
Application
Handbook

CLARION 5

2 CLARION 5 APPLICATION HANDBOOK

COPYRIGHT 1997, 1998, 1999 by TopSpeed Corporation
All rights reserved.

This publication is protected by copyright and all rights are reserved by TopSpeed Corporation.
It may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any
electronic medium or machine-readable form without prior consent, in writing, from TopSpeed
Corporation.

This publication supports Clarion 5. It is possible that it may contain technical or typographical
errors. TopSpeed Corporation provides this publication “as is,” without warranty of any kind,
either expressed or implied.

TopSpeed Corporation
150 East Sample Road
Pompano Beach, Florida 33064
(954) 785-4555

Trademark Acknowledgements:

TopSpeed is a registered trademark of TopSpeed Corporation.
Btrieve is a registered trademark of Pervasive Software.
Microsoft Windows and Visual Basic are registered trademarks of Microsoft Corporation.
All other products and company names are trademarks of their respective owners.

Printed in the United States of America (0399) PDF Update June 1999

CONTENTS 3

FOREWORD 41
Welcome 41

Documentation Conventions 42
Typeface Conventions... 42
Keyboard Conventions.. 42
Other Conventions .. 42

PART I
——
APPLICATION BUILDER CLASS

TEMPLATES .. 43

1 - TEMPLATE OVERVIEW 45
What is a Template 45

Clarion Templates and Application Builder Class (ABC) Templates 46
ABC Templates and Code Generation.. 46
ABC Templates and the ABC Library .. 47
Browse-Form Application Paradigm .. 49

ABC Templates and SQL 50

Global ABC Template Settings 51
General Tab Options ... 51
File Control Tab Options .. 53
Individual File Overrides Tab Options ... 57
External Module Options Tab... 58
Classes Tab Options—Global ... 58

Classes Tab Options—Local 64

ABC Compliant Classes 68

Global ABC Embed Points 69

Using ABC Templates to Derive Classes 71
Why the Templates Derive Classes .. 71
Deriving with Embed Points... 72
Deriving with Classes Tab .. 72

TABLE OF CONTENTS

4 CLARION 5 APPLICATION HANDBOOK

2 - WIZARDS AND UTILITY TEMPLATES 73
Code Generation Wizards 73

Application Wizards 74
Quick Start Wizard ... 74
Application Wizard ... 76

Procedure Wizards 80
Browse Wizard ... 80
Form Wizard ... 82
Report Wizard ... 84

Dictionary Print Wizard 86

Optimizing the Wizards 87
File Options .. 87
Alias Options .. 87
Field Options .. 87
Key Options .. 88
Relation Options ... 88
Naming Conventions .. 88
Using Default Window Controls .. 89

3 - PROCEDURE TEMPLATES 91
Overview 91

Procedures and Procedure Templates ... 91
Procedures as Containers .. 92
Inter-Procedure Communication .. 93

Window Procedure Templates 94
Window Template ... 94
Browse Template .. 96
Form Template .. 97
Frame Template .. 99
Menu Template ... 101
Process Template .. 101
Report Template ... 105
Splash Template .. 110
Viewer Template ... 111

Other Procedure Templates 113
External Template ... 113
Source Template ... 113

CONTENTS 5

4 - CONTROL TEMPLATES 115
Overview 115

Adding Control Templates.. 115

Read-Only Browse Templates 116
ASCIIViewControl ... 116
ASCIIPrintButton ... 117
ASCIISearchButton .. 117

Read-Write Browse Templates 118
BrowseBox Overview ... 118
Scrolling with a Page-loaded BrowseBox .. 119
BrowseBox Options .. 120
BrowsePrintButton ... 131
BrowsePublishButton ... 132
BrowseQueryButton ... 133
BrowseSelectButton ... 136
BrowseToolboxButton .. 137
BrowseUpdateButtons .. 137
RelationTree Overview ... 141
RelationTree Options .. 143
RelationTreeUpdateButtons ... 145

Other Window Control Templates 146
CancelButton .. 146
CloseButton .. 146
DOSFileLookup ... 146
FieldLookupButton... 149
FileDrop .. 149
FileDropCombo .. 155
FrameBrowseControl.. 160
PauseButton .. 163
SaveButton .. 164

Report Control Templates 167
ReportDateStamp ... 167
ReportTimeStamp... 168
ReportPageNumber .. 168

5 - CODE AND EXTENSION TEMPLATES 169
Code Templates 169

CallABCMethod ... 169
CallProcedureAsLookup .. 170

6 CLARION 5 APPLICATION HANDBOOK

CloseCurrentWindow ... 170
ControlValueValidation .. 170
DisplayPopupMenu .. 171
InitiateThread ... 173
LookupNonRelatedRecord ... 173
ResizeSetStrategy ... 174
SelectToolbarTarget .. 176
SetABCProperty ... 177
SetProperty ... 177

Extension Templates 178
AsciiViewInListBox ... 178
DateTimeDisplay .. 179
ExtendProgressWindow ... 180
FormVCRControls.. 181
RecordValidation .. 182
ReportChildFiles... 182
WindowResize .. 184

PART II
——
APPLICATION BUILDER CLASS LIBRARY 189

6 - ABC L IBRARY OVERVIEW 191
About This Part 191

Application Builder Class (ABC) Library 191
Class Libraries Generally ... 191
Application Builder Classes—The ABCs of Rapid Application Development . 191
ABC Library and the ABC Templates .. 195

ABC Coding Conventions 197
Method Names.. 197
Where to Initilize & Kill Objects ... 198
Return Values .. 198
PRIVATE (undocumented) Items ... 199
PROTECTED, VIRTUAL, DERIVED, and PROC Attributes 200

Documentation Conventions 201
Reference Item and Syntax Diagram.. 201
Conceptual Example ... 202

CONTENTS 7

7 - ASCIIFILECLASS 203
Overview 203

Relationship to Other Application Builder Classes .. 203
ABC Template Implementation .. 203
ASCIIFileClass Source Files .. 204
Conceptual Example ... 204

AsciiFileClass Properties 206
ASCIIFile (the ASCII file) ... 206
ErrorMgr (ErrorClass object) ... 206
OpenMode (file access/sharing mode) ... 206

AsciiFileClass Methods 207
Functional Organization—Expected Use ... 207
FormatLine (a virtual to format text).. 208
GetDOSFilename (let end user select file) ... 209
GetFilename (return the filename) ... 210
GetLastLineNo (return last line number) ... 210
GetLine (return line of text) ... 211
GetPercentile (convert file position to percentage) .. 212
Init (initialize the ASCIIFileClass object) .. 213
Kill (shut down the ASCIIFileClass object) ... 214
Reset (reset the ASCIIFileClass object) ... 215
SetLine (a virtual to position the file)... 216
SetPercentile (set file to relative position) .. 217
ValidateLine (a virtual to implement a filter) ... 218

8 - ASCIIPRINTCLASS 219
Overview 219

Relationship to Other Application Builder Classes .. 219
ABC Template Implementation .. 219
ASCIIPrintClass Source Files .. 220
Conceptual Example ... 220

AsciiPrintClass Properties 222
FileMgr (AsciiFileClass object) ... 222
PrintPreview (print preview switch) ... 222
Translator (TranslatorClass object) .. 222

AsciiPrintClass Methods 223
Ask (solicit print specifications) ... 223
Init (initialize the ASCIIPrintClass object) .. 223

8 CLARION 5 APPLICATION HANDBOOK

PrintLines (print or preview specified lines) .. 224

9 - ASCIISEARCHCLASS 225
Overview 225

Relationship to Other Application Builder Classes .. 225
ABC Template Implementation .. 225
ASCIISearchClass Source Files ... 226
Conceptual Example ... 226

AsciiSearchClass Properties 228
Find (search constraints) .. 228
FileMgr (AsciiFileClass object) ... 228
LineCounter (current line number)... 228
Translator (TranslatorClass object) .. 229

AsciiSearchClass Methods 230
Ask (solicit search specifications) .. 230
Init (initialize the ASCIISearchClass object) ... 231
Next (find next line containing search text) ... 231
Setup (set search constraints) ... 232

10 - ASCIIVIEWERCLASS 233
Overview 233

Relationship to Other Application Builder Classes .. 234
ABC Template Implementation .. 234
ASCIIViewerClass Source Files... 234
Conceptual Example ... 235

AsciiViewerClass Properties 236
Popup (PopupClass object)... 236
Printer (ASCIIPrintClass object) .. 236
Searcher (ASCIISearchClass object).. 236
TopLine (first line currently displayed) .. 237

AsciiViewerClass Methods 238
Functional Organization—Expected Use ... 238
AddItem (program the AsciiViewer object) ... 240
AskGotoLine (go to user specified line) .. 241
DisplayPage (display new page)... 241
Init (initialize the ASCIIViewerClass object) ... 242
Kill (shut down the ASCIIViewerClass object) .. 244
PageDown (scroll down one page) ... 245
PageUp (scroll up one page)... 245

CONTENTS 9

Reset (reset the ASCIIViewerClass object) .. 246
SetLine (position to specific line)... 247
SetLineRelative (move n lines) .. 248
SetTranslator (set run-time translator).. 249
TakeEvent (process ACCEPT loop event) .. 250

11 - BROWSECLASS 251
Overview 251

BrowseClass Concepts ... 251
Relationship to Other Application Builder Classes .. 251
ABC Template Implementation .. 252
BrowseClass Source Files .. 252
Conceptual Example ... 253

BrowseClass Properties 255
ActiveInvisible (obscured browse list action) .. 255
AllowUnfilled (display filled list) .. 255
ArrowAction (edit-in-place action on arrow key) .. 256
AskProcedure (update procedure) .. 256
ChangeControl (change/edit button) .. 257
DeleteControl (delete button) ... 257
EditList (list of edit-in-place controls) ... 258
EIP (edit-in-place manager) ... 258
EnterAction (edit-in-place action on enter key) ... 259
Fields (managed fields) .. 259
FocusLossAction (edit-in-place action on lose focus) 260
HasThumb (vertical scroll bar flag) ... 260
HideSelect (hide select button) ... 260
InsertControl (add/insert button) .. 261
ListControl (browse LIST control) ... 261
ListQueue (browse data queue) .. 261
Loaded (queue loaded flag) .. 262
Popup (popup menu manager).. 262
PrintControl (print button) .. 262
PrintProcedure (print procedure) .. 263
Query (ad hoc query manager) ... 263
QueryControl (query button) .. 264
QueryShared (query scope flag) ... 264
QuickScan (buffered reads flag) ... 265
RetainRow (highlight bar refresh behavior) ... 265
SelectControl (select button) .. 266

10 CLARION 5 APPLICATION HANDBOOK

Selecting (select mode only flag) ... 266
SelectWholeRecord (select entire record flag)... 266
Sort (browse sort information) ... 267
StartAtCurrent (initial browse position) ... 268
TabAction (edit-in-place action on tab key) ... 268
Toolbar (browse Toolbar object) .. 269
ToolbarItem (browse ToolbarTarget object) ... 269
ToolControl (toolbox button) .. 270
Window (WindowManager object) .. 270

BrowseClass Methods 271
Functional Organization—Expected Use ... 271
AddEditControl (specify custom edit-in-place class) .. 273
AddField (specify a FILE/QUEUE field pair) ... 274
AddLocator (specify a locator) ... 275
AddResetField (set a field to monitor for changes) ... 276
AddSortOrder (specify a browse sort order) .. 277
AddToolbarTarget (set the browse toolbar) .. 278
ApplyRange (refresh browse based on resets and range limits)......................... 279
Ask (update selected browse item) ... 280
AskRecord (edit-in-place selected browse item) .. 281
Fetch (get a page of browse items) ... 282
Init (initialize the BrowseClass object) .. 283
Kill (shut down the BrowseClass object) ... 284
Next (get the next browse item).. 285
PostNewSelection (post an EVENT:NewSelection to the browse list) 285
Previous (get the previous browse item) .. 286
Records (return the number of browse queue items).. 286
ResetFromAsk (reset browse after update) .. 287
ResetFromBuffer (fill queue starting from record buffer).................................. 289
ResetFromFile (fill queue starting from file POSITION) 290
ResetFromView (reset browse from current result set) 291
ResetQueue (fill or refill queue) ... 292
ResetResets (copy the Reset fields) .. 293
ResetSort (apply sort order to browse) ... 294
ScrollEnd (scroll to first or last item) ... 295
ScrollOne (scroll up or down one item) ... 296
ScrollPage (scroll up or down one page) .. 297
SetAlerts (alert keystrokes for list and locator controls) 298
SetQueueRecord (copy data from file buffer to queue buffer) 298

CONTENTS 11

SetSort (apply a sort order to the browse) .. 299
TakeAcceptedLocator (apply an accepted locator value) 300
TakeEvent (process the current ACCEPT loop event) .. 301
TakeKey (process an alerted keystroke) ... 302
TakeLocate (collect and apply ad hoc query) ... 302
TakeNewSelection (process a new selection) ... 303
TakeScroll (process a scroll event) ... 304
TakeVCRScroll (process a VCR scroll event) .. 305
UpdateBuffer (copy selected item from queue buffer to file buffer) 306
UpdateQuery (set default query interface) ... 307
UpdateResets (copy reset fields to file buffer) ... 308
UpdateThumb (position the scrollbar thumb) .. 308
UpdateThumbFixed (position the scrollbar fixed thumb) 309
UpdateViewRecord (get view data for the selected item) 309
UpdateWindow (update display variables to match browse) 310

12- BROWSEEIPMANAGERCLASS 311
Overview 311

BrowseEIPManagerClass Concepts ... 311
Relationship to Other Application Builder Classes .. 311
ABC Template Implementation .. 312
BrowseEIPManagerClass Source Files .. 312
Conceptual Example ... 312

BrowseEIPManagerClass Properties 315
BC (browse class) .. 315

BrowseEIPManagerClass Methods 316
Functional Organization—Expected Use ... 316
ClearColumn (reset column property values)... 317
Init (initialize the BrowseEIPManagerClass object) .. 317
Kill (shut down the BrowseEIPManagerClass object) 318
TakeCompleted (process completion of edit) ... 319
TakeNewSelection (reset edit-in-place column).. 320

13 - BUFFEREDPAIRSCLASS 321
Overview 321

BufferedPairsClass Concepts ... 321
Relationship to Other Application Builder Classes .. 321
ABC Template Implementation .. 321

12 CLARION 5 APPLICATION HANDBOOK

BufferedPairsClass Source Files .. 322
Conceptual Example ... 322

BufferedPairsClass Properties 323
RealList (recognized field pairs) .. 323

BufferedPairsClass Methods 324
Functional Organization—Expected Use ... 324
AddPair (add a field pair) ... 326
AssignBufferToLeft (copy from “buffer” fields to “left” fields) 327
AssignBufferToRight (copy from “buffer” fields to “right” fields) 327
AssignLeftToBuffer (copy from “left” fields to “buffer” fields) 328
AssignRightToBuffer (copy from “right” fields to “buffer” fields) 328
EqualLeftBuffer (compare “left” fields to “buffer” fields) 329
EqualRightBuffer (compare “right” fields to “buffer” fields) 329
Init (initialize the BufferedPairsClass object) .. 330
Kill (shut down the BufferedPairsClass object) ... 330

14 - CONSTANTCLASS 331
Overview 331

ConstantClass Concepts ... 331
Relationship to Other Application Builder Classes .. 332
ABC Template Implementation .. 332
ConstantClass Source Files .. 333
Conceptual Example ... 333

ConstantClass Properties 334
TerminatorValue (end of data marker) ... 334

ConstantClass Methods 335
Functional Organization—Expected Use ... 335
AddItem (set constant datatype and target variable) .. 336
Init (initialize the ConstantClass object) .. 337
Kill (shut down the ConstantClass object) ... 338
Next (load all constant items to file or queue) ... 339
Next (copy next constant item to targets) ... 340
Reset (reset the object to the beginning of the constant data) 341
Set (set the constant data to process) .. 342

15 - EDITCHECKCLASS 343
Overview 343

EditCheckClass Concepts ... 343

CONTENTS 13

Relationship to Other Application Builder Classes .. 343
ABC Template Implementation .. 343
EditCheckClass Source Files .. 344
Conceptual Example ... 344

EditCheckClass Properties 347

EditCheckClass Methods 348
Functional Organization—Expected Use ... 348
CreateControl (create the edit-in-place CHECK control) 349

16 - EDITCLASS 351
Overview 351

EditClass Concepts ... 351
Relationship to Other Application Builder Classes .. 351
ABC Template Implementation .. 352
EditClass Source Files .. 352
Conceptual Example ... 353

EditClass Properties 356
FEQ (the edit-in-place control number) ... 356
ReadOnly (edit-in-place control is read-only)... 356

EditClass Methods 357
Functional Organization—Expected Use ... 357
CreateControl (a virtual to create the edit control) .. 358
Init (initialize the EditClass object) .. 359
Kill (shut down the EditClass object) ... 359
SetAlerts (alert keystrokes for the edit control) ... 360
SetReadOnly (set edit control to read-only) ... 360
TakeEvent (process edit-in-place events) .. 361

17 - EDITCOLORCLASS 363
Overview 363

EditColorClass Concepts .. 363
Relationship to Other Application Builder Classes .. 363
ABC Template Implementation .. 364
EditColorClass Source Files ... 364
Conceptual Example ... 364

EditColorClass Properties 367
Title (color dialog title text) .. 367

14 CLARION 5 APPLICATION HANDBOOK

EditColorClass Methods 368
Functional Organization—Expected Use ... 368
CreateControl (create the edit-in-place control) ... 369
TakeEvent (process edit-in-place events) .. 370

18 - EDITDROPLISTCLASS 371
Overview 371

EditDropListClass Concepts .. 371
Relationship to Other Application Builder Classes .. 371
ABC Template Implementation .. 371
EditDropListClass Source Files ... 372
Conceptual Example ... 372

EditDropListClass Properties 375

EditDropListClass Methods 376
Functional Organization—Expected Use ... 376
CreateControl (create the edit-in-place DROPLIST control) 377
SetAlerts (alert keystrokes for the edit control) ... 378
SetReadOnly (set edit control to read-only) ... 378
TakeEvent (process edit-in-place events) .. 379

19 - EDITENTRYCLASS 381
Overview 381

EditEntryClass Concepts .. 381
Relationship to Other Application Builder Classes .. 381
ABC Template Implementation .. 382
EditEntryClass Source Files ... 382
Conceptual Example ... 382

EditEntryClass Properties 385

EditEntryClass Methods 386
Functional Organization—Expected Use ... 386
CreateControl (create the edit-in-place ENTRY control) 387

20 - EDITFILECLASS 389
Overview 389

EditFileClass Concepts ... 389
Relationship to Other Application Builder Classes .. 389
EditFileClass Source Files.. 390
Conceptual Example ... 390

CONTENTS 15

EditFileClass Properties 393
FileMask (file dialog behavior) .. 393
FilePattern (file dialog filter) .. 393
Title (file dialog title text)... 394

EditFileClass Methods 395
Functional Organization—Expected Use ... 395
CreateControl (create the edit-in-place control) ... 396
TakeEvent (process edit-in-place events) .. 397

21 - EDITFONTCLASS 399
Overview 399

EditFontClass Concepts.. 399
Relationship to Other Application Builder Classes .. 399
ABC Template Implementation .. 400
EditFontClass Source Files... 400
Conceptual Example ... 400

EditFontClass Properties 404
Title (font dialog title text) ... 404

EditFontClass Methods 405
Functional Organization—Expected Use ... 405
CreateControl (create the edit-in-place control) ... 406
TakeEvent (process edit-in-place events) .. 407

22 - EDITMULTISELECTCLASS 409
Overview 409

EditMultiSelectClass Concepts .. 409
Relationship to Other Application Builder Classes .. 410
ABC Template Implementation .. 410
EditMultiSelectClass Source Files ... 410
Conceptual Example ... 411

EditMultiSelectClass Properties 415
Available (multi-select dialog available items queue) .. 415
FilePattern (multi-select dialog file pattern text) .. 415
Selected (multi-select dialog selected items queue) ... 415
Title (multi-select dialog title text) ... 415

EditMultiSelectClass Methods 416

16 CLARION 5 APPLICATION HANDBOOK

Functional Organization—Expected Use ... 416
AddValue (prime the MultiSelect dialog) .. 418
CreateControl (create the edit-in-place control) ... 419
Reset (reset the EditMultiSelectClass object) .. 419
TakeAction (process MultiSelect dialog action) ... 420
TakeEvent (process edit-in-place events) .. 423

23 - EDITSPINCLASS 425
Overview 425

EditSpinClass Concepts.. 425
Relationship to Other Application Builder Classes .. 425
ABC Template Implementation .. 425
EditSpinClass Source Files... 426
Conceptual Example ... 426

EditSpinClass Properties 428

EditSpinClass Methods 429
Functional Organization—Expected Use ... 429
CreateControl (create the edit-in-place SPIN control) 430

24 - EDITTEXTCLASS 431
Overview 431

EditTextClass Concepts .. 431
Relationship to Other Application Builder Classes .. 431
EditTextClass Source Files ... 432

EditTextClass Properties 433
Title (text dialog title text) .. 433

EditTextClass Methods 434
Functional Organization—Expected Use ... 434
CreateControl (create the edit-in-place control) ... 435
TakeEvent (process edit-in-place events) .. 436

25 - EIPMANAGERCLASS 437
Overview 437

EIPManagerClass Concepts ... 437
Relationship to Other Application Builder Classes .. 437
ABC Template Implementation .. 438
EIPManagerClass Source Files .. 438
Conceptual Example ... 438

CONTENTS 17

EIPManagerClass Properties 441
Again (column usage flag) ... 441
Arrow (edit-in-place action on arrow key) .. 441
Column (listbox column) .. 441
Enter (edit-in-place action on enter key) ... 442
EQ (list of edit-in-place controls) .. 442
Fields (managed fields) .. 443
FocusLoss (action on loss of focus) .. 443
Insert (placement of new record) .. 444
ListControl (listbox control number) ... 444
LastColumn (previous edit-in-place column) ... 445
Repost (event synchronization) .. 445
RepostField (event synchronization field) .. 445
Req (database request) .. 446
SeekForward (get next field flag) ... 446
Tab (action on a tab key) .. 446

EIPManagerClass Methods 447
Functional Organization—Expected Use ... 447
AddControl (register edit-in-place controls) .. 449
ClearColumn (reset column property values)... 450
GetEdit (identify edit-in-place field) .. 450
Init (initialize the EIPManagerClass object) .. 451
InitControls (initialize edit-in-place controls) .. 451
Kill (shut down the EIPManagerClass object) ... 452
Next (get the next edit-in-place field)... 452
ResetColumn (reset edit-in-place object to selected field) 453
Run (run the EIPManager) .. 453
TakeAction (process edit-in-place action) .. 454
TakeCompleted (process completion of edit) ... 455
TakeEvent (process window specific events) .. 456
TakeFieldEvent (process field specific events) ... 457
TakeFocusLoss (a virtual to process loss of focus) .. 458
TakeNewSelection (reset edit-in-place column).. 458

26 - ENTRYLOCATORCLASS 459
Overview 459

EntryLocatorClass Concepts .. 459
Relationship to Other Application Builder Classes .. 459
ABC Template Implementation .. 459

18 CLARION 5 APPLICATION HANDBOOK

EntryLocatorClass Source Files ... 460
Conceptual Example ... 460

EntryLocatorClass Properties 462
Shadow (the search value) .. 462

EntryLocatorClass Methods 463
Init (initialize the EntryLocatorClass object) ... 463
Set (restart the locator) ... 464
TakeAccepted (process an accepted locator value) .. 464
TakeKey (process an alerted keystroke) ... 465
Update (update the locator control and free elements) 466
UpdateWindow (redraw the locator control) .. 466

27 - ERROR CLASS 467
Overview 467

ErrorClass Source Files .. 467
Multiple Customizable Levels of Error Treatment ... 467
Predefined Windows and Database Errors ... 468
Dynamic Extensibility of Errors ... 468
ABC Template Implementation .. 468
Relationship to Other Application Builder Classes .. 469
Macro Expansion .. 469
Multi-Language Capability .. 470
Conceptual Example ... 471

ErrorClass Properties 472
Errors (recognized error definitions) .. 472
FieldName (field that produced the error) .. 473
FileName (file that produced the error) .. 473
MessageText (custom error message text) .. 473

ErrorClass Methods 474
Functional Organization—Expected Use ... 474
AddErrors (add or override recognized errors) .. 475
GetProcedureName (return procedure name) ... 476
Init (initialize the ErrorClass object) .. 476
Kill (perform any necessary termination code) .. 477
Message (display an error message) ... 478
RemoveErrors (remove or restore recognized errors) .. 479
SetErrors (save the error state) ... 480
SetFatality (set severity level for a particular error) ... 481
SetField (set the substitution value of the %Field macro) 482

CONTENTS 19

SetFile (set the substitution value of the %File macro) 482
SetId (make a specific error current) .. 483
SetProcedureName (stores procedure names) .. 484
SubsString (resolves error message macros) .. 484
TakeBenign (process benign error) .. 485
TakeError (process specified error) .. 486
TakeFatal (process fatal error) .. 487
TakeNotify (process notify error) ... 488
TakeOther (process other error) .. 489
TakeProgram (process program error)... 490
TakeUser (process user error) ... 491
Throw (process specified error) ... 492
ThrowFile (set value of %File, then process error) .. 493

28 - FIELDPAIRSCLASS 495
Overview 495

FieldPairsClass Concepts ... 495
Relationship to Other Application Builder Classes .. 496
ABC Template Implementation .. 496
FieldPairsClass Source Files .. 496
Conceptual Example ... 497

FieldPairsClass Properties 498
List (recognized field pairs) .. 498

FieldPairsClass Methods 499
Functional Organization—Expected Use ... 499
AddItem (add a field pair from one source field) .. 500
AddPair (add a field pair) ... 501
AssignLeftToRight (copy from “left” fields to “right” fields) 502
AssignRightToLeft (copy from “right” fields to “left” fields) 503
ClearLeft (clear each “left” field) ... 504
ClearRight (clear each “right” field) .. 505
Equal (return 1 if all pairs are equal) .. 506
EqualLeftRight (return 1 if all pairs are equal) .. 506
Init (initialize the FieldPairsClass object) .. 507
Kill (shut down the FieldPairsClass object) ... 507

29 - FILEDROPCLASS 509
Overview 509

Future FileDropClasses .. 509

20 CLARION 5 APPLICATION HANDBOOK

FileDropClass Concepts ... 509
Relationship to Other Application Builder Classes .. 509
ABC Template Implementation .. 510
FileDropClass Source Files .. 510
Conceptual Example ... 511

FileDropClass Properties 514
DefaultFill (initial display value) ... 514
InitSyncPair (initial list position) ... 514

FileDropClass Methods 515
Functional Organization—Expected Use ... 515
AddField (specify display fields) ... 516
AddUpdateField (specify field assignments) ... 517
Init (initialize the FileDropClass object) .. 518
Kill (shut down the FileDropClass object) ... 519
ResetQueue (fill filedrop queue) .. 520
SetQueueRecord (copy data from file buffer to queue buffer) 521
TakeEvent (process the current ACCEPT loop event) .. 521
TakeNewSelection (process EVENT:NewSelection events) 522
ValidateRecord (a virtual to validate records) .. 523

30 - FILEDROPCOMBOCLASS 525
Overview 525

Future File DropCombo Classes .. 525
FileDropComboClass Concepts ... 525
Relationship to Other Application Builder Classes .. 525
ABC Template Implementation .. 526
FileDropComboClass Source Files .. 526
Conceptual Example ... 527

FileDropComboClass Properties 530
EntryCompletion (automatic fill-ahead flag) ... 530
UseField (COMBO USE variable) ... 530

FileDropComboClass Methods 531
Functional Organization—Expected Use ... 531
Ask (add a record to the lookup file) .. 533
GetQueueMatch (locate a list item).. 534
Init (initialize the FileDropComboClass object) .. 535
ResetQueue (refill the filedrop queue) ... 537
TakeEvent (process the current ACCEPT loop event) .. 538

CONTENTS 21

TakeNewSelection (process EVENT:NewSelection events) 539

31 - FILEMANAGER 541
Overview 541

Dual Approach to Database Operations ... 541
Relationship to Other Application Builder Classes .. 542
FileManager and Threaded Files .. 542
ABC Template Implementation .. 542
FileManager Source Files ... 543
Conceptual Example ... 544

FileManagerClass Properties 546
AliasedFile (the primary file) ... 546
Buffer (the record buffer) ... 546
Buffers (saved record buffers) .. 547
Create (create file switch) ... 547
Errors (the ErrorManager) .. 548
File (the managed file) .. 548
FileName (variable filename) ... 549
FileNameValue (constant filename) ... 550
LazyOpen (delay file open until access) .. 551
LockRecover (/RECOVER wait time parameter) .. 551
OpenMode (file access/sharing mode) ... 552
SkipHeldRecords (HELD record switch) ... 552

FileManagerClass Methods 553
Naming Conventions and Dual Approach to Database Operations 553
Functional Organization—Expected Use ... 554
AddKey (set the file’s keys).. 556
BindFields (bind fields when file is opened) .. 557
CancelAutoInc (undo PrimeAutoInc) .. 558
ClearKey (clear specified key components) ... 560
Close (close the file) ... 562
EqualBuffer (detect record buffer changes) ... 563
Fetch (get a specific record by key value) .. 564
GetComponents (return the number of key components) 565
GetEOF (return end of file status) .. 566
GetError (return the current error ID) .. 567
GetField (return a reference to a key component) .. 568
GetFieldName (return a key component field name) ... 569

22 CLARION 5 APPLICATION HANDBOOK

GetName (return the filename) ... 570
Init (initialize the FileManager object) ... 571
Insert (add a new record) .. 572
KeyToOrder (return ORDER expression for a key) ... 573
Kill (shutdown the FileManager object) ... 574
Next (get next record in sequence) ... 575
Open (open the file) .. 576
Position (return the current record position) .. 577
Previous (get previous record in sequence) .. 578
PrimeAutoInc (prepare an autoincremented record for adding) 579
PrimeFields (a virtual to prime fields) ... 581
PrimeRecord (prepare a record for adding).. 582
RestoreBuffer (restore a previously saved record buffer) 584
RestoreFile (restore a previously saved file state) .. 585
SaveBuffer (save a copy of the record buffer) .. 586
SaveFile (save the current file state) ... 587
SetError (save the specified error and underlying error state) 588
SetKey (set current key) ... 588
SetName (set current filename) .. 589
Throw (pass an error to the error handler for processing) 590
ThrowMessage (pass an error and text to the error handler) 591
TryFetch (try to get a specific record by key value) ... 592
TryInsert (try to add a new record) ... 593
TryNext (try to get next record in sequence) .. 594
TryOpen (try to open the file) ... 595
TryPrevious (try to get previous record in sequence) ... 596
TryPrimeAutoInc (try to prepare an autoincremented record for adding) 597
TryReget (try to get a specific record by position) ... 599
TryUpdate (try to change the current record) ... 599
Update (change the current record) .. 600
UseFile (use LazyOpen file) ... 601
ValidateField (validate a field) ... 602

32 - FILTERLOCATORCLASS 605
Overview 605

FilterLocatorClass Concepts .. 605
Relationship to Other Application Builder Classes .. 606
ABC Template Implementation .. 606
FilterLocatorClass Source Files ... 606

CONTENTS 23

Conceptual Example ... 607

FilterLocatorClass Properties 609
FloatRight (“contains” or “begins with” flag) .. 609

FilterLocatorClass Methods 610
TakeAccepted (process an accepted locator value) .. 610
UpdateWindow (apply the search criteria) ... 611

33 - INCREMENTALLOCATORCLASS 613
Overview 613

IncrementalLocatorClass Concepts .. 613
Relationship to Other Application Builder Classes .. 613
ABC Template Implementation .. 614
IncrementalLocatorClass Source Files ... 614
Conceptual Example ... 615

IncrementalLocatorClass Properties 617

IncrementalLocatorClass Methods 617
SetAlerts (alert keystrokes for the LIST control) ... 617
TakeKey (process an alerted keystroke) ... 618

34 - INICLASS 619
Overview 619

INI Class Concepts ... 619
Relationship to Other Application Builder Classes .. 619
ABC Template Implementation .. 619
INI Class Source Files .. 620
Conceptual Example ... 620

INIClass Properties 621
FileName .. 621

INIClass Methods 622
Fetch (get INI file entries) .. 622
FetchField (return comma delimited INI file value) .. 624
FetchQueue (get INI file queue entries) ... 625
Init (initialize the INIClass object) ... 626
TryFetch (get a value from the INI file) ... 627
TryFetchField (return comma delimited INI file value) 628
Update (write INI file entries) .. 629

24 CLARION 5 APPLICATION HANDBOOK

35 - LOCATORCLASS 631
Overview 631

LocatorClass Concepts ... 631
Relationship to Other Application Builder Classes .. 631
ABC Template Implementation .. 632
LocatorClass Source Files .. 632

LocatorClass Properties 633
Control (the locator control number).. 633
FreeElement (the locator’s first free key element) ... 633
NoCase (case sensitivity flag) .. 633
ViewManager (the locator’s ViewManager object) .. 634

LocatorClass Methods 635
Init (initialize the LocatorClass object) .. 635
Reset (reset the locator for next search) ... 636
Set (restart the locator) ... 636
SetAlerts (alert keystrokes for the LIST control) ... 637
SetEnabled (enable or disable the locator control) ... 637
TakeAccepted (process an accepted locator value) .. 638
TakeKey (process an alerted keystroke) ... 638
UpdateWindow (redraw the locator control with its current value) 638

36 - POPUPCLASS 639
Overview 639

PopupClass Concepts ... 639
Relationship to Other Application Builder Classes .. 639
ABC Template Implementation .. 639
PopupClass Source Files .. 640
Conceptual Example ... 640

PopupClass Properties 642
ClearKeycode (clear KEYCODE character) .. 642

PopupClass Methods 643
Functional Organization—Expected Use ... 643
AddItem (add menu item) .. 644
AddItemEvent (set menu item action) .. 646
AddItemMimic (tie menu item to a button) ... 647
AddMenu (add a menu) .. 648
AddSubMenu (add submenu) ... 650

CONTENTS 25

Ask (display the popup menu) .. 652
DeleteItem (remove menu item) ... 653
GetItemChecked (return toggle item status) .. 654
GetItemEnabled (return item status) .. 655
GetLastSelection (return selected item) ... 655
Init (initialize the PopupClass object) .. 656
Kill (shut down the PopupClass object) ... 656
Restore (restore a saved menu) ... 657
Save (save a menu for restoration) ... 658
SetIcon (set menu item icon) .. 659
SetItemCheck (set toggle item status) .. 660
SetItemEnable (set item status) .. 661
SetLevel (set menu item level) ... 661
SetText (set menu item text) ... 662
SetToolbox (include item on toolbox) .. 663
SetTranslator (set run-time translator).. 664
Toolbox (display the popup toolbox).. 665
ViewMenu (popup menu debugger) ... 665

37 - PRINTPREVIEWCLASS 667
Overview 667

PrintPreviewClass Concepts ... 667
Relationship to Other Application Builder Classes .. 668
ABC Template Implementation .. 668
PrintPreviewClass Source Files .. 668
Zoom Configuration ... 669
Conceptual Example ... 669

PrintPreviewClass Properties 672
AllowUserZoom (allow any zoom factor) .. 672
ConfirmPages (force 'pages to print' confirmation) ... 672
CurrentPage (the selected report page) .. 672
ImageQueue (page list)... 673
Maximize (number of pages displayed horizontally) ... 673
PagesAcross (number of pages displayed horizontally) 673
PagesDown (number of vertical thumbnails) ... 673
PagesToPrint (the pages to print).. 674
Popup (popup menu) .. 674
UserPercentile (custom zoom factor) ... 674
WindowPosSet (use a non-default initial preview window position) 674

26 CLARION 5 APPLICATION HANDBOOK

WindowSizeSet (use a non-default initial preview window size) 675
ZoomIndex (index to applied zoom factor) .. 675

PrintPreviewClass Methods 676
Functional Organization—Expected Use ... 676
AskPage (prompt for new report page) .. 677
AskPrintPages (prompt for pages to print) ... 678
AskThumbnails (prompt for new thumbnail configuration) 679
DeleteImageQueue (remove non-selected pages) .. 680
Display (preview the report) ... 681
Init (initialize the PrintPreviewClass object) .. 683
InPageList (check page number) .. 684
Kill (shut down the PrintPreviewClass object) ... 684
Open (prepare preview window for display) .. 685
SetINIManager (save and restore window coordinates)..................................... 686
SetDefaultPages (set the default pages to print) ... 686
SetPosition (set initial preview window coordinates) .. 687
SetZoomPercentile (set user or standard zoom factor) 688
SyncImageQueue (sync image queue with PagesToPrint) 688
TakeAccepted (process EVENT:Accepted events) .. 689
TakeEvent (process all events) ... 690
TakeFieldEvent (a virtual to process field events).. 691
TakeWindowEvent (process non-field events) .. 692

38 - PROCESSCLASS 693
Overview 693

ProcessClass Concepts ... 693
Relationship to Other Application Builder Classes .. 693
ABC Template Implementation .. 693
ProcessClass Source Files .. 694
Conceptual Example ... 694

ProcessClass Properties 697
ChildRead (portion of process completed) ... 697
Percentile (portion of process completed) .. 697
PText (progress control number) .. 698
RecordsProcessed (number of elements processed) ... 698
RecordsToProcess (number of elements to process) .. 698

ProcessClass Methods 699
Functional Organization—Expected Use ... 699
AddItem (add a child viewmanager) .. 701

CONTENTS 27

Init (initialize the ProcessClass object) .. 702
Kill (shut down the ProcessClass object) ... 704
Next (get next element) .. 705
Reset (position to the first element) .. 706
SetProgressLimits (calibrate the progress monitor) ... 706
TakeRecord (a virtual to process each record) ... 707

39 - QUERYCLASS 709
Overview 709

QueryClass Concepts.. 709
Relationship to Other Application Builder Classes .. 709
ABC Template Implementation .. 710
QueryClass Source Files... 710
Conceptual Example ... 710

QueryClass Properties 713
QKCurrentQuery (popup menu choice) ... 713
QKIcon (icon for popup submenu)... 713
QKMenuIcon (icon for popup menu) ... 713
QKSupport (quickqbe flag) ... 713
Window (browse window) .. 713

QueryClass Methods 714
Functional Organization—Expected Use ... 714
AddItem (add field to query) .. 715
Ask (a virtual to accept query criteria) ... 716
ClearQuery (remove loaded query) .. 717
Delete (remove saved query) .. 717
GetFilter (return filter expression).. 718
GetLimit (get searchvalues) ... 720
Init (initialize the QueryClass object) .. 721
Kill (shut down the QueryClass object) ... 722
Reset (reset the QueryClass object) .. 722
Restore (retrieve saved query) .. 723
Save (save a query) ... 723
SetLimit (set search values) .. 724
SetQuickPopup (add QuickQBE to browse popup) ... 726
Take (process QuickQBE popup menu choice) .. 726

28 CLARION 5 APPLICATION HANDBOOK

40 - QUERYFORMCLASS 727
Overview 727

QueryFormClass Concepts ... 727
Relationship to Other Application Builder Classes .. 727
ABC Template Implementation .. 727
QueryFormClass Source Files .. 728
Conceptual Example ... 728

QueryFormClass Properties 731

QueryFormClass Methods 732
Functional Organization—Expected Use ... 732
Ask (solicit query criteria) .. 733
Init (initialize the QueryFormClass object) .. 734
Kill (shut down the QueryFormClass object) ... 735

41 - QUERYFORMVISUAL 737
Overview 737

QueryFormVisual Concepts ... 737
Relationship to Other Application Builder Classes .. 737
ABC Template Implementation .. 737
QueryFormVisual Source Files .. 738
Conceptual Example ... 738

QueryFormVisual Properties 741
QFC (reference to the QueryFormClass) ... 741

QueryFormVisual Methods 742
Functional Organization—Expected Use ... 742
Init (initialize the QueryFormVisual object) .. 743
ResetFromQuery (reset the QueryFormVisual object) 744
SetText (set prompt text) .. 744
TakeAccepted (handle query dialog EVENT:Accepted events)......................... 745
TakeCompleted (complete the query dialog) ... 746
TakeFieldEvent (a virtual to process field events).. 747
UpdateFields (process query values) .. 748

42 - QUERYLISTCLASS 749
Overview 749

QueryListClass Concepts ... 749
Relationship to Other Application Builder Classes .. 749
ABC Template Implementation .. 749

CONTENTS 29

QueryListClass Source Files .. 750
Conceptual Example ... 750

QueryListClass Properties 753

QueryListClass Methods 754
Functional Organization—Expected Use ... 754
Ask (solicit query criteria) .. 755
Init (initialize the QueryListClass object) .. 756
Kill (shut down the QueryListClass object) ... 757

43 - QUERYLISTVISUAL 759
Overview 759

QueryListVisual Concepts .. 759
Relationship to Other Application Builder Classes .. 759
ABC Template Implementation .. 759
QueryListVisual Source Files ... 760
Conceptual Example ... 760

QueryListVisual Properties 763
QFC (reference to the QueryListClass) .. 763
OpsEIP (reference to the EditDropListClass) .. 763
FldsEIP (reference to the EditDropListClass) .. 763

QueryListVisual Methods 764
Functional Organization—Expected Use ... 764
Init (initialize the QueryListVisual object) ... 765
ResetFromQuery (reset the QueryFormVisual object) 766
SetAlerts (alert keystrokes for the edit control) ... 766
TakeAccepted (handle query dialog EVENT:Accepted events)......................... 767
TakeCompleted (complete the query dialog) ... 768
TakeEvent (process edit-in-place events) .. 769
TakeFieldEvent (a virtual to process field events).. 770
UpdateFields (process query values) .. 771

45 - RELATIONMANAGER 781
Overview 781

Relation Manager Concepts and Conventions .. 781
ABC Template Implementation .. 782
Relationship to Other Application Builder Classes .. 782
RelationManager Source Files ... 783
Conceptual Example ... 784

30 CLARION 5 APPLICATION HANDBOOK

RelationManager Properties 787
Me (the primary file’s FileManager object) ... 787
UseLogout (transaction framing flag) .. 787

RelationManager Methods 788
Functional Organization—Expected Use ... 788
AddRelation (set a file relationship)... 789
AddRelationLink (set linking fields for a relationship) 791
CancelAutoInc (undo autoincrement) .. 792
Close (close a file and any related files) ... 793
Delete (delete record subject to referential constraints) 794
Init (initialize the RelationManager object) ... 795
Kill (shut down the RelationManager object) .. 796
ListLinkingFields (map pairs of linked fields) ... 797
Open (open a file and any related files) .. 798
Save (copy the current record and any related records) 798
SetAlias (set a file alias) ... 799
SetQuickScan (enable QuickScan on a file and any related files) 800
Update (update record subject to referential constraints) 801

46 - REPORTMANAGER 803
Overview 803

ReportManager Concepts ... 803
Relationship to Other Application Builder Classes .. 803
ABC Template Implementation .. 803
ReportManager Source Files .. 804
Conceptual Example ... 804

ReportManager Properties 807
DeferOpenReport (defer open) ... 807
DeferWindow (defer progress window display) ... 807
KeepVisible (persistent progress window) ... 808
Preview (PrintPreviewClass object) ... 808
PreviewQueue (report metafile pathnames) ... 809
Process (ProcessClass object) .. 809
Report (the managed REPORT) ... 809
SkipPreview (print rather than preview)... 810
TimeSlice (report resource usage) .. 810
WaitCursor (defer progress window display) ... 811
Zoom (initial report preview magnification) .. 811

CONTENTS 31

ReportManager Methods 812
Functional Organization—Expected Use ... 812
Ask (display window and process its events) ... 813
AskPreview (preview or print the report) ... 813
Init (initialize the ReportManager object) .. 814
Kill (shut down the ReportManager object) ... 815
Next (get next report record) .. 816
Open (a virtual to execute on EVENT:OpenWindow) 817
OpenReport (prepare report for execution) .. 818
TakeCloseEvent (a virtual to process EVENT:CloseWindow) 819
TakeNoRecords (process empty report) ... 820
TakeWindowEvent (a virtual to process non-field events) 821

47 - SELECTFILECLASS 823
Overview 823

SelectFileClass Concepts.. 823
Relationship to Other Application Builder Classes .. 823
ABC Template Implementation .. 823
SelectFileClass Source Files .. 823
Conceptual Example ... 824

SelectFileClass Properties 825
DefaultDirectory (initial path) .. 825
DefaultFile (initial filename/filemask) ... 825
Flags (file dialog behavior)... 825
WindowTitle (file dialog title text) ... 825

SelectFileClass Methods 826
AddMask (add file dialog file masks) .. 826
Ask (display Windows file dialog) ... 827
Init (initialize the SelectFileClass object) .. 828
SetMask (set file dialog file masks) ... 829

48 - STEPCLASS 831
Overview 831

StepClass Concepts .. 831
Relationship to Other Application Builder Classes .. 831
ABC Template Implementation .. 832
StepClass Source Files ... 832

32 CLARION 5 APPLICATION HANDBOOK

StepClass Properties 833
Controls (the StepClass sort sequence) .. 833

StepClass Methods 834
GetPercentile (return a value’s percentile) ... 834
GetValue (return a percentile’s value) .. 834
Init (initialize the StepClass object) ... 835
Kill (shut down the StepClass object) .. 835
SetLimit (set smooth data distribution) .. 836
SetLimitNeeded (return static/dynamic boundary flag) 836

49 - STEPCUSTOMCLASS 837
Overview 837

StepCustomClass Concepts .. 837
Relationship to Other Application Builder Classes .. 837
ABC Template Implementation .. 838
StepCustomClass Source Files ... 838
Conceptual Example ... 839

StepCustomClass Properties 841
Entries (expected data distribution) .. 841

StepCustomClass Methods 842
AddItem (add a step marker) .. 842
GetPercentile (return a value’s percentile) ... 843
GetValue (return a percentile’s value) .. 844
Init (initialize the StepCustomClass object) ... 845
Kill (shut down the StepCustomClass object) .. 845

50 - STEPLOCATORCLASS 847
Overview 847

StepLocatorClass Concepts .. 847
Relationship to Other Application Builder Classes .. 847
ABC Template Implementation .. 848
StepLocatorClass Source Files ... 848
Conceptual Example ... 849

StepLocatorClass Properties 851

StepLocatorClass Methods 852
Set (restart the locator) ... 852
TakeKey (process an alerted keystroke) ... 852

CONTENTS 33

51 - STEPLONGCLASS 853
Overview 853

StepLongClass Concepts .. 853
Relationship to Other Application Builder Classes .. 853
ABC Template Implementation .. 853
StepLongClass Source Files ... 854
Conceptual Example ... 854

StepLongClass Properties 856
 Low (lower boundary) ... 856
High (upper boundary) ... 856

StepLongClass Methods 857
GetPercentile (return a value’s percentile) ... 857
GetValue (return a percentile’s value) .. 858
SetLimit (set smooth data distribution) .. 859

52 - STEPREALCLASS 861
Overview 861

StepRealClass Concepts ... 861
Relationship to Other Application Builder Classes .. 861
ABC Template Implementation .. 861
StepRealClass Source Files .. 862
Conceptual Example ... 862

StepRealClass Properties 864
 Low (lower boundary) ... 864
High (upper boundary) ... 864

StepRealClass Methods 865
GetPercentile (return a value’s percentile) ... 865
GetValue (return a percentile’s value) .. 866
SetLimit (set smooth data distribution) .. 867

53 - STEPSTRINGCLASS 869
Overview 869

StepStringClass Concepts ... 869
Relationship to Other Application Builder Classes .. 869
ABC Template Implementation .. 870
StepStringClass Source Files.. 870
Conceptual Example ... 871

