HEADER

DB 'BIO' ;BIN SIGNATURE
DD o ; RESERVED
DW BINEND ;LENGTH OF BINARY MODULE
DB 1 iONE ROUTINE IN THIS BIN

;-------PROCEDURE DEFINITION (GET_PATH)

DB 'REVERSE_IT',O,O,O :CLARION FUNCTION NAME (13 BYTES)

DW MY C FUNC iOFFSET WITH IN BINARY MODULE

0- ­DB :DEFINED AS PROCEDURE

DB 1 :WITH ONE PARAMETER

PUBLIC PARM1 iMAKE AVAILABLE TO C FUNCTION
PARM1 DB 0 :CONVERT TO STRING
PARM1A DW 0, 0 :ADDRESS OF STRfNG
PARM1L DW 0 ;LENGTH OF STRING

i-------END OF HEADER-------------------·-··-··--------·-···---····-·-- •• ---- ­

Copyright 1988 - Clarion Software Corporation Page 19