34 CLARION 5 APPLICATION HANDBOOK

StepStringClass Properties 873
LookupMode (expected data distribution) ... 873
Root (the static portion of the step) .. 874
SortChars (valid sort characters) .. 874
TestLen (length of the static step portion) .. 875

StepStringClass Methods 876
GetPercentile (return a value’s percentile) ... 876
GetValue (return a percentile’s value) .. 877
Init (initialize the StepStringClass object).. 878
Kill (shut down the StepStringClass object) .. 879
SetLimit (set smooth data distribution) .. 879
SetLimitNeeded (return static/dynamic boundary flag) 880

54 -TOOLBARCLASS 881
Overview 881

ToolbarClass Concepts ... 881
Relationship to Other Application Builder Classes .. 882
ABC Template Implementation .. 882
Toolbar Class Source Files ... 883
Conceptual Example ... 884

ToolbarClass Properties 887

ToolbarClass Methods 888
Functional Organization—Expected Use ... 888
AddTarget (register toolbar driven entity) .. 889
DisplayButtons (enable appropriate toolbar buttons) ... 889
Init (initialize the ToolbarClass object) .. 890
Kill (shut down the ToolbarClass object) ... 890
SetTarget (sets the active target) ... 891
TakeEvent (process toolbar event) .. 892

55 - TOOLBARLISTBOXCLASS 893
Overview 893

ToolbarListboxClass Concepts ... 893
Relationship to Other Application Builder Classes .. 893
ABC Template Implementation .. 893
ToolbarListboxClass Source Files .. 893
Conceptual Example ... 894

ToolbarListboxClass Properties 897
Browse (BrowseClass object) ... 897

CONTENTS 35

ToolbarListboxClass Methods 898
DisplayButtons (enable appropriate toolbar buttons) ... 898
TakeEvent (convert toolbar events) .. 899
TakeToolbar (assume contol of the toolbar) ... 900
TryTakeToolbar (return toolbar control indicator) ... 901

56 - TOOLBARRELTREECLASS 903
Overview 903

ToolbarReltreeClass Concepts.. 903
Relationship to Other Application Builder Classes .. 903
ABC Template Implementation .. 903
Toolbar ToolbarReltreeClass Source Files ... 903
Conceptual Example ... 904

ToolbarReltreeClass Properties 907

ToolbarReltreeClass Methods 907
DisplayButtons (enable appropriate toolbar buttons) ... 907
TakeToolbar (assume control of the toolbar) .. 908

57 - TOOLBARTARGETCLASS 909
Overview 909

ToolbarTarget Concepts .. 909
Relationship to Other Application Builder Classes .. 910
ABC Template Implementation .. 910
ToolbarTarget Source Files ... 910

ToolbarTarget Properties 911
ChangeButton (change control number) .. 911
Control (window control) ... 911
DeleteButton (delete control number) .. 912
HelpButton (help control number) ... 912
InsertButton (insert control number) .. 912
SelectButton (select control number) ... 913

ToolbarTarget Methods 914
Functional Organization—Expected Use ... 914
DisplayButtons (enable appropriate toolbar buttons) ... 914
TakeEvent (convert toolbar events) .. 915
TakeToolbar (assume control of the toolbar) .. 916
TryTakeToolbar (return toolbar control indicator) ... 916

36 CLARION 5 APPLICATION HANDBOOK

58 - TOOLBARUPDATECLASS 917
Overview 917

ToolbarUpdateClass Concepts .. 917
Relationship to Other Application Builder Classes .. 917
ABC Template Implementation .. 917
ToolbarUpdateClass Source Files... 918
Conceptual Example ... 918

ToolbarUpdateClass Properties 924
Request (requested database operation) ... 924
History (enable toolbar history button) .. 924

ToolbarUpdateClass Methods 925
DisplayButtons (enable appropriate toolbar buttons) ... 925
TakeEvent (convert toolbar events) .. 926
TakeToolbar (assume control of the toolbar) .. 927
TryTakeToolbar (return toolbar control indicator) ... 928

59 - TRANSLATORCLASS 929
Overview 929

TranslatorClass Concepts ... 929
Relationship to Other Application Builder Classes .. 930
ABC Template Implementation .. 930
TranslatorClass Source Files .. 931
Conceptual Example ... 932

TranslatorClass Properties 933
ExtractText (identify text to translate) .. 933

TranslatorClass Methods 934
AddTranslation (add translation pairs) ... 934
Init (initialize the TranslatorClass object) .. 936
Kill (shut down the TranslatorClass object) ... 936
TranslateControl (translate text for a control) .. 937
TranslateControls (translate text for range of controls) 938
TranslateProperty (translate textual control property) 939
TranslateString (translate text) ... 940
TranslateWindow (translate text for a window) ... 941

60 - VIEWMANAGER 943
Overview 943

ViewManager Concepts .. 943

CONTENTS 37

Relationship to Other Application Builder Classes .. 943
ABC Template Implementation .. 944
ViewManager Source Files ... 944
Conceptual Example ... 945

ViewManager Properties 947
Order (sort, range-limit, and filter information) ... 947
PagesAhead (buffered pages) ... 948
PagesBehind (buffered pages) .. 948
PageSize (buffer page size) ... 948
Primary (the primary file RelationManager) ... 949
TimeOut (buffered pages freshness) ... 949
View (the managed VIEW) .. 949

ViewManager Methods 950
Functional Organization—Expected Use ... 950
AddRange (add a range limit) .. 952
AddSortOrder (add a sort order) .. 953
AppendOrder (refine a sort order) .. 954
ApplyFilter (range limit and filter the result set) ... 954
ApplyOrder (sort the result set) .. 955
ApplyRange (conditionally range limit and filter the result set) 955
Close (close the view)... 956
GetFreeElementName (return free key element name) 956
GetFreeElementPosition (return free key element position) 957
Init (initialize the ViewManager object) ... 958
Kill (shut down the ViewManager object) .. 959
Next (get the next element) .. 959
Open (open the view) ... 960
Previous (get the previous element) ... 960
PrimeRecord (prepare a record for adding).. 961
Reset (reset the view position) ... 962
SetFilter (add, change, or remove active filter) ... 963
SetOrder (replace a sort order) .. 965
SetSort (set the active sort order) ... 966
UseView (use LazyOpen files) ... 967
ValidateRecord (validate an element) ... 968

61 - WINDOWMANAGER 969
Overview 969

WindowManager Concepts .. 969

38 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation .. 971
Relationship to Other Application Builder Classes .. 971
WindowManager Source Files ... 972
Conceptual Example ... 973

WindowManager Properties 977
AutoRefresh (reset window as needed flag) ... 977
AutoToolbar (set toolbar target on new tab selection) 977
CancelAction (response to cancel request) .. 978
ChangeAction (response to change request) .. 978
Dead (shut down flag) .. 979
DeleteAction (response to delete request) .. 979
Errors (ErrorClass object) .. 980
FirstField (first window control) .. 980
ForcedReset (force reset flag) .. 980
HistoryKey (restore field key) .. 981
InsertAction (response to insert request) .. 981
OKControl (window acceptance control—OK button) 982
Opened (window opened flag) ... 982
OriginalRequest (original database request) .. 983
Primary (RelationManager object) ... 983
Request (database request) ... 984
ResetOnGainFocus (gain focus reset flag) ... 984
Response (response to database request) .. 985
Saved (copy of primary file record buffer) ... 985
Translator (TranslatorClass object) .. 986
VCRRequest (delayed scroll request) .. 986

WindowManager Methods 987
Functional Organization—Expected Use ... 987
AddHistoryField (add restorable control and field) ... 989
AddHistoryFile (add restorable history file) .. 990
AddItem (program the WindowManager object) ... 991
AddUpdateFile (register batch add files) ... 993
Ask (display window and process its events) ... 994
Init (initialize the WindowManager object) ... 995
Kill (shut down the WindowManager object) .. 997
Open (a virtual to execute on EVENT:OpenWindow) 998
PostCompleted (initiates final Window processing) .. 999

CONTENTS 39

PrimeFields (a virtual to prime form fields) ... 1000
PrimeUpdate (update or prepare for update) .. 1000
Reset (reset the window for display) .. 1001
RestoreField (restore field to last saved value)... 1002
Run (run this procedure or a subordinate procedure) 1003
SaveHistory (save history fields for later restoration) 1005
SetAlerts (alert window control keystrokes) .. 1006
SetResponse (OK or Cancel the window) .. 1007
TakeAccepted (a virtual to process EVENT:Accepted) 1008
TakeCloseEvent (a virtual to Cancel the window) .. 1009
TakeCompleted (a virtual to complete an update form) 1010
TakeEvent (a virtual to process all events) ... 1012
TakeFieldEvent (a virtual to process field events).. 1013
TakeNewSelection (a virtual to process EVENT:NewSelection) 1014
TakeRejected (a virtual to process EVENT:Rejected) 1015
TakeSelected (a virtual to process EVENT:Selected) 1016
TakeWindowEvent (a virtual to process non-field events) 1017
Update (prepare records for writing to disk) .. 1018

62 - WINDOWRESIZECLASS 1019
Overview 1019

WindowResizeClass Concepts ... 1019
Relationship to Other Application Builder Classes .. 1020
ABC Template Implementation .. 1020
WindowResizeClass Source Files .. 1020
Conceptual Example ... 1021

WindowResizeClass Properties 1022
AutoTransparent (optimize redraw) ... 1022
DeferMoves (optimize resize) .. 1022

WindowResizeClass Methods 1023
Functional Organization—Expected Use ... 1023
GetParentControl (return parent control) ... 1024
GetPositionStrategy (return position strategy for a control type) 1025
GetResizeStrategy (return resize strategy for a control type) 1026
Init (initialize the WindowResizeClass object) .. 1027
Kill (shut down the WindowResizeClass object) ... 1029
Reset (resets the WindowResizeClass object) .. 1029
Resize (resize and reposition controls) ... 1030

40 CLARION 5 APPLICATION HANDBOOK

RestoreWindow (restore window to initial size) .. 1031
SetParentControl (set parent control) ... 1032
SetParentDefaults (set default parent controls) .. 1033
SetPosition (calculate control coordinates) .. 1034
SetStrategy (set control resize strategy) ... 1035

INDEX 1037

FOREWORD 41

FOREWORD

Welcome
Welcome to the Clarion Application Handbook! This book is designed to be
your every day reference to the tools you use most often during application
development—the ABC Templates and ABC Library.

Once you’ve become familiar with the Clarion development environment,
through Getting Started, Learning Clarion and the User’s Guide, you will
refer to those books less and less frequently. However, in your day-to-day
work, we think you will continue to need information on the finer points of
the various ABC Templates and Application Builder Class methods.

That’s why we created this Application Handbook—for every Clarion
developer who wants a quick, ready reference to those Clarion components
you use over and over again.

There are two parts to the Application Handbook:

Part I—Application Builder Class Templates

Part I provides detailed discussions of the ABC Templates and all their
prompts. This section tells you when to use a particular template and
points out the startling flexibility and versatility of the ABC Templates in
this product.

Part II—Application Builder Class Library

Part II provides in-depth discussions of the ABC Library. This section
shows you how the ABC Templates use the powerful ABC Library
objects—and how you can use, reuse, and modify the classes with the
ABC Templates or within your hand-coded project.

These are the tools you’ll continue to refer to regardless of your expertise
with Clarion. The depths of information on these tools and the consequent
versatility you can achieve with them is virtually unlimited.

42 CLARION 5 APPLICATION HANDBOOK

Documentation Conventions

Typeface Conventions

Italics Indicates what to type at the keyboard and variable
information, such as Enter This or filename.TXT.

SMALL CAPS Indicates keystrokes to enter at the keyboard such as
ENTER or ESCAPE, and mouse operations such as
RIGHT-CLICK.

Boldface Indicates commands or options froma menu or text
in a dialog window.

UPPERCASE Clarion language keywords such as MAX or USE.

LETTER GOTHIC Used for diagrams, source code listings, to annotate
examples, and for examples of the usage of source
statements.

Keyboard Conventions

F1 Indicates a single keystroke. In this case, press and
release the F1 key.

ALT+X Indicates a combination of keystrokes. In this case,
hold down the ALT key and press the X key, then
release both keys.

Other Conventions

Tip: Special Tips, Notes, and Warnings—information that is not
immediately evident from the topic explanation.

Indicates vital information. If you read nothing else, read this.

PART I — APPLICATION BUILDER CLASS TEMPLATES 43

PART I
——

APPLICATION BUILDER CLASS

TEMPLATES

44 CLARION 5 APPLICATION HANDBOOK

CHAPTER 1 TEMPLATE OVERVIEW 45

1 - TEMPLATE OVERVIEW

What is a Template
Clarion templates are highly configurable, interactive, interpreted, code
generation scripts. A template typically prompts you for information then
generates a custom set of source code based on your responses. In addition to
its prompts, many templates also add source code embed points to your
application—points at which you can supply custom source code that is
integrated into the template generated code. You may want to think of the
template prompts as a way to define the static (compile time) characteristics
of a program or procedure, and the embedded source as a way to define the
changing (runtime) characteristics of a program or procedure.

Template Prompts

A template typically prompts you for information at design time. The
Application Generator interprets the template and presents a dialog with all
the template’s prompts. You fill in the prompts, with assistance from the on-
line help, to define the static (compile time) characteristics of your program
or procedure. For example, fill in the Record Filter prompt to establish a
filter for a BrowseBox template.

Template Embed Points

In addition to its prompts, many templates also add source code embed
points to your application or procedure—points at which you can supply
custom source code that is integrated into the template generated code. You
can use these embed points to define the changing (runtime) characteristics
of a program or procedure. For example, embed source code to hide a related
listbox when there are no related records to display. See Application
Generator—Embedded Source Code in the User’s Guide for more
information on using embed points.

Template Benefits

Templates promote code reuse and centralized maintenance of code. They
provide many of the same benefits of object oriented programming,
especially reusability. In addition, templates can compliment and enhance
the use of object oriented code by providing easy-to-use wrappers for
complex objects. The ABC Templates and ABC Library are a prime example
of this synergistic relationship between templates and objects.

Template Flexibility

You can modify templates to your specifications and store your
modifications in the Template Registry. See the User’s Guide—Maintaining

46 CLARION 5 APPLICATION HANDBOOK

Your Templates for more information. You may also add third party templates
and use them in addition to, and along with, the Clarion templates. You may
write your own templates too. The Template Language is documented in the
Programmer’s Guide and in the on-line help.

Clarion Templates and Application Builder Class (ABC) Templates

Clarion ships with several classes (sets) of templates or template chains. By
default, the templates are installed to the \CLARION5\TEMPLATE
directory. In addition, the ABC Templates are preregistered when you install
Clarion. See Registering Templates in the User’s Guide for more
information.

ABC Templates

The ABC Templates are preregistered when you install Clarion. They are the
latest templates that use the most advanced code generation capabilities,
including generation of object oriented code—code that relies on the
Application Builder Class (ABC) Library. ABC Templates include:

ABChain.tpl Class ABC - Application Builder Class Templates
ABWizard.tpl Class ABC Wizards - Clarion Wizard Templates

Clarion (Compatibility) Templates

In addition to the ABC Templates, Clarion 5 includes the latest Clarion for
Windows 2.00x Templates. These templates are not preregistered. They are
included for backward compatibility only. We do not recommend these
templates for new application development because the ABC Templates are
the focus of TopSpeed’s ongoing development efforts. The Clarion
Templates include:

CW.tpl Class Clarion - Clarion Release Templates
Wizard.tpl Class Wizards - Clarion Wizard Templates

ABC Templates and Code Generation

Clarion’s ABC Templates generate source code for you in several ways. The
various templates in this package generate everything from single statements
to entire procedures and application programs:

Class ABC Wizards

Quick Start Wizard
Generates a one-file data dictionary and an entire application
program for viewing, searching, updating, and printing the data.

CHAPTER 1 TEMPLATE OVERVIEW 47

Application Wizard
Generates an entire application program, including a main menu
and subordinate procedures for viewing, searching, updating,
and printing data based on an existing data dictionary with one
or more related or unrelated files.

Procedure Wizards
Generate data oriented procedures (data browsing, data entry,
and reports) based on specific file descriptions in a data
dictionary. The generated code accommodates the defined file
relationships, by including multiple procedures as needed to
support both primary and related file updates and validation.

Class ABC

Procedure Templates
Generate a single task oriented or data oriented procedure
(menus, splash screens, data entry, reports, etc.).

Control Templates
Generate the source code to declare one or more window
controls and to manage the controls, by loading data in and out
of the controls, scrolling and selecting the data, etc.

Code Templates
Generate a variety of task oriented source code statements at a
single location that you specify.

Extension Templates
Generate a variety of task oriented source code statements at one
or more preset locations as needed to accomplish the extension’s
task. Extensions may apply to a single procedure or to an entire
application.

Part I of the Application Handbook (this part) describes all the Clarion ABC
Templates and provides instructions and suggestions for completing their
prompts.

ABC Templates and the ABC Library

The ABC Templates rely heavily on the ABC Library. However, the
templates are highly configurable and are designed to let you substitute your
own class definitions if you wish. See Classes Tab Options (Global) for more
information on configuring the global level interaction between the ABC
Templates and the ABC Library. See Classes Tab Options (Local) for more
information on configuring the local (module level) interaction between the
ABC Templates and the ABC Library.

Classes and Their Template Generated Objects

The ABC Templates instantiate objects from the ABC Library. The default
template generated object names are usually related to the corresponding

48 CLARION 5 APPLICATION HANDBOOK

class names, but they are not exactly the same. Your ABC applications’
generated code may contain data declarations and executable statements
similar to these:

GlobalErrors ErrorClass
Hide:Access:Customer CLASS(FileManager)
INIMgr INIClass
ThisWindow CLASS(ReportManager)
ThisWindow CLASS(WindowManager)
ThisReport CLASS(ProcessClass)
ThisProcess CLASS(ProcessClass)
BRW1 CLASS(BrowseClass)
EditInPlace::CUS:NAME EditClass
Resizer WindowResizeClass
Toolbar ToolbarClass
CODE
GlobalResponse = ThisWindow.Run()
BRW1.AddSortOrder(BRW1::Sort0:StepClass,ST:StKey)
BRW1.AddToolbarTarget(Toolbar)
GlobalErrors.Throw()
Resizer.AutoTransparent=True
Previewer.AllowUserZoom=True

The data declarations instantiate objects from the ABC Library, and the
executable statements reference the instantiated objects. The various
Application Builder Classes and their template instantiations are listed below
so you can identify ABC objects in your applications’ generated code and
find the corresponding ABC Library documentation.

Template Generated Object Application Builder Class

GlobalErrors ErrorClass
INIMgr INIClass
Access:file FileManager
Relate:file RelationManager
ThisWindow WindowManager, ReportManager
BRWn BrowseClass
BRWn::Sortn:Locator LocatorClass
BRWn::Sortn:StepClass StepClass
EditInPlace::field EditClass
Popup PopupClass
Resizer WindowResizeClass
Toolbar ToolbarClass
ToolbarForm ToolbarUpdateClass
RELn::Toolbar ToolbarReltreeClass
ThisReport ProcessClass
Previewer PrintPreviewClass
ThisProcess ProcessClass
ProgressMgr StepClass
FDBn FileDropClass
FDCBn FileDropComboClass
ViewerN ASCIIViewerClass
FileLookupN SelectFileClass
Translator TranslatorClass

CHAPTER 1 TEMPLATE OVERVIEW 49

Browse-Form Application Paradigm

There are many different ways to structure a database program and its proce-
dures. By default, Clarion’s Wizards and Procedure templates (both ABC and
Clarion templates) use a multi-threaded Browse-Form paradigm for the data-
base programs and procedures they generate.

Multi-threading

Multi-threaded programs are the Windows standard, because multiple execu-
tion threads allow end users to control their programs by selecting the program
or process they need, when they need it. The end users control their programs;
the programs do not control the end users.

Browse-Form

Clarion’s Browse-Form paradigm uses Browses (windows with sortable,
scrollable, searchable, selectable lists of data), Forms (windows with a single
updatable database record), and Reports to organize and present database in-
formation to end users. In Clarion’s Browse-Form paradigm, the Form not
only displays the primary file’s record, it also displays related records from
other files in the form of child Browses. The Browse may be enhanced with
edit-in-place functionality to provide a more concise user interface with fewer
levels of complexity.

Browse-Form and Normalized Data

The beauty of this Browse-Form paradigm is that it works well with any nor-
malized database. Therefore, it can be reliably applied in many situations and
it results in a consistent, comfortable, recognizable, tried-and-true (pretested)
program for infinite varieties of data. This makes the Browse-Form approach
the ideal one for general purpose database programming.

If you need a different application paradigm, then you may want to use indi-
vidual procedure, control, code, and extension templates to build your appli-
cation. For example, lots of Browses can result in lots of network traffic in a
client/server application; in that circumstance, a Scrolling-Form paradigm can
eliminate Browses and reduce network traffic.

50 CLARION 5 APPLICATION HANDBOOK

ABC Templates and SQL
The ABC Templates are more “SQL Friendly” than the Clarion Templates.
That is, the ABC Templates are more efficient (they refresh from disk only
when absolutely necessary or when explicitly requested to do so); they can
be optimized for use with SQL databases (see Classes Tab Options—
Global—BrowseClass Configuration); they take advantage of TopSpeed’s
Accelerator technology (see BUFFER in the Language Reference for more
information); and they allow file-loaded browses which eliminate costly
backward paging (see Control Templates—BrowseBox).

The ABC Templates are more strict in their implementation of some Data
Dictionary settings. In particular, the Clarion Templates ignore the “case
insensitive key” setting for SQL databases, but the ABC Templates do not.

Note: Use caution when clearing the Case Sensitive box in your SQL
based Data Dictionary. Unlike the Clarion Templates, the ABC
Templates enforce caseless keys which can drastically slow
down your application.

The ABC Templates apply the SQL UCASE(keyfield) command if you
request “caseless” keys. Most SQL backends ignore keys and do a full table
scan when a key element is the subject of a scalar function such as UCASE.
Therefore, clearing the Case Sensitive box in your Data Dictionary results in
a UCASE(keyfield) in your generated SQL Statement which forces a full
table scan (ignoring any indexes) and drastically slows down your
application.

CHAPTER 1 TEMPLATE OVERVIEW 51

Global ABC Template Settings
You can specify a number of template settings that apply to your entire
application, including file handling defaults, use of .INI files, global
variables, and embedded source code. These “global” settings are done
primarily through the Global Properties dialog.

These global prompts are generated and processed by the Class ABC
Application template. Each prompt has a default setting that is appropriate
for most applications. In many cases, you can simply use the default setting.

The buttons in the Global Properties dialog (Data, Embeds , and Extensions)
are provided by the Application Generator, not by the ABC Application
Template. See Global Embed Points in this chapter and Global Application
Settings in the User’s Guide for more information on these buttons.

General Tab Options

The following options are available on the General tab of the Global
Properties dialog:

Program Author
Optionally identify the developer or developing organization.

Use field description as MSG() when MSG() is blank
Check this box to use the Data Dictionary field description as the

52 CLARION 5 APPLICATION HANDBOOK

default status bar message for each field in your application. See
MSG in the Language Reference.

Generate Template global data and ABC’s as EXTERNAL
Adds the EXTERNAL attribute to the global variable
declarations generated by the templates, and the DLL attribute to
any CLASS declarations generated by the templates. This means
your program relies on an external library to allocate memory
for these variables and objects, and to export them so your
program can access them.

You should add the EXTERNAL and DLL attributes to get the
same effect for any global variables or classes you declare. See
the Language Reference for more information on these
attributes.

Note: If you create a program that consists of more than one
AppGen created DLL, you should check the Generate Global
Data as EXTERNAL box for all the applications except one.
See the User’s Guide—Development and Deployment
Strategies .

External Globals and ABC’s Source Module
Specify whether the external library is dynamically or statically
linked.

This sets the flag parameter of the DLL attribute for template
generated class declarations. See the Language Reference for
more information on the DLL attribute.

Generate EMBED Comments
Check this box to generate identifying comments surrounding
your embedded source code. If you check this box, you should
also check the Enable embed commenting box in the Application
Options dialog (choose Setup ➤ Application Options,
Generation tab) to optimize the comment generation.

Enable Run-Time Translation
Generates code to translate window text based on the translation
strings defined by default in the ABUTIL.TRN file. See
Translator Class for more information.

.INI File Support

The Clarion and ABC Templates support .INI (standard windows
initialization) files. These are ASCII text files that store information for an
application between sessions.

One use for the .INI file is to store the user’s preferred window positions for
the next session. Another use is to save program configuration settings
between sessions. Clarion’s procedure templates let you do both
automatically when you enable .INI file support. See Procedure Templates
for more information.

CHAPTER 1 TEMPLATE OVERVIEW 53

To enable automatic .INI file support

1. Select the General tab in the Global Properties dialog.

2. Check the Use .INI file to save and restore program settings box.

3. Specify the .INI file name and its path.

To specify the same file name as the executable, with an .INI extension,
choose Program Name.INI from the .INI file to use drop-down list. This
places the INI file in the Windows System directory.

To specify a different name, choose Other in the drop-down list, then fill
in the Other File Name field. You may specify a variable, a full pathname,
no path, or a path of (.\) to generate the INI file as shown below.

Other File Name resulting INI file location
!Variable The contents of the variable specified
c:\Programs\Payroll.ini c:\Programs\Payroll.ini
\Programs\Payroll.cfg current drive:\Programs\Payroll\Payroll.cfg
Payroll.ini windows system directory\Payroll.ini
.\Payroll.ini current directory\Payroll.ini

4. Press the OK button to close the Global Properties dialog.

See GETINI and PUTINI in the Language Reference, and see INIClass
and Procedure Templates in this book for more information.

Tip: If your application requires dozens or even hundreds of
variables to store from session to session, don’t put them in
an .INI file, use a control file and normal file I/O instead.
Retrieving a variable from an INI file is relatively slow. Also, if
you need to hide the information from the end user, remember
that INI files are text files, and are easily accessible.

Saving Global Data Between Sesssions

Once you’ve enabled INI support, the ABC Templates automatically save
and restore the values of designated global variables. This provides a simple
mechanism for saving and reapplying end user preferences or program
configuration options.

1. Press the Data button in the Global Properties dialog to define your
global variables.

2. Press the Preserve button in the Global Properties dialog to designate
selected variables to automatically save and restore.

File Control Tab Options

The Global Properties dialog lets you override some of the settings in your
data dictionary (see Dictionary Editor in the User’s Guide for more
information). You can also define how your procedures access files. You can

54 CLARION 5 APPLICATION HANDBOOK

specify these file attributes for all files, or for each file individually. To
access these features, select the File Control tab.

Generate all file declarations
Check this box to declare all files in the Data Dictionary,
whether or not they are referenced by the application’s
templates. By declaring all files, you can reference the files in
any hand coded source in your application.

Enclose RI code in transaction frame
Check this box to ROLLBACK changes if an update fails during
a Referential Integrity maintenance operation (transaction). You
should clear this box for file systems that do not support
transaction frames such as Clipper, dBase, and FoxPro. See
Database Drivers for information on individual file systems. See
LOGOUT, COMMIT, and ROLLBACK in the Language
Reference.

Tip: If all files in a relation chain are using the same file system,
and the file system supports transaction framing, and you do
not want transaction framing around the RI code, you must
clear the check box for each file in Individual File Overrides
and in Global Settings.

CHAPTER 1 TEMPLATE OVERVIEW 55

Issue Template warning if LOGOUT() not allowed
When your data dictionary includes a file driver which does not
support the LOGOUT statement (used in the Referential
Integrity checking routines), checking this box enables a
warning at compile time.

You should be sure that this box is not checked for drivers such
as dBase III. See Database Drivers for more information.

Use default FileManager
Check this box to generate code that uses the FileManager class
named on the Classes tab in this dialog. Clear the box to select
an alternative class from the FileManager Class drop-down list.
The ABC Templates instantiate a global FileManager object
called Access:file for each data dictionary file. The Access:file
object manages all file access for the ABC Template generated
procedures. See File Manager Class for more information.

Use default RelationManager
Check this box to generate code that uses the RelationManager
class named on the Classes tab in this dialog. Clear the box to
select an alternative class from the RelationManager Class drop-
down list. The ABC Templates instantiate a global
RelationManager object called Relate:file for each data
dictionary file. The Relate:file object manages file relationships,
including looking up related records in other files and preserving
the integrity of linking fields between related files. See Relation
Manager Class for more information.

Seconds for RECOVER
Specifies the number of seconds to wait before invoking the
recovery process. This is applicable only to Clarion files. See
Database Drivers—Clarion Files for more information.

Threaded
Specifies whether the application generator adds the THREAD
attribute to FILE structures. THREAD is needed for MDI
browse and form procedures to prevent record buffer conflicts
when the end user changes focus from one thread to another.

Use File Setting Sets the THREAD attribute according to the setting
in the data dictionary. See the User’s Guide—
Dictionary Editor—File Properties.

All Threaded Adds the THREAD attribute to each FILE.

None Threaded Omits the THREAD attribute for each FILE.

Create
Specifies whether your application should allow the creation of a
data file that does not exist. Adds the CREATE attribute to the
FILE structure.

56 CLARION 5 APPLICATION HANDBOOK

Use File Setting Sets the CREATE attribute according to the setting
in the data dictionary. See the User’s Guide—The
Dictionary Editor—File Properties.

Create All Adds the CREATE attribute to each FILE.

Create None Omits the CREATE attribute for each FILE.

External
Specifies whether the application generator adds the
EXTERNAL attribute to FILE structures. EXTERNAL specifies
the memory for the FILE’s record buffer is allocated by an
external library. See the Language Reference for more
information.

Note: When using EXTERNAL to declare a FILE shared by multiple
libraries (.LIBs, or .DLLs and .EXE), only one library should
define the FILE without the EXTERNAL attribute. This ensures
that there is only one record buffer allocated for the FILE and
all the libraries and the .EXE will reference the same memory
when referring to data elements from that FILE.

None External Omits the EXTERNAL attribute from all file
declarations and enables the Export All File
Declarations prompt.

Export All File Declarations
Check this box to export file declarations (see
Module Defintion Files in the Programmer’s
Guide). This prompt is only available when you
specify Dynamic Link Library (.DLL) as the
Destination Type in the Application Properties
dialog.

All External Adds the EXTERNAL attribute to all file
declarations and lets you specify the Declaring
Module and whether All files are declared in another
.APP.

Declaring Module
The filename (without extension) of the
MEMBER module containing the FILE
definition without the EXTERNAL attribute. If
the FILE is defined in a PROGRAM module,
leave this field blank.

All files are declared in another .APP
Check this box to ensure that files are opened
and closed at the right time, thereby preserving

CHAPTER 1 TEMPLATE OVERVIEW 57

the integrity of the file buffers, when the files
are declared in another application (rather than
hand code).

File Open Mode
Specifies how your application shares files among concurrent
users. See the Language Reference for more information.

Open Opens files as:
Read/Write (primary user) +
Deny Write (all other users).

Share Opens files as:
Read/Write (primary user) +
Deny None (all other users).

Other Specify a custom combination of primary user +
other user access.

User Access Choose from Read Only, Write Only, or Read
and Write.

Other Access Choose from Deny None, Deny All, Deny Read,
Deny Write, or Any Access (FCB compatibility
mode).

Defer opening files until accessed
Specifies when your application opens related files. Check the
box to delay opening the file until it is actually accessed.
Delaying the open can improve performance when accessing
only one of a series of related files. Clear the box to open the file
immediately whenever a related file is opened. See File Manager
Class— LazyOpen and UseFile for more information.

Individual File Overrides Tab Options

Select the Individual File Overrides tab to override data dictionary settings or
File Control tab settings for individual files. Select the file whose attributes
you want to change, then press the Properties button.

The prompts on this tab mirror those on the File Control tab, and they behave
exactly the same way, with two exceptions.

◆ The settings here apply only to the single file selected.

◆ Each drop-down list provides an additional choice: Use Default. Use
Default sets the attribute according to the File Control tab.

58 CLARION 5 APPLICATION HANDBOOK

External Module Options Tab

Select the External Module Options tab to set options associated with your
application’s external modules. This tab is only available when your
application contains an external module (LIB or DLL). Select the external
module whose attributes you want to change, then press the Properties button.

Standard ABC LIB/DLL
Check this box if the LIB or DLL is produced by the ABC
Templates or a similar coding scheme. Checking the box
generates code to initialize and shut down global objects used by
the LIB or DLL.

Classes Tab Options—Global

By default, the ABC Templates rely heavily on the Application Builder
Classes. However, the Templates are highly configurable and are designed to
let you substitute your own classes or third party classes if you wish. The
Classes tab names and configures the classes the ABC Templates use
throughout the application. These global settings may be overridden for
individual Procedure, Control, and Extension templates. See Classes Tab
Options—Local for more information on specifying classes for individual
templates. We strongly recommend using only ABC Compliant Classes with
the ABC Templates. See ABC Compliant Classes for more information.

Global Properties Classes Tab

This tab lets you specify the default classes the ABC Templates use to
accomplish various tasks. This tab lets you use as much of the ABC Library
as you want and as much of your own, or third party classes, as you want.
You may override these default class selections with the Classes tab for
individual templates.

CHAPTER 1 TEMPLATE OVERVIEW 59

Refresh Application Builder Class Information
Press this button if you have changed the contents of or added an
include file (.INC) to the \LIBSRC directory. Typically, this is
needed when you install third party products that use ABC
Compliant Classes, although you may create your own ABC
Compliant Classes too. See ABC Compliant Classes for more
information. The ABC Templates use information gleaned from
the header files for generating embed points, loading the
Application Builder Class Viewer, application conversion, etc.

Application Builder Class Viewer
Press this button to display classes, properties, and methods used
by the ABC Templates, and the relationships between parent and
derived (child) classes. This utility can help you analyze and
understand the classes that the ABC Templates use. Once started,
the Class Viewer remains open and accessible until you close it,
or until you close the Clarion Environment.

task grouping buttons
Each task grouping button identifies tasks or types of tasks the
ABC Templates accomplish. Each button lets you specify the
class or classes the ABC Templates use to accomplish the tasks
named by the button’s text. Following are the ABC Template
tasks and their associated default classes.

General WindowManager
ErrorClass
PopupClass
SelectFileClass
WindowResizeClass

60 CLARION 5 APPLICATION HANDBOOK

INIClass
TranslatorClass

File Management FileManager
ViewManager
RelationManager

Browser BrowseClass
StepClass
StepLongClass
StepRealClass
StepStringClass
StepCustomClass
StepLocator
EntryLocator
IncrementalLocator
FilterLocator
FileDropClass
FileDropComboClass
QueryFormClass
QueryFormVisual
QueryListClass
QueryListVisual

Process & Reports ProcessClass
PrintPreviewClass
ReportManager

Ascii Viewer AsciiViewerClass
AsciiSearchClass
AsciiPrintClass
AsciiFileClass

Toolbar Managers ToolbarClass
ToolbarListboxClass
ToolbarReltreeClass
ToolbarUpdateClass

You may specify alternate classes by typing the class name in the
corresponding entry field. The class you name must be an ABC Compliant
Class (see ABC Compliant Classes for more information).

Default Classes Configuration

Some of the General task classes offer configuration options. This is
indicated by the presence of a Configure button immediately below the class
label. Press the Configure button to set default runtime behavior for all
objects of the class throughout the application. To override these global
configuration settings, you can embed the SetABCProperty code template to
set corresponding properties within individual procedures.

CHAPTER 1 TEMPLATE OVERVIEW 61

BrowseClass Configuration

The ABC Application Template provides the following configuration
prompts for the BrowseClass:

Active Invisible
Check this box to fill the browse queue even when the browse
LIST is “invisible” because it is on a non-selected TAB or is
otherwise hidden. Clear the box to suppress the refill when the
listbox is hidden. Clearing the box improves performance for
procedures with invisible browse lists; however, buffer contents
for the invisible browse list should not be relied upon. See
BrowseClass Properties—ActiveInvisible.

Allow Unfilled
Check this box to allow a partially filled LIST when the result
set “ends” in mid-list. This improves (SQL) performance by
suppressing additional reads needed to fill the list. Clear the box
to always display a “full” list. See BrowseClass Properties—
AllowUnfilled.

Retain Row
Check this box to maintain the highlight bar in the same list row
following a change in sort order, an update, or other browse
refresh action. This can cause a performance penalty in
applications using TopSpeed’s pre-Accelerator ODBC driver..
Clear the box to allow the highlight bar to move. See
BrowseClass Properties—RetainRow.

ISAM
Press this button to optimize the configuration check boxes for
ISAM file systems.

SQL
Press this button to optimize the configuration check boxes for
SQL database systems.

System
Press this button to set the configuration check boxes to let the
BrowseClass object choose the best action.

62 CLARION 5 APPLICATION HANDBOOK

WindowManager Configuration

The ABC Application Template provides the following configuration
prompts for the WindowManager Class:

Reset on gain focus
Check this box to make the WindowManager unconditionally
reset whenever the window receives focus. Clear the box to
allow a conditional reset (reset only if circumstances demand,
for example, when the end user invokes a new BrowseBox sort
order or invokes a BrowseBox locator). See
WindowManagerClass Properties—ResetOnGainFocus.

Auto Tool Bar
Check this box to make the WindowManager try to set the
appropriate ToolbarTarget whenever the end user selects a new
TAB control. Clear the box to manually set the ToolbarTarget or
use the current ToolbarTarget. See WindowManagerClass
Properties—AutoToolbar, Toolbar Classes and
FrameBrowseControl for more information.

WindowResizeClass Configuration

The ABC Application Template provides the following configuration
prompts for the WindowResizeClass:

Automatically find parent controls
Check this box to make each Resizer object set parent/child
relationships among window controls. Clearing the box makes
the WINDOW the parent of all its controls. Setting parent/child
relationships lets any special scaling cascade from parent to
child. See WindowResizeClass Methods—SetParentDefaults for
more information.

Optimize Moves
Check this box to move all controls at once during the resize
operation, producing a snappier resize and avoiding bugs on
some windows. See WindowResizeClass Properties—
DeferMoves for more information.

Optimize Redraws
Check this box to make controls transparent (TRN attribute)
during the resize operation, producing a smoother redraw and
avoiding bugs on some windows. See WindowResizeClass
Properties—AutoTransparent for more information.

CHAPTER 1 TEMPLATE OVERVIEW 63

TranslatorClass Configuration

The ABC Application Template provides the following configuration
prompts for the TranslatorClass:

Extract Filename
Specify a filename to receive a list of all runtime text that may
require translation for multi-language applications. See
TranslatorClass Properties—ExtractText for more information.

Tip: You must check the Enable Run-Time Translation box on the
General tab to enable this option.

64 CLARION 5 APPLICATION HANDBOOK

Classes Tab Options—Local
Many of the ABC Procedure, Control and Extension templates provide a
Classes tab or dialog. These local Classes tabs let you control the classes
(and objects) your procedure uses to accomplish the template’s task—that is,
they override the global class settings specified in the Global Properties
dialog (see Classes Tab Options—Global).

You may accept the default Application Builder Class specified in the Global
Properties dialog (recommended), or you may specify your own or a third
party class to override the default setting. Deriving your own class can give
you very fine control over the procedure when the standard Application
Builder Class is not precisely what you need. We strongly recommend using
only ABC Compliant Classes with the ABC Templates. See ABC Compliant
Classes for more information.

Object Name
Set the object’s label for the template generated code. By fine
tuning the object names, you can make your generated code
easier to read.

Use Default Application Builder Class?
Check this box to use the default Application Builder Class
specified in the Global Properties dialog (see Template
Overview—Classes Tab Options for more information). Clear
this box to use a class other than the default, and to enable the
following prompts.

Use Application Builder Class?
Check this box to select a class from the Base
Class drop-down list. The list includes all ABC
Compliant Classes (see ABC Compliant Classes for
more information). Clear this box to specify a non-
compliant class (not recommended).

CHAPTER 1 TEMPLATE OVERVIEW 65

Base Class If you checked the Use Application Builder Class?
box, select a class from the drop-down list. If you
cleared the Use Application Builder Class? box,
type the class label here, and type the name of the
source file that contains the class declaration in the
Include File entry box.

Include File If you cleared the Use Application Builder Class?
box, type the class label in the Base Class entry
box, and type the name of the source file that
contains the class declaration here.

Derive?
Check this box to derive a class based on the parent class
specified above and to enable the New Class Methods and New
Class Properties buttons to define any new properties and
methods for the derived class.

This prompt is primarily to allow you to define new properties
and methods in a derived class. To override existing methods,
simply embed code in the corresponding method embed points.

Using Derive? , New Class Methods and New Class
Properties makes the template generate code similar to the
following:

MyProcess CLASS(Process) !derive a class from the parent class
NewMethod PROCEDURE !prototype new class method
NewProperty BYTE !declare new class property

END

Tip: The template automatically derives from the parent class if
you embed code into any of the derived method embed points,
regardless of the status of this check box. See Using ABC
Templates to Derive Classes for more information.

New Class Methods
Press this button to specify the new method
prototypes to generate into the derived CLASS
structure. This opens the New Class Methods
dialog (see New Class Methods).

New Class Properties
Press this button to specify the new property
declarations to generate into the derived CLASS
structure. This opens the New Class Properties
dialog (see New Class Properties).

Application Builder Class Viewer
Press this button to display classes, properties, and methods used
by the ABC Templates, and the relationships between parent and
derived (child) classes. This utility can help you analyze and
understand the classes that the ABC Templates use.

66 CLARION 5 APPLICATION HANDBOOK

Refresh Application Builder Class Information
Press this button if you have changed the contents of an include
file (.INC) or added an include file to the \LIBSRC directory.
Typically, this is needed when you install third party products
that use ABC Compliant Classes, although you may create your
own ABC Compliant Classes too. See ABC Compliant Classes
for more information.The ABC Templates use information
gleaned from the header files for generating embed points,
loading the Application Builder Class Viewer, application
conversion, etc.

composite Class
Press these buttons to open a Classes dialog for each class used
by the parent class specified above. For example, the
WindowManager uses a Toolbar class, so the WindowManager’s
Classes dialog contains a Toolbar Class button to open a Classes
dialog for its Toolbar Class.

New Class Methods

New Class Methods
Press this button to specify the new method
prototypes to generate into the derived CLASS
structure. This opens the New Class Methods
dialog. Press the Insert button to add the new
method prototype and the method’s associated
embed points.

New Method Name
Type the method label.

New Method Prototype
Type the method parameter list and return data
type. If the method takes no parameters but has
a return value, type parentheses and a comma
before the return data type. Do not type
“PROCEDURE” or “FUNCTION” because the
template generates the PROCEDURE statement
for you.

Data Embed Press this button to use the Text Editor to
implement the method’s data section.

Code Embed Press this button to use the Text Editor to
implement the method’s code section.

CHAPTER 1 TEMPLATE OVERVIEW 67

New Class Properties

New Class Properties
Press this button to specify the new property
declarations to generate into the derived CLASS
structure. This opens the New Class Properties
dialog. Press the Insert button to add a new property
declaration.

Property Name Type the property label.

Property Type Select a simple data type from the list or select
Other to enable the Other Data Type field.

Other Data Type
Type the label of a user defined complex data
type (such as the label of a GROUP, QUEUE or
CLASS), or type a valid entity data type (such
as FILE, VIEW, or WINDOW).

Is a Reference Check this box to declare a reference variable.
You must use a reference variable for entity data
types and for any complex data type not valid
within a GROUP. You may use a reference
variable for any other data type. See GROUP
and Reference Variables in the Language
Reference.

Size Specify the length of the field in bytes.

Dimensions To declare the field as an array, and to specify
the array dimensions, specify a size for up to
four dimensions. Total array size may not
exceed 65,520 bytes. See the Language
Reference for more information on dimensioned
variables and arrays.

68 CLARION 5 APPLICATION HANDBOOK

ABC Compliant Classes
The classes you use with the ABC Templates must be ABC Compliant
Classes. That is, the classes must conform to the ABC Library specification
as documented in Part II—Application Builder Class Library.

The ABC Templates generate code that refers to the properties, methods, and
method parameters documented in Part II of this book. If those properties,
methods, and parameters are not defined within the classes you specify, the
template generated code will not compile. Further, if the classes do not
perform as documented, the template generated code probably won’t work.
The easiest way to create ABC Compliant Classes is to derive classes from
the ABC Library. See CLASS in the Language Reference for more
information on deriving classes.

Tip: Copy an AB*.INC/AB*.CLW file pair from the Clarion \LIBSRC
folder to use as the starting point for you ABC Compliant
Classes.

Requirements for ABC Compliant Classes

• Classes must conform to the ABC Library specification as
documented in Part II—Application Builder Class Library

• The header file containing the CLASS declarations must have
the .INC file extension

• The header file (.INC) containing the CLASS declarations must
be in Clarion’s \LIBSRC directory

• The header file (.INC) containing the CLASS declaration must
contain the following comment before compilable code begins:
!ABCIncludeFile

• The CLASS declarations must have the LINK attribute naming
the corresponding implementation (.CLW) files.

Meeting these requirements ensures that your ABC Compliant Classes
appear in the Application Builder Class Viewer, the Embeditor, the
Embedded Source dialog, and that the development environment has full
information about your classes. With this information, the development
environment can correctly manage embed points and code generation for the
compliant classes.

Tip: Clarion’s Application Generator automatically provides embed
points for each compliant class method.

CHAPTER 1 TEMPLATE OVERVIEW 69

Global ABC Embed Points
The ABC Application Template provides global embed points to allow
customization of

• the application’s global MAP

• the application’s global data

• program initialization and termination

• file handling methods (open, close, field validation, record
priming, etc.) for all data dictionary files

• the export file (.EXP—also known as the Module Definition
file—see the Programmers Guide for more information)

• the application ship list

To access these embed points, press the Embeds button in the Global
Properties dialog or from the Application Tree, select the Module tab, RIGHT-
CLICK on the Default Program module, then choose Embeds from the popup
menu.

As with any embed point, you can write your own custom code, call a
procedure, or use a code template. The Application Generator, when
generating code, places your code or calls your procedure at the next source
code line following the point you pick from the Embedded Source dialog.
See Application Generator—Embedded Source Code in the User’s Guide for
more information on adding embedded source code to your application.

File Specific Embed Points

The ABC Template global embed points include embed points for the
FileManager and RelationManager for each data dictionary file. Embedding
code into these embed points generates code to derive FileManager and
RelationManager methods that override the parent class methods for the
individual data dictionary files. See File Manager Methods and Relation
Manager Methods for more information on these methods.

The ABC Application Template generates the derived FileManager and
RelationManager methods into the appnaBC0.CLW through
appnaBC9.CLW modules (where appna is the first five characters of the
application filename). The number of modules actually generated depends on
the number of files in your dictionary. By default, the ABC Templates
generate code for twenty (20) data dictionary files in each appnaBCn.CLW
module. You can change this default by changing the value of the
%FilesPerBCModule template symbol.

70 CLARION 5 APPLICATION HANDBOOK

Field Specific Embed Points—Field Priming and Validation

The ABC Templates include global embed points for individual field priming
and individual field validation (before validation and upon validation
failure).

Embedding code into these embed points generates code to derive
FileManager and RelationManager methods that override the parent class
methods for individual data dictionary files. See File Manager Methods and
Relation Manager Methods for more information on these methods.

These embed points provide a single application-wide place to prime and
validate fields. The ABC Template generated code automatically calls the
field priming and field validation methods whenever your application adds or
changes data dictionary files.

Tip: These global ABC Template embed points provide a single
place where you can handle NULL settings for SQL based
applications.

Global Data and Variables

Global data must be declared before the CODE statement in your
PROGRAM module (see the Language Reference for more information).
There are several ways to accomplish this with the Clarion environment. You
can declare global data in the data dictionary (see Dictionary Editor—File
Properties); you can declare global data with the Data button in the Global
Properties dialog; and you can declare global data with the Embeds button in
the Global Properties dialog (embed data declarations in a data section
embed point—see Embedded Source Code).

data dictionary global data
declares global data that can be shared by several applications.
Because it is declared with the Field Properties dialog, you can
specify controls and properties to apply to the data each time
you populate them on your application’s windows and reports.

Global Properties dialog Data button
declares global data for a single application. Because it is
declared with the Field Properties dialog, you can specify
controls and properties to apply to the data each time you
populate them on your application’s windows and reports. You
can automatically save and restore these values between sessions
with the Preserve button in the Global Properties dialog.

Global Properties dialog Embeds button
declares global data for a single application with free form
source code.

CHAPTER 1 TEMPLATE OVERVIEW 71

Using ABC Templates to Derive Classes
For the purposes of this discussion, deriving classes means generating a
CLASS structure containing data declarations (properties) and method
prototypes, plus generating the corresponding method implementation code.
For example:

Whatever PROCEDURE

BRW1 CLASS(BrowseClass) !derive BRW1 CLASS from BrowseClass
MySwitch BYTE !declare a new BRW1 property
ResetSort PROCEDURE,VIRTUAL !prototype a BRW1 override method
MyMethod PROCEDURE !prototype a new BRW1 method

END
CODE
!procedure code

BRW1.ResetSort PROCEDURE !method definition/implementation
CODE

 !some embedded code
 PARENT.ResetSort !preserve documented functionality
!some embedded code

BRW1.MyMethod PROCEDURE !method definition/implementation
CODE
!some embedded code

Why the Templates Derive Classes

The ABC Templates derive classes so they can use virtual methods to
customize the derived class object’s (Local Object) behavior for a specific
procedure’s (or program’s) requirements. Virtual methods let you insert
custom code into an existing class, without copying or duplicating the
existing code. Furthermore, the existing class calls the virtual methods
(containing the custom code) as part of its normal operation, so you don’t
have to explicitly call them. Then, when TopSpeed updates the existing class,
the updates are automatically integrated into your application simply by
recompiling. The existing class continues to call the virtual method
containing the custom code as part of its normal operation. This approach
gives you many opportunities to customize your ABC applications while
minimizing maintenance issues.

The ABC Templates provide two different mechanisms to derive classes.

• Embed points

• Classes tabs

Tip: To derive from the FileManager, you can place code into
FileManager global embed points to override existing
FileManager methods, or you can create an ABC Compliant
FileManager (see ABC Compliant Classes) to add new
methods.

72 CLARION 5 APPLICATION HANDBOOK

Deriving with Embed Points

Embedding code into an ABC “Method” (Local Object) embed point
automatically generates a CLASS statement if necessary, plus the derived
method’s prototype, plus the derived method’s implementation code. The
generated implementation code includes your embedded code plus a call to
the corresponding parent class method. This guarantees the derived method
retains the parent method’s documented functionality, plus your embedded
code’s additional functionality. You can remove the parent method
functionality by embedding a RETURN before the call to the parent class
method.

If the derived method is VIRTUAL, the template generated code need not
explicitly call the method, because the parent class object calls the derived
VIRTUAL method. However, if the derived method is not VIRTUAL, the
template generated code must call the derived method or it won’t execute.
The parent class object calls VIRTUAL methods in the derived class; it does
not call non-virtual methods in the derived class.

Tip: To see which methods are virtual and which are not, right-click
on a procedure in the Application Tree, then choose Source
from the popup menu. In the Embeditor, search for “VIRTUAL.”

See Application Generator—Embedded Source Code in the User’s Guide for
more information.

Deriving with Classes Tab

Each ABC Template that generates code to instantiate an ABC object
provides a Classes tab or dialog to help you derive new methods and
properties for its object. Checking the Derive? box generates the CLASS
statement if necessary. Pressing the New Class Methods button let’s you
specify the new method prototypes and implementation code. Pressing the
New Class Properties button let’s you specify the new data declarations
(properties) to generate within the CLASS structure. See Classes Tab
Options—Local for more information.

To override existing methods, use their corresponding embed points. See
Deriving with Embed Points for more information.

CHAPTER 2 WIZARDS AND UTILITY TEMPLATES 73

2 - WIZARDS AND UTILITY TEMPLATES

Code Generation Wizards
Clarion provides WIZARDS—powerful utility templates that let you create a
Browse, Form, or Report procedure by answering a few quick questions. You
can even use a wizard to create an entire application from an existing data
dictionary!

Browse-Form Paradigm

Clarion’s code generation wizards follow the Browse-Form application
paradigm. Clarion’s Browse-Form paradigm uses Browses (windows with
sortable, scrollable, searchable, selectable lists of data), Forms (windows
with a single updatable database record), and Reports to organize and present
database information to end users. See Template Overview—Browse-Form
Application Paradigm for more information.

Fine Tuning the Wizards

Options you specify in advance in the Clarion data dictionary provide
additional control over the procedures the wizards create. See Optimizing the
Wizards for more information.

Starting the Wizards

To start the code generation wizards, choose Application ➤ Template
Utility , then select the wizard from the list. Alternatively, create a new
procedure (choose Procedure ➤ New), and check the Use Procedure
Wizard box in the Select Procedure Type dialog.

74 CLARION 5 APPLICATION HANDBOOK

Application Wizards
Clarion’s Application Wizards generate an entire application program. The
program includes a main menu and subordinate procedures for viewing,
searching, updating, and printing data from one or more files. The Quick
Start Wizard generates a one-file data dictionary and program. The
Application Wizard generates a full program based on an existing data
dictionary with one or more related or unrelated files.

Quick Start Wizard

Using the Quick Start Wizard, you can create a data dictionary and a
working application with no coding required. See Getting Started for a step-
by-step example of using the Quick Start Wizard.

Simply define a data file, then the Quick Start Wizard creates a complete
Windows application. The entire process takes less than five minutes! Your
application has a form procedure for updating the file, a multi-keyed browse
procedure, and as many reports as the data file has keys.

Just define the fields for a single file. For each field, you provide a name,
display format picture, and key information. This creates a data dictionary.
The Quick Start Wizard creates the application based on this dictionary.
Once you’ve specified all options, the OK button generates the .APP file, and
loads the procedures into the Application Tree dialog.

To use the Quick Start Wizard:

1. In Clarion, choose File ➤ New ➤ Application.

This opens the New file dialog.

2. Type a name for the .APP file in the Filename field.

Clarion automatically adds the .APP extension.

CHAPTER 2 WIZARDS AND UTILITY TEMPLATES 75

3. Check the Use Quick Start box below the file list, then press the Save
button.

This starts the Quick Start Wizard . This dialog lets you describe the file
on which the application and data dictionary are based. Fill in the
prompts as described below.

Application Name
The file name for the .APP file. The Quick Start Wizard uses the
same file name (with the .DCT extension) for the data dictionary
file.

Optionally press the ellipsis button (...) to change the directory,
then type a file name in the Open File dialog box. The working
directory, in which all source code files are generated, depends
on where the .APP file resides.

Data File Name
Type the file name (no extension necessary) for the data file.

Prefix
This box automatically fills in with the first three letters of the
name of the data file when you TAB from the Data File Name
box. Optionally specify up to 14 letters of your choice in this
field.

The prefix allows your application to distinguish between
identical variable names occurring in different file structures. A
field called Invoice may exist in one data file called Orders and
another called Sales. By establishing a unique prefix for Orders
(ORD) and Sales (SAL), the application may distinguish the two
fields as ORD:Invoice and SAL:Invoice.

File Driver
Specify the data file type. When using the Application
Generator, Clarion automatically links in the correct database
driver library. See Database Drivers for a discussion of the
relative advantages of each driver.

The individual file drivers may vary in their support of some of
the attributes which you add to the FILE structure in this dialog
box.

Field Name
To name each field, type a valid Clarion label in the Name field.
Valid field names may vary slightly according to the file driver.

Picture
Specify a default picture token by typing it in the Picture field.
The picture token, together with the selected File Driver,
determine the data type which the Quick Start Wizard uses for
the field. When the Application Generator creates window and
report controls for the field, this also serves as the default picture
for the control.

76 CLARION 5 APPLICATION HANDBOOK

Key
This specifies whether to create a key using this field as a
component, and if so, the type of key. By specifying Unique,
your application ensures that each record has a distinct value.
Duplicate specifies a key that allows more than one record with
the same value in the key component. Autonumber specifies a
unique numeric key that your program automatically increments
whenever a new record is added. The Wizard generates the code
to increment the key value.

The Quick Start Wizard creates a Browse list sortable on every
key you specify. It also creates a Report for each key.

4. Press the TAB key to define the next field in your file.

Alternatively, you may use the command buttons to define fields.

Insert This button inserts a new field above the selected
field.

Delete This button deletes the selected field.

This button moves the selected field up one position
in the fields list.

This button moves the selected field down one
position in the fields list.

5. When you have defined all the fields, press the OK button.

The Quick Start Wizard creates your dictionary and its associated
application, then displays the Application Tree.

Application Wizard

The Application Wizard creates a complete application from an existing data
dictionary. It creates a main procedure containing a menu with options
calling all subordinate procedures it creates. It also creates Browse, Report,
and Form (update) procedures for each specified file.

Two Types of Applications for Compatibility

The Application Wizard can create two different types of applications: “Full”
applications for compatibility with Clarion 1.5 through 2.001, and “Simple”
applications beginning with Clarion Standard Edition 2.002. By default, the
Clarion version 2.002 and higher Application Wizard creates Simple
applications.

Simple applications are smaller, simpler, and provide all the functionality of
full applications. Simple applications eliminate Range Limited Browses, and
instead access child files through secondary Browses on Form (update)
procedures.

CHAPTER 2 WIZARDS AND UTILITY TEMPLATES 77

Full application Browses have buttons to access all child files, as well as
buttons to access parent files. These related file buttons call Range Limited
Browses.

You can change the default application type, by editing
..\TEMPLATE\ABWIZARD.TPL to specify a different value for
%ProgramType. By default, %ProgramType is set to ‘Simple.’ To generate
Full applications compatible with earlier versions of Clarion, set the
%ProgramType to ‘Full’ as follows (comment out the ‘Simple’ declaration
and uncomment the ‘Full’ declaration):

#DECLARE(%ProgramType)
#!SET(%ProgramType,'Simple') #!Mutually exclusive options
#SET(%ProgramType,'Full')

Special Application Features for SQL File Systems

For SQL based file systems, the Application Wizard also generates code to
capture user login information upon program startup, then reuse the login
information for each file accessed.

Creating the Application—Starting the Application Wizard

To use the Application Wizard:

1. In Clarion, choose File ➤ New ➤ Application .

This opens the New file dialog.

2. Type a name for the .APP file in the Filename field, then press the Save
button.

Clarion automatically adds the .APP extension. Don’t use the Quick
Start Wizard —clear the box below the file list.

This opens the Application Properties dialog which lets you define the
basic files and properties for the application.

3. Name the .DCT file the application uses in the Dictionary File field, or
press the ellipsis (...) button to select the file in the Select Dictionary
dialog.

4. Optionally, rename the First Procedure or accept the default—Main.

This is the name of the application’s Frame procedure. You may rename
it later if you want to.

5. Choose the Destination Type from the drop-down list.

This defines the target file for your application. Choose from Executable
(.EXE), Library (.LIB), or Dynamic Link Library (.DLL).

6. Optionally, type a name for the application’s Windows help file in the
Help File field, or use the ellipsis (...) button to select the file with the
Open File dialog.

78 CLARION 5 APPLICATION HANDBOOK

If you name a file, it must exist; however, it need not be a true Windows
help file. The Application Generator lets you name the help topics in
your application even though the topics do not exist in the specified help
file. You are responsible for creating a help file that contains the context
strings and keywords that you optionally enter as HLP attributes for the
various controls and dialogs.

7. Accept the default ABC template in the Application Template field.

The selected application template controls source code generation. You
may choose other Clarion templates or third party templates that you
have registered.

8. Accept the default ToDo(ABC) template in the ToDo Template field.

The selected ToDo template controls source code generation. You may
choose other Clarion templates or third party templates that you have
registered.

9. Check the Use Application Wizard box to use the wizard to create a
complete application based on the selected dictionary and a few answers
you specify.

10. Press the OK button.

This creates the application file then starts the Application Wizard .

Tip: To write over part of an existing application, open it, then
choose Application ➤➤➤➤➤ Template Utility to start the
Application Wizard.

Using the Application Wizard

1. Answer the questions in each dialog, then press the Next button.

The Application Wizard presents the following questions:

Generate Procedures for all files in my dictionary
Check the box for all files, or clear the box to select specific
files.

Which control model should the Application use?

Button The wizard builds the application with traditional
Insert, Change, Delete, OK, and Cancel command
buttons that appear on each dialog.

Toolbar The wizard builds the application with global
toolbar command buttons that appear on the
application frame. The toolbar buttons control each
dialog. See Control Templates—
FrameBrowseControl for more information.

CHAPTER 2 WIZARDS AND UTILITY TEMPLATES 79

Both The wizard builds the application with both the
traditional dialog command buttons and the global
toolbar command buttons.

Overwrite existing procedures
Check this box to overwrite existing procedures with the same
names. Clear the box to preserve existing procedures.

Generate Reports for each file
Check this box to automatically generate report procedures.
Clear the box to omit report procedures.

2. On the last dialog, the Finish button is enabled. If you are satisfied with
your answers, press the Finish button.

You can press the Back button to change a prior selection or press the
Cancel button to abandon the application.

The Application Wizard creates the .APP file based on the dictionary and
the answers you provided, then displays the Application Tree dialog for
your new application.

Fine Tuning the Wizard

You can control how the wizard builds your application by specifying
options for Files, Fields, Keys, and Relationships in the Data Dictionary (see
Optimizing the Wizards).

80 CLARION 5 APPLICATION HANDBOOK

Procedure Wizards
Clarion’s Procedure Wizards generate one or more data (file) oriented
procedures (data browsing, data entry, and reports) based on specific file
descriptions in a data dictionary. The generated code accommodates the
defined file relationships, including multiple procedures as needed to support
related file updates and data validation.

Browse Wizard

This wizard creates a multi-keyed Browse procedure from an existing
dictionary file definition. The BrowseBox is sorted by each key you specify.
The sort order is controlled by TABs. It also creates associated Form
(Update) procedures, if you specify that updates are allowed.

To use the Browse Procedure Wizard:

1. Choose Application ➤➤➤➤➤ Template Utility, then select BrowseWizard and
skip to step 4.

Or:

1. In the Select Procedure dialog, check the Use Procedure Wizard box.

You can open the Select Procedure dialog by selecting a ToDo
procedure in the Application Tree, then pressing ENTER, or by simply
pressing the INSERT key, then typing the procedure name in the New
Procedure dialog.

2. In the Select Procedure dialog, choose Browse from the list of
Procedure templates.

3. Press the Select button.

This starts the Browse Wizard .

4. Answer the questions in each dialog, then press the Next button.

The Browse Wizard presents the following questions:

CHAPTER 2 WIZARDS AND UTILITY TEMPLATES 81

What name should be used as the label of the procedure?
Type the browse procedure name.

Which file do you want to browse?
Press the ellipsis (...) button to select a file from the dictionary.

Browse using all record keys
Check this box to make the list sortable on all keys. Clear the
box to specify a single sort key.

Allow the user to update records
Check this box to generate a subordinate procedure to update the
file. Optionally, provide the name of the update procedure. Clear
the box to make the list read only.

Call update using popup menu
Check this box to provide RIGHT-CLICK popup menus on the
Browse list in addition to any command or toolbar buttons.

Parent Record Selection
This prompt appears only if you specify a single sort key that is
the linking key in a Many:One relationship. The Browse Wizard
infers from this that you may want to browse only the child
records for a specific parent record. Select one of the following
to confirm or deny this inference.

Do not select by parent record
Do not limit the browse—in other words, browse all
records.

Select parent record via button
Browse only the child records for a specific parent
record. Provide a button to select the parent record.

Assume that the parent record is active
Browse only the child records for a specific parent
record. Assume the parent record is already active.

Provide buttons for child files
Check this box to provide buttons on the Browse window to
access related child files. Alternatively, related files may be
accessed from the generated update procedure.

Provide a “Select” button
Check this box to provide a “Select” button that displays when
the Browse procedure is called to select a record, but is hidden
when the Browse is called to update records.

Which control model should the Application use?

Button The wizard builds the browse with traditional Insert,
Change, and Delete command buttons that appear
on each dialog.

82 CLARION 5 APPLICATION HANDBOOK

Toolbar The wizard builds the browse to use global toolbar
command buttons that appear on the application
frame. See Control Templates—
FrameBrowseControl.

Both The wizard builds the browse to use both traditional
dialog command buttons and global toolbar
command buttons.

Overwrite existing procedures
Check this box to overwrite existing procedures with the same
names. Clear the box to preserve existing procedures.

5. On the last dialog, the Finish button is enabled. If you are satisfied with
your answers, press the Finish button.

The Browse Procedure Wizard creates the procedure(s) based on the
dictionary file and the answers you provided, then displays the Proce-
dure Properties dialog for your new procedure.

Fine Tuning the Wizard

You can control how the wizard builds your procedures by setting Options
for Files, Fields, Keys, and relationships in the Data Dictionary (see
Optimizing the Wizards).

Form Wizard

This wizard creates an update Form Procedure from an existing dictionary
file definition.

To use the Form Procedure Wizard:

1. Choose Application ➤➤➤➤➤ Template Utility, then select FormWizard and
skip to step 4.

Or:

CHAPTER 2 WIZARDS AND UTILITY TEMPLATES 83

1. In the Select Procedure dialog, check the Use Procedure Wizard box.

You can open the Select Procedure dialog by selecting a ToDo
procedure in the Application Tree, then pressing ENTER, or by simply
pressing the INSERT key, then typing the procedure name in the New
Procedure dialog.

2. In the Select Procedure dialog, choose Form from the list of Procedure
templates.

3. Press the Select button.

This starts the Form Wizard .

4. Answer the questions in each dialog, then press the Next button.

The Form Wizard presents the following questions:

What name should be used as the label of the form procedure?
Type the procedure name.

Which file do you want the form to update?
Press the ellipsis (...) button to select a file from the dictionary.

Allow Records To Be Added
Check this box to allow new records.

Allow Records To Be Modified
Check this box to allow records to be changed.

Allow Records To Be Deleted
Check this box to allow records to be deleted.

Insert Message
Type the titlebar text to display when adding a record.

Change Message
Type the text to display when changing a record.

Delete Message
Type the text to display when deleting a record.

Where do you want this message to be displayed?
Choose the title bar or the status bar.

A field can be displayed that identifies the active record.
Press the ellipsis button to select a field from the dictionary to
display on the window titlebar.

Validate field values whenever field value changes?
Check this box for immediate validation when the end user
“accepts” the field.

Validate field values when the OK button is pressed?
Check this box for field validation on the OK button.

Browsing child files
Select one of the following choices.

Place children on tabs

84 CLARION 5 APPLICATION HANDBOOK

Access children with push buttons
Do not provide child access

Which control model should the Application use?

Button The wizard builds the dialogs with traditional Insert,
Change, and Delete command buttons.

Toolbar The wizard builds the form to use global toolbar
command buttons that appear on the application
frame. See Control Templates—
FrameBrowseControl.

Both The wizard builds the form to use both traditional
dialog command buttons and global toolbar
command buttons.

Overwrite existing procedures
Check this box to overwrite existing procedures with the same
names. Clear the box to preserve existing procedures.

5. On the last dialog, the Finish button is enabled. If you are satisfied with
your answers, press the Finish button.

The Form Procedure Wizard creates the procedure(s) based on the
dictionary file and the answers you provided, then displays the Proce-
dure Properties dialog for your new procedure.

Fine Tuning the Wizard

You can control how the wizard builds your procedures by setting Options
for Files, Fields, Keys, and relationships in the Data Dictionary (see
Optimizing the Wizards).

Report Wizard

This wizard creates a Report Procedure from an existing dictionary file
definition.

To use the Report Procedure Wizard:

1. Choose Application ➤➤➤➤➤ Template Utility, then Select ReportWizard and
skip to step 4.

Or:

1. In the Select Procedure dialog, check the Use Procedure Wizard box.

You can open the Select Procedure dialog by selecting a ToDo
procedure in the Application Tree, then pressing ENTER, or by simply
pressing the INSERT key, then typing the procedure name in the New
Procedure dialog.

CHAPTER 2 WIZARDS AND UTILITY TEMPLATES 85

2. In the Select Procedure dialog, choose Report from the list of
Procedure templates.

3. Press the Select button.

This starts the Report Wizard .

4. Answer the questions in each dialog, then press the Next button.

The Report Wizard presents the following questions:

What name should be used as the label of the report
procedure?
Type the procedure name.

Which file do you want to report?
Press the ellipsis (...) button to select a file from the dictionary.

Enter a key below, or leave the field blank to run in record order.
Press the ellipsis (...) button to select a sort key. Leave the field
blank to specify no sort key.

How many columns do you want the report to use?
Type the number of columns for your report. The Report Wizard
distributes the report fields evenly across the columns.

Overwrite existing procedures
Check this box to overwrite existing procedures with the same
names. Clear the box to preserve existing procedures.

5. On the last dialog, the Finish button is enabled. If you are satisfied with
your answers, press the Finish button.

The Report Procedure Wizard creates the procedure based on the dictio-
nary file and the answers you provided, then displays the Procedure
Properties dialog for your new procedure.

Fine Tuning the Wizard

You can control how the wizard builds your procedures by setting Options
for Files, Fields, Keys, and relationships in the Data Dictionary (see
Optimizing the Wizards).

86 CLARION 5 APPLICATION HANDBOOK

Dictionary Print Wizard
This wizard prints descriptions of data dictionary files at varying levels of
detail for files, fields, keys, and relationships. You may print to the printer or
to a file.

To use the Dictionary Print Wizard:

1. Open an application that uses the dictionary.

2. Choose Application ➤ Template Utility from the menu.

This opens the Select Utility dialog.

3. Highlight DictionaryPrint , then press the Select button.

This starts the Dictionary Print Wizard .

4. Answer the question(s) in each dialog, then press the Next button.

After the first dialog, the Finish button is enabled. Press the Finish
button now to print all the information available for all the files, fields,
keys, and relationships.

Or, step through the wizard’s dialogs, to select specific files, plus the
level of detail to print (All, Some, or None) for the various dictionary
components.

CHAPTER 2 WIZARDS AND UTILITY TEMPLATES 87

Optimizing the Wizards
Wizard Options in the Data Dictionary Editor provide more control over the
wizards’ functionality. Wizards use the Options specified for a file, field, key,
or alias when creating procedures. In addition, the Wizards use file, field,
key, and alias names and descriptions for the text on menus, title bars, tabs,
etc.

File Options

Do Not Auto-Populate This File
Directs the wizards to skip this file when creating primary
Browse procedures or Report procedures.

User Options
User Options let you provide information to utility templates.
User Options are comma delimited, that is, each entry is
separated by a comma. The following is the only Clarion
supported option:

EDITINPLACE The Browse Wizard provides edit-in-place updates
to the browsed file instead of a separate update
(form) procedure. We recommend this option for
files with one-way lookup relationships, such as a
State Code file. Files with complex relationships are
better managed with a separate update procedure.

Alias Options

Do Not Auto-Populate This Aliased File
Directs the wizards to skip the Aliased File when creating
primary Browse procedures or Report procedures.

User Options
User Options let you provide information to utility templates.
User Options are comma delimited, that is, each entry is
separated by a comma.

Field Options

Do Not Auto-Populate This Field
Directs the wizards to skip this field when creating Form,
Browse or Report procedures.

Population Order
Specifies the order in which the wizards populate fields. Choose
Normal, First, or Last from the drop-down list. Wizards populate
in this order: all Fields specified as First, then all Fields

88 CLARION 5 APPLICATION HANDBOOK

specified as Normal, and finally all Fields specified as Last.

Form Tab
Specifies the TAB onto which the wizards populate the field.
Type the Caption for the TAB or select one you have previously
created from the drop-down list. This lets you direct the wizard
to group fields in the manner you want.

Add Extra Vertical Space Before Field Controls on Forms
Check this box to direct the wizards to add vertical space
between this field’s control and the one populated above it.

User Options
User Options let you provide information to utility templates.
User Options are comma delimited, that is, each entry is
separated by a comma.

Key Options

Do Not Auto-Populate This Key
Directs the wizards to skip this Key when creating primary
Browse procedures or Report procedures.

Population Order
Specifies the order in which the wizards populate keys. Choose
Normal, First, or Last from the drop-down list. Wizards populate
in this order: all Keys specified as First, then all Keys specified
as Normal, and finally all Keys specified as Last.

User Options
User Options let you provide information to utility templates.
User Options are comma delimited, that is, each entry is
separated by a comma.

Relation Options

User Options
User Options let you provide information to utility templates.
User Options are comma delimited, that is, each entry is
separated by a comma.

Naming Conventions

When creating procedures, the wizards extract information from your Data
Dictionary and apply it to the generated procedures. Understanding how
wizards use dictionary information can help you set up your dictionary to get
the best results.

CHAPTER 2 WIZARDS AND UTILITY TEMPLATES 89

Naming Fields and Keys

The wizards use the data dictionary field name for the window and report
prompts and column headings for the fields. If you use mixed case names,
such as FirstName, the wizards insert a space before the capital letters to
create multi-word prompts and headings—in this case: First Name.

The Browse wizard uses the key description as tab text on multi-key browse
procedures. If there is no description, the wizard uses the key name.

Field Descriptions

By default, field descriptions are assigned to the field’s MSG attribute in the
dictionary. The wizards automatically apply this MSG attribute to each
control in your application so that the description displays in the
application’s status bar. Providing field descriptions in the dictionary (once)
eliminates the need to specify (potentially) several MSG attributes within
your application.

Using Default Window Controls

The Dictionary Editor creates a default control for each field, based on its
data type. See the Window and Report tabs in the Field Properties dialog.
The wizards use this default control when creating procedures.

For example, a LONG becomes an ENTRY control. In specific cases, you
may want a different type of control. For example, in the case of a LONG
customer number that is automatically incremented, you never want the user
to modify it. In that case you can set the default window control to be a
STRING control.

Another example is a field which has a finite list of choices. In this case, you
can create a Drop List as the default window control and specify the valid
choices in Validity Checks.

90 CLARION 5 APPLICATION HANDBOOK

Chapter 3 Procedure Templates 91

3 - PROCEDURE TEMPLATES

Overview
This chapter describes the Clarion Procedure templates. It also mentions
several Control templates, which are described in the Control Templates
chapter.

Procedures and Procedure Templates

A procedure is a series of Clarion language statements (source code) which
perform a task. A Procedure template is an interactive tool that (with the
help of Clarion’s development environment) requests information from you,
the developer, then generates a custom procedure for just the task you
specify. A Procedure as stored in a Clarion application (.app) file, is really a
specification that the development environment uses to generate the
procedure source code. The specification includes the Procedure template
and your answers to its prompts, the WINDOW definition, the REPORT
definition, other local data declarations, embedded source code, etc.

Clarion provides a rich assortment of task oriented Procedure templates with
which you can rapidly develop database applications. In Getting Started, the
Quick Start Tutorial introduces a few procedure templates; the Application
Generator Tutorial in Learning Clarion introduces more. This chapter
describes all the procedure templates and their prompts.

Using Procedure Templates

You use procedure templates by selecting the template based on the general
task you want it to perform, such as browsing or searching data (Browse
template), changing data (Form template) or reporting data (Report
template). You select the template when you create the procedure (see
Application Generator in the User’s Guide for more information). Then you
refine the template generated code to fit your specific task by using the
Procedure Properties dialog to answer template prompts and to access
other development environment tools such as the Window Formatter and the
Report Formatter.

Procedure Properties Dialog

The Procedure Properties dialog contains standard Application Generator
command buttons and prompts, plus any additional prompts provided by the
Procedure template. This chapter describes the template generated prompts.
See Application Generator in the User’s Guide for more information on the
Application Generator command buttons and prompts.

92 CLARION 5 APPLICATION HANDBOOK

Browse-Form Paradigm

Clarion’s Procedure templates follow the Browse-Form application
paradigm. Clarion’s Browse-Form paradigm uses Browses (windows with
sortable, scrollable, searchable, selectable lists of data), Forms (windows
with a single updatable database record), and Reports to organize and present
database information to end users. See Template Overview—Browse-Form
Application Paradigm for more information.

Procedures as Containers

Procedures can contain data structures such as WINDOW structures,
REPORT structures, and the controls within those structures. And Procedure
templates can contain other templates—Control and Extension templates that
present additional opportunities to customize the procedure.

Procedures Contain Controls

Procedure templates provide standard prompts for any BUTTON, ENTRY,
or CHECK controls you add to the procedure’s WINDOW. You access these
prompts through the Properties dialog for these controls. For each ENTRY
control, for example, the procedure template provides prompts to let you use
the ENTRY as a lookup field. For a CHECK box, the procedure template
provides prompts to let you update variables and hide or unhide controls
based on the state of the CHECK box.

Procedure templates provide standard embed points for controls you add to
the procedure’s WINDOW. Generally, there is an embed point for each event
the control generates. Embedding code into these embed points generates
code that evecutes when the control generates the event. See ABC Template
Embed Points for more information.

Procedures Contain Other Templates

Finally, Procedure templates can contain other templates—Control templates
and Extensions templates which provide their own development environment
prompts and embed points, and their own runtime functionality.

Thus, a Procedure and its template act as a container which automatically
provides support for many layers of functionality and customization. And the
Application as stored in the development environment, acts as a container for
the Procedures and their templates.

Many of the ABC Procedure templates already contain Control templates.
Control templates generate code to define and manage a specific control,
including loading data in and out of the control. In fact, the unique set of
Control templates within a Procedure template are what determine the
template’s primary purpose or task. For example, the Browse Procedure

Chapter 3 Procedure Templates 93

template is a generic Window Procedure template which contains the
BrowseBox and BrowseUpdateButtons Control templates.

Inter-Procedure Communication

Clarion’s template generated procedures use a simple system of global
variables and EQUATEs to communicate with each other.

The procedures use two global variables named GlobalRequest and
GlobalResponse. The calling procedure uses GlobalRequest to tell the
called procedure what database action to do. The called procedure uses the
GlobalResponse variable to tell the calling procedure the result of the
requested database action.

Whenever a template generated procedure calls another template generated
procedure, the calling procedure sets the value of GlobalRequest to one of
the EQUATEs declared in ABFILE.INC as follows:

InsertRecord EQUATE (1) !Add a record to table
ChangeRecord EQUATE (2) !Change the current record
DeleteRecord EQUATE (3) !Delete the current record
SelectRecord EQUATE (4) !Select the current record
ProcessRecord EQUATE (5) !Process the current record

The called procedure checks the GlobalRequest variable and tries to carry
out the requested action. The called procedure indicates success or failure by
setting the value of GlobalResponse to one of the EQUATEs declared in
ABFILE.INC:

RequestCompleted EQUATE (1) !Update Completed
RequestCancelled EQUATE (2) !Update Aborted

94 CLARION 5 APPLICATION HANDBOOK

Window Procedure Templates
Most of the ABC Procedure templates (Frame, Browse, Form, etc.) generate
procedures with WINDOWs. Even the Process and Report templates have a
predefined progress window. All of these window procedure templates
described in this section are derived from the Window Template and
inherit its prompts for controlling basic procedure behavior. You can
access these common window procedure prompts in the Procedure
Properties dialog for each procedure template.

Window Template

This template functions as a blank slate, upon which you can create your
own window procedure of any kind. Most of the ABC Procedure templates
are derived from this template and therefore inherit its prompts and behavior.

Press the Window button in the Procedure Properties dialog to select your
window type. See the User’s Guide—The Window Formatter—Choosing a
Window Type for more information.

For the controls and Control templates you add to the window, the Window
template adds embed points to handle the events they generate. After you
place the controls, the Embeds button and the Source button let you attach
custom source code to the events.

The only “predefined” elements of the template, which you can access
through the Procedure Properties dialog, are local variables used to pass
data to and from the calling procedure and to manage the window and
procedure by keeping track of whether the window is open, and whether the
procedure needs to respond to a global event.

The code generated by this template processes the WINDOW structure that
you create with the Window Formatter. It generates code for handling all the
field and window events.

Tip: To duplicate a window created for another application or
procedure, without copying the entire procedure, copy the
WINDOW declaration from the other source code document,
then press the Window ellipsis (...) button and paste in the
declaration. Caution: do NOT do this with windows that
contain Control templates!

Chapter 3 Procedure Templates 95

Window Template Prompts

In addition to the standard Application Generator command buttons and
prompts (see Application Generator in the User’s Guide), the Window
Procedure template Procedure Properties dialog contains the following
prompts which are inherited by all the Window Procedure templates:

Parameters
Specify the parameter list for your procedure. See
PROCEDURE and Procedure Prototypes in the Language
Reference and Prototyping and Parameter Passing in the User’s
Guide for more information.

The parameter list is an optional list of datatypes and labels that
appear on the generated PROCEDURE statement. The entire list
is enclosed in parentheses. There must be a parameter in the
parameter list for each parameter defined in the procedure
prototype. We recommend providing the data type and the
parameter label in both the parameter list and in the procedure
prototype. For example:

(SHORT Id,STRING Name)

You should handle the parameters in the procedure’s embedded
source code.

Return Value
Specify the variable name whose value is returned by the
procedure. You must first supply a return data type in the
Prototype field. See Prototyping and Parameter Passing in the
User’s Guide for more information. You should assign the
appropriate value to the return variable in the procedure’s
embedded source code.

Window Behavior

The Window Behavior button provides access to a tabbed dialog where you
can specify options for the procedure’s WINDOW and its WindowManager.

96 CLARION 5 APPLICATION HANDBOOK

Window Operation Mode
Lets you override some window properties specified in the
Window Formatter. This prompt provides a quick way change
these attributes without using the Window Formatter. Choose
from:

Use Window Setting
Use the attributes as set in the Window Formatter.

Normal Removes the MDI and MODAL attributes from the
WINDOW.

MDI Adds the MDI attribute to the WINDOW.

Modal Adds the MODAL attribute to the WINDOW.

Save and Restore Window Location
Check this box to make this procedure restore its window size
and location from the previous session. You must first check the
Use INI file to save and restore program settings box in the Global
Properties dialog. See Template Overview—General Tab
Options.

Classes
The Classes tab lets you control the WindowManager class (and
object) your procedure uses. You may accept the default
Application Builder Class and its object (recommended), or you
may specify your own or a third party class.

See Template Overview—Classes Tab Options—Local for
complete information on these options.

Browse Template

The Browse template is derived from the Window Template. It generates a
procedure for browsing, scrolling, searching, and navigating through data.
The data can come from one or more related files, and the Browse Procedure
may update the data or it may call a separate procedure to update the data.
The Browse template depends on the BrowseBox Control template for much
of its functionality (see Control Templates for more information). The File
Schematic Definition dialog automatically attaches your file choices to the
BrowseBox Control template. The generated code implements the lookups of
related records.

Browse-Form Paradigm

The Browse template is an integral part of Clarion’s Browse-Form paradigm
which uses Browses (windows with sortable, scrollable, searchable,
selectable lists of data), Forms (windows with a single updatable database
record), and Reports to organize and present database information to end
users. See Template Overview—Browse-Form Application Paradigm for
more information.

Chapter 3 Procedure Templates 97

Browse Template Prompts

In addition to the standard Application Generator command buttons and
prompts (see Application Generator in the User’s Guide), the Browse
template Procedure Properties dialog contains the prompts inherited from
the Window Template (Parameters , Return Value , and Window Behavior —see
Window Procedure Templates—Window Template Prompts), plus the prompts
provided by the BrowseBox Control and the BrowseUpdateButtons Control.

Browse Box Behavior

This button provides access to a tabbed dialog where you can specify options
for the BrowseBox Control template. From here you can control the
BrowseBox’s searching, scrolling, record selection, totalling, colors, icons
and more. See Control Templates—BrowseBox for a complete description of
these prompts.

Update Buttons

The BrowseUpdateButtons Control template provides additional prompts
that determine whether the Browse procedure updates records directly or
calls a separate procedure. See Control Templates—BrowseUpdateButtons
for a complete description of these prompts.

Form Template

The Form template is derived from the Window Template. It generates code
to display and update a single record from a file. It also generates code to
display and access related records in other related files.

The Form template provides a predefined window, with a SaveButton
Control template and a ValidateRecord Extension template. The SaveButton

98 CLARION 5 APPLICATION HANDBOOK

Control template handles the file I/O and the ValidateRecord template
validates incoming data according to data dictionary settings. The File
Schematic Definition dialog automatically attaches your file choices to the
SaveButton Control template. For accessing related records, the Form
template optionally provides a BrowseBox Control template. See Control
Templates and Code and Extension Templates for details on these template
prompts and functionality.

Browse-Form Paradigm

The Form template is an integral part of Clarion’s Browse-Form paradigm
which uses Browses (windows with sortable, scrollable, searchable,
selectable lists of data), Forms (windows with a single updatable database
record), and Reports to organize and present database information to end
users. See Template Overview—Browse-Form Application Paradigm for
more information.

Form Template Prompts

In addition to the standard Application Generator command buttons and
prompts (see Application Generator in the User’s Guide), the Form template
Procedure Properties dialog contains the prompts inherited from the
Window Template (Parameters , Return Value , and Window Behavior —see
Window Procedure Templates—Window Template Prompts), plus the prompts
provided by the ValidateRecord Extension and the SaveButton Control.

Chapter 3 Procedure Templates 99

Record Validation

The ValidateRecord Extension template adds additional prompts so you can
control how and when record validation happens. See Code and Extension
Templates—RecordValidation for a complete description of these prompts.

Save Button Properties

The SaveButton Control template provides additional prompts so you can
control how and when the record is updated, including the type of updates
allowed, whether multiple inserts are allowed, messages shown to the end
user, and more. See Control Templates—SaveButton for a complete
description of these prompts.

Frame Template

This template provides an MDI (Multiple Document Interface) parent frame,
containing a predefined Windows standard menu with standard file, editing,
window management, and help commands.

Browse-Form Paradigm

The Frame template is an integral part of Clarion’s Browse-Form paradigm
which uses Browses (windows with sortable, scrollable, searchable,
selectable lists of data), Forms (windows with a single updatable database
record), and Reports to organize and present database information to end
users. See Template Overview—Browse-Form Application Paradigm for
more information.

When creating an MDI application, the Frame should be the main supervisor
procedure that controls all the other procedures in your application. You start
new execution threads for each MDI child window which you want to appear
inside the frame. The Actions tab for a control or Menu Item provides a
check box to specify the start of a new execution thread (or you can use the
InitiateThread Code template).

The predefined window contains a standard Windows menu with the
following commands:

File—Print Setup, and Exit;
Edit—Cut, Copy, and Paste;
Window—Tile, Cascade, and Arrange Icons;
Help—Contents, How to Use Help, and Search for Help on.

Each of the predefined menu commands implement Standard Windows
Behavior. Clarion’s run-time libraries provide this standard behavior
automatically, You don’t have to code anything for these menu commands.

100 CLARION 5 APPLICATION HANDBOOK

The Frame template includes the standard embed points, plus additional
embeds for the menu commands. If you add a TOOLBAR, embed points are
added for any TOOLBAR controls.

The FrameBrowseControl template adds standard database navigation and
update buttons to the Frame’s toolbor (see Control Templates—
FrameBrowseControl).

Frame Template Prompts

In addition to the standard Application Generator command buttons (see
Application Generator in the User’s Guide), the Frame Procedure template
Procedure Properties dialog contains the prompts inherited from the
Window Template (Parameters , Return Value , and Window Behavior —see
Window Procedure Templates—Window Template Prompts), plus the
following:

Splash Procedure
Names a procedure to call after the application frame opens, but
before any user events are generated. Select from the drop-down
list, or type a new procedure name.

By convention, a splash procedure provides a visual or audio (or
both) fanfare for your program. A splash screen can provide a
recognizable logo or icon whose familiarity may raise the user’s
comfort level and may serve as an advertisement for your
program. Additionally it diverts the user’s attention from the
sometimes boring task of loading and initializing the program.

See Splash Template for more information.

Date and Time Display

This button provides access to a tabbed dialog where you can specify options
for the DateTimeDisplay Extension template. The DateTimeDisplay
template lets you display the time, date, or both in the window’s status bar, or
in a control. See Code and Extension Templates—DateTimeDisplay for a
complete description of these prompts.

Chapter 3 Procedure Templates 101

Menu Template

This template provides an SDI (Single Document Interface) window. It is
similar to the Frame Template in that it generates a menu that is the starting
point for an (SDI) application. In addition to the standard Application
Generator command buttons (see Application Generator in the User’s
Guide), the Menu Procedure template Procedure Properties dialog contains
only the prompts inherited from the Window Template (see Window
Procedure Templates—Window Template Prompts).

Process Template

The Process Procedure template generates code to read through a data file
and perform an operation on each record. You can specify a filter or range of
records on which to perform the operation. A predefined window contains a
progress indicator to show the end user what percentage of the operation is
complete.

The PauseButton control template lets the end user suspend and resume
process processing (see Control Templates—PauseButton).

The ExtendProgressWindow template lets you suppress the progress window
and lets the process run in two distinct modes: single record mode and all
records mode (see Other Templates—ExtendProgressWindow).

Process Template Prompts

In addition to the standard Application Generator buttons and prompts (see
Application Generator in the User’s Guide), the ProcessTemplate Procedure
Properties dialog contains the prompts inherited from the Window Template
(Parameters , Return Value , and Window Behavior —see Window Procedure
Templates—Window Template Prompts), plus the following:

Process Properties

This button provides access to a tabbed dialog where you can specify a wide
variety of functionality for your process procedure. This section describes
the Process Properties dialog.

102 CLARION 5 APPLICATION HANDBOOK

Tip: By default, the Process procedure template does not create
new records nor does it autonumber existing fields or records.

General

Window Message
Text to display on the progress window.

Action for Process
This prompt lets you specify that the process operation changes
(PUTs) or deletes the records that it processes. You can attach
code to the Activity for each Record embed point to
accomplish any custom processing you need.

Use RI constraints on action
Check this box to enforce the RI constraints defined in your data
dictionary. Clear this box to generate a simple PUT or DELETE
depending on the Action for Process chosen.

Quick-Scan Records
Specifies buffered access behavior for file systems that use
multi-record buffers (primarily ASCII, BASIC, and DOS). See
Database Drivers for more information. These file drivers read
several records at a time. In a multi-user environment these
buffers are not 100% trustworthy, because another user may
change a record between accesses. As a safeguard, the driver
refills the buffers before each record access.

Quick scanning is the normal way to read records for batch
processing. However, rereading the buffer may provide slightly
improved data integrity in some multi-user circumstances at the
cost of substantially slower processing.

Record Filter
Type an expression to limit the process to only those records

Chapter 3 Procedure Templates 103

which match the filter expression. You must also specify an
approximate record count (see Approx Record Count).

This filters all displayable records. When a Record Filter is used
in conjunction with a Range Limit, the range limit is applied
first. Because range limits use keys, they are much faster than
filters.

Tip: You must BIND fields used in a filter expression. See Hot
Fields below.

Additional Sort Fields
Type a comma delimited list of fields on which to sort. These
sort fields are in addition to the key for the process set in the File
Schematic Definition dialog.

Approx Record Count
When processing in record order (no key), this number is used to
calculate what percentage of the operation is complete to
provide feedback to the end user. If you don’t specify a number,
the process “counts” the records before processing begins. This
can be relatively fast or slow depending on the file system and
the file size. You must supply an approximate record count when
you use a Record Filter (or a Range Limit that results in a filter).

Set progress bar limits manually?
Clear this box to make your procedure read the result set and set
the progress bar limits automatically. Setting limits
automatically may produce poor performance for some SQL
data sets, or erratic or inaccurate progress indicator for unevenly
distributed result sets. Check this box to manually provide
progress bar limits for the process. Setting manual limits can
provide faster performance for SQL drivers and more accurate
progress indicators for unevenly distributed result sets. This
setting is only effective if you specify a Key for the File in the
File Schematic Definition dialog.

Low Progress Bar Limit
Supply the lowest “free” key element value for the
result set. You may type the value or the label of a
variable containing the value. Enclose literal string
values in single quotes (‘value’).

High Progress Bar Limit
Supply the highest “free” key element value for the
result set. You may type the value or the label of a
variable containing the value. Enclose literal string
values in single quotes (‘value’).

104 CLARION 5 APPLICATION HANDBOOK

Range Limits

This tab is only available if you specify a Key for the File in the File
Schematic Definition dialog. Because range limits use keys, they are
generally much faster than filters.

Range Limit Field
In conjunction with the Range Limit Type , specifies a record or
group of records for inclusion in the process. Choose a key field
on which to limit the records by pressing the ellipsis (...) button.

Range Limit Type
Specifies the type of range limit to apply. Choose one of the
following from the drop-down list.

Current Value Limits the key field to its current value.

Single Value Lets you limit the key field to a single value. Specify
the variable containing that value in the Range
Limit Value box.

Range of ValuesLets you limit the key field to a range of values.
Specify the variables containing the upper and lower
limits of the range in the Low Limit Value and High
Limit Value boxes.

File Relationship
Lets you limit the key field to the current value in a
related (parent) file. Press the Related file ellipsis
(...) button to choose the range limiting file. This
limits the process to include only those child records
matching the current record in the parent file. For
example, if your report was a list of Orders, you
could limit the process to only those orders for the
current Customer.

Chapter 3 Procedure Templates 105

Hot Fields

The Hot Fields tab lets you select additional fields to add to the VIEW. When
scrolling through the file, the generated source code reads the data from a
VIEW, rather than from the disk. This optimizes performance. Elements of
the Primary Key and the current key are always included in the VIEW, so
they do not need to be added to the Hot Field list. Any field used in a
computation or filter must be in the VIEW.

In addition, you can BIND fields through this dialog. You must BIND any
field used in a filter.

Classes

The Classes tab lets you control the class (and object) your Process
procedure uses. You may accept the default Application Builder Class and its
object (recommended), or you may specify your own or a third party class.
Deriving your own class can give you very fine control over the procedure
when the standard Application Builder Class is not precisely what you need.

See Template Overview—Classes Tab Options—Local for complete
information on these options.

Report Template

The Report Procedure template generates code to read through a data file and
update the controls in the report DETAIL for each record. You can specify a
filter or range of records on which to perform the operation. The predefined
window contains a progress indicator to show the end user what percentage
of the operation is complete.

The PauseButton control template lets the end user suspend and resume
report processing (see Control Templates—PauseButton).

The ExtendProgressWindow template lets you suppress the progress window
and lets the report run in two distinct modes: single record mode and all
records mode (see Other Templates—ExtendProgressWindow).

Press the Report button to define your REPORT. No report is predefined
unless you used the Report Wizard to generate the procedure. See REPORT
in the Language Reference for more information. Use the String Properties
dialog to specify totals. See Creating Reports and Controls and Their
Properties in the User’s Guide.

Tip: You cannot automatically calculate intermediate group level
totals with Clarion’s Report Procedure templates and
STRINGs. For example, you cannot add together two group
level totals to create a third total. This type of calculation
requires manual tracking of group breaks.

106 CLARION 5 APPLICATION HANDBOOK

Report Template Prompts

In addition to the standard Application Generator buttons and prompts (see
Application Generator in the User’s Guide), the Report Template Procedure
Properties dialog contains the prompts inherited from the Window Template
(Parameters , Return Value , and Window Behavior —see Window Procedure
Templates—Window Template Prompts), plus the following:

Report Properties

This button provides access to a tabbed dialog where you can specify a wide
variety of functionality for your report procedure. This section describes the
Report Properties dialog.

General

Print Preview
Check this box to let the end user review the report on-screen
before printing it. The end user can then print the report, or
cancel it. Checking this box enables the Preview Options tab
which lets you control the initial appearance of the report
preview window.

Tip: The ReportManager contains the SkipPreview property that
controls whether print preview is invoked. You can use
SkipPreview to enable or disable the print preview at runtime:
a value of one (1) enables print preview and a value of zero (0)
disables it.

Quick-Scan Records
Specifies buffered access behavior for file systems that use
multi-record buffers (primarily ASCII, BASIC, and DOS). See
Database Drivers for more information. These file drivers read
several records at a time. In a multi-user environment these
buffers are not 100% trustworthy because another user may
change a record between accesses. As a safeguard, the driver
refills the buffers before each record access.

Chapter 3 Procedure Templates 107

Quick scanning is the normal way to read records for batch
processing. However, rereading the buffer may provide slightly
improved data integrity in some multi-user circumstances at the
cost of substantially slower processing.

Record Filter
Type an expression to limit the report to only those records
which match the filter expression. You must also specify an
approximate record count (see Approx Record Count).

This filters all displayable records. When a Record Filter is used
in conjunction with a Range Limit, the range limit is applied
first. Because range limits use keys, they are much faster than
filters.

Tip: You must BIND fields used in a filter expression. See Hot
Fields below.

Additional Sort Fields
Type a comma delimited list of fields on which to sort. These
sort fields are in addition to the key for the report set in the File
Schematic Definition dialog.

Approx Record Count
When processing in record order (no key), this number is used to
calculate what percentage of the operation is complete to
provide feedback to the end user. If you don’t specify a number,
the process “counts” the records before processing begins. This
can be relatively fast or slow depending on the file system and
the file size. You must supply an approximate record count when
you use a Record Filter (or a Range Limit that results in a filter).

Set progress bar limits manually?
Clear this box to make your procedure read the result set and set
the progress bar limits automatically. Setting limits
automatically may produce poor performance for some SQL
data sets, or erratic or inaccurate progress indicator for unevenly
distributed result sets. Check this box to manually provide
progress bar limits for the procedure. Setting manual limits can
provide faster performance for SQL drivers and more accurate
progress indicators for unevenly distributed result sets. This
setting is only effective if you specify a Key for the File in the
File Schematic Definition dialog.

Low Progress Bar Limit
Supply the lowest “free” key element value for the
result set. You may type the value or the label of a
variable containing the value. Enclose literal string
values in single quotes (‘value’).

108 CLARION 5 APPLICATION HANDBOOK

High Progress Bar Limit
Supply the highest “free” key element value for the
result set. You may type the value or the label of a
variable containing the value. Enclose literal string
values in single quotes (‘value’).

Range Limits

This tab is only available if you specify a Key for the File in the File
Schematic Definition dialog. Because range limits use keys, they are
generally much faster than filters.

Range Limit Field
In conjunction with the Range Limit Type , specifies a record or
group of records for inclusion in the process. Choose a key field
on which to limit the records by pressing the ellipsis (...) button.

Range Limit Type
Specifies the type of range limit to apply. Choose one of the
following from the drop-down list.

Current Value Limits the key field to its current value.

Single Value Lets you limit the key field to a single value. Specify
the variable containing that value in the Range
Limit Value box.

Range of ValuesLets you limit the key field to a range of values.
Specify the variables containing the upper and lower
limits of the range in the Low Limit Value and High
Limit Value boxes.

File Relationship
Lets you limit the key field to the current value in a
related (parent) file. Press the Related file ellipsis
(...) button to choose the range limiting file. This
limits the process to include only those child records
matching the current record in the parent file. For
example, if your report was a list of Orders, you
could limit the process to only those orders for the
current Customer.

Preview Options

The Preview Options tab lets you control the initial appearance of the report
preview window. This tab is only available if you check the Print Preview
box on the General tab.

Initial Zoom Setting
Sets the initial magnification for the report to one of four
discreet magnification choices. The end user may change the
initial setting.

Chapter 3 Procedure Templates 109

Allow User Variable Zooms?
Check this box to let the end user set custom report
magnifications in addition to the preset magnification choices.

Set Initial Window Position
Check this box to enable the four following prompts to set the
initial preview window position and size.

X Position The initial horizontal position of the left edge of the
window.

Y Position The initial vertical position of the top edge of the
window.

Width The initial width of the window.

Height The initial height of the window.

Maximize Preview Window
Check this box to initially maximize the preview window. This
supersedes the Set Initial Window Position , whose coordinates
are applied only when the window is restored to its normal
unmaximized state.

Hot Fields

The Hot Fields tab lets you select additional fields to add to the procedure’s
VIEW. When scrolling through the file, the generated source code reads the
data from a VIEW, rather than from the disk. This optimizes performance.
Elements of the Primary Key and the current key are always included in the
VIEW, so they do not need to be added to the Hot Field list. Any field used in
a computation or filter must be in the VIEW.

In addition, you can BIND fields through this dialog. You must BIND any
field used in a filter.

Filters

The Filters tab lets you set an expression which determines whether to print
the current item. At runtime, if the expression evaluates to true for the
current item, the procedure prints the item. To be an effective print filter, the
expression must refer to at least one of the fields in the procedure’s VIEW.

This print filter is in addition to the Record Filter set on the General tab. The
Record Filter determines which records are read and processed for the
report; the Detail Filters determines which of the filtered records are
actually printed.

110 CLARION 5 APPLICATION HANDBOOK

Properties
Select the DETAIL structure to filter, then press the Properties
button to specify the filter expression. This opens the Detail
Filters dialog which contains the following prompts.

Filter Type a valid Clarion expression. At runtime, if the
expression evaluates to true, the procedure prints the
DETAIL structure.

Exclude unfiltered
Check this box to apply this filter to any other
DETAIL structures in the report that do not have a
print filter. This lets you set one filter for all the
DETAIL structures in your report.

Classes

The Classes tab lets you control the class (and object) your Process
procedure uses. You may accept the default Application Builder Class and its
object (recommended), or you may specify your own or a third party class.
Deriving your own class can give you very fine control over the procedure
when the standard Application Builder Class is not precisely what you need.

See Template Overview—Classes Tab Options—Local for complete
information on these options.

Splash Template

The Splash Template generates code to display a window with an image and
some text. The window closes automatically after a specified amount of
time. In addition, you can optionally allow the user to close the window at
any time by CLICKING on it.

Chapter 3 Procedure Templates 111

Frame procedures are designed to optionally call Splash procedures. See
Frame Template for more information. Alternatively, you can call Splash
procedures with embedded source code. See Application Generator—
Embedded Source Code.

By convention, a splash procedure provides a visual or audio fanfare for your
program. A splash screen can provide a recognizable logo or icon whose
familiarity may raise the user’s comfort level and may serve as an
advertisement for your program. Additionally it diverts the user’s attention
from the sometimes boring task of loading and initializing the program.

Splash Template Prompts

In addition to the Application Generator command buttons (see Application
Generator in the User’s Guide), the Splash Template Procedure Properties
dialog contains the prompts inherited from the Window Template
(Parameters , Return Value , and Window Behavior —see Window Procedure
Templates—Window Template Prompts), plus the following:

Display Time (in seconds)
Specifies the maximum amount of time the splash window
remains displayed. The window closes automatically after the
time expires.

Close when the user clicks on the splash window
Checking this box lets the user close the window at any time by
CLICKING on it.

Viewer Template

The Viewer Template is derived from the Window Template. It provides a
predefined window with a list box, an ASCIISearch button, an ASCIIPrint
button, and a Close button.

If you wish to use the template to always view the same ASCII file, you can
use it as is. To allow viewing of any ASCII file selected from a standard file
dialog, you’ll need to add an entry box to accept the file name, plus the DOS
File Lookup Control template to select the file to view.

112 CLARION 5 APPLICATION HANDBOOK

Viewer Template Prompts

In addition to the standard Application Generator command buttons and
prompts (see Application Generator in the User’s Guide), the Viewer
Template Procedure Properties dialog contains the prompts inherited from
the Window Template (Parameters , Return Value , and Window Behavior —see
Window Procedure Templates—Window Template Prompts), plus the prompts
provided by the AsciiViewControl.

AsciiViewControl Properties

The AsciiViewControl Control template provides additional prompts so you
can control which file to view, whether the end user can search or print the
file, or both. See Control Templates—AsciiViewControl for a complete
description of these prompts.

Chapter 3 Procedure Templates 113

Other Procedure Templates

External Template

The External Procedure template declares a procedure contained in an
external library or object file (*.LIB only). The Application Generator writes
no source code for this template, instead, the project system simply links in
the named external file as a module. See Development and Deployment
Strategies for more information.

The External Procedure template requires an associated external Lib or Obj
module (see Application Generator—Application Menu in the User’s Guide).
If your application has no external modules, the External Procedure template
opens the Select Module Type dialog so you can create one. Choose OBJ or
LIB from the Select Module Type dialog; the other choices are not valid for
the External Procedure template.

In the Module Name field, select the file name of the external library or
object file from the drop-down list . Only those external modules already
included in the project appear, so if your module does not appear, add the
new module first. To add the module in the Application Generator, choose
Application ➤ Insert Module . See Application Generator—Application
Menu in the User’s Guide).

Optionally type the external procedure’s prototype in the Prototype field.
See Application Generator—Prototyping and Parameter Passing in the
User’s Guide.

Source Template

The Source Procedure template provides an elegant and simple way to add
hand code to your application. It provides two points at which to embed your
code: the data section, and the code section.

The template simply declares the procedure, handles any optional
parameters, places the embedded data declarations in the data section, begins
the CODE section, then places any embedded executable code in the CODE
section:

... (local data)
CODE
... (your embedded code)

Source Template Prompts

In addition to the standard Application Generator command buttons and
prompts (see Application Generator in the User’s Guide), the Source

114 CLARION 5 APPLICATION HANDBOOK

template Procedure Properties dialog contains the following additional
prompts:

Parameters
Specify the parameter list for your procedure. See
PROCEDURE and Procedure Prototypes in the Language
Reference and Prototyping and Parameter Passing in the User’s
Guide for more information.

The parameter list is an optional list of datatypes and labels that
appear on the generated PROCEDURE statement. The entire list
is enclosed in parentheses. There must be a parameter in the
parameter list for each parameter defined in the procedure
prototype. We recommend providing the data type and the
parameter label in both the parameter list and in the procedure
prototype. For example:

(SHORT Id,STRING Name)

You should handle the parameters in the procedure’s embedded
source code.

CHAPTER 4 CONTROL TEMPLATES 115

4 - CONTROL TEMPLATES

Overview
A control is almost anything you see on a window or a report. For example, a
check box, a push button, an entry field, and a list box are all controls.

Control templates generate source code to declare controls and manage their
associated data. For example, the BrowseBox Control template not only
generates source code to declare a list box, it also generates code to load data
into a QUEUE, then display the QUEUE in the list box with complete
scrolling, searching, sorting, updating, and mouse-click selection capability.

Control templates can also control file I/O; for example, the SaveButton
Control template can warn that changes were made if the end user tries to
close the window without saving the changes to disk.

Tip: Generally, it is to your advantage to use a Control template
rather than a simple control.

This chapter describes all the Control templates included with Clarion and
provides a guide to filling out their prompts.

Adding Control Templates

When starting with a new procedure, to add a Control template:

1. In the Window Formatter or Report Formatter, add a Control template by
clicking on the tool in the Controls tool box.

2. Choose a Control template from the Select Control template dialog, then
place the control on the window or report by clicking on the desired
location.

The formatter places one or more controls (the type of controls depend
on the Control template) in the window or report.

3. RIGHT-CLICK on the control, then choose Actions from the popup menu to
access the Control template prompts.

These prompts define and customize its functionality.

4. Select the other tabs on the Properties dialog to set the control’s
appearance, location, and other functionality.

Once a Control template is added to a procedure, a check box appears next to
the Extensions button in the Procedure Properties dialog. You can access the
Control template prompt with this button.

116 CLARION 5 APPLICATION HANDBOOK

Read-Only Browse Templates
The read-only file browsing templates include the AsciiViewControl
template and its associated print button and search button templates. This
section describes these related templates.

The AsciiViewInList Extension template provides the same functionality for
an independent LIST control (a LIST not placed by the Extension template).
See Code and Extension Templates—AsciiViewInList for more information.

ASCIIViewControl

The AsciiViewControl template adds a LIST control in which you can
display read-only, the contents of a file—including variable length files. It is
typically used to display an ASCII text file. The AsciiViewControl template
optionally provides search and print capability for the displayed file.

The template lets you select the file to view at design time, or leaves the
selection to the end user at runtime if you prefer. Finally, the template
optionally allows the LIST control to alternate its display between the
selected file and some other data that you specify.

The AsciiViewControl template provides embed points for its LIST control.
It also provides the following prompts on the List Properties dialog Actions
tab, the Procedure Properties dialog, or the Extension and Control Templates
dialog:

General Options

Initialize Viewer
Determines when the procedure initializes the Viewer object.
Initialization includes selecting the file to view, opening it, and
reading it.

On Open Window
Initializes the Viewer when the window opens so
that the Viewer’s LIST is full upon initial display.

On Field Selection
Delays initializing the Viewer until the end user
selects the Viewer’s LIST control.

Manually Does not initialize the Viewer. You must embed a
call to the Viewer#.Initialize ROUTINE to initialize
the Viewer.

File to Browse
Specifies the path and name of the file to view, or a variable
containing the path and name of the file to view. The variable
must be preceded by an exclamation point (!).

CHAPTER 4 CONTROL TEMPLATES 117

If no path is specified, the procedure looks for the file in the
current directory.

If omitted (left blank), the Viewer object prompts the end user to
select a file.

Reassign FROM attribute after Kill
Check this box to reset the Viewer LIST’s FROM attribute after
the Viewer shuts down. See FROM in the Language Reference.
This lets you use a single LIST control to display both the File to
Browse and other items as well.

Value or queue to assign
Type the label of the QUEUE (or the string constant) to assign to
the Viewer LIST’s FROM attribute.

Allow popup menu searching
Check this box to provide a (RIGHT-CLICK) popup menu choice to
search the file.

Allow popup menu printing
Check this box to provide a (RIGHT-CLICK) popup menu choice to
print some or all of the records in the file.

Classes Options

See Procedure Templates—Process Template for a complete description of
these prompts.

ASCIIPrintButton

The AsciiPrintButton template adds a “Print” button and the underlying code
to print some or all records from the associated AsciiViewControl template’s
file. The AsciiPrintButton is only available for use with an existing
(populated) AsciiViewControl template.

The AsciiPrintButton template provides no additional prompts. It does add
embed points for the BUTTON.

ASCIISearchButton

The ASCIISearchButton template adds a “Search” button and the underlying
code to search the associated AsciiViewControl template’s file. The
ASCIISearchButton is only available for use with an existing (populated)
AsciiViewControl template.

The ASCIISearchButton template provides no additional prompts. It does
add embed points for the BUTTON.

118 CLARION 5 APPLICATION HANDBOOK

Read-Write Browse Templates
The read-write file browsing templates include the BrowseBox template, the
RelationTree template and their associated templates (BrowsePrintButton,
ReltreeUpdateButtons, etc.). This section describes these templates.

BrowseBox Overview

The BrowseBox Control template places a “page-loaded” or a “file-loaded”
LIST control in a window and generates code to fill the list with data, and to
scroll, search, sort, and select the listed items. It generates code to select or
filter the data, total the data, update the data directly (edit-in-place), or call a
separate procedure to update the data. It also generates code to conditionally
set the colors and icons associated with each row and column in the LIST.
The standard BrowseBox behavior is defined by the ABC Library’s
BrowseClass. See BrowseClass for more information.

The BrowseBox template is highly configurable and so is its LIST control.
That is, each function, from scrolling to colorizing, is customizable with the
BrowseBox template prompts described below. The appearance of the
BrowseBox’s LIST is fully customizable with the List Box Formatter (see
List Box Formatter in the User’s Guide).

Page-loading versus File-loading

The page-loaded BrowseBox LIST loads very quickly, because only a few
records, rather than the entire file, are loaded into memory from disk. The
primary advantage of page-loading is speed and resource (RAM) savings
when browsing large files. The disadvantage is that vertical scroll bars don’t
work quite as smoothly as for file-loaded LISTs.

Tip: You can use the BrowseBox Control template to manage a
drop- list by setting the DROP attribute to a value greater than
zero (0) .

Placing a BrowseBox on your window

You can place the BrowseBox Control template in a window by clicking on
the control template tool , then selecting BrowseBox - File Browsing List
Box in the Select Control template dialog. After you select the BrowseBox
template, the Application Generator automatically opens the List Box
Formatter so you can choose the files, fields and variables to display in the
list, and you can set the appearance of the list and its fields.

CHAPTER 4 CONTROL TEMPLATES—BROWSEBOX 119

Populating and Formatting the List Fields

The Populate button lets you add a field or variable to the list box, one field
or variable at a time from the Select Field dialog. The Select Field dialog
presents the file schematic. Within the schematic, the BrowseBox control
appears, with a <To Do> beneath it. To add a field from a data file defined in
the dictionary:

❏ Select the <To Do> item.

❏ Press the Insert button

❏ Select the file from the Insert File dialog.

❏ If you want to use a key, press the Key button to select the key from the
Key Access dialog. If you do not select a key, the list is displayed in
record order, which also disables the ability to set Range Limits.

❏ Select a field from the Fields list, which appears in the right side of the
Select Field dialog. After you select the file, key and field (or variable)
the formatter opens the List Field Properties dialog where you can define
the field’s appearance within the list.

See Application Generator—Procedure Files in the User’s Guide for more
information on the File Schematic. See List Box Formatter in the User’s
Guide for more information on formatting the LIST.

When you are finished with the List Box Formatter , CLICK in the window to
place the BrowseBox’s LIST control.

List Properties

RIGHT-CLICK on the LIST control and choose Properties from the popup menu
to view the List Properties dialog. See Controls and Their Properties—List in
the User’s Guide for complete information about the LIST options available
in this dialog.

Scrolling with a Page-loaded BrowseBox

Scrolling through a page-loaded, optionally filtered database is very different
than scrolling through more typical Windows files such as word-processing
documents, spread-sheets, or File Manager/Explorer type directory lists.
Primarily, the differences are the large size of the database (requiring page-
loading) and the potential variations in size and data distribution due to
filtering. These differences can result in vertical scroll bar behavior that is
somewhat different than you and your end users might expect.

120 CLARION 5 APPLICATION HANDBOOK

Size Considerations

Even with completely accurate calibration, vertical scroll bars can produce
less than optimum results on large datasets. For example, for a result set of
one hundred thousand items, a perfectly calibrated scroll bar thumb can only
provide very gross positioning. This is because the smallest distance the
thumb can move (a pixel), represents between 1/200th (typical 640x480
scroll bar) to 1/400th (long 640x480 scroll bar) of the total scroll bar length,
and therefore 1/200th (500 items) to 1/400th (250 items) of the records in the
result set. For a million record result set, the numbers jump to a whopping
2,500 to 5,000 items per pixel, making the vertical scroll bar a poor choice
for navigation.

For large data sets, locators in combination with VCR buttons (no sliding
thumb) provide better functionality and happier end users. See Locator
Behavior below.

Calibration Considerations

With the performance advantage that comes with page-loaded lists, comes
the disadvantage of not having the entire list in memory, and therefore not
knowing the total number of records in the result set, nor the relative position
of a given record within the result set. To produce “standard” vertical scroll
bar behavior for a page-loaded list box, the scrolling procedure must know
three things: the number of records in the result set, the relative position of a
record in the result set, and the record that resides at a relative position in the
result set. Since database engines do not provide this information for keyed
or filtered result sets (it would be too slow), the page-loaded scrolling
procedure must estimate these values when the end user drags the scroll bar
thumb or selects or locates an item in the result set.

The BrowseBox template offers a versatile set of options for estimating these
values and for calibrating the vertical scroll bar to best fit your database. See
Scroll Bar Behavior for more information.

BrowseBox Options

The BrowseBox template provides the following prompts (on the List
Properties dialog Actions tab, the Browse Procedure Properties dialog, or the
Extension and Control Templates dialog) as well as embed points for the
LIST:

Default Behavior

This tab contains the prompts that control the default behavior of the
BrowseBox.

Loading Method
Select the method used to read the BrowseBox data.

CHAPTER 4 CONTROL TEMPLATES—BROWSEBOX 121

Page Page-loading provides near-instantaneous displays
for unfiltered data, even for very large datasets.
Page-loading uses less memory than file-loading,
because only a few records are held in memory at a
time. We recommend page-loading for larger
datasets.

File File-loading provides smooth, accurate vertical
scroll bar behavior, plus no additional network
traffic when scrolling and searching. File-loading is
also quite SQL friendly, avoiding problematic
backward scrolling. We recommend file-loading for
smaller datasets.

Quick-Scan Records (buffered reads)
Specifies buffered access behavior for file systems that use
multi-record buffers (primarily ASCII, BASIC, and DOS). See
Part III - Database Drivers for more information. These file
drivers read a buffer at a time, allowing for fast access. In a
multi-user environment these buffers are not 100% trustworthy,
because another user may change a record between accesses.
Without quick-scan, the driver refills the buffers before each
record access as a safeguard.

Quick-scanning is the normal way to read records for browsing.
However, rereading the buffer may provide slightly improved
data integrity in some multi-user circumstances at the cost of
substantially slower processing.

Accept browse control from Toolbar

122 CLARION 5 APPLICATION HANDBOOK

Check this box to accept navigation events and other browse
control events generated by the FrameBrowseControl control
template on the APPLICATION’s toolbar. See
FrameBrowseControl for more information on these toolbar
buttons and their operation. Clear this box to disable the
FrameBrowseControl toolbar buttons for this procedure and use
local navigation controls only. See also SetToolbarTarget.

Locator Behavior

Locator
A locator lets the user search for specific records in the list box without
manually scrolling through the entire list. Locator is only available when
browsing a file in Key Order (specify a KEY in the File Schematic). The
search field must be the first free key element, that is, the first component
field of the browse key that is not range limited to a single value. The
standard Locator behavior is defined by the ABC Library’s LocatorClass.
See LocatorClass for more information.

For multi-key browses (the Wizards create them), you may have multiple
locators. Use the Conditional Behavior tab to set additional locators for the
additional sorts. Choose from the following locator types in the drop-down
list:

None
Specifies no locator.

Step
Specifies a single-character locator with no locator control
required. When the BrowseBox has focus and the user types a
character, the list box advances to the first occurrence of the key
field beginning with that character (or the next higher character
if no keys match the locator character). Retyping the same
character advances the list to the next occurrence of the key field
beginning with that character.

Use a step locator when the first free key element is a STRING,
CSTRING, or PSTRING and you want the search to take place
immediately upon the user’s keystroke. Step locators are not
appropriate for numeric keys. If there is no browse key, the
Application Generator converts to no locator.

See StepLocatorClass for more information.

Entry
Specifies a multi-character locator that activates when the
locator control is accepted (not upon each keystroke). The
locator control may be an ENTRY, COMBO, or SPIN. Use an
Entry locator when you want to search on numeric or
alphanumeric keys, and delay the search until the user accepts
the locator control (presses ENTER or TAB). This delayed search
reduces network traffic and provides a smoother search in a
client-server environment.

CHAPTER 4 CONTROL TEMPLATES—BROWSEBOX 123

The locator control should come after the LIST control in the
Set Control Order dialog.

By default, the locator control is the control whose USE attribute
is the first free key element of the browse key. A free component
is one that is not range limited to a single value. If there is no
such control, the Application Generator converts to a Step
locator. If there is no browse key, the Application Generator
converts to no locator.

When the end user places one or more characters in the locator
control, then accepts the control by pressing TAB, pressing a
locator button (see FrameBrowseControl, or see List
Properties), or selecting another control on the screen, the list
box advances to the nearest matching record.

See EntryLocatorClass for more information.

Incremental
Specifies a multi-character locator, with no locator control
required (but strongly recommended). Use an Incremental
locator when you want to search on numeric or alphanumeric
keys and you want the search to take place immediately upon the
user’s keystroke.

The locator control should come after the LIST control in the
Set Control Order dialog.

The locator control may be a STRING, ENTRY, COMBO, or
SPIN, however, any control other than a STRING causes the
Incremental locator to behave like an Entry locator—the search
is delayed until the control is accepted.

With a STRING control, when the list has focus, characters are
automatically placed in the locator string for each keystroke, and
the list box immediately advances to the nearest matching
record. The backspace key removes characters from the locator
string.

We strongly recommend using a STRING control as the
Incremental locator control so the search occurs immediately
with each keystroke, and so the user can see the key value for
which the BrowseBox is searching.

By default, the locator control is the control whose USE attribute
is the first free key element of the browse key. A free component
is one that is not range limited to a single value. If there is no
such control, the Application Generator converts to a Step
locator. If there is no browse key, the Application Generator
converts to no locator.

See IncrementalLocatorClass for more information.

Filtered
Specifies a multi-character locator, with no locator control
required (but strongly recommended). Use a Filter Locator when

124 CLARION 5 APPLICATION HANDBOOK

you want to search on alphanumeric keys and you want to
minimize network traffic.

This locator is like an Incremental Locator with a record filter. It
specifies a range of values for which to search and returns a
limited result set—only those records that fall within the
specified range. Each additional (incremental) search character
supplied results in a smaller, more refined result set. For
example, a search value of ‘A’ returns all records from ‘AA’ to
‘AZ’; a search value of ‘AB’ returns all records from ‘ABA’ to
‘ABZ’.

The Filtered Locator determines the boundaries for the search
based on the user specified search value. The implementation of
the boundaries depends on the database driver—for SQL
databases, the Filtered Locator uses a LIKE; for ISAM databases
it supplies upper and lower bounds.

The locator returns only the records that match the search value,
providing, in effect, a dynamic range limit or filter for the
browse.

Tip: The Filtered Locator performs very well on SQL databases and
on high order key component fields; however, performance
may suffer if applied to non-key fields or low order key fields
of non-SQL databases.

See FilterLocatorClass for more information.

Override default locator control
The default locator control is the control whose USE attribute is
the first free (unlimited) element of the browse key. To override
this default and specify a different locator control, check this
box. This option is provided in case you have multiple controls
with the same free element as their USE attributes—that is,
when you have both ascending and descending keys on the same
field.

Select one of the controls to use as the locator control from the
New Locator Control list.

Find Anywhere
For Filtered Locators only, check this box to apply the search
value to the entire field (field contains search value). Clear the
box to apply the search value only to the leftmost field positions
(field begins with search value). For example a search for “ba”
returns different results based on the Find Anywhere box:

cleared checked

Bain Bain
Barber Barber
Bayert Bayert

Dunbar
Suba

CHAPTER 4 CONTROL TEMPLATES—BROWSEBOX 125

See FilterLocatorClass.FloatRight for more information.

Locator Class
Press this button to override the global Locator Manager setting.
See Template Overview—Classes Tab Options—Global and
Local.

Record Filter
Type a valid Clarion expression to limit the contents of the
browse list to only those records causing the expression to
evaluate to true (nonzero or non-blank). The procedure loops
through all displayable records to select only those that meet the
filter. Filters are generally much slower than Range Limits.

You must BIND any file field that is used in a filter expression.
The Hot Fields tab lets you BIND fields. The standard filter
behavior is defined by the ABC Library’s ViewManager. See
ViewManager for more information.

Range Limit Field
In conjunction with the Range Limit Type , specifies a record or
group of records for inclusion in the list. Choose a field by
pressing the ellipsis (...) button. The range limit is key-
dependent. Range Limits are generally much faster than filters.
The standard range limit behavior is defined by the ABC
Library’s ViewManager. See ViewManager.AddRange for more
information.

Range Limit Type
Specifies the type of range limit to apply. Choose one of the
following from the drop-down list.

Current Value Limits the key to the current value of the Range
Limit Field .

Single Value Lets you limit the key to a single value. Specify the
variable containing that value in the Range Limit
Value box which appears.

Range of ValuesLets you specify upper and lower limits. Specify the
variables containing the limits in the Low Limit and
High Limit boxes.

File Relationship
Lets you choose a range limiting file from a
1:MANY relationship. This limits the list to display
only those child records matching the current record
in the parent file. For example, if your list was a list
of Orders, you could limit the display to only those
orders for the current Customer (in the Customer
file).

126 CLARION 5 APPLICATION HANDBOOK

Additional Sort Fields
Specify fields to sort on in addition to any key specified in the
File Schematic by typing an ORDER expression list (a comma
delimited list of field names). See ORDER in the Language
Reference for more information. If no key is specified, the list is
only ordered by the additional sort fields. See
ViewManager.AppendOrder for more information.

Reset Fields
Press this button to add reset fields. If the value of any reset field
changes, the procedure resets the BrowseBox list (reapplies sort
order, filter, etc.). You don’t need a reset field for range limit
fields or locators. Use a reset field to reset the BrowseBox based
on controls or data that are not directly related to the
BrowseBox. See BrowseClass.AddResetField,
WindowManager.Reset, and WindowManager.AutoRefresh for
more information.

Scroll Bar Behavior
Pressing this button displays a dialog where you can define
vertical scroll bar behavior for page-loaded BrowseBoxes.

Tip: For file-loaded lists, you automatically get Standard Windows
Behavior (movable thumb) for the scroll bar. However, since
this is not possible for page-loaded lists, these options let you
choose the behavior that best suits your application. See
Scrolling with a Page-loaded BrowseBox for more information.

Scroll Bar Type
Choose from Fixed Thumb or Movable Thumb .

Fixed Thumb The thumb (square 3D box in the middle of the
scroll bar) remains in the center of the scroll bar.
CLICK above the thumb to scroll up one “page.” CLICK

below the thumb to scroll down one “page.” DRAG

the thumb to the top or bottom of the scroll bar to
scroll the top or bottom of the file.

Tip: Choose Fixed Thumb when browsing large SQL tables to get
best performance.

Movable ThumbCLICK and DRAG the thumb to scroll a proportional
distance in the list. The thumb remains where you
drag it, and its position on the scroll bar indicates
the relative (estimated) position within the browse
list.

CLICK above the thumb to scroll up one “page.” CLICK

below the thumb to scroll down one “page”.

CHAPTER 4 CONTROL TEMPLATES—BROWSEBOX 127

When you choose Movable Thumb, you can also set
the Key Distribution to further define how the
BrowseBox estimates the thumb’s relative position
within the browse list.

Key Distribution Specifies the distribution of the 100 scroll bar
segments. Choose one of the two predefined
distributions (Alpha or Last Names), or Custom, or
Run-time from the drop-down list.

Alpha Defines 100 evenly distributed points based on
the English alphabet. If the access key is
numeric, you should use a custom or run-time
distribution.

Last Names Defines 100 points distributed as last names are
commonly found in the United States. If the
access key is numeric, you should use a custom
or run-time distribution.

Custom Lets you define your own points.

Run-time Reads the first and last record and computes the
values for 100 evenly distributed points in
between.

Custom Key Distribution
Sets the break points along the scroll bar (useful
when you have data with a skewed distribution).
Insert the values for each point in the list. String
constants should be in single quotes (‘ ’).

128 CLARION 5 APPLICATION HANDBOOK

Run-time Distribution Parameters
Specify the characters considered when
determining the distribution points. This is only
appropriate when the free element is a STRING
or CSTRING. Choose from Use alpha
characters (Aa-Zz), Use numeric characters (0-
9), and Use other keyboard characters.

Step Class Press this button to override the global Step
Manager setting. See Template Overview—Classes
Tab Options—Global and Local.

Conditional Behavior

This tab contains a list box that lets you define BrowseBox behavior based
on conditions or expressions. Add expressions to the list by pressing the
Insert button. This displays a dialog where you define the expression and the
associated behavior when that expression evaluates to true (nonzero or non-
blank).

At run-time the expressions are evaluated, and the behavior for the first true
condition in the list is used.

In this dialog you can specify:

Condition Any valid Clarion expression.

Key to Use Optionally, the key to use to sort the BrowseBox
data when the expression is true.

The remaining fields and buttons are the same as the Default Behavior tab.

Hot Fields

When you select the Hot Fields tab, you can specify fields not populated in
the list to add to the QUEUE. When scrolling through the file, the generated
source code reads the data for these fields from the QUEUE, rather than
from the disk. This speeds up list box updates.

Specifying “Hot” fields also lets you place controls outside the BrowseBox
that are updated whenever a different record is selected in the list box.
Elements of the primary key and the current key are always included in the
QUEUE, so they do not need to be inserted in the Hot Field list.

CHAPTER 4 CONTROL TEMPLATES—BROWSEBOX 129

BIND Field
Check this box to BIND the field. You must BIND any field that
is used in a filter expression or as a field to total. See BIND in
the Language Reference.

Not in view
Check this box to tell the template the selected field is not part of
the BrowseBox VIEW—rather it is a global or local variable—
and therefore the BrowseBox generated code should not attempt
to clear it or otherwise manipulate it.

Colors

This tab is only available if you check the Color box in the List Box
Formatter. It displays a list of the BrowseBox columns which may be colored
on a row-by-row basis.

To specify the default colors and any conditional colors, highlight the
column’s field name, then press the Properties button. This opens the
Customize Colors dialog.

Customize Colors

This dialog lets you specify the default and conditional Foreground and
Background colors for normal (unselected) rows; and for selected rows.

Conditional Color Assignments
Below the default colors section is the Conditional Color
Assignments list. This list lets you set colors to apply when an
expression evaluates to true (nonzero or non-blank). To add an
expression and its associated colors, press the Insert button.

130 CLARION 5 APPLICATION HANDBOOK

At run-time the expressions are evaluated, and the colors for the
first true expression are used.

Icons

This tab is only available if you check the Icons box in the List Box
Formatter. It displays a list of the BrowseBox columns which can display
icons.

To specify default icons and any conditional icons, highlight the column’s
field name then press the Properties button. This opens the Customize
BrowseBox Icons dialog.

Customize BrowseBox Icons

This dialog lets you specify the default icon and conditional icons for the
BrowseBox column.

Default Icon
The default icon to display. Type the icon (.ICO) filename.

Conditional Icon Usage
Below the Default Icon section is the Conditional Icon Usage list.
This list lets you set icons to apply when an expression evaluates
to true (nonzero or non-blank). To add an expression and its
associated icon, press the Insert button.

At run-time the expressions are evaluated, and the colors for the
first true expression are used.

CHAPTER 4 CONTROL TEMPLATES—BROWSEBOX 131

Totaling

This tab contains a list box that lets you define total fields for a BrowseBox.
Press the Insert button to add total fields. This opens the Browse Totaling
dialog where you can define total fields for the BrowseBox.

Total Target Field
The variable to store the calculated total. This can be a local,
module, or global variable. You may also use a file field;
however, you must write the code to update the file.

Total Type
Choose Count, Sum, or Average from the drop-down list. Count
tallies the number of records. Sum adds the values of the Field to
Total. Average determines the arithmetic mean of the Field to
Total.

Field to Total
The field to sum or average. This box is disabled when the Total
Type is Count .

Total Based On
Choose Each Record Read or Specified Condition from the drop-
down list. This specifies whether to consider every record or
only those that meet the Total Condition criteria.

Total Condition
The condition to meet when using a Total based on a specified
condition. You can use any valid Clarion expression. You must
BIND any fieldnames used in this expression. Use the Hot Fields
tab to BIND fieldnames.

Classes

The Classes tab lets you control the class (and object) the procedure uses.
You may accept the default Application Builder Class and its object
(recommended), or you may specify your own or a third party class.
Deriving your own class can give you very fine control over the procedure
when the standard Application Builder Class is not precisely what you need.

See Template Overview—Classes Tab Options—Local for complete
information on these options.

BrowsePrintButton

The BrowsePrintButton template provides a Print button to call a procedure
with the ProcessRecord request (see Procedure Templates—Inter-Procedure
Communication for more information).

132 CLARION 5 APPLICATION HANDBOOK

Print All Items

If you use the BrowsePrintButton to call a simple Report procedure, the
report prints as usual, applying any design-time keys, sort orders, range-
limits, and filters.

Print the Selected Item

If you use the BrowsePrintButton to call a Report procedure with the
ExtendProgressWindow extension template (set to Single record), the report
reacts to the ProcessRecord request and processes only the selected
BrowseBox item. See Other Templates—ExtendProgressWindow for more
information.

Note: This option works by using a current-value limit on the report
key. Therefore, if you have a non-unique key you can print
multiple items—for example, all customers named Smith.

The BrowsePrintButton template provides the following prompts:

Print Button
Type the name of a procedure to call or select a procedure from
the drop-down list.

BrowsePublishButton

The BrowsePublishButton template provides a Publish button to generate the
Hypertext Markup Language (HTML) to display records from a BrowseBox
queue. In other words, use this template to publish your BrowseBox
information to an Internet Web page!

Note: The BrowsePublishButton template is only available in the
Clarion template chain and cannot be used with the ABC
Templates.

The resulting Web page displays a headline that you specify, plus the headers
from your list box. The Web page formats the list box data using the picture
tokens specified in the list box.

At runtime, the user may specify the filename for the generated HTML.
Also, the user has the option to publish all the items in the BrowseBox queue
or just the items currently displayed on the screen.

The BrowsePublishButton template provides the following prompts:

Use variable for HTML name
Check this box to specify the HTML file with a variable. This
enables the Variable HTML filename field to name the variable,
and disables the Default HTML Name field.

CHAPTER 4 CONTROL TEMPLATES—BROWSEBOX 133

Default HTML Name
Specifies the default filename for the HTML code or the variable
that contains the HTML filename. Press the ellipsis (...) button to
select the file from the standard Open File dialog, or to select or
define a data dictionary field or memory variable from the Select
Field dialog.

If you don’t specify a full path, your procedure writes the file to
the current directory. At runtime, the user may specify a different
file and path name.

HTML Title
Specifies the title for your HTML document. The title appears in
the Web browser’s caption when it displays the document.

Table Heading
Specifies headline that displays at the top of the Web page.

Background Graphic
Specifies a graphic image that displays “behind” the queue
items. Note, most Web Browsers support graphic images,
however, some older versions do not.

Use Grid Lines
Check this box to display the queue items within a rectangular
grid. Note, most Web Browsers support grid lines, however,
some older versions do not.

Grid Line Width
Specifies the thickness of the border defining the grid.

BrowseQueryButton

The BrowseQueryButton template provides a Query button to let the end user
apply a dynamic (run-time) filter to the BrowseBox result set. In other
words, the end user can query the underlying dataset and display the results
of the query in the BrowseBox list.

The default query interface is a dialog with an input field and a comparison
operator button for each list box column.

134 CLARION 5 APPLICATION HANDBOOK

The end user may provide filter criteria for zero or more fields. Additional
filter criteria result in a more refined search and a smaller result set (the filter
conditions are conjunctive—ANDed together).

Runtime Options

The default comparison operator is (=), which searches for an exact match
between the BrowseBox field and the corresponding Query input field. By
default all matches are case sensitive. Pressing the comparison operator
button cycles through all the available operators:

Operator Filter Effect
= browsefield equal queryvalue
>= browsefield greater than or equal queryvalue
<= browsefield less than or equal queryvalue
<> browsefield not equal queryvalue

no filter

For string fields, you may use the following special characters in the Query
input field to refine your search:

Symbol Position Filter Effect
^ prefix caseless (case insensitive) search
* prefix browsefield contains queryvalue
* suffix browsefield begins with queryvalue

For example:

d - matches ‘d’ only
d* - matches ‘dog’, ‘david’
*d - matches ‘dog’, ‘cod’
^*d - matches ‘dog’, ‘cod’, ‘coD’

Upon completion of the Query dialog, the current sort order of the
BrowseBox is filtered to match the query. If Query is selected again, the

CHAPTER 4 CONTROL TEMPLATES—RELATIONTREE 135

previous query is available by default. This allows sharing of filters between
sort orders, as well as successive filter refinements.

The standard Query behavior is defined by the ABC Library’s QueryClass.
See QueryClass, QueryFormClass, and QueryFormVisual for more
information.

The BrowseQueryButton template provides the following prompts:

General

Query Interface
Select the query interface from the drop-down list. Choose from

Form One input field and button per Query field

List One listbox row per Query field

Auto Populate
Check this box to provide a query dialog with filter criteria for
each field in the BrowseBox. The input fields have the same
picture token and prompt as the corresponding BrowseBox field.

Clear this box to enable the Fields button and specify custom
query input fields.

Fields
Press this button to populate specific query input fields. You can
use this option to restrict the query to some subset of BrowseBox
fields, or to expand the query to include fields not in the
BrowseBox. You can also implement caseless searches by
default.

Field Type the field name to include in the Query dialog,
or press the ellipsis button to select the field from
the Select Field dialog.

Title Type the prompt or label associated with the Query
field.

Picture Type a picture token for the Query field, or press the
ellipsis button to select a token with the Edit Picture
dialog.

136 CLARION 5 APPLICATION HANDBOOK

Caseless Check this box to do case insensitive searches on the
Query field. Clear the box to do case sensitive
searches.

Retain Query
This option is checked by default, and indicates that the end-
user’s query will remain in the Query dialog on the subsequent
press of the Query button. Clear the check box to reset the
Query dialog on each press of the Query button.

Use on startup
Check this box to open the Query dialog before the Browse
procedure opens.

Auto-share between tabs
Check this box to make the query applicable to all tabs
associated with the browse.

Result Control
Optionally select a STRING Control from the Droplist to display
the filter statement created by the QBE object. A property
assignment is made to the selected control (using PROP:Text),
therefore it is not necessary to associate a variable with the
STRING.

QBE Class

Select this tab to override the global Query Manager setting. See Template
Overview—Classes Tab Options—Global and Local.

QBE Visual Class

Select this tab to override the global Query Manager setting. See Template
Overview—Classes Tab Options—Global and Local.

BrowseSelectButton

The BrowseSelectButton template provides Select button to choose a record
from a list box.

The generated source code gets the currently selected record from the list
(makes the selected record the current one in the browsed file’s record
buffer), and closes down the procedure. For the end user, pressing the Select
button is equivalent to double-clicking an item in the list.

The BrowseSelectButton template provides the following prompts:

Hide the Select button when not applicable
Check this box to hide the Select button when the procedure is
not called for selection purposes (GlobalRequest <>
SelectRecord).

CHAPTER 4 CONTROL TEMPLATES—RELATIONTREE 137

Allow Select via Popup
Check this box to allow record selection with a RIGHT-CLICK

popup menu. The template adds a popup menu item whose text
matches the text on the Select button. The menu item is disabled
when the Select button is disabled or hidden.

BrowseToolboxButton

The BrowseToolboxButton template provides a Toolbox button. Pressing the
button starts a floating, dockable toolbox containing buttons that invoke the
BrowseBox actions defined by the BrowseBox popup menu (Insert, Change,
Delete, Select, Print, etc.).

The BrowseBox template automaically adds the Toolbox choice to its popup
menu; therefore you can HIDE the Toolbox button but still provide access to
the toolbox with the popup menu.

The BrowseToolboxButton template provides no configuration prompts.

The standard Toolbox behavior is defined by the ABC Library’s PopupClass.
See PopupClass for more information.

BrowseUpdateButtons

The BrowseUpdateButtons template provides three buttons for managing file
I/O for a BrowseBox: Insert, Change, and Delete. These three buttons act on
the records in a BrowseBox. When pressed, the button retrieves the selected
record and invokes the respective database action for that record. See
Procedure Templates—Inter-Procedure Communication for more
information on requested database actions.

The BrowseUpdateButtons template lets you specify a separate update
procedure (recommended for files with two-way relationships) or edit-in-
place updates (recommended for lookup files—files with one-way
relationships).

The BrowseUpdateButtons template provides the following prompts:

Update Procedure
Type a procedure name or select a procedure name from the
drop-down list. If you type a new procedure name, the
Application Generator adds the new procedure to the
Application Tree.

Use Edit in place
Check this box to let the end user update the browsed file by
typing directly into the BrowseBox list. This provides a very

138 CLARION 5 APPLICATION HANDBOOK

direct, intuitive spread-sheet style of update. You may configure
the edit-in-place behavior with the Configure Edit in place button.

Configure Edit in place
Press this button to open the Configure Edit in place dialog. This
dialog provides the following prompts:

Save
The Configure Edit in place dialog offers the Save option for four
different keyboard actions. These options determine whether
changes to an edited record are saved or abandoned upon the
following keyboard actions: TAB key at end of row, ENTER key, up
or down arrow key, focus loss (changing focus to another control
or window, typically with a mouse-click). Choose from:

Default Save the record as defined in the BrowseClass.Ask
method.

Always Always save the record.

Never Never save the record, abandon the changes.

Prompted Ask the end user whether to save, abandon, or
continue editing the changes.

Remain editing
The Configure Edit in place dialog offers the Remain editing
option for three different keyboard actions. Check these boxes to
continue editing upon the following keyboard actions: TAB key at
end of row, ENTER key, up or down arrow key. Clear the boxes to
stop editing.

CHAPTER 4 CONTROL TEMPLATES—RELATIONTREE 139

Retain column
The Configure Edit in place dialog offers the Retain column
option for the up and down arrow keys only. Check this box to
continue editing within the same list box column in the new row.
Clear to continue editing within the left most editable column in
the new row.

Insertion Point
The Configure Edit in place dialog offers the Insertion Point
option for initial new record placement in the list. The droplist
choices— before, after, and append— indicate where the edit-in-
place row will appear in the list when inserting a record. Before
and after indicate placement in relation to the highlighted
record, and append places the edit-in-place row at bottom of the
list.

Note: This does not change the sort order. After insertion, the list is
resorted and the new record appears in the proper position
within the sort sequence.

Column Specific
Press this button, then press the Insert button to open the Column
Specific dialog to specify the CLASS (and object) to use when
editing a specific list box field. The Column Specific dialog
contains the following options.

Field Press the ellipsis (...) button to select the field to edit
(or type the field name in the entry box. This must
be one of the fields displayed in the BrowseBox.

Allow Edit-In-Place
Check this box to let the end user edit the field.
Clear the box to prevent the end user from editing
the field. Use this option is to selectively block edit-
in-place access to some fields, but not others.

Class Definition Specify your own or a third party class. See
Template Overview—Classes Tab Options—Local
for complete information on these options.

By default, the BrowseUpdateButton template
generates code to use the EditClass in the ABC
Library (see EditClass in the Browse Classes
chapter). You could, however, derive a SpinClass
from the EditClass, then use the SpinClass to edit
numeric BrowseBox fields.

140 CLARION 5 APPLICATION HANDBOOK

CHAPTER 4 CONTROL TEMPLATES 141

RelationTree Overview

The tree control is a list box formatted to display as a collapsible hierarchical
list. This Control template provides an alternative for the Browse-Form
paradigm. A single RelationTree control can replace several Browse-Form
pairs.

Using the RelationTree Control template, you can specify multiple related
files to display on multiple levels (up to 29) of a hierarchical list—with an
associated update procedure for each level. The related files are declared in
the File Schematic—the Primary (Parent) file and a single chain of related
secondary Child files (Parent-Child-GrandChild).

The RelationTree template employs a fully-loaded QUEUE for the root
level. The child levels are demand-loaded when a branch is expanded.

Tip: This template is not appropriate for databases with a very
large primary file. For large files you should use the
BrowseBox Control template.

The plus (+) sign indicates a collapsed level that expands when the user
CLICKS on the plus (+) sign. Conversely, the minus (-) sign indicates an
expanded level that collapses when the user CLICKS on the minus (-) sign.

142 CLARION 5 APPLICATION HANDBOOK

To create a tree using the RelationTree Control template:

1. Place a RelationTree Control template on a window.

This opens the List Box Formatter . Use the List Box Formatter to enable
colorization, icon display, or horizontal scrolling in your tree control (see
The List Box Formatter). Do not use the List Box Formatter to populate
fields in the tree control.

Tip: The tree control is a single column list, therefore you must
specify a column scroll bar rather than a list scroll bar to
accomplish horizontal scrolling.

2. Press the OK button on the List Box Formatter .

3. RIGHT-CLICK on the RelationTree Control template and choose Actions
from the popup menu.

4. Press the Files button to specify the file schematic for the control.

Specify the Primary (Parent) file and a single chain of related Secondary
Child files (Parent-Child-GrandChild).

5. Complete the RelationTree template prompts.

CHAPTER 4 CONTROL TEMPLATES—FILEDROP 143

RelationTree Options

The RelationTree template provides the following prompts:

File Details

Tree Heading Text
An optional text heading at the top of the tree. Tree Heading
Text is required to let the user add a record at the root level.

Tree heading Icon
An optional icon at the top of the tree. Icons must be enabled in
the List Box Formatter for this prompt to be enabled.

Expand Branch
Specify a keystroke to expand the selected list item—display its
children. Press the ellipsis button (...) to select special keys such
as ESC, TAB or ENTER. See Controls and Their Properties—
Common Control Attributes—Setting the KEY Attribute for more
information on this dialog.

Contract Branch
Specify a keystroke to contract the selected list item—hide its
children. Press the ellipsis button (...) to select special keys such
as ESC, TAB or ENTER. See Controls and Their Properties—
Common Control Attributes—Setting the KEY Attribute for more
information on this dialog.

Accept control from Toolbar
Check this box to accept navigation events and other relation
tree control events generated by the FrameBrowseControl
control template on the APPLICATION’s toolbar. See
FrameBrowseControl for more information on these toolbar
buttons and their operation. Clear this box to disable the
FrameBrowseControl toolbar buttons for this procedure.

Give option to expand and contract all levels
Specify the RIGHT-CLICK popup menu for the RelationTree
includes “Expand All” and “Contract All” commands.

Primary File Settings

Display String
The field name or text to display for the primary file level. This
may be any valid Clarion expression, for example:
CLIP(CUST:LastName)&’ ‘&CUST:FirstName

Update Procedure
The update procedure to call for the primary file. The procedure
may be accessed with the RIGHT-CLICK popup menu automatically
provided when you specify an update procedure. The default
popup menu text is “Insert,” “Change,” and “Delete.”

144 CLARION 5 APPLICATION HANDBOOK

The procedure may also be accessed with the
RelationTreeUpdateButtons—see below. If you use the
RelationTreeUpdateButtons control template, the popup menu
inherits the text from the buttons.

Record Filter
Type a valid Clarion expression to limit the contents of the list to
only those records causing the expression to evaluate to true
(nonzero or non-blank). The procedure loops through all
displayable records to select only those that meet the filter.

You must BIND any file field that is used in a filter expression.
See BIND in the Language Reference for more information.

Colors (Primary File)

This tab is only available if you check the Color Cells box in the List Field
Properties in the List Box Formatter.

Default Colors
To specify the default colors for the primary file display string,
type color EQUATEs (from \LIBSRC\EQUATES.CLW) in the
entry fields or press the ellipsis (...) buttons to select colors from
the Select Color dialog.

Conditional Color Assignments
To specify conditional colors for the primary file display string,
press the Insert button. This opens the Conditional Color
Assignments dialog.

Conditional Color Assignments

This dialog lets you specify the conditional colors for the primary file
display string.

Condition
Type a valid Clarion expression to evaluate at runtime, then type
color EQUATEs (from \LIBSRC\EQUATES.CLW) in the entry
fields or press the ellipsis (...) buttons to select colors from the
Select Color dialog.

At run-time these conditions are evaluated, and the colors for the
first true condition in the list are used.

Icons (Primary File)

This tab is only available if you check the Icons box in the List Field
Properties in the List Box Formatter.

Default Icon
To specify the default icon for the primary file display string,
type the icon filename in the entry field.

CHAPTER 4 CONTROL TEMPLATES—FILEDROP 145

Conditional Icon Usage
To specify conditional icons for the primary file display string,
press the Insert button. This opens the Conditional Icon Usage
dialog.

Conditional Icon Usage

This dialog lets you specify conditional icons for the primary file display
string.

Condition
Type a valid Clarion expression to evaluate at runtime.

Icon
Type the icon filename in the entry field.

At run-time these conditions are evaluated, and the icon for the
first true condition in the list is used.

Secondary File Settings

The secondary file settings are identical to the primary file settings.
Highlight the secondary file, then press the Properties button below the
Secondary Files list box. See RelationTree Overview for information on how
to specify the secondary files with the Select File dialog.

RelationTree Embed Points

The RelationTree Control template provides a comprehensive set of embed
points to allow full customization of the control’s behavior.

RelationTreeUpdateButtons

This Control template adds three buttons (Insert , Change , and Delete) which
allow the end user to call the associated update procedure for the selected
level of a RelationTree. There are no prompts for this control. The Update
Procedure is specified for each level of the RelationTree Control template.

The Change and Delete buttons correspond to the currently highlighted
record. The Insert button adds a child record (the next level down the tree
structure).

RelationTreeUpdate Embed Points

The RelationTreeUpdateButtons Control template provides a comprehensive
set of embed points to allow full customization of the control’s behavior.

146 CLARION 5 APPLICATION HANDBOOK

Other Window Control Templates

CancelButton

The CancelButton template adds a single button control marked Cancel . This
button lets the user close a window and it provides a convenient place for the
developer to add code to “undo” before closing down the procedure. The
generated source code sets a “Request Cancelled” flag and closes down the
window procedure.

The CancelButton template provides no configuration options.

You can insert the executable code you need to “clean up” at an embed point.

CloseButton

The CloseButton template adds a single button control marked Close . The
generated source code sets a “Request Completed” flag and closes down the
window procedure.

The CloseButton template provides no configuration options.

DOSFileLookup

The DOSFileLookup template adds an ellipsis (...) button which opens the
standard Windows file dialog.

CHAPTER 4 CONTROL TEMPLATES—FILEDROP 147

You can specify the file masks, the default directory and filename, and the
variable to receive the filename selected by the end user.

In addition, you may optionally allow the selection of multiple files and
specify the code to process each selected file. The template generates a
LOOP to process all the selected files.

The DOSFileLookup template provides the following prompts:

General

File Dialog Header
Type the text for the caption of the Windows file dialog.

DOS Filename Variable
Press the ellipsis (...) button to choose a variable to receive the
end user’s choice from the File Schematic dialog. You can also
type the variable name directly into the entry box.

Default Directory
Specify the starting directory for the Windows file dialog. If

148 CLARION 5 APPLICATION HANDBOOK

blank, the file dialog opens to the working directory.

Default Filename
Specify the initial filename for the Windows file dialog. If blank,
the file dialog opens with no intial filename.

Return to original directory when done
Check this box to reset the working directory to its value prior to
the file lookup.

Multi-Select?
Check this box to allow selection of one or more files.

Action For Each Selection
Type a valid Clarion language statement to execute for each
selected file—typically a procedure call. You may want to pass
the FileName Variable as a parameter to the procedure.

The template generates a LOOP to execute the code you specify
for each selected file. The generated code reloads the FileName
Variable with the appropriate filename for each loop cycle.

File Masks

Use a variable file mask
Check this box to supply the file mask with a variable. This
enables the Variable Mask Value field to name the variable, and
disables the Mask Description, File Mask, and More File Masks
prompts.

Mask Variable
Names the variable that contains the file mask. See
FILEDIALOG in the Language Reference for information on the
contents of this variable.

File Mask Description
Type a file type description. The string appears in the drop-down
list in the Windows file dialog. You can add additional masks by
pressing the More File Masks button.

File Mask
Type a file mask specification, such as “*.TXT” or use multiple
patterns for this mask separating each with a semicolon, such as
“*.BMP;*.GIF”. You can add additional masks by pressing the
More File Masks button.

More File Masks
Press this button to add additional file masks. These masks are
available to end the user through the List files of type drop-down
list in the Windows file dialog.

Window Update Options

Update entire window?
Check this box to refresh the contents of all window controls

CHAPTER 4 CONTROL TEMPLATES—FILEDROPCOMBO 149

after the file selection and processing is complete. Clear the box
to select specific fields to refresh.

Update Selected Fields
Press this button to select specific fields to refresh after the file
selection and processing is complete. The template generates a
DISPLAY statement for each field you specify. See DISPLAY in
the Language Reference.

Classes

The Classes tab lets you control the class (and object) the template uses. You
may accept the default Application Builder Class and its object
(recommended), or you may specify your own or a third party class.
Deriving your own class can give you very fine control over the procedure
when the standard Application Builder Class is not precisely what you need.

See Template Overview—Classes Tab Options—Local for complete
information on these options.

FieldLookupButton

The FieldLookupButton template provides an ellipsis (...) button that lets
you “look up” the value from a lookup file, such as a state file. CLICK next to
an input control to place the lookup button.

The FieldLookupButton template provides the following prompts:

Control with Lookup
Select the associated control for which to perform the lookup by
choosing its field equate label from the drop-down list. Typically
this is an ENTRY control.

The selected control must have an associated lookup procedure.
To provide the lookup procedure, RIGHT-CLICK on the control,
then choose Actions to access its prompts.

FileDrop

The FileDrop template places a file-loaded scrollable drop-down list on a
window. At runtime, the end user can select an item from the list, then assign
a value from the selected item’s record to a specified target field. You may
display one field (such as a description field) but assign another field (such
as a code field) from the selected record (see How Do I... in the on-line
help).

Tip: Set the DROP attribute to zero (0) to display a list box rather
than a drop-down list.

150 CLARION 5 APPLICATION HANDBOOK

Immediately before you place the FileDrop Control template on your
window, the Application Generator prompts you to specify the file to display
in the drop-down list. Specify the file in the Select Field dialog. You will also
need to select a field to serve as the USE variable for the LIST; however, the
field you select is only significant if you are displaying one field but
assigning another).

Immediately after you place the FileDrop Control template, the Application
Generator opens the List Box Formatter so you can specify the fields to
display in your list. You may specify the field containing the lookup value as
well as other fields from the same or related files. See The List Box
Formatter for more information.

After you specify your list fields and return to the window under
construction, right-click the control, then choose Actions from the popup
menu to complete the following FileDrop options:

General

Field to Fill From
The field in the lookup file whose value is assigned to the Target
Field. Press the ellipsis (...) button to select from the Select Field
dialog.

Target Field
The field that receives the value from the Field to Fill From.
Press the ellipsis (...) button to select from the Select Field
dialog.

More Field Assignments
Press this button to specify additional value assignments from
the selected item’s record.

Record Filter
Type a valid Clarion expression to limit the contents of the list to
only those records causing the expression to evaluate to true
(nonzero or non-blank). The procedure loops through all
displayable records to select only those that meet the filter.
Filters are generally much slower than Range Limits.

You must BIND any file field that is used in a filter expression.
The Hot Fields tab lets you BIND fields.

Default to first entry if USE variable empty
Check this box to provide an initial default selection—the drop-
down list is never initially empty (unless the first file record is a
blank one).

CHAPTER 4 CONTROL TEMPLATES—FILEDROPCOMBO 151

Range Limits

This tab is only available if you specify a Key for the File in the File
Schematic Definition dialog. Because range limits use keys, they are
generally much faster than filters.

Range Limit Field
In conjunction with the Range Limit Type , specifies a record or
group of records for inclusion in the process. Choose a key field
on which to limit the records by pressing the ellipsis (...) button.

Range Limit Type
Specifies the type of range limit to apply. Choose one of the
following from the drop-down list.

Current Value Limits the key field to its current value.

Single Value Lets you limit the key field to a single value. Specify
the variable containing that value in the Range
Limit Value box.

Range of Values
Lets you limit the key field to a range of values.
Specify the variables containing the upper and lower
limits of the range in the Low Limit Value and High
Limit Value boxes.

File Relationship
Lets you limit the key field to the current value in a
related (parent) file. Press the Related file ellipsis
(...) button to choose the range limiting file. This
limits the process to include only those child records
matching the current record in the parent file. For
example, if your report was a list of Orders, you
could limit the process to only those orders for the
current Customer.

Colors

This tab is only available if you check the Color Cells box in the List Box
Formatter. It displays a list of the FileDrop columns which may be colored.

To specify the default colors and any conditional colors, highlight the
column’s field name, then press the Properties button. This opens the
Customize Colors dialog.

Customize Colors

152 CLARION 5 APPLICATION HANDBOOK

This dialog lets you specify the default and conditional Foreground and
Background colors for normal (unselected) rows; and for selected rows.

Conditional Color Assignments
Below the default colors section is the Conditional Color
Assignments list. This list lets you set colors to apply when an
expression evaluates to true (nonzero or non-blank). To add an
expression and its associated colors, press the Insert button.

At run-time the expressions are evaluated, and the colors for the
first true expression are used.

Icons

This tab is only available if you check the Icons box in the List Box
Formatter. It displays a list of the FileDrop columns which can display icons.

To specify default icons and any conditional icons, highlight the column’s
field name then press the Properties button. This opens the Customize Icons
dialog.

Customize Icons

This dialog lets you specify the default icon and conditional icons for the
FileDrop column.

Default Icon
The default icon to display. Type the icon (.ICO) filename.

CHAPTER 4 CONTROL TEMPLATES—FILEDROPCOMBO 153

Conditional Icon Usage
Below the Default Icon section is the Conditional Icon Usage list.
This list lets you set icons to apply when an expression evaluates
to true (nonzero or non-blank). To add an expression and its
associated icon, press the Insert button.

At run-time the expressions are evaluated, and the colors for the
first true expression are used.

Hot Fields

When you select the Hot Fields tab, you can specify fields not populated in
the list to add to the QUEUE. When scrolling through the file, the generated
source code reads the data for these fields from the QUEUE, rather than
from the disk. This speeds up list box updates.

Specifying “Hot” fields also lets you place controls outside the FileDrop that
are updated whenever a different record is selected in the list box. Elements
of the Primary Key and the current key are always included in the QUEUE,
so they do not need to be inserted in the Hot Field list.

This dialog also lets you BIND a field. You must BIND any field that is used
in a filter expression or as a field to total.

154 CLARION 5 APPLICATION HANDBOOK

Sort Fields

This tab lets you add fields by which the items in the drop-down list are
sorted. The sort fields are in addition to any Key specified for the
FileDropCombo. Press the Insert button to add fields to the list.

Classes

The Classes tab lets you control the class (and object) the template uses. You
may accept the default Application Builder Class and its object
(recommended), or you may specify your own or a third party class.
Deriving your own class can give you very fine control over the procedure
when the standard Application Builder Class is not precisely what you need.

See Template Overview—Classes Tab Options—Local for complete
information on these options.

Other Prompts

The List Properties for this control are the same as for a list; however, the
following prompts may require some additional explanation:

Use Takes either a field equate label, or the label of a
variable to receive the value from the first field
populated in the list. In the FileDrop Control
template context, this functionality is replaced by
the more flexible Target Field setting.

From This field defaults to Queue:FileDrop.
Queue:FileDrop is the label of the QUEUE the
template uses to fill the list. Typically, you should
not change this value.

Mark Takes the label of the Queue:FileDrop:Mark
QUEUE field to allow the user to select more than
one item from the list. The Queue:FileDrop:Mark
field contains 1 for selected items and 0 for
unselected items.

CHAPTER 4 CONTROL TEMPLATES—FRAMEBROWSECONTROL 155

FileDropCombo

The FileDropCombo template generates code to display a data file in a
scrollable list, select one of the records from the list, then assign a value
from the selected record to a specified target field. Note that you may display
one field (such as a description field) but assign another field (such as a code
field) from the selected record (see How Do I... in the on-line help). Also,
because the template is based on a COMBO control, the generated code
accepts entry values that may not exist in the displayed list and optionally
adds these new values to the lookup file.

Immediately before you place the FileDropCombo Control template on your
window, the Application Generator prompts you to specify the file to display
in the drop-down list. Specify the file in the Select Field dialog. You will also
need to select a field from the file to serve as the USE variable for the
COMBO. The USE variable is significant when you Allow Updates from the
FileDropCombo or when you display one field but assign another. See
Update Behavior for more information.

Immediately after you place the FileDropCombo Control template, the
Application Generator opens the List Box Formatter so you can specify the
fields to display in your list. You may specify the field containing the lookup
value as well as other fields with associated information. See The List Box
Formatter for more information.

After you specify your list fields and return to the window under
construction, RIGHT-CLICK the control, then choose Actions from the popup
menu to complete the following FileDropCombo options:

General

Field to Fill From
The field in the lookup file whose value is assigned to the Target
Field. Press the ellipsis (...) button to select from the Select Field
dialog.

Target Field
The field that receives the value from the Field to Fill From.
Press the ellipsis (...) button to select from the Select Field
dialog.

More Field Assignments
Press this button to specify additional value assignments from
the selected item’s record.

Record Filter
Type a valid Clarion expression to limit the contents of the list to
only those records causing the expression to evaluate to true
(nonzero or non-blank). The procedure loops through all
displayable records to select only those that meet the filter.

156 CLARION 5 APPLICATION HANDBOOK

Filters are generally much slower than Range Limits.

You must BIND any file field that is used in a filter expression.
The Hot Fields tab lets you BIND fields.

Default to first entry if USE variable empty
Check this box to provide an initial default selection—the drop-
down list is never initially empty (unless the first file record is a
blank one).

Remove duplicate entries
Check this box to remove duplicates from the list.

Keep View synchronized with Selection?
Check this box to update the VIEWs record buffers to match the
selected item.

Case Sensitive matches?
Check this box to consider case when matching entered values
with values in the lookup file.

Range Limits

This tab is only available if you specify a Key for the File in the File
Schematic Definition dialog. Because range limits use keys, they are
generally much faster than filters.

Range Limit Field
In conjunction with the Range Limit Type , specifies a record or
group of records for inclusion in the process. Choose a key field
on which to limit the records by pressing the ellipsis (...) button.

Range Limit Type
Specifies the type of range limit to apply. Choose one of the
following from the drop-down list.

Current Value Limits the key field to its current value.

Single Value Lets you limit the key field to a single value. Specify
the variable containing that value in the Range
Limit Value box.

Range of ValuesLets you limit the key field to a range of values.
Specify the variables containing the upper and lower
limits of the range in the Low Limit Value and High
Limit Value boxes.

File Relationship
Lets you limit the key field to the current value in a
related (parent) file. Press the Related file ellipsis
(...) button to choose the range limiting file. This
limits the process to include only those child records
matching the current record in the parent file. For

CHAPTER 4 CONTROL TEMPLATES 157

example, if your report was a list of Orders, you
could limit the process to only those orders for the
current Customer.

Colors

This tab is only available if you check the Color Cells box in the List Box
Formatter. It displays a list of the FileDropCombo columns which may be
colored.

To specify the default colors and any conditional colors, highlight the
column’s field name, then press the Properties button. This opens the
Customize Colors dialog.

Customize Colors

This dialog lets you specify the default and conditional Foreground and
Background colors for normal (unselected) rows; and for selected rows.

Conditional Color Assignments
Below the default colors section is the Conditional Color
Assignments list. This list lets you set colors to apply when an
expression evaluates to true (nonzero or non-blank). To add an
expression and its associated colors, press the Insert button.

At run-time the expressions are evaluated, and the colors for the
first true expression are used.

158 CLARION 5 APPLICATION HANDBOOK

Icons

This tab is only available if you check the Icons box in the List Box
Formatter. It displays a list of the FileDropCombo columns which can
display icons.

To specify default icons and any conditional icons, highlight the column’s
field name then press the Properties button. This opens the Customize Icons
dialog.

Customize Icons

This dialog lets you specify the default icon and conditional icons for the
FileDropCombo column.

Default Icon
The default icon to display. Type the icon (.ICO) filename.

Conditional Icon Usage
Below the Default Icon section is the Conditional Icon Usage list.
This list lets you set icons to apply when an expression evaluates
to true (nonzero or non-blank). To add an expression and its
associated icon, press the Insert button.

At run-time the expressions are evaluated, and the colors for the
first true expression are used.

Update Behavior

This tab lets you use the entry portion of the COMBO to initiate adding a
new record to the lookup file. If the user types a value in the entry box that is

CHAPTER 4 CONTROL TEMPLATES—SAVEBUTTON 159

not already in the list, the generated code can add a new record directly, or it
can call a separate procedure to add the new entry.

Allow Updates Clear this box to accept entries that do not exist in
the lookup file. The new (unvalidated) entries are
not added to the lookup file.

Check this box to add new entries to the lookup file,
and to enable the Update Procedure prompt.

Update Procedure Name the procedure to call to add the new record, or
leave this field blank if no update procedure is
needed.

No update procedure is needed for lookup files with
only one required field (the field specified by the
COMBO’s USE variable). Non-USE fields are
CLEARed, unless range limited or auto-
incremented.

Hot Fields

Use the Hot Fields tab to specify fields to add to the QUEUE that are not
displayed in the list. When scrolling through the file, the generated source
code reads the data for these fields from the QUEUE, rather than from the
disk. This speeds up list box updates.

Specifying Hot Fields effectively lets you update other controls whenever a
new record is selected in the list box. Elements of the Primary Key and the
current key are always included in the QUEUE, so they do not need to be
inserted in the Hot Field list.

Press the Insert button to add fields to the list.

Sort Fields

This tab lets you add fields by which the items in the drop-down list are
sorted. The sort fields are in addition to any Key specified for the
FileDropCombo. Press the Insert button to add fields to the list.

Classes

The Classes tab lets you control the class (and object) the template uses. You
may accept the default Application Builder Class and its object
(recommended), or you may specify your own or a third party class.
Deriving your own class can give you very fine control over the procedure
when the standard Application Builder Class is not precisely what you need.

160 CLARION 5 APPLICATION HANDBOOK

See Template Overview—Classes Tab Options—Local for complete
information on these options.

Other Prompts

The List Properties for this control are the same as for a list; however, the
following prompts may require some additional explanation:

Use Takes either a field equate label or the label of a
variable to receive the value from the first field
populated in the list. In the FileDropCombo Control
template context, the assignment functionality is
replaced by the more flexible Target Field; however,
the USE variable is significant when you Allow
Updates from the FileDropCombo (see Update
Behavior for more information).

From This field defaults to Queue:FileDropCombo.
Queue:FileDropCombo is the field equate label of
the QUEUE the template generates to fill the list.
Typically, you should not change this value.

Mark Takes the label of the Queue:FileDropCombo:Mark
QUEUE field to allow the user to select more than
one item from the list. The
Queue:FileDropCombo:Mark field contains 1 for
selected items and 0 for unselected items.

FrameBrowseControl

The FrameBrowseControl template places thirteen (13) standard command
buttons on the toolbar of an MDI APPLICATION (Frame procedure). When
the user presses these buttons, the template generated code posts appropriate
events (scroll up, scroll down, add, change, delete, help, etc.) to the active
procedure and control.

Tip: You may delete buttons that your application does not use. For
example, the ABC Templates by default do not use the
(locate) button.

CHAPTER 4 CONTROL TEMPLATES—REPORT CONTROLS 161

The buttons are designed to work with the BrowseBox Control template, the
RelationTree Control template, and the FormVCRControls Extension
template; that is, the buttons remain disabled until the program calls a
procedure with a BrowseBox template or a RelationTree template whose
Accept browse control from Toolbar box is checked, or the BrowseBox
procedure calls a Form procedure with a FormVCRControls extension
template.

In addition, the called procedure’s WINDOW must have the MDI attribute,
but don’t worry, the standard Browse and Form templates declare MDI
windows by default—you don’t need to do anything special to accomplish
this. The BrowseBox and RelationTree templates also check the Accept
browse control from Toolbar box by default—so again, you don’t need to do
anything special to accomplish this.

The FrameBrowseControl toolbar buttons operate as follows:

Scrolls to the first row in a BrowseBox or to the
previous parent record in a RelationTree. For Form
procedures, saves the current record before
scrolling.

Scrolls up one page in a BrowseBox or to the
previous record on the same level in a RelationTree.
For Form procedures, saves the current record
before scrolling.

Scrolls up one row in the BrowseBox or to the
previous record on any level in a RelationTree. For
Form procedures, saves the current record before
scrolling.

Locates a specific record or records in a BrowseBox.
This button is enabled only if you specify a QBE
control button for the BrowseBox. See Control
Templates—BrowseQueryButton for information on
specifying a QBE button.

162 CLARION 5 APPLICATION HANDBOOK

Scrolls down one row in the BrowseBox or to the
next record on any level in a RelationTree,
expanding the tree branch if necessary. For Form
procedures, saves the current record before
scrolling.

Scrolls down one page in the BrowseBox or to the
next record on the same level in a RelationTree. For
Form procedures, saves the current record before
scrolling.

Scrolls to the last row in the BrowseBox or to the
next parent record in a RelationTree. For Form
procedures, saves the current record before
scrolling.

Selects the highlighted row in a BrowseBox. This is
only appropriate when the procedure is called to
select a record. For example, when called as a
lookup.

For a BrowseBox, calls a Form procedure to add a
new record. For a RelationTree, calls a Form
procedure to add a child record of the currently
highlighted record. For a Form procedure, adds
another record of the same type.

Calls a Form procedure to change the record
highlighted in the BrowseBox or RelationTree.

Deletes the record highlighted in the BrowseBox or
RelationTree. The BrowseBox delete behavior is
determined by the settings on the Update Buttons
Control template.

On a Form procedure only, pastes into the field with
focus, the corresponding value from the previously
processed record (the value in the record buffer). In
other words, repeat the value from the previous
saved record.

Invokes Windows standard help behavior: calls
WINHELP.EXE with the help topic or keyword
specified by the WINDOW’s HLP attribute.

The FrameBrowseControl template provides no options.

CHAPTER 4 CONTROL TEMPLATES—REPORT CONTROLS 163

PauseButton

The PauseButton template places a button on the progress window for a
Process or Report procedure. When the user presses the button, the template
generated code changes the button text and suspends the procedure until the
users presses the button again to restart the procedure.

The PauseButton template provides the following prompts:

Pause Text
The text to display on the button face when the procedure
resumes.

Restart Text
The text to display on the button face when the procedure is
suspended.

Start Paused
Check this box to initially suspend the procedure so that it only
starts when the end user presses the button. Clear the box to
initially resume the procedure so that it starts and runs to
completion unless the end users presses the button. See
DeferOpenReport in the Report Manager chapter.

Start Text
The text to display on the button face when the procedure is
initially suspended.

Allow multiple starts
Check this box to allow the end user to restart the process or
report after it completes. This is useful for rerunning a process or
report with user specified filters and sort orders.

164 CLARION 5 APPLICATION HANDBOOK

SaveButton

The SaveButton template provides an OK button for your window, plus the
capability to display an action message for the end user. The SaveButton
handles most of the file I/O for the procedure.

The SaveButton template provides the following prompts:

Allow
Check any combination of the three boxes to specify permitted
file I/O operations. Conversely, clear the box to prevent the
associated operation.

Inserts Generates code to handle record inserts.

Changes
Generates code to handle record changes.

Deletes Generates code to handle record deletes.

Tip: The SaveButton template does not detect changes to BLOBs;
therefore, if only the BLOB changes, the SaveButton template
does not save it. The School example application contains a
work around to this problem.

Field Priming on Insert
Field Priming lets you provide a default value for fields in a new
record. This value supersedes any initial value specified in the
data dictionary. You can select a field and set an initial value in
the Field Priming dialog.

Messages and Titles
Press this button to open the Messages and Titles dialog to
specify update messages and their locations. In addition, this
dialog controls some fundamental behavior associated with the
procedure, such as whether it confirms before cancelling and
whether it allows repetitive adds.

CHAPTER 4 CONTROL TEMPLATES—REPORT CONTROLS 165

Insert Message
Specifies the text for the action message when the procedure is
called to add a record.

Change Message
Specifies the text for the action message when the procedure is
called to change a record.

Delete Message
Specifies the text for the action message when the procedure is
called to delete a record.

On Aborted Add/Change
Specifies the action to take when the user presses the Cancel
button while adding or modifying a record. Choose from:

Offer to save changes
Displays a message box prompting to save changes
before cancelling.

Confirm Cancel
Displays a message box prompting asking if you
really want to cancel.

Cancel without Confirming
Displays no message before cancelling.

Field History Key
Specify a key that restores the value from the last saved record.
When the end user presses the specified key, the generated code
retores the field with focus from the previously processed
record.

The default key (734) is CTRL+SINGLE-QUOTE (‘). On most US
keyboards this is the unshifted double-quote (“). On most UK
keyboards this is the unshifted at-sign (@).

Specifying a key here also enables the FrameBrowseControl’s
ditto button. This button also restores the value from the last
saved record.

When called for Delete
Specify what displays when this procedure is called to delete a
record. Choose from:

Standard Warning
Displays a message box prompting for confirmation
of the delete.

Show Form Displays the form.

Automatic Delete
Deletes items without end user confirmation.

166 CLARION 5 APPLICATION HANDBOOK

After successful insert
Select one-at-a-time insert mode or repetitive insert mode.
Choose from:

Return to callerGenerates a RETURN to the calling procedure
following a successful insert. This results in a one-
at-a-time insert mode.

Insert another record
Does not generate a RETURN to the calling
procedure following a successful insert. This results
in a repetitive insert mode.

Ask the user before adding another record
Does not automatically generate a RETURN to the
calling procedure following a successful insert, but
asks the user whether to add another record.

Location of Message
Specifies where the message displays. Choose from:

None/Window Control
Embed your own code to display the message in a
control.

Title Bar Display the message in the window’s title bar.

Status Bar Display the message in the window’s status bar.
Optionally specify which section of the status bar in
the Status Bar Section box.

Display Record Identifier on the Title Bar
Check this box to append a string to the caption on the window’s
titlebar. Specify the string in the Record Identifier field.

Record Identifier
Specifies the string to append to the titlebar caption,
which you can use to identify the record. Type a
string in the Record Identifier box. To use a variable
name, precede it with an exclamation point (!).

CHAPTER 4 CONTROL TEMPLATES—REPORT CONTROLS 167

Report Control Templates
The ABC Templates contain a few control templates designed to quickly
handle some of the most repetitive report text. These controls include date
stamps, time stamps, and page numbers. This section describes the ABC
Report Control templates.

ReportDateStamp

The ReportDateStamp template adds two STRING controls to a REPORT: a
“Report Date:” text STRING, and a formatted variable STRING to display
the date. By default, the ReportDateStamp template displays the system date
using the Windows standard long date format (D18). For example, August 2,
1999. However, you may select an alternative format and an alternative date
value to display.

The ReportDateStamp template provides the following prompts:

Format Picture
Press the ellipsis button to select a date format. See Picture
Tokens in the Language Reference.

Use System Clock?
Check this box to display the system date (see TODAY in the
Language Reference). Clear the box to display a variable
containing the date value to display.

Date Variable
Type the variable name or press the ellipsis button to select the
variable from the Select Fields dialog.

168 CLARION 5 APPLICATION HANDBOOK

ReportTimeStamp

The ReportTimeStamp template adds two STRING controls to a REPORT: a
“Report Time:” text STRING, and a formatted variable STRING to display
the time. By default, the ReportTimeStamp template displays the system
time using the Windows standard long time format (T8). For example,
12:90:22 PM. However, you may select an alternative format and an
alternative time value to display.

The ReportTimeStamp template provides the following prompts:

Format Picture
Press the ellipsis button to select a time format. See Picture
Tokens in the Language Reference.

Use System Clock?
Check this box to display the system date (see CLOCK in the
Language Reference). Clear the box to display a variable
containing the time value to display.

Time Variable
Type the variable name or press the ellipsis button to select the
variable from the Select Fields dialog.

ReportPageNumber

The ReportPageNumber template adds a variable STRING to display the
page number.

The ReportPageNumber template provides no configuration prompts.

CHAPTER 5 CODE AND EXTENSION TEMPLATES 169

5 - CODE AND EXTENSION TEMPLATES

Code Templates
Code templates generate source code into an embed point that you specify,
and sometimes into other embed points as well. Their purpose is to make
procedure customization quick and easy. Each Code template has one well-
defined task. For example, the Initiate Thread Code template simply starts a
new execution thread, and no more. Typically, the Code template provides a
dialog box with prompts and instructions.

Add Code templates to your procedure with the Embedded Source dialog.
See Application Generator—Embedded Source.

CallABCMethod

The CallABCMethod template generates code to call an ABC Library object
method. See Part II—ABC Library for more information on these methods.
This template generates code similar to the following:

Default:City = INIMgr.Fetch(‘Preferences’,’City’)

Object Name
Select the label of the object from the list. The list contains all
ABC compliant objects in scope for this procedure.

Method to Call
Select the method to call from the drop-down list. Scroll the list
horizontally or press the Application Builder Class Viewer button
to see all the method parameters and return values. See Part II—
ABC Library for complete information on these methods, their
parameters, and their return values.

Passed Parameters
Type the parameter list to pass. Enclose the parameters in
parenthese and separate them with commas. The parameters may
be literal values, expressions, or variable names.

Return Value Assignment
Type the variable to receive the called method’s return value.
This field is only available for methods that return a value.

170 CLARION 5 APPLICATION HANDBOOK

Application HandbookCallProcedureAsLookup

The CallProcedureAsLookup template calls a procedure to select a record. It
sets a variable called RequestCompleted to advise whether the lookup was
successful or not.

Lookup Procedure
Specifies the procedure to call to perform the lookup.

Code before
Type in any executable code to execute before performing the
lookup. You can use multiple statements by separating them with
a semicolon.

Code After, Completed
Type in any executable code to execute after completing a
lookup. You can use multiple statements by separating them with
a semicolon.

Code After, Canceled
Type in any executable code to execute if the lookup is canceled.
You can use multiple statements by separating them with a
semicolon.

CloseCurrentWindow

The CloseCurrentWindow template simply posts an EVENT:CloseWindow,
which shuts down the procedure normally. There are no prompts to fill in.

ControlValueValidation

The ControlValueValidation template gets the value of a control and matches
it against the value in a key. You can add this Code template at the Accepted
or Selected embed point for an ENTRY, SPIN, LIST, or COMBO control.
The code generated by this Code template gets the value in the control, then
matches it against the value in the key.

It can also call a lookup procedure to let the end user select a value.

Lookup Key
Specifies the key to lookup. If the key is a multi-component key
you must prime the other (non-lookup field) components before
this template’s code is executed.

Lookup Field
Specifies both the field to validate and the target of a successful
lookup. The Lookup Field must be a component of the Lookup
Key.

CHAPTER 5 CODE AND EXTENSION TEMPLATES 171

Lookup Procedure
Specifies the lookup procedure to call.

This template generates code similar to the following.

IF CUST:State OR ?CUST:State{Prop:Req} <> False
ST:StateCode = CUST:State ! Move value for lookup
IF Access:State.TryFetch(ST:ByCode) ! IF record not found
GlobalRequest = SelectRecord ! Set Action for Lookup
SelectState ! Call Lookup Procedure
IF GlobalResponse = RequestCompleted! IF Lookup successful
GlobalResponse = RequestCancelled ! Clear the Action Value
CUST:State = ST:StateCode ! Move value to control field

ELSE ! ELSE (IF Lookup NOT...)
SELECT(?CUST:State) ! Select the control
CYCLE ! end event processing

END ! END (IF Lookup successful)
END ! END (IF record not found)

END

DisplayPopupMenu

The DisplayPopupMenu template generates code to define and display a
popup menu, and optionally, act on the end user’s selection. You can set the
popup menu items to mimic existing buttons on the window so that the
associated menu item text matches the button text, is enabled only when the
button is enabled, and, when selected, invokes the button action.

The DisplayPopupMenu template relies on the PopupClass to accomplish its
tasks. See PopupClass for more information.

String variable for
Press the ellipsis (...) button to select or define a string variable
to receive the end user’s popup menu selection. After the popup
menu displays, this variable contains the selected item’s text
minus any special characters. That is, the variable contains only
characters ‘A-Z’, ‘a-z’, and ‘0-9’. If the resulting value is not
unique for the menu, the PopupClass appends a sequence
number to the value to make it unique.

172 CLARION 5 APPLICATION HANDBOOK

Application HandbookYou may interrogate this variable and perform actions depending
on its value. If you rely on the PopupClass mimic capability to
perform appropriate actions, then you can leave this field blank.
See Item Properties for more information on mimic.

Build Menu From
Choose how the popup menu and its items are defined:

Menu String Use the Menu String field to type the menu
definition, then use the Item Properties to define
each item’s behavior.

Item List Use the Menu Items button to define menu items one
at a time.

 INI File Use the Menu Description field to name the INI file
section which contains the menu definition. By
default, the template code uses the global INIMgr
object declared by the ABC Application template. If
you have not specified an INI file to use, the INIMgr
object uses Windows INI file. See Template
Overview—Global Options Tab.

Menu Description
Type the INI file section which contains the menu definition. See
PopupClass—Save and Restore for more information.

Menu String
Type a menu definition string. The Language Reference
describes the syntax for the menu definition string under the
selections parameter for the POPUP command.

Item Properties
Press this button to define the properties for each popup menu
item. Only items specified in the Menu String are valid. You can
set the popup menu items to mimic existing buttons on the
window so that the associated menu item text matches the button
text, is enabled only when the button is enabled, and, when
selected, invokes the button action. You can also set the popup
menu items to post an event to a control.

Menu Items
Press this button to define the text for each popup menu item.
You can set the popup menu items to mimic existing buttons on
the window so that the associated menu item text matches the
button text, is enabled only when the button is enabled, and,
when selected, invokes the button action. You can also set the
popup menu items to post an event to a control.

Classes Tab

Use the Classes tab to override the global Popup Manager setting. See
Template Overview—Classes Tab Options—Global and Local.

CHAPTER 5 CODE AND EXTENSION TEMPLATES 173

InitiateThread

When opening an MDI window from an Application Frame, you must
initiate an execution thread. This Code template provides an easy way to
initiate a thread.

 When you START a procedure on its own thread, the procedure and its
window operate independently of other threads in the same program; that is,
the end user can switch focus between each execution thread at will. These
are “modeless” windows.

If you don’t initiate a new thread, the program behavior depends on whether
the procedure’s window has the MDI attribute. A non-MDI child window on
the same thread as its parent, blocks access to all other threads in the
program. This is an “application modal” window. When the application
modal window closes, the other execution threads are available again. An
MDI child window on the same thread as its parent, blocks access only to its
parent window. When the MDI child window closes, its parent window
regains focus.

In the Prompts for Initiate Thread dialog, simply name the procedure that
opens the MDI window. Optionally, you can modify the size of the stack to
allocate to the new execution thread. The default stack is 25,000 bytes.

You can optionally add a line of code to execute if the application was unable
to open the thread. Type in the edit box labelled Error Handling . For example,

MESSAGE(‘Could not Start Thread’,’Error’,ICON:HAND)

would display a message box with the halt (hand) icon, if the thread failed to
start.

You can add a procedure name to call upon an error by typing the name of
the procedure in the Error Handling box. You would then add the procedure to
the Application Tree with the Insert Procedure command.

LookupNonRelatedRecord
The LookupNonRelatedRecord template is used to perform a lookup of a
value based on a relationship, whether it is or is not defined in the data
dictionary (Ad hoc relation). You can add this Code template to the Lookup
Up Related Records embed point.

Lookup Key
Type in the key name or press the ellipsis (...) button to select the
key from the File Schematic.

The lookup key is used to perform the lookup into the lookup
file. This must be a unique key. If the key is a multicomponent
key, the other key elements must be primed before executing this
Code template.

174 CLARION 5 APPLICATION HANDBOOK

Application HandbookLookup Field
Type in the field name or press the ellipsis (...) button to select
the field from the Component list.

The Lookup Field must be a component of the Lookup Key. This
is the unique value within the lookup file.

Related Field
Type in the related field or press the ellipsis (...) button to select
it from the File Schematic.

The Related Field provides the unique value used to perform the
lookup.

This template generates code similar to the following:

ST:StateCode = CUST:State ! Move value for lookup
Access:State.Fetch(ST:ByCode) ! Get value from file

ResizeSetStrategy

The ResizeSetStrategy template lets you override the default resize strategy
for a particular control. It is designed exclusively for the Set resize strategy
embed point for a specific control. See Extension Templates—WindowResize
for more information on the default resize strategies.

Insert the code template at the Set resize strategy embed point for the
control for which to set the resize strategy, then complete the following
prompts.

Horizontal Resize Strategy
Specify how the control’s width is determined when the end user
resizes the window. Choose from:

Lock Width The control’s design time width does not change.

CHAPTER 5 CODE AND EXTENSION TEMPLATES 175

Constant Right Border
Locks right edge, moves left.

Vertical Resize Strategy
Specify how the control’s height is determined when the end
user resizes the window. Choose from:

Lock Height The control’s design time height does not change.

Constant Bottom Border
Locks bottom edge, moves top.

Horizontal Positional Strategy
Specify how the control’s horizontal position is determined
when the end user resizes the window. Choose from:

Lock Position The control’s left edge maintains a fixed distance
(the design time distance) from parent’s left edge.

Fix Right The control’s right edge maintains a proportional
distance from parent’s right edge.

Fix Left The control’s left edge maintains a proportional
distance from parent’s left edge.

Fix Center The control’s center maintains a proportional
distance from parent’s center.

Fix Nearest Applies Fix Right or Fix Left, whichever is
appropriate.

Vertical Positional Strategy
Specify how the control’s vertical position is determined when
the end user resizes the window. Choose from:

Lock Position The control’s top edge maintains a fixed distance
(the design time distance) from parent’s top edge.

Fix Bottom The control’s bottom edge maintains a proportional
distance from parent’s bottom edge.

Fix Top The control’s top edge maintains a proportional
distance from parent’s top edge.

Fix Center The control’s center maintains a proportional
distance from parent’s center.

Fix Nearest Applies Fix Top or Fix Bottom, whichever is
appropriate.

176 CLARION 5 APPLICATION HANDBOOK

Application HandbookSelectToolbarTarget

The SelectToolbarTarget template provides an easy way for developers to
control which BrowseBox in a given procedure is tied to the toolbar
navigation buttons (see FrameBrowseControl in the Control Templates
chapter and SetTarget in the Toolbar Classes chapter).

Toolbar Navigation Target
Select the Browsebox that is controlled by the
FrameBrowseControl navigation buttons.

CHAPTER 5 CODE AND EXTENSION TEMPLATES 177

SetABCProperty

The SetABCProperty template generates code to set a public property of an
ABC Library object. See Part II—ABC Library for more information on
these properties. This template generates code similar to the following:

BRW2.ActiveInvisible = True

Object Name
Select the label of the object from the list. The list contains all
ABC compliant objects in scope for this procedure.

Property to Set
Select the property to set from the drop-down list. See Part II—
ABC Library for more information on these properties.

Value to Set
Type a variable, constant, or valid Clarion expression to assign
to the property.

Assign as Reference?
Check this box to generate a reference assignment
(object.property &= value). Clear the box to generate a simple
assignment (object.property = value). See Reference
Assignments in the Language Reference for more information.

SetProperty

The SetProperty template provides an easy way to set a runtime property of
any control on a window.

Control
Select the field equate label for one of the window controls from
the drop down list.

Property
Select the runtime property to set from the drop down list.

Value
The label of a variable, a constant, or an expression to assign to
the selected runtime property.

This template generates code similar to the following:

?MyControl{PROP:Whatever} = value

178 CLARION 5 APPLICATION HANDBOOK

Application HandbookExtension Templates
Extension templates add functionality to procedures, but are not bound to a
control or a single embed point. Each Extension template has one well-
defined task. For example, the DateTimeDisplay template lets you display
the date, time, or both on a WINDOW.

From a Procedure Properties dialog, add an Extension template by pressing
the Extensions button.

Tip: Only Extension templates may be added and deleted using the
Extensions button. Control templates may be modified here,
but may not be added or deleted. Use the Window Formatter to
add or delete Control templates.

The ABC Templates include the following Extension templates:

AsciiViewInListBox

The AsciiViewInListBox template allows a LIST control to alternate its
display between a selected file and some other data that you specify.

The AsciiViewInListBox template provides the same functionality and the
same prompts as the AsciiViewControl template. See Control Templates—
AsciiViewControl for more information. The AsciiViewInListBox template
provides one additional prompt. Because it is an Extension template and
does not place its own contol, the AsciiViewInListBox template prompts you
for the LIST control to use to display text:

General Tab

List box field to use
Select the LIST control that alternates its display.

Initialize Viewer
Determines when the procedure initializes the Viewer object.
Initialization includes selecting the file to view, opening it, and
reading it.

On Open Window
Initializes the Viewer when the window opens so
that the Viewer’s LIST is full upon initial display.

On Field Selection
Delays initializing the Viewer until the end user
selects the Viewer’s LIST control.

Manually Does not initialize the Viewer. You must embed a
call to the Viewer#.Initialize ROUTINE to initialize
the Viewer.

CHAPTER 5 CODE AND EXTENSION TEMPLATES 179

File to Browse
Specifies the path and name of the file to view, or a variable
containing the path and name of the file to view. The variable
must be preceded by an exclamation point (!).

If no path is specified, the procedure looks for the file in the
current directory.

If omitted (left blank), the Viewer object prompts the end user to
select a file.

Allow popup menu searching
Check this box to provide a (RIGHT-CLICK) popup menu choice to
search the file.

Allow popup menu printing
Check this box to provide a (RIGHT-CLICK) popup menu choice to
print some or all of the records in the file.

Classes Tab

Use the Classes tab to override the global Ascii Viewer setting. See Template
Overview—Classes Tab Options—Global and Local.

DateTimeDisplay

The DateTimeDisplay template adds to the functionality of a procedure
template, allowing you to display the time and/or date in the status bar, or a
control.

The options which appear in the Date and Time Display dialog are divided
into two group boxes—Date Display and Time Display:

Display in Window
Check the box or boxes to add the display to your window.

Picture
Choose a date and/or time display picture from the drop-down
list. The list displays examples, such as “October 31, 1959,” and
“5:30P.M.”

Other Picture
Type in a picture of your choice, if the picture type you wish
does not appear in the list. See also: Date Picture Tokens or Time
Picture Tokens in the Language Reference.

Day of Week (Date only)
Optionally displays the day of week.

Location
Choose between displaying the date and/or time on the status
bar, or in a control.

180 CLARION 5 APPLICATION HANDBOOK

Application HandbookStatus Bar Section
When the Date or Time should appear on the status bar, specify
the status bar section number.

Display Control
When the Date or Time should appear in a control, choose the
control from a drop-down list of field equate labels for the
window.

ExtendProgressWindow

The ExtendProgressWindow template adds functionality to Process and
Report procedures. It is designed to do two things:

• Give you precise control over the visual feedback you provide
end users for (small) Process and Report procedures.

• Allow Process and Report procedures to operate in two separate
modes—all records mode and single record mode (current value
range-limit).

You can use the ExtendProgressWindow template to delay or to completely
suppress the progress window for a Process or Report procedure, and you
can optionally specify a wait cursor. In single record mode, you can suppress
the progress window, the print preview, or both.

The ExtendProgressWindow template provides the following options.

Delay Showing Window
Enter the number of seconds to hide the progress window. For
example, you may want to hide the progress window for 3
seconds so that processes or reports that finish within 3 seconds
limit never show a progress window.

Wait cursor
Check this box to display a wait cursor (hour glass cursor) for
the duration of the process or report. For small/short processes
and reports, your end users may prefer a simple wait cursor over

CHAPTER 5 CODE AND EXTENSION TEMPLATES 181

a progress window. On completion, the procedure restores the
cursor to its previous state.

Single Shot
These options are available only for Processes and Reports that
specify a key in the File Schematic dialog.

Single record Check this box to allow the Report or Process to
operate in its normal mode (process all records), or
to operate in single record mode (current value
range-limit) when GlobalRequest is set to
ProcessRecord (see Procedure Templates—Inter-
Procedure Communication for more information on
GlobalRequest).

Tip: If your Report or Process procedure uses a non-unique key,
you can process all records with the current key value!

The BrowsePrintButton template primes the range-
limit field and calls procedures in this single record
mode (see Control Templates—BrowsePrintButton).

Use Progress Check this box to display the progress window in
single record mode. Clear the box to suppress the
progress window in single record mode.

Use Preview Check this box to provide the print preview in single
record mode. Clear the box to suppress the print
preview in single record mode.

FormVCRControls

The FormVCRControls template adds functionality to a Form procedure by
enabling navigation and field history with the FrameBrowseControl VCR
buttons. See Control Templates—FrameBrowseControl for more information
on these buttons and their operation.

Essentially, the FormVCRControls Extension provides a “scrolling” Form.
You can display, add, delete, or edit many records without returning to the
calling Browse to select a new record. However, the keys and filters
implemented in the calling Browse procedure do control the navigation of
the Form. For example, you can only navigate to records that meet the
Browse range limit and filter conditions, and when you navigate to the
“next” or “previous” record, the Browse key determines the sequence in
which the records appear.

182 CLARION 5 APPLICATION HANDBOOK

Application HandbookFor Form procedures generated by the Application Wizard, if the Form
procedure also contains a BrowseBox, the FrameBrowseControl buttons
control the Form when the “form” tab is selected, and they control the
BrowseBox when the “browsebox” tab is selected. See also Code
Templates—SetToolbarTarget.

RecordValidation

The RecordValidation template adds functionality to a Procedure by
enforcing data dictionary-defined control value validation. It also lets you
specify controls to exclude from validation.

Validate when the control is Accepted
Specifies that validity checking occurs when the control
generates an EVENT:Accepted, which occurs when the end user
completes or moves the focus from the field.

Validate during NonStop Select
Specifies that validity checking occurs when any control value
changes if the window is in AcceptAll (Non-Stop) mode and has
focus.

Do Not Validate
Opens the Do Not Validate dialog, which lets you select fields
from a drop-down list. The fields you choose will be excluded
from validity checks.

ReportChildFiles

The ReportChildFiles template adds functionality to Process and Report
procedures. This extension template provides a simpler, more efficient, more
controllable alternative to setting a chain of related files in the File
Schematic and having the Report or Process template produce a single multi-
tiered VIEW.

The ReportChildFiles template lets you name only the primary file and any
lookup files in your procedure’s File Schematic. The template generates code
to read (and optionally print a separate DETAIL for) the related child-file
records for each primary file record. We recommend the ReportChildFiles
template for the typical invoice headers/invoice lines scenario.

Multi-tiered View

Suppose you have an invoice header file and an invoice detail file. You want
to print out a header and then a line for each detail. This is somewhat tricky
to do with a single view and there are some limitations and inefficiencies
with this approach. You must populate each header (parent) file field into a
group HEADER and each detail (child) field into a DETAIL. The limitation

CHAPTER 5 CODE AND EXTENSION TEMPLATES 183

is there are no events and no embed points to use when the parent record
prints (because it is simply a group break). The inefficiency is that additional
GETs are done on parent file lookups for every child record even though the
parent record is unchanged. Plus, for SQL you must use a left outer join
(inefficient) to force parent headers to print when there are no associated
detail lines.

ReportChildFiles

With the ReportChildFiles template you can simply populate the header
(parent) as the primary file with its own DETAIL, then populate a second
DETAIL for the detail (child) file. The primary view is then read record-by-
record (lookups done only once for each parent record) and the child view is
range-limited on the parent file linking fields. The Process Manager Method
TakeRecord embed point provides an access point for both parent and child
records. ProcessClass.TakeRecord is called for each record (parent or child),
and ProcessClass.ChildRead indicates which file/record is active. See
ProcessClass for more information.

Using the ReportChildFiles Template

The ReportChildFiles template provides the following options.

Parent File
Type the label of the parent file, or press the ellipsis button (...)
to select the parent file from the File Schematic dialog.

Detail
For Report procedures, select the USE attribute (field equate
label) of the REPORT DETAIL structure to print for each child
record.

Tip: The Detail drop-down list shows DETAIL structures with USE
attributes, so populate the DETAIL first, and add a USE
attribute.

File Schematic <To Do>
Insert the child file to process for each parent file record.

184 CLARION 5 APPLICATION HANDBOOK

Application Handbook

Classes Tab

Use the Classes tab to override the global ViewManager setting. See
Template Overview—Classes Tab Options—Global and Local.

WindowResize

The WindowResize template lets the end user resize windows that have
traditionally been fixed in size due to the controls they contain (List boxes,
entry controls, buttons, etc.).

Tip: The WindowResize code repositions and resizes each control
relative to its parent. This approach provides attractive,
rational resizing of virtually any window, regardless of the
controls it contains.

The template generates code to reposition the controls, resize the controls, or
both, when the end user resizes the window.

Tip: To allow window resizing you must set the WINDOW’s frame
type to Resizable. See Window Formatter—Window Properties
Dialog for more information on this setting.

Resize Strategy
Specifies the method for resizing and repositioning the controls
to fit within the new window size. Chose from:

CHAPTER 5 CODE AND EXTENSION TEMPLATES 185

Resize Scales all window coordinates by the same amount,
thus preserving the relative sizes and positions of all
controls. That is, all controls, including buttons and
entry fields get taller and wider as the window gets
taller and wider. Window fonts are unchanged.

Spread Maintains the design-time look and feel of the
window by applying a strategy specific to each
control type. For example, BUTTON sizes are not
changed but their positions are tied to the nearest
window edge. In contrast, LIST sizes and positions
are scaled in proportion to the window.

Surface Makes the most of the available pixels by
positioning other controls to maximize the size of
LIST, SHEET, PANEL, and IMAGE controls. We
recommend this strategy for Wizard generated
windows.

Tip: Even though list boxes may be resized, the column widths
within the list box are not resized. However, the right-most
column does expand or contract depending on the available
space.

Don’t Alter Controls
Controls are not resized when the window is resized.

Tip: For this strategy, you may add the SCROLL attribute to each
control plus the HVSCROLL attribute to the window to provide
a ‘moving window’ over a larger page.

Restrict Minimum Window Size
Check this box to specify a minimum window height and width.
This lets you enforce a minimum reasonable size of the window
based on the size and number of controls on the window. In
other words, you can keep your end user from shrinking the
window so much that its controls become invisible or
unrecognizable.

Minimum Width Specify the minimum width of the window in dialog
units. Dialog units are based on the window’s font
and are 1/4 of the average character width.

Zero sets the window minimum to the size at which
the window opens (not necessarily the design time
size). In other words, it takes into account any .INI
setting plus any runtime Property syntax. Thus, we
allow the developer to open the window, perform
any dynamic control production (including resizing
the window) before the minimum restriction takes
effect.

186 CLARION 5 APPLICATION HANDBOOK

Application HandbookMinimum Height Specify the minimum height of the window in
dialog units. Dialog units are based on the window’s
font and are 1/8 of the character height.

Zero sets the window minimum to the size at which
the window opens (not necessarily the design time
size). In other words, it takes into account any .INI
setting plus any runtime Property syntax. Thus, we
allow the developer to open the window, perform
any dynamic control production (including resizing
the window) before the minimum restriction takes
effect.

Restrict Maximum Window Size
Check this box to specify a maximum window height and width.
This lets you enforce a maximum reasonable size of the window.

Maximum Width Specify the maximum width of the window in dialog
units. Dialog units are based on the window’s font
and are 1/4 of the average character width.

Zero sets the window maximum to the size at which
the window opens (not necessarily the design time
size). In other words, it takes into account any .INI
setting plus any runtime Property syntax. Thus, we
allow the developer to open the window, perform
any dynamic control production (including resizing
the window) before the maximum restriction takes
effect.

Maximum Height
Specify the maximum height of the window in
dialog units. Dialog units are based on the window’s
font and are 1/8 of the character height.

Zero sets the window maximum to the size at which
the window opens (not necessarily the design time
size). In other words, it takes into account any .INI
setting plus any runtime Property syntax. Thus, we
allow the developer to open the window, perform
any dynamic control production (including resizing
the window) before the maximum restriction takes
effect.

Override Control Strategies
Press this button to override the default resize strategy for
individual controls. This opens the Override Control Strategies
dialog.

CHAPTER 5 CODE AND EXTENSION TEMPLATES 187

Override Control Strategies

The Override Control Strategies dialog lets you override the default resize
strategy for individual controls. For example, by default, buttons are “fixed”
to the nearest window borders and are not repositioned like most other
controls. However, if you want your procedure to reposition the button like
other controls, you may specify this here. See also Window Resize Class—
SetStrategy.

Press the Insert button to select the control for which to set the resize
strategy. Then choose from the following sizing and positioning options:

Horizontal Resize Strategy
Specify how the control’s width is determined when the end user
resizes the window. Choose from:

Lock Width The control’s design time width does not change.

Constant Right Border
Locks right edge, moves left.

Vertical Resize Strategy
Specify how the control’s height is determined when the end
user resizes the window. Choose from:

Lock Height The control’s design time height does not change.

Constant Bottom Border
Locks bottom edge, moves top.

Horizontal Positional Strategy
Specify how the control’s horizontal position is determined
when the end user resizes the window. Choose from:

Lock Position The control’s left edge maintains a fixed distance
(the design time distance) from parent’s left edge.

Fix Right The control’s right edge maintains a proportional
distance from parent’s right edge.

Fix Left The control’s left edge maintains a proportional
distance from parent’s left edge.

Fix Center The control’s center maintains a proportional
distance from parent’s center.

Fix Nearest Applies Fix Right or Fix Left, whichever is
appropriate.

Vertical Positional Strategy
Specify how the control’s vertical position is determined when

188 CLARION 5 APPLICATION HANDBOOK

Application Handbookthe end user resizes the window. Choose from:

Lock Position The control’s top edge maintains a fixed distance
(the design time distance) from parent’s top edge.

Fix Bottom The control’s bottom edge maintains a proportional
distance from parent’s bottom edge.

Fix Top The control’s top edge maintains a proportional
distance from parent’s top edge.

Fix Center The control’s center maintains a proportional
distance from parent’s center.

Fix Nearest Applies Fix Top or Fix Bottom, whichever is
appropriate.

Resizer Configuration Options

Automatically find parent controls
Check this box to set parent/child relationships among window
controls. Clearing the box makes the WINDOW the parent of all
its controls. Setting parent/child relationships lets any special
scaling cascade from parent to child. See WindowResizeClass
Methods—SetParentDefaults for more information.

Optimize Moves
Check this box to move all controls at once during the resize
operation, producing a snappier resize and avoiding bugs on
some windows. See WindowResizeClass Properties—
DeferMoves for more information.

Optimize Redraws
Check this box to make controls transparent (TRN attribute)
during the resize operation, producing a smoother redraw and
avoiding bugs on some windows. See WindowResizeClass
Properties—AutoTransparent for more information.

Classes Tab

Use the Classes tab to override the global Resizer setting. See Template
Overview—Classes Tab Options—Global and Local.

PART II — APPLICATION BUILDER CLASS LIBRARY 189

PART II
——

APPLICATION BUILDER CLASS

L IBRARY
THE ABCS OF RAPID APPLICATION DEVELOPMENT

190 CLARION 5 Application Handbook

CHAPTER 6 ABC L IBRARY OVERVIEW 191

6 - ABC LIBRARY OVERVIEW

About This Part
This part of the Application Handbook describes the Application Builder
Class (ABC) Library.

It provides an overview of each class or related group of classes. Then it
provides specific information on the public properties and methods of each
class, plus examples for using them. It also shows you the source files for
each class and describes some of the relationships between the classes.

Application Builder Class (ABC) Library

Class Libraries Generally

The purpose of a class library in an Object Oriented system is to help
programmers work more efficiently by providing a safe, efficient way to
reuse pieces of program code. In other words, a class library should relieve
programmers of having to write certain routines by letting them use already
written generic routines to perform common or repetitive program tasks.

In addition, a class library can reduce the amount of programming required
to implement changes to an existing class based program. By deriving
classes that incrementally add to or subtract from the classes in the library,
programmers can accomplish substantial changes without having to rewrite
the base classes or the programs that rely on the base classes.

Application Builder Classes—The ABCs of Rapid Application Development

Typical Reusability and Maintenance Benefits

The Application Builder Classes (ABC Library) provide all the benefits of
class libraries in general. Clarion’s ABC Templates automatically generate
code that uses and reuses the robust, flexible, and solid (pre-tested) objects
defined by the ABC Library. Further, the templates are designed to help you
easily derive your own classes based on the ABC Library.

Of course, you need not use the templates to use the Application Builder
Classes. However, the template generated code certainly provides
appropriate examples for using the ABC Library in hand coded programs.
Either way, the bottom line for you is more powerful programs with less
coding.

192 CLARION 5 APPLICATION HANDBOOK

Database and Windows Program Orientation

The Application Builder Classes have a fairly specific focus or scope. That
is, its objects are designed to process databases within a Windows
environment. Even more specifically, these objects are designed to support
all the standard functionality provided by prior versions of Clarion, plus a lot
more.

As such, there are database related objects that open, read, write, view,
search, sort, and print data files. There are objects that enforce relational
integrity between related data files.

In addition there are general purpose Windows related objects that display
error messages, manage popup menus, perform edit-in-place, manage file-
loaded drop-down lists, perform language translation on windows, resize
windows and controls, process toolbars across execution threads, read and
write INI files, and manage selection and processing of DOS/Windows files.

The point is, the class library supports general purpose database Windows
programs; it does not support, say, real-time process control for oil
refineries.

Core Classes

The Application Builder Classes may be logically divided into “core” classes
and “peripheral” classes. The core classes are central to the ABC Library—
everything else is built from them or hangs off them. If you intend to study
the Application Builder Classes, you should begin with the core classes.
Further, a thorough understanding of these classes should give you an
excellent foundation for understanding the ABC Template generated
programs and procedures that use these classes.

Even if you want to stay as far away from the ABC Library as possible, you
should keep a couple of things in mind with regard to the core classes:

• The core classes are ErrorClass, FieldPairsClass, FileManager,
RelationManager, ViewManager, WindowManager, and BrowseClass.

• Core classes are used repeatedly, so if you must modify them, try to keep
them efficient.

• Core classes are almost certainly in any template based program, so
additional references to them generally won’t affect the size of your
executable.

There is a hierarchy within the core classes. The ErrorClass and the
FieldPairsClass form the foundation upon which the FileManager,
RelationManager, and ViewManager rest. Finally, the BrowseClass, which is
derived from the ViewManager, tops off the core classes. The
WindowManager is programmed to understand these core classes and
manages window procedures that use them.

CHAPTER 6 ABC L IBRARY OVERVIEW 193

WindowManager
BrowseClass
ViewManager
RelationManager
FileManager \
/ \

ErrorClass FieldPairsClass

To understand these core classes, we recommend you tackle the core classes
first (ErrorClass and FieldPairsClass), then work your way up to the
WindowManager.

ABC Library Source Files

The Application Builder Classes are installed by default to the Clarion
\LIBSRC folder. The specific classes reside in the following respective files.
The core classes are shown in bold.

The class declarations reside in the .INC files, and their method definitions
reside in the specified .CLW files.

ABASCII.INC
AsciiFileClass MODULE('ABASCII.CLW')
AsciiPrintClass MODULE('ABASCII.CLW')
AsciiSearchClass MODULE('ABASCII.CLW')
AsciiViewerClass MODULE('ABASCII.CLW')

ABBROWSE.INC
StepClass MODULE('ABBROWSE.CLW')
StepLongClass MODULE('ABBROWSE.CLW')
StepRealClass MODULE('ABBROWSE.CLW')
StepStringClass MODULE('ABBROWSE.CLW')
StepCustomClass MODULE('ABBROWSE.CLW')
LocatorClass MODULE('ABBROWSE.CLW')
StepLocatorClass MODULE('ABBROWSE.CLW')
EntryLocatorClass MODULE('ABBROWSE.CLW')
IncrementalLocatorClass MODULE('ABBROWSE.CLW')
ContractingLocatorClass MODULE('ABBROWSE.CLW')
EditClass MODULE('ABBROWSE.CLW')
BrowseClass MODULE('ABBROWSE.CLW')

ABDROPS.INC
FileDropClass MODULE('ABDROPS.CLW')
FileDropComboClass MODULE('ABDROPS.CLW')

194 CLARION 5 APPLICATION HANDBOOK

ABEIP.INC
EditClass MODULE('ABEIP.CLW')
EditCheckClass MODULE('ABEIP.CLW')
EditColorClass MODULE('ABEIP.CLW')
EditDropListClass MODULE('ABEIP.CLW')
EditEntryClass MODULE('ABEIP.CLW')
EditFileClass MODULE('ABEIP.CLW')
EditFontClass MODULE('ABEIP.CLW')
EditMultiSelectClass MODULE('ABEIP.CLW')

ABERROR.INC
ErrorClass MODULE('ABERROR.CLW')

ABFILE.INC
FileManager MODULE('ABFILE.CLW')
RelationUsage MODULE('ABFILE.CLW')
RelationManager MODULE('ABFILE.CLW')
ViewManager MODULE('ABFILE.CLW')

ABPOPUP.INC
PopupClass MODULE('ABPOPUP.CLW')

ABQUERY.INC
QueryClass MODULE('ABQUERY.CLW')
QueryVisualClass MODULE('ABQUERY.CLW')
QueryFormVisual MODULE('ABQUERY.CLW')

ABREPORT.INC
ProcessClass MODULE('ABREPORT.CLW')
PrintPreviewClass MODULE('ABREPORT.CLW')
ReportManager MODULE('ABREPORT.CLW')

ABRESIZE.INC
WindowResizeClass MODULE('ABRESIZE.CLW')

ABTOOLBA.INC
ToolbarTargetClass MODULE('ABTOOLBA.CLW')
ToolbarListboxClass MODULE('ABTOOLBA.CLW')
ToolbarReltreeClass MODULE('ABTOOLBA.CLW')
ToolbarUpdateClass MODULE('ABTOOLBA.CLW')
ToolbarClass MODULE('ABTOOLBA.CLW')

ABUTIL.INC
ConstantClass MODULE('ABUTIL.CLW')
FieldPairsClass MODULE('ABUTIL.CLW')
BufferedPairsClass MODULE('ABUTIL.CLW')
INIClass MODULE('ABUTIL.CLW')
DOSFileLookupClass MODULE('ABUTIL.CLW')
TranslatorClass MODULE('ABUTIL.CLW’)

ABWINDOW.INC
WindowManager MODULE('ABWINDOW.CLW’)

CHAPTER 6 ABC L IBRARY OVERVIEW 195

INCLUDing the right files in your data section

Many of the class declarations directly reference other classes. To resolve
these references, each class header (.INC file) INCLUDEs only the headers
containing the directly referenced classes. This convention maximizes
encapsulation, minimizes compile times, and ensures that all necessary
components are present for the make process. We recommend you follow
this convention too.

The Application Builder Classes source code is structured so that you can
INCLUDE either the header or the definition (.CLW file) in your program’s
data section. If you include the header, it references the required definitions
and vice versa.

A good rule of thumb is to INCLUDE as little as possible. The compiler will
let you know if you have omitted something.

ABC Library and the ABC Templates

The ABC Templates rely heavily on the ABC Library. However, the
templates are highly configurable and are designed to let you substitute your
own class definitions if you wish. See Part I—Classes Tab Options (Global)
for more information on configuring the global level interaction between the
ABC Templates and the ABC Library. See Part I—Classes Tab Options
(Local) for more information on configuring the local (module level)
interaction between the ABC Templates and the ABC Library.

Classes and Their Template Generated Objects

The ABC Templates instantiate objects from the ABC Library. The default
template generated object names are usually related to the corresponding
class names, but they are not exactly the same. Your ABC applications’
generated code may contain data declarations and executable statements
similar to these:

GlobalErrors ErrorClass
Hide:Access:Customer CLASS(FileManager)
INIMgr INIClass
ThisWindow CLASS(ReportManager)
ThisWindow CLASS(WindowManager)
ThisReport CLASS(ProcessClass)
ThisProcess CLASS(ProcessClass)
BRW1 CLASS(BrowseClass)
EditInPlace::CUS:NAME EditClass
Resizer WindowResizeClass
Toolbar ToolbarClass
CODE
GlobalResponse = ThisWindow.Run()
BRW1.AddSortOrder(BRW1::Sort0:StepClass,ST:StKey)
BRW1.AddToolbarTarget(Toolbar)
GlobalErrors.Throw()

196 CLARION 5 APPLICATION HANDBOOK

Resizer.AutoTransparent=True
Previewer.AllowUserZoom=True

These data declarations instantiate objects from the ABC Library, and the
executable statements reference the instantiated objects. The various ABC
classes and their template instantiations are listed below so you can identify
ABC objects in your applications’ generated code and find the corresponding
ABC Library documentation.

Template Generated Object Application Builder Class

Access:file FileManager
BRWn BrowseClass
BRWn::Sortn:Locator LocatorClass
BRWn::Sortn:StepClass StepClass
EditInPlace::field EditClass
FDBn FileDropClass
FDCBn FileDropComboClass
FileLookupN SelectFileClass
GlobalErrors ErrorClass
INIMgr INIClass
QBEn QueryClass
QBVn QueryVisualClass
Popup PopupClass
Previewer PrintPreviewClass
ProgressMgr StepClass
Relate:file RelationManager
RELn::Toolbar ToolbarReltreeClass
Resizer WindowResizeClass
ThisProcess ProcessClass
ThisReport ProcessClass
ThisWindow WindowManager, ReportManager
Toolbar ToolbarClass
ToolbarForm ToolbarUpdateClass
Translator TranslatorClass
ViewerN ASCIIViewerClass

CHAPTER 6 ABC L IBRARY OVERVIEW 197

ABC Coding Conventions
The ABC Library uses several coding conventions. You may see instances of
these code constructions in ABC applications’ generated code and in the
ABC Library code. We recommend that you follow these conventions within
your embedded code.

Method Names

The following names have a specific meaning in the ABC Library. The
names and their meanings are described below.

AddItem
The object adds an item to its datastore. The item may be a field,
a key, a sort order, a range limit, another object, etc. The item
may be anything the object needs to do its job.

Ask[Information]
The method interacts with the end user to get the Information.

Fetch
The method retrieves data from a file.

GetItem
The method returns the value of the named item.

Init
The method does whatever is required to initialize the object.

Kill
The method does whatever is required to shut down the object,
including freeing any memory allocated during its lifetime.

Reset[what or how]
The method resets the object and its controls. This includes
reloading data, resetting sort orders, redrawing window controls,
etc.

SetItem
The method sets the value of the named item, or makes the
named item active so that other object methods operate on the
active item.

TakeItem
The method “takes” the item from another method or object and
continues processing it. The item may be a window event
(Accepted, Rejected, OpenWindow, CloseWindow, Resize, etc.),
a record, an error condition, etc.

Throw[Item]
The method “throws” the item to another object or method for
handling. The item is usually an error condition.

198 CLARION 5 APPLICATION HANDBOOK

TryAction
The method makes one attempt to carry out the action, then
returns a value indicating success or failure. A return value of
zero (0 or Level:Benign) indicates success; any other value
indicates failure.

Where to Initilize & Kill Objects

There are generally two factors to consider when initializing and killing
objects:

• Generally, objects should live as short a life a possible

• Objects should always be Killed (to free any memory allocated during its
lifetime)

Balancing these two (sometimes conflicting) factors dictates that objects
Initialized with EVENT:OpenWindow are usually Killed with
EVENT:CloseWindow. Objects Initialized with ThisWindow.Init are usually
Killed with ThisWindow.Kill.

Return Values

Many ABC methods return a value indicating success or failure. A return
value of zero (0 or Level:Benign) indicates success. Any other return value
indicates a problem whose severity may vary. Other return values and their
ABC severity EQUATEs (Level:User, Level:Cancel, Level:Notify,
Level:Fatal, Level:Program) are documented in the Error Class chapter and
in the individual methods’ documentation. This convention produces code
like the following:

IF ABCObject.Method()
!handle failure / error

ELSE
!continue normally

END

IF ~ABCObject.Method()
!continue normally

END

Event Processing Method Return Values

Some ABC methods process ACCEPT loop events. The names of these
methods begin with “Take” and usually indicate the type of events they
handle. These event processing methods execute within an ACCEPT loop (as
implemented by the WindowManager.Ask method) and return a value
indicating how the ACCEPT loop should proceed.

CHAPTER 6 ABC L IBRARY OVERVIEW 199

A return value of Level:Benign indicates processing of this event should
continue normally. A return value of Level:Notify indicates processing is
completed for this event and the ACCEPT loop should CYCLE. A return
value of Level:Fatal indicates the event could not be processed and the
ACCEPT loop should BREAK.

If you (or the ABC Templates) derive a class with any of these methods, you
should use this return value convention to control ACCEPT loop processing.

Following is the WindowManager.Ask method code that implements this
convention. See WindowManager Concepts for more information.

ACCEPT
CASE SELF.TakeEvent()
OF Level:Fatal
BREAK

OF Level:Notify
CYCLE

END
END

Ending a Procedure

In your embedded code you may encounter a condition that requires the
procedure to end immediately (that is, it cannot wait for an
EVENT:CloseWindow, or an EVENT:CloseWindow is not appropriate).

In some cases, a simple RETURN will not end your procedure (because a
RETURN embedded within a derived method ends the method, not the
calling procedure), and even if it would, it might not be appropriate (because
the procedure may have allocated memory or started other tasks that should
be ended in a controlled manner).

There are several ways you can initiate the normal shut down of your
procedure, depending on where in the procedure your code is embedded.
Following are the conventional ways to shut down your procedure normally.

RETURN(Level:Fatal) !normal shutdown from ABC derived method
ReturnValue = Level:Fatal !normal shutdown at end of ABC derived method
ThisWindow.Kill !normal shutdown from Procedure Routine
ThisWindow.Kill;RETURN !normal shutdown from Procedure Routine

! called from within ACCEPT loop

PRIVATE (undocumented) Items

Some of the properties and methods in the ABC Library have the PRIVATE
attribute. These PRIVATE items are not documented. These items are
PRIVATE because they are likely to change or disappear completely in
future ABC Library releases. Making some items PRIVATE, gives TopSpeed
the flexibility to change and improve these areas without affecting
applications developed with the ABC Library. We strongly recommend that
you do not remove the PRIVATE attributes on ABC Library items.

200 CLARION 5 APPLICATION HANDBOOK

PROTECTED, VIRTUAL, DERIVED, and PROC Attributes

Some of the ABC Library properties and methods have special attributes that
enhance their functionality, usability, and maintainability. Each property and
method topic shows any applicable attributes in the syntax diagram (gray
box). The purpose and effect of these attributes are documented here and in
the Language Reference, but not in individual property and method topics.

PROTECTED Attribute

The PROTECTED attribute specifies that the property or method on which
it is placed is visible only to the methods of the same CLASS or of derived
CLASSes. This simply suggests that the property or method is important to
the correct functioning of the CLASS, and that any changes to these items
should be done with care. See PROTECTED in the Language Reference.

VIRTUAL Attribute

The VIRTUAL attribute allows methods in a parent CLASS to call methods
in a derived CLASS. This has two primary benefits. First, it allows parent
CLASSes to delegate the implementation of certain actions to derived
classes; and second, it makes it easy for derived classes to override these
same parent class actions. See VIRTUAL in the Language Reference.

Virtual methods let you insert custom code into an existing class, without
copying or duplicating the existing code. Furthermore, the existing class
calls the virtual methods (containing the custom code) as part of its normal
operation, so you don’t have to explicitly call them. When TopSpeed updates
the existing class, the updates are automatically integrated into your
application simply by recompiling. The existing class continues to call the
virtual methods containing the custom code as part of its normal operation.
This approach gives you many opportunities to customize your ABC
applications while minimizing maintenance issues.

DERIVED Attribute

The DERIVED attribute is similar to the VIRTUAL attribute, except that it
must have a matching prototype in the parent class.

PROC Attribute

The PROC attribute may be placed on a method prototyped with a return
value, so you can call the method and ignore the return value without
compiler warnings. See PROC in the Language Reference.

CHAPTER 6 ABC L IBRARY OVERVIEW 201

Documentation Conventions

Reference Item and Syntax Diagram

The documentation formats for Properties and Methods are illustrated in the
following syntax diagrams.

Property (short description of intended use)

Property Datatype [, PROTECTED]

A complete description of the Property and its uses.

Datatype shows the datatype of the property such as LONG or &BrowseClass.

Implementation: A discussion of specific implementation issues. The implementation may
change with each release / version of Internet Connect.

ComplexDataType STRUCTURE !actual structure declaration
END

See Also: Related Methods and Properties

Method (short description of what the method does)

Method(| parameter1 | [, parameter2]) [, PROTECTED] [, VIRTUAL] [, PROC]
 | alternate |
 | parameters |

Method A brief statement of what the method does.

parameter1 A complete description of parameter1, along with how it
relates to parameter2 and the Method.

parameter2 A complete description of parameter2, along with how it
relates to parameter1 and the Method. Brackets []
indicate optional parameters.

A concise description of what the Method does.

Implementation: A description of how the method currently accomplishes its objective. The
implementation may change with each release / version of Clarion.

Return Data Type: The data type returned if applicable.

Example:

FieldOne = FieldTwo + FieldThree !This is a source code example
FieldThree = Method(FieldOne,FieldTwo) !Comments follow the “!” character

See Also: Related Methods and Properties

202 CLARION 5 APPLICATION HANDBOOK

Conceptual Example

A description of the type of example to be illustrated. Examples show the
concept of how a specific class is implemented in source code. The demands
of brevity and concision often force the removal of structures which are not
essential in illustrating the class.

PROGRAM

MAP
END

! Data structures
CODE
! Code Statements

CHAPTER 7 ASCIIFILECLASS 203

7 - ASCIIFILECLASS

Overview
The ASCIIFileClass identifies, opens (read-only), indexes, and page-loads a
file’s contents into a QUEUE. The indexing function speeds any reaccess of
records and supports page-loading, which in turn allows browsing of very
large files.

Relationship to Other Application Builder Classes

There are several related classes whose collective purpose is to provide
reusable, read-only, viewing, scrolling, searching, and printing capability for
files, including variable length files. Although these classes are primarily
designed for ASCII text and they anticipate using the Clarion ASCII Driver
to access the files, they also work with binary files and with other database
drivers. These classes can be used to build other components and
functionality as well.

The classes that provide this read-only functionality and their respective
roles are:

ASCIIViewerClass ASCIIFileClass plus user interface
ASCIIFileClass Open, read, filter, and index the file
ASCIIPrintClass Print one or more lines
ASCIISearchClass Locate and scroll to text

The ASCIIViewerClass is derived from the ASCIIFileClass. See
ASCIIViewerClass for more information.

ABC Template Implementation

The ASCIIFileClass serves as the foundation to the Viewer procedure
template; however, the ABC Templates do not instantiate the ASCIIFileClass
independently of the ASCIIViewerClass.

The ASCIIViewerClass is derived from the ASCIIFileClass, and the Viewer
Procedure Template instantiates the derived ASCIIViewerClass.

204 CLARION 5 APPLICATION HANDBOOK

ASCIIFileClass Source Files

The ASCIIFileClass source code is installed by default to the Clarion
\LIBSRC folder. The ASCIIFileClass source code are contained in:

ABASCII.INC ASCIIFileClass declarations
ABASCII.CLW ASCIIFileClass method definitions

Conceptual Example

The following example shows a sequence of statements to declare,
instantiate, initialize, use, and terminate an ASCIIFileClass object and
related objects.

This example lets the end user select a file, then display it’s pathname, total
line count, and the text at a given percentage point within the file.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
MAP
END
INCLUDE('ABASCII.INC') !declare ASCIIFileClass

Percentile BYTE(50) !a value between 1 & 100
GlobalErrors ErrorClass !declare GlobalErrors object
AFile AsciiFileClass,THREAD !declare AFile object
FileActive BYTE(False),THREAD !AFile initialized flag
Filename STRING(255),THREAD !FileName variable

AsciiFile FILE,DRIVER('ASCII'),NAME(Filename),PRE(A1),THREAD
RECORD RECORD,PRE()
Line STRING(255)

END
END

window WINDOW('View a text file'),AT(3,7,203,63),SYSTEM,GRAY,DOUBLE
PROMPT('Show Line at Percentile'),AT(5,4),USE(?Prompt:Pct)
SPIN(@s3),AT(84,3,25,),USE(Percentile),RANGE(1,100)
BUTTON('New File'),AT(113,2),USE(?NewFileButton)
BUTTON('File Size'),AT(157,2),USE(?FileSizeButton)
PROMPT('Line:'),AT(4,26),USE(?Prompt:Line)
PROMPT(' '),AT(26,26,172,32),USE(?Line)

END
CODE
GlobalErrors.Init !initialize GlobalErrors object
OPEN(window)

!Initialize AFile with:
FileActive=AFile.Init(AsciiFile, | ! file label,

A1:line, | ! file field to display
Filename, | ! variable file NAME attribute
GlobalErrors) ! GlobalErrors object

CHAPTER 7 ASCIIFILECLASS 205

IF FileActive
window{PROP:Text}=AFile.GetFileName()

ELSE
window{PROP:Text}='no file selected'

END

ACCEPT
CASE FIELD()
OF ?NewFileButton !on New File button
IF EVENT() = EVENT:Accepted
CLEAR(FileName)
FileActive=AFile.Reset(FileName) !reset AFile to a new file
IF FileActive
window{PROP:Text}=AFile.GetFileName() !show filename in titlebar

ELSE
window{PROP:Text}='no file selected'

END
END

OF ?Percentile !on Percentile SPIN
CASE EVENT()
OF EVENT:Accepted OROF EVENT:NewSelection
IF FileActive !calculate lineno and get the line
?Line{PROP:Text}=AFile.GetLine(Percentile/100*AFile.GetLastLineNo())

ELSE
?Line{PROP:Text}='no file selected'

END
END

OF ?FileSizeButton !on File Size button
IF EVENT() = EVENT:Accepted
IF FileActive !display total line count
?FileSizeButton{PROP:Text}=AFile.GetLastLineNo()&' Lines'

ELSE
?FileSizeButton{PROP:Text}='0 Lines'

END
END

END
END
IF FileActive THEN AFile.Kill. !shut down AFile object
GlobalErrors.Kill

206 CLARION 5 APPLICATION HANDBOOK

AsciiFileClass Properties
The ASCIIFileClass contains the following properties.

ASCIIFile (the ASCII file)

ASCIIFile &FILE

The File property is a reference to the managed file. The File property
simply identifies the managed file for the various ASCIIFileClass methods.

Implementation: The .Init method initializes the File property.

See Also: Init

ErrorMgr (ErrorClass object)

ErrorMgr &ErrorClass, PROTECTED

The ErrorMgr property is a reference to the ErrorClass object for this
ASCIIFileClass object. The ASCIIFileClass uses the ErrorMgr to handle
various errors and conditions it encounters when processing the file.

Implementation: The Init method initializes the ErrorMgr property.

See Also: Init

OpenMode (file access/sharing mode)

OpenMode USHORT

The OpenMode property contains a value that determines the level of access
granted to both the user opening the file and other users in a multi-user
system.

Implementation: The Init method sets the OpenMode property to a hexadecimal value of 40h
(ReadOnly/DenyNone).

The Reset method uses the OpenMode property when it OPENs the file for
processing. See the Language Reference for more information on OPEN and
access modes.

See Also: Init, Reset

CHAPTER 7 ASCIIFILECLASS 207

AsciiFileClass Methods
The ASCIIFileClass contains the following methods.

Functional Organization—Expected Use

As an aid to understanding the ASCIIFileClass, it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the ASCIIFileClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the ASCIIFileClass object
Kill shut down the ASCIIFileClass object

Mainstream Use:
GetLastLineNo return last line number
GetLine return line of text
GetPercentile convert file position to percentage
SetPercentile convert percentage to file position

Occasional Use:
GetFilename return the filename
Reset reset the ASCIIFileClass object

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

GetDOSFilename prompt end user to select a file
FormatLine a virtual to format text
SetLine position to specific line
ValidateLine a virtual to implement a filter

208 CLARION 5 APPLICATION HANDBOOK

FormatLine (a virtual to format text)

FormatLine(line [, line number]), PROTECTED, VIRTUAL

FormatLine A virtual placeholder method to format text.

line The label of the STRING variable containing the text to
reformat.

line number An integer constant, variable, EQUATE or expresssion
that contains the offset or position of the line of text
being formatted. If omitted, FormatLine operates on the
current line.

The FormatLine method is a virtual placeholder method to reformat text
prior to display at runtime.

Implementation: The FormatLine method is a placeholder for derived classes. It provides an
easy way for you to reformat the text prior to display. The GetLine method
calls the FormatLine method.

Example:

INCLUDE('ABASCII.INC') !declare ASCIIViewerClass
MyViewer CLASS(AsciiViewerClass),TYPE !derive MyViewer class
FormatLine PROCEDURE(*STRING),VIRTUAL !prototype virtual FormatLine

END
Viewer MyViewer,THREAD !declare Viewer object
AsciiFile FILE,DRIVER('ASCII'),NAME(‘MyText’),PRE(A1),THREAD
RECORD RECORD,PRE()
Line STRING(255)

END
END

CODE
!program code

MyViewer.FormatLine PROCEDURE(*STRING line) !called by ASCIIViewerClass
CODE
line = line[1:5]‘ ‘&line[5:55] !reformat the text

See Also: GetLine

CHAPTER 7 ASCIIFILECLASS 209

GetDOSFilename (let end user select file)

GetDOSFilename(filename), VIRTUAL

GetDOSFilename Prompts the end user to select the file to process.

filename The label of the ASCIIFile property’s NAME attribute
variable which receives the selected filename.

The GetDOSFilename method prompts the end user to select the file to
process and returns a value indicating whether the end user selected a file or
did not select a file. A return value of one (1) indicates a file was selected
and filename contains its pathname; a retun value of zero (0) indicates no file
was selected and filename is empty.

Implementation: The GetDOSFileName method uses a SelectFileClass object to get the
filename from the end user.

Return Data Type: BYTE

Example:

MyAsciiFileClass.Reset FUNCTION(*STRING FName)
RVal BYTE(True)
SavePath CSTRING(FILE:MaxFilePath+1),AUTO
 CODE
 CLOSE(SELF.AsciiFile)
 SavePath=PATH()
 LOOP
 IF ~FName AND ~SELF.GetDOSFilename(FName)
 RVal=False
 BREAK
 END
 OPEN(SELF.AsciiFile,ReadOnly+DenyNone)
 IF ERRORCODE()
 MESSAGE(‘Can’t open ‘ & FName)
 RVal=False
 ELSE
 BREAK
 END
 END
 IF RVal
 SELF.FileSize=BYTES(SELF.AsciiFile)
 END
 SETPATH(SavePath)
 RETURN RVal

See Also: ASCIIFile, SelectFileClass

210 CLARION 5 APPLICATION HANDBOOK

GetFilename (return the filename)

GetFilename

The GetFilename method returns the name of the ASCII file.

Implementation: The GetFileName method uses the NAME function. See the Language
Reference for more information.

Return Data Type: STRING

Example:

INCLUDE('ABASCII.INC') !declare ASCIIViewerClass
Viewer AsciiViewerClass,THREAD !declare Viewer object
Filename STRING(255),THREAD !declare filename variable
AsciiFile FILE,DRIVER('ASCII'),NAME(Filename),PRE(A1),THREAD
RECORD RECORD,PRE()
Line STRING(255)

END
END

CODE
!program code
MESSAGE(‘Filename:’&Viewer.GetFilename()) !get the ASCII filename

GetLastLineNo (return last line number)

GetLastLineNo, PROC

The GetLastLineNo method returns the number of the last line in the file,
and indexes the entire file.

Return Data Type: LONG

Example:

MyViewer.TakeScroll PROCEDURE(UNSIGNED EventNo)
LineNo LONG
CODE
IF FIELD()=SELF.ListBox
IF EVENT() = EVENT:ScrollBottom !on scroll bottom
LineNo = SELF.GetLastLineNo() !index to end of file
SELF.DisplayPage(LineNo-SELF.ListBoxItems+1) !display last page
SELECT(SELF.ListBox,SELF.ListBoxItems) !highlight last row

END
END

CHAPTER 7 ASCIIFILECLASS 211

GetLine (return line of text)

GetLine(line number), PROC

GetLine Returns a line of text.

line number An integer constant, variable, EQUATE or expresssion
that contains the offset or position of the line of text to
return.

The GetLine method returns the line of text specifiedby line number.

Implementation: The GetLine method gets a line at position line number from the ASCII file,
extending the index queue if needed. If the index queue already contains the
requested line number then the file is read using the existing offset, otherwise
the index is extended. If the requested line number does not exist in the file,
the text line is cleared and ERRORCODE() set.

Return Data Type: STRING

Example:

MyViewer.DisplayPage PROCEDURE(LONG LineNo)
LineOffset USHORT,AUTO
CODE
IF LineNo > 0 !line specified?
SELF.ListBoxItems=SELF.ListBox{PROP:Items} !note size of list box
FREE(SELF.DisplayQueue) !free the display queue
SELF.GetLine(LineNo+SELF.ListBoxItems-1) !index to end of page
LOOP LineOffset=0 TO SELF.ListBoxItems-1 !for each listbox line
SELF.DisplayQueue.Line=SELF.GetLine(LineNo+LineOffset) !read ASCII file record
IF ERRORCODE() !on end of file
BREAK ! stop reading

END
ADD(SELF.DisplayQueue) !add to display queue

END
SELF.TopLine=LineNo !note 1st line displayed
DISPLAY(SELF.ListBox) !redraw the list box

END

See Also: GetLine

212 CLARION 5 APPLICATION HANDBOOK

GetPercentile (convert file position to percentage)

GetPercentile(line number)

GetPercentile Returns the specified position in the file as a percentage.

line number An integer constant, variable, EQUATE or expresssion
that contains the offset or position to convert to a per-
centage.

The GetPercentile method returns the specified position in the file as an
approximate percentage which can be used to position a vertical scroll bar
thumb.

Return Data Type: USHORT

Example:

SetThumb ROUTINE
!current line is what % thru the file?

PctPos=MyASCIIFile.GetPercentile(MyASCIIFile.TopLine+CHOICE(?ASCIIBox)-1)
?ASCIIBox{PROP:VScrollPos}=PctPos !set thumb to corresponding % position

CHAPTER 7 ASCIIFILECLASS 213

Init (initialize the ASCIIFileClass object)

Init(file, field [,filename], error handler)

Init Initializes the ASCIIFileClass object.

file The label of the file to display.

field The fully qualified label of the file field to display.

filename The label of the file’s NAME attribute variable. If
omitted, the file has a constant NAME attribute. If null
(‘’), the ASCIIFileClass prompts the end user to select a
file.

error handler The label of the ErrorClass object to handle errors
encountered by this ASCIIFileClass object.

The Init method initializes the ASCIIFileClass object and returns a value
indicating whether it successfully accessed the file and is ready to proceed.

Implementation: The Init method returns one (1) if it accessed the file and is ready to proceed;
it returns zero (0) and calls the Kill method if unable to access the file and
cannot proceed.

If the Init method returns zero (0), the ASCIIFileClass object is not
initialized and you should not call its methods.

Return Data Type: BYTE

Example:

Filename STRING(255),THREAD !declare filename variable
FileActive BYTE !declare success/fail switch
AsciiFile FILE,DRIVER('ASCII'),NAME(Filename),PRE(A1)
RECORD RECORD,PRE()
Line STRING(255)

END
END

CODE !init ASCIIFileClass object with:
FileActive=ASCIIFile.Init(AsciiFile, | ! file label

A1:Line, | ! file field to display
Filename, | ! NAME attribute variable
GlobalErrors) ! ErrorClass object

IF ~FileActive THEN RETURN. !If init failed, don’t proceed
ACCEPT !If init succeeded, proceed
IF EVENT() = EVENT:CloseWindow
IF FileActive THEN ASCIIFile.Kill. !If init succeeded, shut down

END
!program code

END

See Also: Kill

214 CLARION 5 APPLICATION HANDBOOK

Kill (shut down the ASCIIFileClass object)

Kill

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code.

Example:

Filename STRING(255),THREAD !declare filename variable
FileActive BYTE !declare success/fail switch
AsciiFile FILE,DRIVER('ASCII'),NAME(Filename),PRE(A1)
RECORD RECORD,PRE()
Line STRING(255)

END
END

CODE !init ASCIIFileClass object with:
FileActive=ASCIIFile.Init(AsciiFile, | ! file label

A1:Line, | ! file field to display
Filename, | ! NAME attribute variable
GlobalErrors) ! ErrorClass object

IF ~FileActive THEN RETURN. !If init failed, don’t proceed
ACCEPT !If init succeeded, proceed
IF EVENT() = EVENT:CloseWindow
IF FileActive THEN ASCIIFile.Kill. !If init succeeded, shut down

END
!program code

END

CHAPTER 7 ASCIIFILECLASS 215

Reset (reset the ASCIIFileClass object)

Reset(filename)

Reset Resets the ASCIIFileClass object.

filename The label of the ASCIIFile property’s NAME attribute
variable.

The Reset method resets the ASCIIFileClass object and returns a value
indicating whether the end user selected a file or did not select a file. A
return value of one (1) indicates a file was selected and filename contains its
pathname; a retun value of zero (0) indicates no file was selected and
filename is empty.

Implementation: The Reset method calls the GetDOSFileName method to get the filename
from the end user. Reset opens the file and resets any statistics and flags
associated with the selected file.

Return Data Type: BYTE

Example:

AsciiViewerClass.Reset FUNCTION(*STRING Filename)
 CODE
 FREE(SELF.DisplayQueue)
 DISPLAY(SELF.ListBox)
 IF ~PARENT.Reset(Filename) THEN RETURN False.
 SELF.TopLine=1
 SELF.DisplayPage
 SELECT(SELF.ListBox,1)
 RETURN True

See Also: ASCIIFile, GetDOSFilename

216 CLARION 5 APPLICATION HANDBOOK

SetLine (a virtual to position the file)

SetLine(line number), PROTECTED, VIRTUAL

SetLine A virtual placeholder method to position the file.

line number The offset or position of the line in the file.

The SetLine method is a virtual placeholder method to position the file.

Implementation: The SetLine method is a placeholder for derived classes. The SetPercentile,
the ASCIIViewerClass.AskGotoLine, and the ASCIISearchClass.Ask
methods call the SetLine method.

Example:

MyViewerClass.SetLine PROCEDURE(LONG LineNo) !synchronize LIST with line number
CODE
SELF.DisplayPage(LineNo) !scroll list to LineNo

!highlight the LineNo line
SELECT(SELF.ListBox,CHOOSE(SELF.TopLine=LineNo,1,LineNo-SELF.TopLine+1))

See Also: SetPercentile, ASCIIViewerClass.AskGoToLine, ASCIISearchClass.Ask

CHAPTER 7 ASCIIFILECLASS 217

SetPercentile (set file to relative position)

SetPercentile(percentile)

SetPercentile Positions the file to the record nearest to
file size * percentile / 100.

percentile A value between 0 and 100 that indicates a relative
position within the file. This value may be set by a
vertical scrollbar thumb position.

The SetPercentile method positions the file to the record nearest to
file size * percentile / 100. You may use SetPercentile to position the file
based on the end user’s vertical scrollbar thumb setting.

Implementation: The SetPercentile method positions the file based on a given percentage
(usually determined by the vertical thumb position). SetPercentile extends
the index as required and calls the virtual SetLine method to postion the file.

SetPercentile calculates the position by dividing percentile by 100 then
multiplying the resulting percentage times the file size.

Example:

MyViewerClass.TakeDrag PROCEDURE(UNSIGNED EventNo)
CODE
IF FIELD()=SELF.ListBox
IF EventNo = EVENT:ScrollDrag
SELF.SetPercentile(SELF.ListBox{PROP:VScrollPos}) !reposition based on thumb

END
END

See Also: SetLine

218 CLARION 5 APPLICATION HANDBOOK

ValidateLine (a virtual to implement a filter)

ValidateLine(line), PROTECTED, VIRTUAL

ValidateLine A virtual placeholder method to implement a filter.

line The offset or position of the line of text to evaluate.

The ValidateLine method is a virtual placeholder method to implement a
filter. ValidateLine returns one (1) to include the line and zero (0) to exclude
the line.

Implementation: The ValidateLine method is a placeholder method for derived classes. The
ASCIIFileClass calls the ValidateLine method when it initially reads a
record.

Return Data Type: BYTE

Example:

MyFileClass.ValidateLine FUNCTION(STRING LineToTest)

CODE
IF LineToTest[1] = ‘!’ !check for ! in column 1
RETURN False !exclude lines with !

ELSE
RETURN True !include all other lines

END

CHAPTER 8 ASCIIPRINTCLASS 219

8 - ASCIIPRINTCLASS

Overview
The ASCIIPrintClass provides the user interface—a simple Print Options
dialog—to print one or more lines from a text file. The ASCIIPrintClass
interface lets the end user specify a range of lines to print, then optionally
previews the lines before printing them. The ASCIIPrintClass interface also
provides access to the standard Windows Print Setup dialog.

Relationship to Other Application Builder Classes

The ASCIIPrintClass relies on the ASCIIFileClass to read and index the file
that it prints. It also relies on the PrintPreviewClass to provide the on-line
preview. It also uses the TranslatorClass to translate its Print Options dialog
text if needed.

The ASCIIViewerClass uses the ASCIIPrintClass to provide the end user
with a Print Options dialog to print one or more lines from the viewed file.

There are several related classes whose collective purpose is to provide
reusable, read-only, viewing, scrolling, searching, and printing capability for
files, including variable length files. Although these classes are primarily
designed for ASCII text and they anticipate using the Clarion ASCII Driver
to access the files, they also work with binary files and with other database
drivers. These classes can be used to build other components and
functionality as well.

The classes that provide this read-only functionality are:

ASCIIViewerClass ASCIIFileClass plus user interface
ASCIIFileClass Open, read, filter, and index the file
ASCIIPrintClass Print one or more lines
ASCIISearchClass Locate and scroll to text

ABC Template Implementation

Both the Viewer procedure template and the ASCIIPrintButton control
template generate code to instantiate an ASCIIPrintClass object. The Viewer
template accomplishes this by adding a parameter to the
ASCIIViewerClass.Init method. The ASCIIPrintButton template
accomplishes this by declaring an ASCIIPrintClass object and calling the
ASCIIViewerClass.AddItem method to register the ASCIIPrintClass object
with the ASCIIViewerClass object.

220 CLARION 5 APPLICATION HANDBOOK

ASCIIPrintClass Source Files

The ASCIIPrintClass source code is installed by default to the Clarion
\LIBSRC folder. The specific ASCIIPrintClass source code and their
respective components are contained in:

ABASCII.INC ASCIIPrintClass declarations
ABASCII.CLW ASCIIPrintClass method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate an ASCIIPrintClass object and
related objects.

This example lets the end user select a file, then search and print from it.

MEMBER('viewer.clw')

INCLUDE('ABASCII.INC')
INCLUDE('ABWINDOW.INC')

MAP
MODULE('VIEWE002.CLW')

BrowseFiles PROCEDURE
END

END

BrowseFiles PROCEDURE

FilesOpened BYTE
ViewerActive BYTE(False)
Filename STRING(FILE:MaxFilePath),AUTO,STATIC,THREAD
AsciiFile FILE,DRIVER('ASCII'),NAME(Filename),PRE(A1),THREAD
RECORD RECORD,PRE()
Line STRING(255)

END
END

ViewWindow WINDOW('View an ASCII File'),AT(3,7,296,136),SYSTEM,GRAY
LIST,AT(5,5,285,110),USE(?AsciiBox),IMM,FROM('')
BUTTON('&Print...'),AT(7,119),USE(?Print)
BUTTON('&Search...'),AT(44,119),USE(?Search)

END
ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
TakeAccepted PROCEDURE(),BYTE,PROC,VIRTUAL

END

Viewer AsciiViewerClass !declare Viewer object
Searcher AsciiSearchClass !declare Searcher object
Printer AsciiPrintClass !declare Printer object

CODE
GlobalResponse = ThisWindow.Run()

CHAPTER 8 ASCIIPRINTCLASS 221

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
IF ReturnValue THEN RETURN ReturnValue.
SELF.FirstField = ?AsciiBox
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
OPEN(ViewWindow)
SELF.Opened=True
CLEAR(Filename)
ViewerActive=Viewer.Init(AsciiFile,A1:Line,Filename,?AsciiBox,GlobalErrors)
IF ~ViewerActive THEN RETURN Level:Fatal.
Viewer.AddItem(Searcher) !register Searcher with Viewer
Viewer.AddItem(Printer) !register Printer with Viewer
SELF.SetAlerts()
RETURN ReturnValue

ThisWindow.TakeAccepted PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.TakeAccepted()
 CASE ACCEPTED()
 OF ?Print
 ThisWindow.Update
 IF ViewerActive THEN Viewer.Printer.Ask. !display Print Options dialog
 OF ?Search
 ThisWindow.Update
 IF ViewerActive
 IF CHOICE(?AsciiBox)>0 !search from current line

Viewer.Searcher.Ask(Viewer.TopLine+CHOICE(?AsciiBox)-1)
ELSE
Viewer.Searcher.Ask(1) !search from line 1

END
END

 END
 RETURN ReturnValue

222 CLARION 5 APPLICATION HANDBOOK

AsciiPrintClass Properties
The ASCIIPrintClass contains the following properties.

FileMgr (AsciiFileClass object)

FileMgr &AsciiFileClass, PROTECTED

The FileMgr property is a reference to the AsciiFileClass object that
manages the file to print. The AsciiPrintClass object uses the FileMgr to read
the file, manage print range line numbers and to handle error conditions and
messages.

Implementation: The Init method initializes the FileMgr property.

See Also: Init

PrintPreview (print preview switch)

PrintPreview BYTE

The PrintPreview property contains the print preview setting for the
AsciiPrintClass object. A value of one (1 or True) initially “checks” the print
preview box (default is preview); a value of zero (0 or False) “clears” the
print preview box (default is no preview).

Implementation: The Init method sets the PrintPreview property to false. The PrintLines
method implements the action specified by the PrintPreview property.

See Also: Init, PrintLines

Translator (TranslatorClass object)

Translator &TranslatorClass, PROTECTED

The Translator property is a reference to the TranslatorClass object for the
AsciiPrintClass object. The AsciiPrintClass object uses this property to
translate text in the object’s Print Options dialog to the appropriate language.

Implementation: The AsciiPrintClass does not initialize the Translator property. The
AsciiPrintClass only invokes the Translator if the Translator property is not
null. You can use the AsciiViewerClass.SetTranslator method or a reference
assignment statement to set the Translator property.

See Also: AsciiViewerClass.SetTranslator

CHAPTER 8 ASCIIPRINTCLASS 223

AsciiPrintClass Methods
The AsciiPrintClass contains the following properties.

Ask (solicit print specifications)

Ask, VIRTUAL

The Ask method displays a Print Options dialog that prompts the end user
for print specifications, then prints the selected lines subject to those
specifications (printer destination, paper orientation, etc.).

Implementation: The Ask method prompts the end user for print specifications (including the
Windows standard Print Setup dialog), print preview, plus a range of lines to
print. If the user CLICKS the Print button, the Ask method prints the requested
lines to the printer specified by the end user.

Example:

ACCEPT
CASE FIELD()
OF ?PrintButton !on “Print” button
IF EVENT() = EVENT:Accepted !call the Printer.Ask method
IF ViewerActive THEN Viewer.Printer.Ask. !to gather specs and print lines

END
END

END

Init (initialize the ASCIIPrintClass object)

Init(ASCIIFileMgr), VIRTUAL

Init Initializes the ASCIIPrintClass object.

ASCIIFileMgr The label of the ASCIIFileClass object that manages the
file to print. The ASCIIPrintClass object uses the
ASCIIFileMgr to read from the file and handle line
numbers and error conditions.

The Init method initializes the ASCIIPrintClass object.

Example:

MyViewerClass.Init FUNCTION(FILE AsciiFile,*STRING FileLine,*STRING Filename,|
UNSIGNED ListBox,ErrorClass ErrHandler,BYTE Enables)

CODE
!program code
IF BAND(Enables,EnableSearch) !if Search flag is on
SELF.Searcher &= NEW AsciiSearchClass !instantiate Searcher object
SELF.Searcher.Init(SELF) !initialize Searcher object

END
IF BAND(Enables,EnablePrint) if Print flag is on
SELF.Printer &= NEW AsciiPrintClass !instantiate Printer object
SELF.Printer.Init(SELF) !initialize Printer object

END

224 CLARION 5 APPLICATION HANDBOOK

PrintLines (print or preview specified lines)

PrintLines(first, last), VIRTUAL

PrintLines Prints or previews the specified lines.

first An integer constant, variable, EQUATE, or expression
containing the number of the first line of the range of
lines to print.

last An integer constant, variable, EQUATE, or expression
containing the number of the last line of the range of
lines to print.

If the PrintPreview property is True, the PrintLines method previews the
specified lines, then prints the lines or not, depending on the end user’s
response to the preview.

If the PrintPreview property is False, the PrintLines method prints the
specified lines to the selected printer.

Example:

IF EVENT() = EVENT:Accepted
IF ACCEPTED() = ?PrintButton
FirstLine=1
LastLine=HighestLine
SELF.PrintLines(FirstLine,LastLine)
POST(EVENT:CloseWindow)

END
END

See Also: PrintPreview

CHAPTER 9 ASCIISEARCHCLASS 225

9 - ASCIISEARCHCLASS

Overview
The ASCIISearchClass provides the user interface—a persistent non-MDI
Find dialog—to locate specific text within the browsed file. The
ASCIISearchClass interface lets the end user specify the direction and case
sensitivity of the search, and it allows repeating searches (“find next”).

Relationship to Other Application Builder Classes

The ASCIISearchClass relies on the ASCIIFileClass to read and index the
file that it searches. It also uses the TranslatorClass to translate its Find
dialog text if needed.

The ASCIIViewerClass uses the ASCIISearchClass to provide the end user
with a Find dialog to locate text in the viewed file.

There are several related classes whose collective purpose is to provide
reusable, read-only, viewing, scrolling, searching, and printing capability for
files, including variable length files. Although these classes are primarily
designed for ASCII text and they anticipate using the Clarion ASCII Driver
to access the files, they also work with binary files and with other database
drivers. These classes can be used to build other components and
functionality as well.

The classes that provide this read-only functionality and their respective
roles are:

ASCIIViewerClass ASCIIFileClass plus user interface
ASCIIFileClass Open, read, filter, and index the file
ASCIISearchClass Print one or more lines
ASCIISearchClass Locate and scroll to text

ABC Template Implementation

Both the Viewer procedure template and the ASCIISearchButton control
template generate code to instantiate an ASCIISearchClass object. The
Viewer template accomplishes this by adding a parameter to the
ASCIIViewerClass.Init method. The ASCIISearchButton template
accomplishes this by declaring an ASCIISearchClass object and calling the
ASCIIViewerClass.AddItem method to register the ASCIISearchClass object
with the ASCIIViewerClass object.

226 CLARION 5 APPLICATION HANDBOOK

ASCIISearchClass Source Files

The ASCIISearchClass source code is installed by default to the Clarion
\LIBSRC folder. The specific ASCIISearchClass source code and their
respective components are contained in:

ABASCII.INC ASCIISearchClass declarations
ABASCII.CLW ASCIISearchClass method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate an ASCIISearchClass object and
related objects.

This example lets the end user select a file, then search and print from it.

MEMBER('viewer.clw')

INCLUDE('ABASCII.INC')
INCLUDE('ABWINDOW.INC')

MAP
MODULE('VIEWE002.CLW')

BrowseFiles PROCEDURE
END

END

BrowseFiles PROCEDURE

FilesOpened BYTE
ViewerActive BYTE(False)
Filename STRING(FILE:MaxFilePath),AUTO,STATIC,THREAD
AsciiFile FILE,DRIVER('ASCII'),NAME(Filename),PRE(A1),THREAD
RECORD RECORD,PRE()
Line STRING(255)

END
END

ViewWindow WINDOW('View an ASCII File'),AT(3,7,296,136),SYSTEM,GRAY
LIST,AT(5,5,285,110),USE(?AsciiBox),IMM,FROM('')
BUTTON('&Print...'),AT(7,119),USE(?Print)
BUTTON('&Search...'),AT(44,119),USE(?Search)

END
ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
TakeAccepted PROCEDURE(),BYTE,PROC,VIRTUAL

END

Viewer AsciiViewerClass !declare Viewer object
Searcher AsciiSearchClass !declare Searcher object
Printer AsciiPrintClass !declare Printer object

CODE
GlobalResponse = ThisWindow.Run()

CHAPTER 9 ASCIISEARCHCLASS 227

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
IF ReturnValue THEN RETURN ReturnValue.
SELF.FirstField = ?AsciiBox
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
OPEN(ViewWindow)
SELF.Opened=True
CLEAR(Filename)
ViewerActive=Viewer.Init(AsciiFile,A1:Line,Filename,?AsciiBox,GlobalErrors)
IF ~ViewerActive THEN RETURN Level:Fatal.
Viewer.AddItem(Searcher) !register Searcher with Viewer
Viewer.AddItem(Printer) !register Printer with Viewer
SELF.SetAlerts()
RETURN ReturnValue

ThisWindow.TakeAccepted PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.TakeAccepted()
 CASE ACCEPTED()
 OF ?Print
 ThisWindow.Update
 IF ViewerActive THEN Viewer.Printer.Ask. !display Print Options dialog
 OF ?Search
 ThisWindow.Update
 IF ViewerActive
 IF CHOICE(?AsciiBox)>0 !search from current line

Viewer.Searcher.Ask(Viewer.TopLine+CHOICE(?AsciiBox)-1)
ELSE
Viewer.Searcher.Ask(1) !search from line 1

END
END

 END
 RETURN ReturnValue

228 CLARION 5 APPLICATION HANDBOOK

AsciiSearchClass Properties
The ASCIISearchClass contains the following properties.

Find (search constraints)

Find FindGroup, PROTECTED

The Find property contains the current search criteria or specification.

Implementation: The search specification includes the text to search for, the direction in which
to search, and whether or not the search is case sensitive.

The Ask method sets the values of the Find property based on end user input
to the Find dialog. The Setup method sets the values of the Find property for
use without the Ask method. The Next method implements the seach
specified by the Find property.

The FindGroup datatype is declared in ABASCII.INC as follows:

FindGroup GROUP,TYPE
What PSTRING(64) !text to look for
MatchCase BYTE !case sensitive?
Direction STRING(4) !either 'Up ' or 'Down'

END

See Also: Ask, Next, Setup

FileMgr (AsciiFileClass object)

FileMgr &AsciiFileClass, PROTECTED

The FileMgr property is a reference to the AsciiFileClass object tyhat
manages the file to search. The AsciiSearchClass object uses the FileMgr to
read the file, and to handle error conditions and messages.

Implementation: The Init method initializes the FileMgr property.

See Also: Init

LineCounter (current line number)

LineCounter LONG, PROTECTED

The LineCounter property contains the current line number of the searched
file.

Implementation: The ASCIISearchClass object uses the LineCounter property to implement
“find next” searches—searches that continue from the current line.

CHAPTER 9 ASCIISEARCHCLASS 229

Translator (TranslatorClass object)

Translator &TranslatorClass, PROTECTED

The Translator property is a reference to the TranslatorClass object for the
ASCIISearchClass object. The ASCIISearchClass object uses this property
to translate window text to the appropriate language.

Implementation: The ASCIISearchClass does not initialize the Translator property. The
ASCIISearchClass only invokes the Translator if the Translator property is
not null. You can use the AsciiViewerClass.SetTranslator method to set the
Translator property.

See Also: AsciiViewerClass.SetTranslator

230 CLARION 5 APPLICATION HANDBOOK

AsciiSearchClass Methods
The ASCIISearchClass contains the following methods.

Ask (solicit search specifications)

Ask([startline]), VIRTUAL

Ask Prompts the end user for search specifications then
positions to the specified search value.

startline The offset or position of the line at which to begin the
search, typically the current line position. If omitted,
startline defaults to one (1).

The Ask method prompts the end user for search specifications then
positions the file to the next line subject to the search specifications, or issues
an appropriate message if the search value is not found.

Implementation: The Ask method prompts the end user for search specifications including a
value to search for, the direction of the search, and whether the search is case
sensitive. If the user invokes the search (doesn’t cancel), the Ask method
positions the file to the next line containing the search value, or issues an
appropriate message if the search value is not found.

Example:

ACCEPT
CASE FIELD()
OF ?PrintButton
IF EVENT() = EVENT:Accepted
IF ViewerActive THEN Viewer.Printer.Ask.

END
OF ?Search !on “search” button
IF EVENT() = EVENT:Accepted
IF ViewerActive !call Searcher.Ask method
StartSearch=CHOOSE(CHOICE(?AsciiBox)>0, | ! passing the currently

Viewer.TopLine+CHOICE(?AsciiBox)-1,1) ! selected line as the
Viewer.Searcher.Ask(StartSearch) ! search’s starting point

END
END

END
END

CHAPTER 9 ASCIISEARCHCLASS 231

Init (initialize the ASCIISearchClass object)

Init(ASCIIFileMgr), VIRTUAL

Init Initializes the ASCIISearchClass object.

ASCIIFileMgr The label of the ASCIIFileClass object that manages the
file to search. The ASCIISearchClass object uses the
ASCIIFileMgr to read from the file.

The Init method initializes the ASCIISearchClass object.

Example:

MyViewerClass.Init FUNCTION(FILE AsciiFile,*STRING FileLine,*STRING Filename,|
UNSIGNED ListBox,ErrorClass ErrHandler,BYTE Enables)

CODE
!program code
IF BAND(Enables,EnableSearch) !if Search flag is on
SELF.Searcher &= NEW AsciiSearchClass !instantiate Searcher object
SELF.Searcher.Init(SELF) !initialize Searcher object

END
IF BAND(Enables,EnablePrint) if Print flag is on
SELF.Printer &= NEW AsciiPrintClass !instantiate Printer object
SELF.Printer.Init(SELF) !initialize Printer object

END

Next (find next line containing search text)

Next, VIRTUAL

The Next method returns the line number of the next line containing the
search value specified by the Ask method.

Implementation: The Ask method calls the Next method. The Next method searches for the
search value and in the direction set by the Ask method. Alternatively, you
can use the Setup method to set the search constraints.

Return Data Type: LONG

Example:

MyAsciiSearchClass.Ask PROCEDURE
CODE
!procedure code
CASE EVENT()
OF EVENT:Accepted
CASE FIELD()
OF ?NextButton
SELF.LineCounter=SELF.Next()
IF SELF.LineCounter
SELF.FileMgr.SetLine(SELF.LineCounter)

END
!procedure code

See Also: Ask, Setup

232 CLARION 5 APPLICATION HANDBOOK

Setup (set search constraints)

Setup(constraints [, startline])

Setup Sets the search constraints.

constraints The label of a structure containing the search con-
straints. The structure must have the same structure as
the FindGroup GROUP declared in ABASCII.INC.

startline The offset or position of the line at which to begin the
search, typically the current line position. If omitted,
startline defaults to one (1).

The Setup method sets the search constraints. The AsciiSearchClass object
applies the constraints when searching the text file.

Implementation: The ABC Library does not call the Setup method. The Setup method is
provided so you can do custom searches outside the normal
AsciiViewerClass process (without using the Ask method).

The Next method applies the search constraints set by the Setup method. The
constraints include the text to search for, the direction in which to search, and
whether or not the search is case sensitive.

The FindGroup GROUP is declared in ABASCII.INC as follows:

FindGroup GROUP,TYPE
What PSTRING(64) !text to look for
MatchCase BYTE !case sensitive?
Direction STRING(4) !either 'Up ' or 'Down'

END

Example:

MyAsciiSearchClass.Ask PROCEDURE
Constraints LIKE(FindGroup)
CODE
Constraints.MatchCase = False !never case sensitive
Constraints.Direction = ‘Down’ !always search downward
!prompt end user for search value
SELF.Setup(Constraints,StartLine) !set search constraints
SELF.LineCounter=SELF.Next() !execute search
IF SELF.LineCounter
SELF.FileMgr.SetLine(SELF.LineCounter) !set to next line containing search value

ELSE
MESSAGE(''''&CLIP(SELF.Constraints.What)&''' not found.')

END

See Also: Ask, Next

CHAPTER 10 ASCIIVIEWERCLASS 233

10 - ASCIIVIEWERCLASS

Overview
There are several related classes whose collective purpose is to provide
reusable, read-only, viewing, scrolling, searching, and printing capability for
files, including variable length files. Although these classes are primarily
designed for ASCII text and they anticipate using the Clarion ASCII Driver
to access the files, they also work with binary files and with other database
drivers. These classes can be used to build other components and
functionality as well.

The classes that provide this read-only functionality are the ASCII Viewer
classes. The ASCII Viewer classes and their respective roles are:

ASCIIViewerClass Supervisor class
ASCIIFileClass Open, read, filter, and index the file
ASCIIPrintClass Print one or more lines
ASCIISearchClass Locate and scroll to text

These classes are fully documented in the remainder of this chapter.

ASCIIViewerClass

The ASCIIViewerClass uses the ASCIIFileClass, the ASCIIPrintClass, and
the ASCIISearchClass to create a single full featured ASCII file viewer
object. This object uses a LIST control to display, scroll, search, and print
the contents of the file. Typically, you instantiate only the ASCIIViewerClass
in your program which, in turn, instantiates the other classes as needed.

ASCIIFileClass

The ASCIIFileClass identifies, opens (read-only), indexes, and page-loads a
file’s contents into a QUEUE. The indexing function speeds any reaccess of
records and supports page-loading, which in turn allows browsing of very
large files.

ASCIIPrintClass

The ASCIIPrintClass lets the end user specify a range of lines to print, then
prints them. It also provides access to the standard Windows Print Setup
dialog.

234 CLARION 5 APPLICATION HANDBOOK

ASCIISearchClass

The ASCIISearchClass lets the end user specify a search value, case
sensitivity, and a search direction, then scrolls to the next instance of the
search value within the file.

Relationship to Other Application Builder Classes

The ASCIIViewerClass is derived from the ASCIIFileClass, plus it relies on
the ASCIIPrintClass, ASCIISearchClass, ErrorClass, and PopupClass to
accomplish some user interface tasks. Therefore, if your program instantiates
the ASCIIViewerClass, it must also instantiate these other classes. Much of
this is automatic when you INCLUDE the ASCIIViewerClass header
(ABASCII.INC) in your program’s data section. See the Conceptual
Example.

ABC Template Implementation

The ABC Templates declare a local ASCIIViewer class and object for each
instance of the ASCIIViewControl template. The ABC Templates
automatically include all the classes necessary to support the functionality
specified in the ASCIIViewControl template.

The templates derive a class from the ASCIIViewerClass for each
ASCIIViewerClass in the application. The derived class is called Viewer#
where # is the instance number of the ASCIIViewControl template. The
templates provide the derived class so you can use the ASCIIViewControl
template Classes tab to easily modify the viewer’s behavior on an instance-
by-instance basis.

The object is named Viewer# where # is the instance number of the control
template. The derived ASCIIViewerClass is local to the procedure, is specific
to a single ASCIIViewerClass and relies on the global ErrorClass object.

ASCIIViewerClass Source Files

The ASCIIViewerClass source code is installed by default to the Clarion
\LIBSRC folder. The specific ASCIIViewerClass source code and their
respective components are contained in:

ABASCII.INC ASCIIViewerClass declarations
ABASCII.CLW ASCIIViewerClass method definitions

CHAPTER 10 ASCIIVIEWERCLASS 235

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate an ASCIIViewerClass object and
related objects.

This example lets the end user select a file, then browse, scroll, search, and
print from it.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
MAP
END

INCLUDE('ABASCII.INC') !declare ASCIIViewer Class

ViewWindow WINDOW('View a text file'),AT(3,7,296,136),SYSTEM,GRAY
LIST,AT(5,5,285,110),USE(?AsciiBox),IMM
BUTTON('&Print'),AT(5,120),USE(?Print)
BUTTON('&Search'),AT(45,120),USE(?Search)
BUTTON('&Close'),AT(255,120),USE(?Close)

END

GlobalErrors ErrorClass !declare GlobalErrors object
Viewer AsciiViewerClass,THREAD !declare Viewer object

ViewerActive BYTE(False),THREAD !Viewer initialized flag
Filename STRING(255),THREAD !FileName variable
StartSearch LONG !hold selected line number

AsciiFile FILE,DRIVER('ASCII'),NAME(Filename),PRE(A1),THREAD
RECORD RECORD,PRE()
Line STRING(255)

END
END

CODE

GlobalErrors.Init !initialize GlobalErrors object
OPEN(ViewWindow) !open the window

!Initialize Viewer with:
ViewerActive=Viewer.Init(AsciiFile, | ! file label,

A1:line, | ! file field to display
Filename, | ! variable file NAME attribute
?AsciiBox, | ! LIST control number
GlobalErrors, | ! ErrorClass object
EnableSearch+EnablePrint) ! features to implement flag

IF ~ViewerActive THEN RETURN. !if init unsuccessful, don’t
! call other Viewer methods

236 CLARION 5 APPLICATION HANDBOOK

AsciiViewerClass Properties
The AsciiViewerClass inherits all the properties of the AsciiFileClass from
which it is derived. See AsciiFileClass Properties for more information.

In addition to the inherited properties, the AsciiViewerClass contains the
properties listed below.

Popup (PopupClass object)

Popup &PopupClass

The Popup property is a reference to the PopupClass object for this
ASCIIViewerClass object. The ASCIIViewerClass object uses the Popup
property to define and manage its popup menus.

Implementation: The Init method initializes the Popup property.

See Also: Init

Printer (ASCIIPrintClass object)

Printer &ASCIIPrintClass

The Printer property is a reference to the ASCIIPrintClass object for this
ASCIIViewerClass object. The ASCIIViewerClass object uses the Printer
property to solicit print ranges and specifications from the end user, then
print from the file subject to the specifications.

Implementation: The AddItem and Init methods initialize the Printer property.

See Also: AddItem, Init

Searcher (ASCIISearchClass object)

Searcher &ASCIISearchClass

The Searcher property is a reference to the ASCIISearchClass object for this
ASCIIViewerClass object. The ASCIIViewerClass object uses the Searcher
property to solicit search values from the end user, then locate the values
within the browsed file.

Implementation: The AddItem and Init methods initialize the Searcher property.

See Also: AddItem, Init

CHAPTER 10 ASCIIVIEWERCLASS 237

TopLine (first line currently displayed)

TopLine UNSIGNED

The TopLine property contains the offset or position of the first line
currently displayed by the ASCIIViewerClass object. The ASCIIViewerClass
object uses the TopLine property to manage scrolling and scrollbar thumb
positioning.

238 CLARION 5 APPLICATION HANDBOOK

AsciiViewerClass Methods
The AsciiViewerClass inherits all the methods of the AsciiFileClass from
which it is derived. See AsciiFileClass Methods for more information.

In addition to (or instead of) the inherited methods, the AsciiViewerClass
contains the methods listed below.

Functional Organization—Expected Use

As an aid to understanding the ASCIIViewerClass, it is useful to organize the
its methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the ASCIIViewerClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the ASCIIViewerClass object
Kill shut down the ASCIIViewerClass object

Mainstream Use:
AskGotoLine go to user specified line
DisplayPage display new page
PageDown scroll down one page
PageUp scroll up one page
TakeEvent process ACCEPT loop event

Occasional Use:
AddItem add printer or searcher object
GetFilenameI return the filename
GetLastLineNoI return last line number
GetLineI return line of text
GetPercentileI convert file position to percentage
Reset reset the ASCIIViewerClass object
SetPercentileI convert percentage to file position
SetLineV position to specific line
SetLineRelative move N lines

I These methods are inherited from the ASCIIFileClass.

V These methods are also virtual.

CHAPTER 10 ASCIIVIEWERCLASS 239

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

FormatLineI format text
SetLine position to specific line
ValidateLineI implement a filter

I These methods are inherited from the ASCIIFileClass.

240 CLARION 5 APPLICATION HANDBOOK

AddItem (program the AsciiViewer object)

AddItem(| printer |)
 | searcher |

AddItem Adds specific functionality to the AsciiViewer object.

printer The label of an AsciiPrintClass object.

searcher The label of an AsciiSearchClass object.

The AddItem method adds specific functionality to the AsciiViewer object.
This method provides an alternative to the Init method for adding or
changing the print and search capability of the AsciiViewer object.

Implementation: The AddItem method sets the value of the Printer or Searcher property,
initializes the printer or searcher, then enables the corresponding popup
menu item.

Example:

MyPrinter CLASS(AsciiPrintClass) !declare custom printer object
NewMethod PROCEDURE

END
MySearcher CLASS(AsciiSearchClass) !declare custom searcher object
NewMethod PROCEDURE

END

CODE
Viewer.Init(AsciiFile,A1:line,Filename,?AsciiBox,GlobalErrors)
Viewer.AddItem(MyPrinter) !add print functionality
Viewer.AddItem(MySearcher) !add search functionality

See Also: Init, Printer, Searcher

CHAPTER 10 ASCIIVIEWERCLASS 241

AskGotoLine (go to user specified line)

AskGotoLine

The AskGotoLine method prompts the end user for a specific line number to
display, then positions the file to the line nearest the one specified.

Implementation: The ASCIIViewerClass invokes the AskGotoLine method from a RIGHT-CLICK

popup menu. The AskGotoLine method calls the SetLine method to position
to the requested record.

Example:

MyViewerClass.TakeEvent PROCEDURE(UNSIGNED EventNo)
 CODE
 CASE EventNo
 OF EVENT:AlertKey
 IF KEYCODE()=MouseRight
 CASE SELF.Popup.Ask()
 OF 'Print'
 SELF.Printer.Ask
 OF 'Goto'
 SELF.AskGotoLine
. . .

See Also: SetLine

DisplayPage (display new page)

DisplayPage([line number])

DisplayPage Displays a new page from the file.

line number An integer constant, variable, EQUATE or expresssion
that contains the offset or position of the line of text to
include in the display. If omitted, line number defaults to
the value of the TopLine property.

The DisplayPage method displays a new page from the file. The display
includes the line at line number, or the line specified by the TopLine
property, if line number is omitted.

Example:

MyViewerClass.Reset PROCEDURE(*STRING Filename)
 CODE
 FREE(SELF.DisplayQueue)
 DISPLAY(SELF.ListBox)
 PARENT.Reset(Filename)
 SELF.TopLine=1
 SELF.DisplayPage
 SELECT(SELF.ListBox,1)

See Also: TopLine

242 CLARION 5 APPLICATION HANDBOOK

Init (initialize the ASCIIViewerClass object)

Init(file, field, [filename], list control, error handler [, features])

Init Initializes the ASCIIViewerClass object.

file The label of the file to display.

field The fully qualified label of the file field to display.

filename The label of the file’s NAME attribute variable. If
omitted, the file has a constant NAME attribute. If null
(‘’), the Init method prompts the end user to select a file.

list control An integer constant, variable, EQUATE, or expression
containing the control number of the LIST that displays
the file contents.

error handler The label of the ErrorClass object to handle errors
encountered by this ASCIIViewerClass object.

features An integer constant, variable, EQUATE, or expression
that tells the ASCIIViewerClass object which features to
implement; for example, printing (EnablePrint), search-
ing (EnableSearch), or both. If omitted, no additional
features are implemented.

The Init method initializes the ASCIIViewerClass object and returns a value
indicating whether it successfully accessed the file and is ready to proceed.

Implementation: The Init method returns one (1) if it accessed the file and is ready to proceed;
it returns zero (0) and calls the Kill method if unable to access the file and
cannot proceed. If the Init method returns zero (0), the ASCIIViewerClass
object is not initialized and you should not call its methods.

You can set the features value with the following EQUATEs declared in
ASCII.INC. Pass either EQUATE to implement its feature (search or print),
or add the EQUATEs together to implement both features.

EnableSearch BYTE(001b)
EnablePrint BYTE(010b)

Return Data Type: BYTE

CHAPTER 10 ASCIIVIEWERCLASS 243

Example:

PROGRAM
MAP
END

INCLUDE('ABASCII.INC') !declare ASCIIViewer Class

ViewWindow WINDOW('View an ASCII File'),AT(3,7,296,136),SYSTEM,GRAY
LIST,AT(5,5,285,110),USE(?AsciiBox),IMM
BUTTON('&Print'),AT(5,120),USE(?Print)
BUTTON('&Search'),AT(45,120),USE(?Search)
BUTTON('&Close'),AT(255,120),USE(?Close)

END

GlobalErrors ErrorClass !declare GlobalErrors object
Viewer AsciiViewerClass,THREAD !declare Viewer object

ViewerActive BYTE(False),THREAD !Viewer initialized flag
Filename STRING(255),THREAD !FileName variable

AsciiFile FILE,DRIVER('ASCII'),NAME(Filename),PRE(A1),THREAD
RECORD RECORD,PRE()
Line STRING(255)

END
END

CODE

GlobalErrors.Init !initialize GlobalErrors object
OPEN(ViewWindow) !open the window

!Initialize Viewer with:
ViewerActive=Viewer.Init(AsciiFile, | ! file label,

A1:line, | ! file field to display
Filename, | ! variable file NAME attribute
?AsciiBox, | ! LIST control number
GlobalErrors, | ! ErrorClass object
EnableSearch+EnablePrint) ! features to implement flag

IF ~ViewerActive THEN RETURN. !if init unsuccessful, don’t
! call other Viewer methods

ACCEPT !If init succeeded, proceed
IF EVENT() = EVENT:CloseWindow
IF ViewerActive THEN Viewer.Kill. !If init succeeded, shut down

END
!program code

END

See Also: Kill

244 CLARION 5 APPLICATION HANDBOOK

Kill (shut down the ASCIIViewerClass object)

Kill

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code.

Example:

PROGRAM
MAP
END

INCLUDE('ABASCII.INC') !declare ASCIIViewer Class

ViewWindow WINDOW('View an ASCII File'),AT(3,7,296,136),SYSTEM,GRAY
LIST,AT(5,5,285,110),USE(?AsciiBox),IMM
BUTTON('&Print'),AT(5,120),USE(?Print)
BUTTON('&Search'),AT(45,120),USE(?Search)
BUTTON('&Close'),AT(255,120),USE(?Close)

END

GlobalErrors ErrorClass !declare GlobalErrors object
Viewer AsciiViewerClass,THREAD !declare Viewer object

ViewerActive BYTE(False),THREAD !Viewer initialized flag
Filename STRING(255),THREAD !FileName variable

AsciiFile FILE,DRIVER('ASCII'),NAME(Filename),PRE(A1),THREAD
RECORD RECORD,PRE()
Line STRING(255)

END
END

CODE

GlobalErrors.Init !initialize GlobalErrors object
OPEN(ViewWindow) !open the window

!Initialize Viewer with:
ViewerActive=Viewer.Init(AsciiFile, | ! file label,

A1:line, | ! file field to display
Filename, | ! variable file NAME attribute
?AsciiBox, | ! LIST control number
GlobalErrors, | ! ErrorClass object
EnableSearch+EnablePrint) ! features to implement flag

IF ~ViewerActive THEN RETURN. !if init unsuccessful, don’t
! call other Viewer methods

ACCEPT !If init succeeded, proceed
IF EVENT() = EVENT:CloseWindow
IF ViewerActive THEN Viewer.Kill. !If init succeeded, shut down

END
!program code

END

CHAPTER 10 ASCIIVIEWERCLASS 245

PageDown (scroll down one page)

PageDown, PROTECTED

The PageDown method scrolls the display down one “page.” A page is the
number of lines displayed in the ASCIIViewerClass object’s LIST control.

Example:

MyViewerClass.TakeEvent PROCEDURE(UNSIGNED EventNo)
 CODE
 IF FIELD()=SELF.ListBox
 CASE EventNo
 OF EVENT:Scrollup
 SELF.SetLineRelative(-1)
 OF EVENT:ScrollDown
 SELF.SetLineRelative(1)
 OF EVENT:PageUp
 SELF.PageUp
 OF EVENT:PageDown
 SELF.PageDown
 END
 END

PageUp (scroll up one page)

PageUp, PROTECTED

The PageUp method scrolls the display up one “page.” A page is the number
of lines displayed in the ASCIIViewerClass object’s LIST control.

Example:

MyViewerClass.TakeEvent PROCEDURE(UNSIGNED EventNo)
 CODE
 IF FIELD()=SELF.ListBox
 CASE EventNo
 OF EVENT:Scrollup
 SELF.SetLineRelative(-1)
 OF EVENT:ScrollDown
 SELF.SetLineRelative(1)
 OF EVENT:PageUp
 SELF.PageUp
 OF EVENT:PageDown
 SELF.PageDown
 END
 END

246 CLARION 5 APPLICATION HANDBOOK

Reset (reset the ASCIIViewerClass object)

Reset(filename)

Reset Resets the ASCIIViewerClass object.

filename The label of the ASCIIFile property’s NAME attribute
variable.

The Reset method resets the ASCIIViewerClass object and returns a value
indicating whether the end user selected a file or did not select a file. A
return value of one (1) indicates a file was selected and filename contains its
pathname; a retun value of zero (0) indicates no file was selected and
filename is empty.

Implementation: The Reset method frees the display QUEUE and calls the
ASCIIFileClass.Reset method to get a new filename from the end user. Reset
refills the display QUEUE and redisplays the list box if a new file was
selected.

Return Data Type: BYTE

Example:

AsciiFileClass.Init FUNCTION|
(FILE AsciiFile,*STRING FileLine,*STRING FName,ErrorClass ErrorHandler)

 CODE
 SELF.AsciiFile&=AsciiFile
 SELF.Line&=FileLine
 SELF.ErrorMgr&=ErrorHandler
 SELF.IndexQueue&=NEW(IndexQueue)
 IF ~SELF.Reset(FName)
 SELF.Kill
 RETURN False
 END
 RETURN True

See Also: ASCIIFile, ASCIIFileClass.Reset

CHAPTER 10 ASCIIVIEWERCLASS 247

SetLine (position to specific line)

SetLine(line number), PROTECTED, VIRTUAL

SetLine Positions the ASCIIViewerClass object to a specific line.

line number An integer constant, variable, EQUATE or expresssion
that contains the offset or position of the line of text to
position to.

The SetLine method positions the ASCIIViewerClass object to a specific
line within the browsed file.

Implementation: The AskGotoLine method, the ASCIIFileClass.SetPercentile method, and the
ASCIISearchClass.Ask method all use the SetLine method to position to the
required text line.

Example:

MyViewerClass.AskGotoLine PROCEDURE
LineNo LONG,STATIC
OKGo BOOL(False)
GotoDialog WINDOW('Goto'),AT(,,96,38),GRAY,DOUBLE
 SPIN(@n_5),AT(36,4,56,13),USE(LineNo),RANGE(1,99999)
 PROMPT('&Line No:'),AT(4,9,32,10),USE(?Prompt1)
 BUTTON('&Go'),AT(8,22,40,14),USE(?GoButton)
 BUTTON('&Cancel'),AT(52,22,40,14),USE(?CancelButton)
 END
 CODE
 OPEN(GotoDialog)
 ACCEPT
 CASE EVENT()
 OF EVENT:Accepted
 CASE ACCEPTED()
 OF ?GoButton
 OKGo=True
 POST(EVENT:CloseWindow)
 OF ?CancelButton
 POST(EVENT:CloseWindow)
 END
 END
 END
 CLOSE(GotoDialog)
 IF OKGo THEN SELF.SetLine(LineNo).

See Also: AskGoToLine, ASCIIFileClass.SetPercentile, ASCIISearchClass.Ask

248 CLARION 5 APPLICATION HANDBOOK

SetLineRelative (move n lines)

SetLineRelative(lines), PROTECTED

SetLineRelative Positions the ASCIIViewerClass object to a relative line.

lines An integer constant, variable, EQUATE or expresssion
containing the number of lines to move from the current
position. A positive value moves downward; a negative
value moves upward.

The SetLineRelative method repositions the ASCIIViewerClass object lines
lines from the current position.

Example:

MyViewerClass.TakeScrollOne PROCEDURE(UNSIGNED EventNo)
 CODE
 IF FIELD()=SELF.ListBox
 CASE EventNo
 OF EVENT:Scrollup
 SELF.SetLineRelative(-1)
 OF EVENT:ScrollDown
 SELF.SetLineRelative(1)
 END
 END

CHAPTER 10 ASCIIVIEWERCLASS 249

SetTranslator (set run-time translator)

SetTranslator(translator)

SetTranslator Sets the TranslatorClass object for the AsciiViewerClass
object.

translator The label of the TranslatorClass object for this
AsciiViewerClass object.

The SetTranslator method sets the TranslatorClass object for the
AsciiViewerClass object. By specifying a TranslatorClass object for the
AsciiViewerClass object, you automatically translate any window or popup
menu text displayed by the viewer.

Implementation: The SetTranslator method sets the TranslatorClass object for the PopupClass,
AsciiPrintClass, and AsciiSearchClass objects.

Example:

Viewer AsciiViewerClass !declare Viewer object
Translator TranslatorClass !declare Translator object
CODE

 Translator.Init !initialize Translator object
ViewerActive=Viewer.Init(AsciiFile, | ! file label,

A1:line, | ! file field to display
Filename, | ! variable file NAME attribute
?AsciiBox, | ! LIST control number
GlobalErrors, | ! ErrorClass object
EnableSearch+EnablePrint) ! features to implement flag

IF ~ViewerActive THEN RETURN. !if init unsuccessful, don’t
! call other Viewer methods

Viewer.SetTranslator(Translator) !enable text translation
!program code

250 CLARION 5 APPLICATION HANDBOOK

TakeEvent (process ACCEPT loop event)

TakeEvent(event), PROC

TakeEvent Processes an ACCEPT loop event.

event An integer constant, variable, EQUATE or expresssion
containing the event number.

The TakeEvent method processes an ACCEPT loop event on behalf of the
ASCIIViewerClass object and returns a value indicating whether a CYCLE
to the top of the ACCEPT loop is required to properly refresh the display.

Implementation: The TakeEvent method handles resizing, RIGHT-CLICKS, LEFT-CLICKS, and
scrolling events.

A return value of zero (0) indicates no CYCLE is needed; any other return
value requires a CYCLE.

Return Data Type: BYTE

Example:

 ACCEPT
 CASE FIELD()
 OF ?AsciiBox
 IF ViewerActive
 IF Viewer.TakeEvent(EVENT())

CYCLE
END

 END
END

END

CHAPTER 11 BROWSECLASS 251

11 - BROWSECLASS

Overview
The BrowseClass is a ViewManager with a user interface for navigating
through the result set of the underlying VIEW.

BrowseClass Concepts

The BrowseClass uses several related classes to provide standard browse
functionality—that is, file-loaded or page-loaded lists with automatic
scrolling, searching, ranging, filtering, resets, conditional colors, conditional
icons, etc. These classes can be used to build other components and
functionality as well.

Added to this standard functionality, is Edit-In-Place—that is, you can
update the VIEW’s primary file by typing directly into the browse list. No
separate update procedure is required, and the updates are appropriately
autoincremented, referentially constrained, and field validated.

Following are the classes that provide this browse functionality. The classes
and their respective roles are:

BrowseClass Browse list “supervisor” class
StepClass Scrollbar/Progress Bar base class

LongStepClass Numeric Runtime distribution
RealStepClass Numeric Runtime distribution
StringStepClass Alpha/Lastname distribution
CustomStepClass Custom distribution

LocatorClass Locator base class
StepLocatorClass Step Locator
EntryLocatorClass Entry Locator
IncrementalLocatorClass Incremental Locator
FilterLocatorClass Filter Locator

EditClass Edit-In-Place

The BrowseClass is fully documented in the remainder of this chapter. Each
related class is documented in its own chapter.

Relationship to Other Application Builder Classes

The BrowseClass is closely integrated with several other ABC Library
objects—in particular the WindowManager and ToolbarClass objects. These

252 CLARION 5 APPLICATION HANDBOOK

objects register their presence with each other, set each other’s properties,
and call each other’s methods as needed to accomplish their respective tasks.

The BrowseClass is derived from the ViewManager, plus it relies on many of
the other Application Builder Classes (RelationManager, FieldPairsClass,
ToolbarClass, PopupClass, etc.) to accomplish its tasks. Therefore, if your
program instantiates the BrowseClass, it must also instantiate these other
classes. Much of this is automatic when you INCLUDE the BrowseClass
header (ABBROWSE.INC) in your program’s data section. See the
Conceptual Example.

ABC Template Implementation

The ABC Templates automatically include all the classes and generate all the
code necessary to support the functionality specified in your application’s
Browse Procedure and BrowseBox Control templates.

The templates derive a class from the BrowseClass for each BrowseBox in
the application. By default, the derived class is called BRW# where # is the
BrowseBox control template instance number. This derived class object
supports all the functionality specified in the BrowseBox template.

The derived BrowseClass is local to the procedure, is specific to a single
BrowseBox and relies on the global file-specific RelationManager and
FileManager objects for the browsed files. The templates provide the derived
class so you can customize the BrowseBox behavior on a per-instance basis.
See Control Templates—BrowseBox for more information.

BrowseClass Source Files

The BrowseClass source code is installed by default to the Clarion \LIBSRC
folder. The specific BrowseClass source code and their respective
components are contained in:

ABBROWSE.INC BrowseClass declarations
ABBROWSE.CLW BrowseClass method definitions
ABBROWSE.TRN BrowseClass translation strings

CHAPTER 11 BROWSECLASS 253

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a BrowseClass object and related
objects. The example initializes and page-loads a LIST, then handles a
number of associated events, including searching, scrolling, and updating.
When they are initialized properly, the BrowseClass and WindowManager
objects do most of the work (default event handling) internally.

 PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
 INCLUDE('ABWINDOW.INC') !declare WindowManager class
 INCLUDE('ABBROWSE.INC') !declare BrowseClass
 MAP
 END

State FILE,DRIVER('TOPSPEED'),PRE(ST),THREAD
StateCodeKey KEY(ST:STATECODE),NOCASE,OPT
Record RECORD,PRE()
STATECODE STRING(2)
STATENAME STRING(20)

END
END

StView VIEW(State) !declare VIEW for BrowseSt
END

StateQ QUEUE !declare Q for LIST
ST:STATECODE LIKE(ST:STATECODE)
ST:STATENAME LIKE(ST:STATENAME)
ViewPosition STRING(512)

END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:State CLASS(FileManager) !declare Access:State object
Init PROCEDURE

END
Relate:State CLASS(RelationManager) !declare Relate:State object
Init PROCEDURE

END
VCRRequest LONG(0),THREAD

ThisWindow CLASS(WindowManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

BrowseSt CLASS(BrowseClass) !declare BrowseSt object
Q &StateQ

END

StLocator StepLocatorClass !declare StLocator object
StStep StepStringClass !declare StStep object

254 CLARION 5 APPLICATION HANDBOOK

StWindow WINDOW('Browse States'),AT(,,123,152),IMM,SYSTEM,GRAY
LIST,AT(8,5,108,124),USE(?StList),IMM,HVSCROLL,FROM(StateQ),|
FORMAT('27L(2)|M~CODE~@s2@80L(2)|M~STATENAME~@s20@')
BUTTON('&Insert'),AT(8,133),USE(?Insert)
BUTTON('&Change'),AT(43,133),USE(?Change),DEFAULT
BUTTON('&Delete'),AT(83,133),USE(?Delete)

END
CODE
ThisWindow.Run() !run the window procedure

ThisWindow.Init PROCEDURE() !initialize things
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init() !call base class init
IF ReturnValue THEN RETURN ReturnValue.
GlobalErrors.Init !initialize GlobalErrors object
Relate:State.Init !initialize Relate:State object
SELF.FirstField = ?StList !set FirstField for ThisWindow
SELF.VCRRequest &= VCRRequest !VCRRequest not used
SELF.Errors &= GlobalErrors !set error handler for ThisWindow
Relate:State.Open !open State and related files
!Init BrowseSt object by naming its LIST,VIEW,Q,RelationManager & WindowManager
BrowseSt.Init(?StList,StateQ.ViewPosition,StView,StateQ,Relate:State,SELF)
OPEN(StWindow)
SELF.Opened=True
BrowseSt.Q &= StateQ !reference the browse QUEUE
StStep.Init(+ScrollSort:AllowAlpha,ScrollBy:Runtime)!initialize the StStep object
BrowseSt.AddSortOrder(StStep,ST:StateCodeKey) !set the browse sort order
BrowseSt.AddLocator(StLocator) !plug in the browse locator
StLocator.Init(,ST:STATECODE,1,BrowseSt) !initialize the locator
BrowseSt.AddField(ST:STATECODE,BrowseSt.Q.ST:STATECODE) !set a column to browse
BrowseSt.AddField(ST:STATENAME,BrowseSt.Q.ST:STATENAME) !set a column to browse
BrowseSt.InsertControl=?Insert !set the control to add records
BrowseSt.ChangeControl=?Change !set the control to change records
BrowseSt.DeleteControl=?Delete !set the control to delete records
SELF.SetAlerts() !alert any keys for ThisWindow
RETURN ReturnValue

ThisWindow.Kill PROCEDURE() !shut down things
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill() !call base class shut down
IF ReturnValue THEN RETURN ReturnValue.
Relate:State.Close !close State and related files
Relate:State.Kill !shut down Relate:State object
GlobalErrors.Kill !shut down GlobalErrors object
RETURN ReturnValue

Access:State.Init PROCEDURE
CODE
PARENT.Init(State,GlobalErrors)
SELF.FileNameValue = 'State'
SELF.Buffer &= ST:Record
SELF.AddKey(ST:StateCodeKey,'ST:StateCodeKey',0)

Relate:State.Init PROCEDURE
CODE
Access:State.Init
PARENT.Init(Access:State,1)

CHAPTER 11 BROWSECLASS 255

BrowseClass Properties
The BrowseClass inherits all the properties of the ViewManager from which
it is derived. See ViewManager Properties for more information.

In addition to the inherited properties, the BrowseClass contains the
following properties:

ActiveInvisible (obscured browse list action)

ActiveInvisible BYTE

The ActiveInvisible property indicates whether to fill or refill the browse
queue when the browse LIST is “invisible” because it is on a non-selected
TAB or is otherwise hidden. A value of one (1) refills the queue when the
LIST is invisible; a value of zero (0) suppresses the refill.

Setting ActiveInvisible to zero (0) improves performance for procedures with
“invisible” browse lists; however, buffer contents for the invisible browse list
are not current and should not be relied upon.

Implementation: The ResetQueue method implements the behavior specified by the
ActiveInvisible property.

See Also: ResetQueue

AllowUnfilled (display filled list)

AllowUnfilled BYTE

The AllowUnfilled property indicates whether to always display a “full” list,
or to allow a partially filled list when the result set “ends” in mid-list. A
value of one (1) displays a partially filled list and improves performance by
suppressing any additional reads needed to fill the list; a value of zero (0)
always displays a filled list.

Setting AllowUnfilled to one (1) improves performance for browse lists,
especially for those using SQL data.

Implementation: The ResetQueue method implements the behavior specified by the
AllowUnfilled property.

See Also: ResetQueue

256 CLARION 5 APPLICATION HANDBOOK

ArrowAction (edit-in-place action on arrow key)

ArrowAction BYTE

The ArrowAction property indicates the action to take when the end user
presses the up or down arrow key during an edit-in-place process. There are
three types of actions that ArrowAction controls:

what to do with any changes (default, save, abandon, or prompt),
what mode to use next (continue editing or revert to non-edit mode),
what column to edit next (current column or first editable column).

The specified actions are implemented by the Ask method. Set the actions by
assigning, adding, or subtracting the following EQUATEd values to
ArrowAction. The following EQUATEs are in ABBROWSE.INC:

ITEMIZE,PRE(EIPAction)
Default EQUATE(0) !save according to the Ask method
Always EQUATE(1) !always save the changes
Never EQUATE(2) !never save the changes
Prompted EQUATE(4) !ask whether to save the changes
Remain EQUATE(8) !continue editing
RetainColumn EQUATE(16) !maintain column position in new row

END

Example:

BRW1.ArrowAction = EIPAction:Prompted !ask to save changes
BRW1.ArrowAction = EIPAction:Prompted+EIPAction:Remain !ask to save, keep editing

!1st editable column
BRW1.ArrowAction = EIPAction:Remain+EIPAction:RetainColumn!default save, keep editing

!same column

See Also: Ask

AskProcedure (update procedure)

AskProcedure USHORT

The AskProcedure property identifies the procedure to update a browse
item. A value of zero (0) uses the BrowseClass object’s own AskRecord
method to do updates. Any other value uses a separate procedure registered
with the WindowManager object.

Implementation: Typically, the WindowManager object (Init method) sets the value of the
AskProcedure property when a separate update procedure is needed. The Ask
method passes the AskProcedure value to the WindowManager.Run method
to indicate which procedure to execute.

See Also: Ask, AskRecord, WindowManager.Run

CHAPTER 11 BROWSECLASS 257

ChangeControl (change/edit button)

ChangeControl SIGNED

The ChangeControl property contains the number of the browse’s change/
update control. This is typically the value of the Change BUTTON’s field
equate. The BrowseClass methods use this value to enable and disable the
control when appropriate, to post events to the control, to map change
behavior to corresponding popup menu choices, etc.

Implementation: The Init method does not initialize the ChangeControl property. You should
initialize the ChangeControl property after the Init method is called. See the
Conceptual Example. On EVENT:Accepted for the ChangeControl, the
TakeEvent method calls the Ask method to do the edit/change.

Tip: The ABC BrowseUpdateButton template generates code to
update a browse item.

See Also: UpdateToolbarButtons, Ask

DeleteControl (delete button)

DeleteControl SIGNED

The DeleteControl property contains the number of the browse’s delete
control. This is typically the value of the Delete BUTTON’s field equate.
The BrowseClass methods use this value to enable and disable the control
when appropriate, to post events to the control, to map delete behavior to
corresponding popup menu choices, etc.

Implementation: The Init method does not initialize the DeleteControl property. You should
initialize the DeleteControl property after the Init method is called. See the
Conceptual Example. On EVENT:Accepted for the DeleteControl, the
TakeEvent method calls the Ask method to do the delete.

Tip: The ABC BrowseUpdateButton template generates code to
delete a browse item.

See Also: UpdateToolbarButtons, Ask

258 CLARION 5 APPLICATION HANDBOOK

EditList (list of edit-in-place controls)

EditList &BrowseEditQueue, PROTECTED

The EditList property is a reference to a structure containing a list of edit-in-
place classes for use with specific browse list columns.

The AddEditControl method adds new edit-in-place classes and their
associated browse list columns to the EditList property.

Implementation: You do not need to initialize this property to implement the default edit-in-
place controls. The EditList property supports custom edit-in-place controls.

The EditList property is a reference to a QUEUE declared in
ABBROWSE.INC as follows:

BrowseEditQueue QUEUE,TYPE
Field UNSIGNED
FreeUp BYTE
Control &EditClass

END

See Also: AddEditControl

EIP (edit-in-place manager)

EIP &BrowseEIPManager

The EIP property is a reference to the BrowseEIPManager class used by this
BrowseClass object.

See Also: Init

CHAPTER 11 BROWSECLASS 259

EnterAction (edit-in-place action on enter key)

EnterAction BYTE

The EnterAction property indicates the action to take when the end user
presses the ENTER key during an edit-in-place process.There are two types of
actions that EnterAction controls:

what to do with any changes (default, save, abandon, or prompt),
what mode to use next (continue editing or revert to non-edit mode).

The specified actions are implemented by the Ask method. Set the actions by
assigning, adding, or subtracting the following EQUATEd values to
ArrowAction. The following EQUATEs are in ABBROWSE.INC:

ITEMIZE,PRE(EIPAction)
Default EQUATE(0) !save according to the Ask method
Always EQUATE(1) !always save the changes
Never EQUATE(2) !never save the changes
Prompted EQUATE(4) !ask whether to save the changes
Remain EQUATE(8) !continue editing

END

Example:

BRW1.EnterAction = EIPAction:Prompted !ask to save changes
BRW1.EnterAction = EIPAction:Prompted+EIPAction:Remain!ask to save, keep editing

See Also: Ask

Fields (managed fields)

Fields &FieldPairsClass, PROTECTED

The Fields property is a reference to the FieldPairsClass object that moves
and compares data between the BrowseClass object’s FILE and QUEUE
buffers (and any other data areas managed by the BrowseClass object, such
as local or global memory variables).

The AddField method adds field pairs to the Fields property.

Implementation: The Init method instantiates the FieldPairsClass object. The AskRecord,
SetQueueRecord, and UpdateBuffer methods use the Fields property to move
and compare data between the field pairs.

See Also: AddField

260 CLARION 5 APPLICATION HANDBOOK

FocusLossAction (edit-in-place action on lose focus)

FocusLossAction BYTE

The FocusLossAction property indicates the action to take with regard to
pending changes when the edit control loses focus during an edit-in-place
process.

The specified action is implemented by the Ask method. Set the action by
assigning, adding, or subtracting one of the following EQUATEd values to
FocusLossAction. The following EQUATEs are in ABBROWSE.INC:

ITEMIZE,PRE(EIPAction)
Default EQUATE(0) !save according to the Ask method
Always EQUATE(1) !always save the changes
Never EQUATE(2) !never save the changes
Prompted EQUATE(4) !ask whether to save the changes

END

Example:

BRW1.FocusLossAction = EIPAction:Prompted !ask to save changes

See Also: Ask

HasThumb (vertical scroll bar flag)

HasThumb BYTE

The HasThumb property indicates whether BrowseClass object’s LIST
control has a vertical scroll bar. A value of one (1) indicates a scroll bar; a
value of zero (0) indicates no scroll bar.

Implementation: The SetAlerts method sets the value of the HasThumb property. The
UpdateThumb method uses the HasThumb property to implement correct
thumb and scroll bar behavior.

See Also: ListControl, SetAlerts, UpdateThumb

HideSelect (hide select button)

HideSelect BYTE

The HideSelect property indicates whether to HIDE the Select button (as
indicated by the SelectControl property) when the browse is called for
update purposes (as indicated by the Selecting property). A value of one (1)
hides the select button; a value of zero (0) always displays the select button.

Implementation: The ResetQueue method implements the behavior specified by the
HideSelect property.

See Also: ResetQueue, SelectControl, Selecting

CHAPTER 11 BROWSECLASS 261

InsertControl (add/insert button)

InsertControl SIGNED

The InsertControl property contains the number of the browse’s insert
control. This is typically the value of the Insert BUTTON’s field equate. The
BrowseClass methods use this value to enable and disable the control when
appropriate, to post events to the control, to map Insert behavior to
corresponding popup menu choices, etc.

Implementation: The Init method does not initialize the InsertControl property. You should
initialize the InsertControl property after the Init method is called. See the
Conceptual Example. On EVENT:Accepted for the InsertControl, the
TakeEvent method calls the Ask method to do the insert.

Tip: The ABC BrowseUpdateButton template generates code to
insert a browse item.

See Also: UpdateToolbarButtons, Ask

ListControl (browse LIST control)

ListControl SIGNED

The ListControl property contains the control number of the LIST control
that displays the browse data.

The Init method initializes the ListControl property. See the Conceptual
Example.

See Also: Init

ListQueue (browse data queue)

ListQueue &QUEUE

The ListQueue property is a reference to a structure that is the source of the
data elements displayed in the browse LIST.

The Init method initializes the ListQueue property. See the Conceptual
Example.

See Also: Init

262 CLARION 5 APPLICATION HANDBOOK

Loaded (queue loaded flag)

Loaded BYTE, PROTECTED

The Loaded property contains a value that indicates whether or not the
BrowseClass object has tried to load the browse list queue. The BrowseClass
uses this property to ensure the browse queue gets loaded and to avoid
redundant reloads.

Popup (popup menu manager)

Popup &PopupClass

The Popup property is a reference to the PopupClass class used by this
BrowseClass object.

Implementation: Because it directly references the PopupClass, the BrowseClass header
INCLUDEs the PopupClass header. That is, the BrowseClass’s
implementation of the PopupClass is automatic. You need take no action.

The Init method instantiates the PopupClass object referenced by the Popup
property. See the Conceptual Example.

See Also: Init

PrintControl (print button)

PrintControl SIGNED

The PrintControl property contains the number of the browse’s print
control. This is typically the value of the Print BUTTON’s field equate. The
BrowseClass methods use this value to enable and disable the control when
appropriate, to post events to the control, to map Print behavior to
corresponding popup menu choices, etc.

Implementation: The Init method does not initialize the PrintControl property. You should
initialize the PrintControl property after the Init method is called. See the
Conceptual Example. On EVENT:Accepted for the PrintControl, the
TakeEvent method passes the PrintProcedure value to the
WindowManager.Run method to indicate which procedure to execute.

Tip: The ABC BrowsePrintButton template generates code to
declare and support a Print button.

See Also: PrintProcedure

CHAPTER 11 BROWSECLASS 263

PrintProcedure (print procedure)

PrintProcedure USHORT

The PrintProcedure property identifies the procedure to print a browse
item. The procedure is registered by number with the BrowseClass object’s
WindowManager.

Implementation: Typically, the WindowManager object (Init method) sets the value of the
PrintProcedure property. On EVENT:Accepted of the PrintControl, the
TakeEvent method passes the PrintProcedure value to the
WindowManager.Run method to indicate which procedure to execute.

Tip: The ABC BrowsePrintButton and ExtendProgressWindow
templates generate code to print a single browse item. The
generated code uses the ProcessRecord EQUATE as a switch
to indicate whether to process all records or only one record.

See Also: PrintControl, Window, WindowManager.Run

Query (ad hoc query manager)

Query &QueryClass

The Query property is a reference to the QueryClass class used by this
BrowseClass object.

See Also: Init

264 CLARION 5 APPLICATION HANDBOOK

QueryControl (query button)

QueryControl SIGNED

The QueryControl property contains the number of the browse’s query
control. This is typically the value of the Query BUTTON’s field equate. The
BrowseClass methods use this value to enable and disable the control when
appropriate, to post events to the control, to map Query behavior to
corresponding popup menu choices, etc.

The QueryShared property determines whether the query applies to the
active sort order or to all sort orders.

Implementation: The Init method does not initialize the QueryControl property. You should
initialize the QueryControl property after the Init method is called. See the
Conceptual Example. On EVENT:Accepted for the QueryControl, the
TakeEvent method calls the TakeLocate method to collect (from the end
user) and apply the ad hoc query.

Tip: The ABC BrowseQueryButton template generates code to
declare and support a Query button.

See Also: Query, QueryShared, TakeLocate

QueryShared (query scope flag)

QueryShared BYTE

The QueryShared property determines whether an ad hoc query applies to
the active sort order or to all sort orders. A value of zero (0 or False) applies
the query to the active sort order; a value of one (1 or True) applies the query
to all sort orders.

Implementation: The Init method does not initialize the QueryShared property, so the default
setting is zero—active sort order only. On EVENT:Accepted for the
QueryControl, the TakeEvent method calls the TakeLocate method to collect
(from the end user) and apply the ad hoc query. The TakeLocate method
implements the behavior specified by the QueryShared property.

See Also: Query, QueryControl, TakeLocate

CHAPTER 11 BROWSECLASS 265

QuickScan (buffered reads flag)

QuickScan BYTE

The QuickScan property contains a value that tells the BrowseClass whether
or not to quickscan when page-loading the browse list queue. Quick
scanning only affects file systems that use multi-record buffers. See
Database Drivers for more information.

A value of zero (0) disables quick scanning; a non-zero value enables quick
scanning. Quick scanning is the normal way to read records for browsing.
However, rereading the buffer may provide slightly improved data integrity
in some multi-user circumstances at the cost of substantially slower reads.

Implementation: The Fetch method implements the faster reads only during the page-loading
process, and only if the QuickScan property is not zero. The Fetch method
SENDs the ‘QUICKSCAN=ON’ driver string to the applicable files’
database drivers with the RelationManager.SetQuickScan method.

Note: The RelationManager.SetQuickScan method does not set the
BrowseClass.QuickScan property. However if you set the
BrowseClass.QuickScan property to 1, the BrowseClass uses
the RelationManager.SetQuickScan method to SEND the
QUICKSCAN driver string to the appropriate files.

See Also: Fetch, RelationManager.SetQuickScan

RetainRow (highlight bar refresh behavior)

RetainRow BYTE

The RetainRow property indicates whether the BrowseClass object tries to
maintain the highlight bar in the same list row following a change in sort
order, an update, or other browse refresh action. A value of one (1) maintains
the current highlight bar row; a value of zero (0) lets the highlight bar move
to the first row.

Setting RetainRow to one (1) can cause a performance penalty in
applications using TopSpeed’s pre-Accelerator ODBC driver.

Implementation: The Init method sets the RetainRow property to one (1). The ResetQueue
method implements the behavior specified by the RetainRow property.

See Also: Init, ResetQueue

266 CLARION 5 APPLICATION HANDBOOK

SelectControl (select button)

SelectControl SIGNED

The SelectControl property contains the number of the browse’s select
control. This is typically the value of the Select BUTTON’s field equate. The
BrowseClass methods use this value to enable and disable the control when
appropriate, to post events to the control, to map Select behavior to
corresponding popup menu choices, etc.

Implementation: The Init method does not initialize the SelectControl property. You should
initialize the SelectControl property after the Init method is called. See the
Conceptual Example. On EVENT:Accepted for the SelectControl, the
TakeEvent method initiates the item selection.

Tip: The ABC BrowseSelectButton template generates code to
select a browse item.

See Also: UpdateToolbarButtons

Selecting (select mode only flag)

Selecting BYTE

The Selecting property indicates whether the BrowseClass object selects a
browse item or updates browse items. A value of zero (0) sets update mode; a
value of one (1) sets select only mode.

The HideSelect property is only effective when the Selecting property
indicates update mode.

Implementation: In select mode, a DOUBLE-CLICK or ENTER selects the item; otherwise, a
DOUBLE-CLICK or ENTER updates the item.

See Also: HideSelect

SelectWholeRecord (select entire record flag)

SelectWholeRecord BYTE

The SelectWholeRecord property indicates whether an UpdateViewRecord
should be called in the TakeEvent method. A value of one (1) will get the
whole record from the view; a value of zero (0), the default, gets the record
from the buffer.

See Also: UpdateViewRecord, TakeEvent

CHAPTER 11 BROWSECLASS 267

Sort (browse sort information)

Sort &BrowseSortOrder

The Sort property is a reference to a structure containing all the sort
information for this BrowseClass object. The BrowseClass methods use this
property to implement multiple sort orders, range limits, filters, and locators
for a single browse list.

Implementation: The BrowseClass.Sort property mimics or shadows the inherited
ViewManager.Order property. The Sort property is a reference to a QUEUE
declared in ABBROWSE.INC as follows:

BrowseSortOrder QUEUE(SortOrder),TYPE !browse sort information
Locator &LocatorControl !locator for this sort order
Resets &FieldPairsClass !reset fields for this sort order
Thumb &ThumbClass !ThumbClass for this sort order

END

Notice this BrowseSortOrder queue contains all the fields in the SortOrder
queue declared in ABFILE.INC as follows:

SortOrder QUEUE,TYPE !VIEW sort information
Filter &FilterQueue !ANDed filter expressions
FreeElement ANY !The Free key element
LimitType BYTE !Range limit type flag
MainKey &KEY !The KEY
Order &STRING !ORDER expression (equal to KEY)
RangeList &FieldPairsClass !fields in the range limit

END

And the SortOrder queue contains a reference to the FilterQueue declared in
ABFILE.INC as follows:

FilterQueue QUEUE,TYPE !VIEW filter information
ID STRING(30) !filter ID
Filter &STRING !filter expression

END

So, the BrowseSortOrder queue is, among other things, a queue of queues.

The AddSortOrder method defines sort orders for the browse. The SetSort
method applies or activates a sort order for the browse. Only one sort order is
active at a time.

See Also: AddSortOrder, SetSort

268 CLARION 5 APPLICATION HANDBOOK

StartAtCurrent (initial browse position)

StartAtCurrent BYTE

The StartAtCurrent property indicates whether the BrowseClass object
initially positions to the first item in the sort order or positions to the item
specified by the contents of the Browse’s view buffer. A value of zero (0 or
False) positions to the first item; a value of one (1 or True) positions to the
item specified by the contents of the view buffer.

Implementation: The SetSort method implements the StartAtCurrent initial position. The
SetSort method positions the browse list based on the contents of the fields in
the active sort order, including the free element field.

Example:

BRW1.StartAtCurrent = True
ST:StateCode = ‘K’ !set key component value
BrowseSt.Init(?StList,StateQ.ViewPosition,StView,StateQ,Relate:State,SELF)

See Also: SetSort

TabAction (edit-in-place action on tab key)

TabAction BYTE

The TabAction property indicates the action to take when the end user
presses the TAB key during an edit-in-place process. There are two types of
actions that TabAction controls:

what to do with pending changes (default, save, abandon, or prompt),
what mode to use next (continue editing or revert to non-edit mode).

The specified actions are implemented by the Ask method. Set the actions by
assigning, adding, or subtracting the following EQUATEd values to
TabAction. The following EQUATEs are in ABBROWSE.INC:

ITEMIZE,PRE(EIPAction)
Default EQUATE(0) !save according to the Ask method
Always EQUATE(1) !always save the changes
Never EQUATE(2) !never save the changes
Prompted EQUATE(4) !ask whether to save the changes
Remain EQUATE(8) !continue editing

END
Example:

BRW1.TabAction = EIPAction:Prompted !ask to save changes
BRW1.TabAction = EIPAction:Prompted+EIPAction:Remain !ask to save, keep editing

See Also: Ask

CHAPTER 11 BROWSECLASS 269

Toolbar (browse Toolbar object)

Toolbar &ToolbarClass

The Toolbar property is a reference to the ToolbarClass for this BrowseClass
object. The ToolbarClass object collects toolbar events and passes them on to
the active ToolbarTarget object for processing.

The AddToolbarTarget method registers a ToolbarTarget, such as a
ToolbarListBoxClass object, as a potential target of a ToolbarClass object.

The ToolbarClass.SetTarget method sets the active target for a ToolbarClass
object.

Implementation: The ToolbarClass object for a browse is the object that detects toolbar events,
such as scroll down or page down, and passes them on to the active
ToolbarListBoxClass (ToolbarTarget) object. In the standard template
implementation, there is a single global toolbar, and a ToolbarClass object
per procedure that may drive several different browses and forms, each of
which is a ToolbarTarget. Only one ToolbarTarget is active at a time.

See Also: ToolbarItem, AddToolbarTarget, ToolbarClass.SetTarget

ToolbarItem (browse ToolbarTarget object)

ToolbarItem &ToolbarListBoxClass

The ToolbarItem property is a reference to the ToolbarListBoxClass for this
BrowseClass object. The ToolbarListBoxClass (ToolbarTarget) object
receives toolbar events (from a ToolbarClass object) and processes them.

The AddToolbarTarget method registers a ToolbarTarget, such as a
ToolbarListBoxClass object, as a potential target of a ToolbarClass object.

The ToolbarClass.SetTarget method sets the active target for a ToolbarClass
object.

Implementation: The ToolbarClass object for a browse is the object that detects toolbar events,
such as scroll down or page down, and passes them on to the active
ToolbarListBoxClass (ToolbarTarget) object. In the standard template
implementation, there is a single global toolbar, and a ToolbarClass object
per procedure that may drive several different browses and forms, each of
which is a ToolbarTarget. Only one ToolbarTarget is active at a time.

See Also: Toolbar, AddToolbarTarget, ToolbarClass.SetTarget

270 CLARION 5 APPLICATION HANDBOOK

ToolControl (toolbox button)

ToolControl SIGNED

The ToolControl property contains the number of the browse’s toolbox
control. This is typically the value of the Toolbox BUTTON’s field equate.
The BrowseClass methods use this value to enable and disable the control
when appropriate, to post events to the control, to map Toolbox behavior to
corresponding popup menu choices, etc.

Implementation: The Init method does not initialize the ToolControl property. You should
initialize the ToolControl property after the Init method is called. See the
Conceptual Example. On EVENT:Accepted for the ToolControl, the
TakeEvent method calls the PopupClass.Toolbox method to display a floating
toolbox to collect and apply the end user’s selection (insert, change, delete,
scroll, select, etc.).

Tip: The ABC BrowseToolButton template generates code to
declare and support a Toolbox button.

See Also: Popup, PopupClass.Toolbox

Window (WindowManager object)

Window &WindowManager

The Window property is a reference to the WindowManager object for this
BrowseClass object. The WindowManager object forwards events to the
active BrowseClass object for processing.

The WindowManager.AddItem method registers the BrowseClass object
with the WindowManager object, so the WindowManager object can forward
events.

The Init method sets the value of the Window property.

Implementation: The WindowManager object calls the BrowseClass.TakeEvent method so the
BrowseClass object can handle the events as needed.

See Also: Init, WindowManager.AddItem

CHAPTER 11 BROWSECLASS 271

BrowseClass Methods
The BrowseClass inherits all the methods of the ViewManager from which it
is derived. See ViewManager Methods for more information.

In addition to (or instead of) the inherited methods, the BrowseClass
contains the methods listed below.

Functional Organization—Expected Use

As an aid to understanding the BrowseClass, it is useful to organize its
various methods into two large categories according to their expected use—
the primary interface and the virtual methods. This organization reflects
what we believe is typical use of the BrowseClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the BrowseClass object
AddEditControl specify custom edit-in-place for a browse field
AddField identify corresponding FILE and QUEUE fields
AddLocator associate a locator with its sort order
AddResetField specify a field that refreshes the browse list
AddSortOrder add a sort order to the browse list
AddToolbarTarget associate the browse list with a toolbar object
SetAlertsV alert keys for list, locator, and edit controls
UpdateQuery define default query interface
Kill V shut down the BrowseClass object

Mainstream Use:
NextV get the next view record in sequence
PreviousV get the previous view record in sequence
Ask update the selected item
TakeEventV process the current ACCEPT loop event
TakeNewSelectionV process a new browse list item selection

V These methods are also Virtual.

Occasional Use:
ApplyRange refresh browse list to specified range limit
AskRecord edit-in-place the selected item
PostNewSelection post an EVENT:NewSelection to the browse list
Records return the number of records in the browse list
ResetResets snapshot the current value of the Reset fields
ResetThumbLimits reset thumb limits to match the result set

272 CLARION 5 APPLICATION HANDBOOK

TakeAcceptedLocator apply an entered locator value
UpdateResets copy reset fields to file buffer
UpdateThumb position the scrollbar thumb
UpdateThumbFixed position the scrollbar fixed thumb
UpdateWindowV apply pending scroll, locator, range, etc.

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

ApplyRange conditionally range limit and filter the records
Fetch loads a page of items into the browse list
Kill shut down the BrowseClass object
Next get the next record from the browse view
Previous get the previous record from the browse view
ResetI reset the view position
ResetFromAsk reset browse object after update
ResetFromBuffer refill queue based on current record buffer
ResetFromFile refill queue based on FILE POSITION
ResetFromView reset browse object to its result set
ResetQueue fill or refill the browse queue
ScrollEnd scroll to the first or last item
ScrollOne scroll up or down one item
ScrollPage scroll up or down one page of items
SetAlerts alert keys for list, locator, and edit controls
SetQueueRecord copy data from file buffer to queue buffer
SetSort apply sort order to browse
ResetSort apply sort order to browse
TakeKey process an alerted keystroke
TakeLocate collect and apply ad hoc query
TakeEvent process the current ACCEPT loop event
TakeNewSelection process a new browse list item selection
TakeScroll process a scroll event
TakeVCRScroll process a VCR scroll event
UpdateBuffer copy data from queue buffer to file buffer
UpdateViewRecord copy selected item to corresponding file buffers
UpdateWindow apply pending scroll, locator, range, etc.

Tip: Use ResetSort followed by UpdateWindow to refresh and
redisplay your ABC BrowseBoxes. Or, use the
WindowManager.Reset method.

CHAPTER 11 BROWSECLASS 273

AddEditControl (specify custom edit-in-place class)

AddEditControl([editclass], column [, autofree])

AddEditControl Specifies a custom edit-in-place class for a browse field.

editclass The label of the EditClass. If omitted, the specified
column is not editable.

column An integer constant, variable, EQUATE, or expression
that indicates the browse list column to edit with the
specified editclass object. A value of one (1) indicates
the first column; a two (2) indicates the second column,
etc.

autofree A numeric constant, variable, EQUATE, or expression
that indicates whether the BrowseClass.Kill method
DISPOSEs of the editclass object. A zero (0) value
leaves the object intact. A non-zero value DISPOSEs the
object. If omitted, autofree defaults to zero (0).

The AddEditControl method specifies the editclass that defines the edit-in-
place control for the browse column. Use autofree with caution; you should
only DISPOSE of memory allocated with a NEW statement. See the
Language Reference for more information on NEW and DISPOSE.

Implementation: You do not need to call this method to use the default editclass. If you do not
call the AddEditControl method for a browse list column, the BrowseClass
automatically instantiates the EditClass declared in ABBROWSE.INC for
that column.

The autofree parameter defaults to zero (0). The BrowseClass.Kill method
DISPOSEs the editclass objects only if autofree contains a non-zero value.

The BrowseClass.Ask method instantiates the editclass objects as needed,
then creates and deletes the edit-in-place control upon the end user’s insert or
change request.

Example:

INCLUDE('ABBROWSE.INC') !declare browse & related classes
INCLUDE(‘MYCOMBO.INC’) !declare custom Edit-in-place control class
!other browse class declarations
CODE
MyBrowse.AddEditControl(,1) !column 1 not editable
MyBrowse.AddEditControl(ComboClass,2) !edit column 2 with combo control

See Also: Ask

274 CLARION 5 APPLICATION HANDBOOK

AddField (specify a FILE/QUEUE field pair)

AddField(filefield, queuefield)

AddField Identifies the corresponding FILE and QUEUE fields for
a browse list column.

filefield The fully qualified label of the FILE field or memory
variable. The filefield is the original source of the browse
LIST’s data.

queuefield The fully qualified label of the corresponding QUEUE
field. The queuefield is loaded from the filefield, and is
the immediate source of the browse LIST’s data.

The AddField method identifies the corresponding FILE and QUEUE fields
for a browse list column. You must call AddField for each column displayed
in the browse list.

You may also use the AddField method to pair memory variables with
QUEUE fields by specifying a variable label as the filefield parameter.

Implementation: For browses with edit-in-place, you must add fields (call the AddField
method) in the same sequence that you declare the browse QUEUE fields.

Example:

INCLUDE('ABBROWSE.INC') !declare browse & related classes
States FILE,DRIVER('TOPSPEED'),PRE(StFile) !declare States file
ByCode KEY(StFile:Code),NOCASE,OPT
Record RECORD,PRE()
Code STRING(2)
Name STRING(20)

. .
StQType QUEUE,TYPE !declare the St QUEUE type
Code LIKE(StFile:Code)
Name LIKE(StFile:Name)
Position STRING(512)

END
BrowseStClass CLASS(BrowseClass),TYPE !declare the BrowseSt CLASS
Q &StQType

END
StQ StQType !declare the (real) StQ QUEUE
BrowseSt BrowseStClass !declare the BrowseSt object
CODE
BrowseSt.AddField(StFile:Code,BrowseSt.Q.Code) !pair up fields in
BrowseSt.AddField(StFile:Name,BrowseSt.Q.Name) !FILE & QUEUE

CHAPTER 11 BROWSECLASS 275

AddLocator (specify a locator)

AddLocator(locator)

AddLocator Specifies a locator object for a specific sort order.

locator The label of the locator object.

The AddLocator method specifies a locator object for the sort order defined
by the preceding call to the AddSortOrder or SetSort method. Typically, you
call the AddLocator method immediately after the AddSortOrder method.

Implementation: The specified locator is sort order specific—it is enabled only when the
associated sort order is active. The SetSort method applies or activates a sort
order for the browse. Only one sort order is active at a time.

Example:

BrowseSt.AddSortOrder(BrowseSt:Step,StFile:ByCode) !add sort order and
BrowseSt.AddLocator(BrowseSt:Locator) !associated locator
BrowseSt:Locator.Init(?Loc,StFile:StCode,1,BrowseSt) !init locator object

See Also: AddSortOrder, LocatorClass, SetSort

276 CLARION 5 APPLICATION HANDBOOK

AddResetField (set a field to monitor for changes)

AddResetField(resetfield)

AddResetField Specifies a field that resets the browse list when the
contents of the field changes.

resetfield The label of the field to monitor for changes.

For the active sort order (defined by the preceding call to the AddSortOrder
or SetSort method), the AddResetField method specifies a field that the
browse object monitors for changes, then, when the contents of the field
changes, refreshes the browse list. Typically, you call the AddResetField
method immediately after the AddSortOrder method.

You may call AddResetField multiple times to establish multiple reset fields
for a sort order.

Implementation: The specified resetfield is sort order specific—it is enabled only when the
associated sort order is active. The SetSort method sets the active sort order
for the browse. SetSort also calls ApplyRange to monitor the reset fields for
changes and SetSort resets the browse when a change occurs.

The WindowManager.Reset method also initiates an evaluation of the reset
fields and a subsequent browse reset if needed for any browse objects
registered with the WindowManager.

Example:

BrowseSt.AddSortOrder(BrowseSt:Step,StFile:ByCode) !add sort order
BrowseSt.AddLocator(BrowseSt:Locator) !and associated locator
BrowseSt.AddResetField(Local:StFilter) !and associated reset field

See Also: AddSortOrder, SetSort, WindowManager.Reset

CHAPTER 11 BROWSECLASS 277

AddSortOrder (specify a browse sort order)

AddSortOrder([thumbstep] [, key]), PROC

AddSortOrder Specifies an additional sort order for the browse list.

thumbstep The label of the StepClass object that controls vertical
scroll bar and thumb behavior. If omitted, the vertical
scroll bar exhibits Fixed Thumb behavior. See Control
Templates—BrowseBox for more information on thumb
behavior.

key The label of the KEY to sort by. If omitted, the browse
list is not sorted—the items appear in physical order, or
in the order specified by the inherited AppendOrder
method.

The AddSortOrder method specifies an additional sort order for the browse
list and returns the sort order’s sequence number for use with the SetSort
method. You must call the AddSortOrder method for each different sort order
applied to the browse list.

The AddLocator method adds an associated locator for the sort order defined
by the preceding call to AddSortOrder.

The AddResetField method adds an associated reset field for the sort order
defined by the preceding call to AddSortOrder. You may add multiple reset
fields for each sort order with multiple calls to AddResetField.

The inherited AddRange method adds an associated range limit for the sort
order defined by the preceding call to AddSortOrder.

Implementation: The AddSortOrder method adds an entry at a time to the Sort property.

Return Data Type: BYTE

Example:

BrowseSt.AddSortOrder(BrowseSt:Step,StFile:ByCode) !add sort order
BrowseSt.AddLocator(BrowseSt:Locator) !and associated locator
BrowseSt.AddResetField(Local:StFilter) !and associated reset field

See Also: AddLocator, AddResetField, Sort, StepClass, SetSort,
ViewManager.AddRange, ViewManager.AppendOrder

278 CLARION 5 APPLICATION HANDBOOK

AddToolbarTarget (set the browse toolbar)

AddToolbarTarget(toolbar)

AddToolbarTarget Registers the browse list as a potential target of the
specified toolbar.

toolbar The label of the ToolbarClass object that directs toolbar
events to this BrowseClass object.

The AddToolbarTarget method registers the BrowseClass object as a
potential target of the specified toolbar.

The ToolbarClass.SetTarget method sets the active target for a ToolbarClass
object.

Implementation: The Toolbar object for a browse is the object that detects toolbar events, such
as scroll down or page down, and passes them on to the active ToolbarTarget
object. In the standard template implementation, there is a single global
toolbar, and a Toolbar object per procedure that may drive several different
browses and forms, each of which is a ToolbarTarget. Only one
ToolbarTarget is active at a time.

Example:

BrowseSt.AddToolbarTarget(Browse:Toolbar) !tie BrowseSt object to Toolbar object
BrowseZIP.AddToolbarTarget(Browse:Toolbar) !tie BrowseZIP object to Toolbar object
!program code
Browse:Toolbar.SetTarget(?StList) !state list is current toolbar target
!program code
Browse:Toolbar.SetTarget(?ZIPList) !ZIP list is current toolbar target

See Also: Toolbar, ToolbarItem, ToolbarClass.SetTarget

CHAPTER 11 BROWSECLASS 279

ApplyRange (refresh browse based on resets and range limits)

ApplyRange, VIRTUAL, PROC

The ApplyRange method checks the current status of reset fields and range
limits and refreshes the browse list if necessary. Then it returns a value
indicating whether a screen redraw is required.

The inherited AddRange method adds an associated range limit for each sort
order. The AddResetField method establishes reset fields for each browse
sort order.

Implementation: The ApplyRange method returns one (1) if a screen redraw is required or
zero (0) if no redraw is required.

Return Data Type: BYTE

Example:

IF BrowseSt.ApplyRange() !refresh browse queue if things changed
DISPLAY(?StList) !redraw LIST if queue refreshed

END

See Also: AddResetField, ViewManager.AddRange

280 CLARION 5 APPLICATION HANDBOOK

Ask (update selected browse item)

Ask(request), VIRTUAL, PROC

Ask Updates the selected browse record.

request A numeric constant, variable, EQUATE, or expression
that indicates the requested update action. Valid actions
are Insert, Change, and Delete.

The Ask method updates the selected browse record and returns a value
indicating whether the requested update was completed or cancelled.

Implementation: Depending on the value of the AskProcedure property, the Ask method either
calls the WindowManager.Run method to execute a specific update
procedure, or it calls the AskRecord method to do an edit-in-place update.

The TakeEvent method calls the Ask method. The Ask method assumes the
UpdateViewRecord method has been called to ensure correct record buffer
contents.

Return value EQUATEs are declared in \LIBSRC\TPLEQU.CLW:

RequestCompleted EQUATE (1) !Update Completed
RequestCancelled EQUATE (2) !Update Aborted

EQUATEs for request are declared in \LIBSRC\TPLEQU.CLW:

InsertRecord EQUATE (1) !Add a record to table
ChangeRecord EQUATE (2) !Change the current record
DeleteRecord EQUATE (3) !Delete the current record

Return Data Type: BYTE

Example:

BrowseClass.TakeEvent PROCEDURE
!procedure data
 CODE
!procedure code
CASE ACCEPTED()
OF SELF.DeleteControl
SELF.Window.Update()
SELF.Ask(DeleteRecord) !delete a browse item

OF SELF.ChangeControl
SELF.Window.Update()
SELF.Ask(ChangeRecord) !change a browse item

OF SELF.InsertControl
SELF.Window.Update()
SELF.Ask(InsertRecord) !insert a browse item

OF SELF.SelectControl
SELF.Window.Response = RequestCompleted
POST(EVENT:CloseWindow)

ELSE
SELF.TakeAcceptedLocator

END

See Also: AskProcedure, AskRecord, TakeEvent

CHAPTER 11 BROWSECLASS 281

AskRecord (edit-in-place selected browse item)

AskRecord(request), VIRTUAL, PROC

AskRecord Does edit-in-place update of the selected browse record.

request A numeric constant, variable, EQUATE, or expression
that indicates the requested edit-in-place action. Valid
edit-in-place actions are Insert, Change, and Delete.

The AskRecord method calls the BrowseEIPManager for edit-in-place
updates for the selected browse row and column, then returns a value
indicating whether the requested edit was completed or cancelled.

Implementation: The Ask method calls the AskRecord method to edit the selected row and
column.

The AskRecord method assumes the UpdateViewRecord method has been
called to ensure correct record buffer contents. AskRecord should be
followed by the ResetFromAsk method.

Return value EQUATEs are declared in \LIBSRC\TPLEQU.CLW:

RequestCompleted EQUATE (1) !Update Completed
RequestCancelled EQUATE (2) !Update Aborted

EQUATEs for request are declared in \LIBSRC\TPLEQU.CLW:

InsertRecord EQUATE (1) !Add a record to table
ChangeRecord EQUATE (2) !Change the current record
DeleteRecord EQUATE (3) !Delete the current record

Return Data Type: BYTE

Example:

BrowseClass.Ask PROCEDURE(BYTE Req)
Response BYTE
 CODE
 LOOP
 SELF.Window.VCRRequest = VCR:None
 IF Req=InsertRecord THEN
 SELF.PrimeRecord
 END
 IF SELF.AskProcedure
 Response = SELF.Window.Run(SELF.AskProcedure,Req) !do edit-in-place update
 SELF.ResetFromAsk(Req,Response)
 ELSE
 Response = SELF.AskRecord(Req)
 END
 UNTIL SELF.Window.VCRRequest = VCR:None
 RETURN Response

See Also: AddEditControl, Ask, ResetFromAsk, EditClass

282 CLARION 5 APPLICATION HANDBOOK

Fetch (get a page of browse items)

Fetch(direction), VIRTUAL, PROTECTED

Fetch Loads a page of items into the browse list queue.

direction A numeric constant, variable, EQUATE, or expression
that indicates whether to get the next set of items or the
previous set of items.

The Fetch method loads the next or previous page of items into the browse
list queue.

Implementation: Fetch is called by the ResetQueue, ScrollOne, ScrollPage, and ScrollEnd
methods. A page of items is as many items as fits in the LIST control.

BrowseClass.Fetch direction value EQUATEs are declared in
ABBROWSE.INC as follows:

FillBackward EQUATE(1)
FillForward EQUATE(2)

Example:

ScrollOne PROCEDURE(SIGNED Event)
CODE

 IF Event = Event:ScrollUp AND CurrentChoice > 1
 CurrentChoice -= 1
 ELSIF Event = Event:ScrollDown AND CurrentChoice < RECORDS(ListQueue)
 CurrentChoice += 1
 ELSE
 ItemsToFill = 1
 MyBrowse.Fetch(CHOOSE(Event = EVENT:ScrollUp, FillForward, FillBackward))
 END

See Also: ResetQueue, ScrollOne, ScrollPage, ScrollEnd

CHAPTER 11 BROWSECLASS 283

Init (initialize the BrowseClass object)

Init(listcontrol, viewposition, view, listqueue, relationmanager, windowmanager)

Init Initializes the BrowseClass object.

listcontrol A numeric constant, variable, EQUATE, or expression
containing the control number of the browse’s LIST
control.

viewposition The label of a string field within the listqueue containing
the POSITION of the view.

view The label of the browse’s underlying VIEW.

listqueue The label of the listcontrol’s data source QUEUE.

relationmanager The label of the browse’s primary file RelationManager
object. See Relation Manager for more information.

windowmanager The label of the browse’s WindowManager object. See
Window Manager for more information.

The Init method initializes the BrowseClass object.

Implementation: Among other things, the Init method calls the PARENT.Init
(ViewManager.Init) method to initialize the browse’s ViewManager object.
See View Manager for more information.

The Init method instantiates a PopupClass object for the browse.

The Init method calls the WindowManager.AddItem method to register its
presence with the WindowManager.

Example:

CODE !Setup the BrowseClass object:
BrowseState.Init(?StateList, | ! identify its LIST control,

StateQ.Position, | ! its VIEW position string,
StateView, | ! its source/target VIEW,
StateQ, | ! the LIST’s source QUEUE,
Relate:State | ! the primary file RelationManager
ThisWindow) ! the WindowManager

See Also: ViewManager.Init, PopupClass, WindowManager.AddItem

284 CLARION 5 APPLICATION HANDBOOK

Kill (shut down the BrowseClass object)

Kill, VIRTUAL

The Kill method shuts down the BrowseClass object.

Implementation: Among other things, the BrowseClass.Kill method calls the PARENT.Kill
(ViewManager.Kill) method to shut down the browse’s ViewManager object.
See View Manager for more information.

Example:

CODE !Setup the BrowseClass object:
BrowseState.Init(?StateList, | ! identify its LIST control,

StateQ.Position, | ! its VIEW position string,
StateView, | ! its source/target VIEW,
StateQ, | ! the LIST’s source QUEUE,
Relate:State | ! the primary file RelationManager
ThisWindow) ! the WindowManager

!program code

BrowseState.Kill !shut down the BrowseClass object

See Also: ViewManager.Kill

CHAPTER 11 BROWSECLASS 285

Next (get the next browse item)

Next, VIRTUAL

The Next method gets the next record from the browse view and returns a
value indicating its success or failure.

Next returns Level:Benign if successful, Level:Notify if it reached the end of
the file, and Level:Fatal if it encountered a fatal error.

Implementation: Corresponding return value EQUATEs are declared in ABERROR.INC. See
Error Class for more information on these severity level EQUATEs.

Level:Benign EQUATE(0)
Level:User EQUATE(1)
Level:Program EQUATE(2)
Level:Fatal EQUATE(3)
Level:Cancel EQUATE(4)
Level:Notify EQUATE(5)

The Next method is called by the Fetch and ResetThumbLimits methods.
Among other things, Next calls the PARENT.Next (ViewManager.Next)
method. See ViewManager for more information.

Return Data Type: BYTE

Example:

CASE MyBrowse.Next() !get next record
OF Level:Benign !if successful, continue
OF Level:Fatal !if fatal error
RETURN ! end this procedure

OF Level:Notify !if end of file reached
MESSAGE(‘Reached end of file.’) ! acknowledge EOF

END

See Also: Fetch, ResetThumbLimits

PostNewSelection (post an EVENT:NewSelection to the browse list)

PostNewSelection

The PostNewSelection method posts an EVENT:NewSelection to the
browse list to support scrolling, inserts, deletes, and other changes of
position within the browse list.

Implementation: Event EQUATEs are declared in EQUATES.CLW.

Example:

UpdateMyBrowse ROUTINE
!update code
MyBrowse.ResetFromFile !after insert or change, reload Q from file
MyBrowse.PostNewSelection !after update, post a new selection event

!so window gets properly refreshed

286 CLARION 5 APPLICATION HANDBOOK

Previous (get the previous browse item)

Previous, VIRTUAL

The Previous method gets the previous record from the browse view and
returns a value indicating its success or failure.

Implementation: Returns Level:Benign if successful, Level:Notify if it reached the end of the
file, and Level:Fatal if it encountered a fatal error. Corresponding severity
level EQUATEs are declared in ABERROR.INC. See Error Class for more
information on error severity levels.

Level:Benign EQUATE(0)
Level:User EQUATE(1)
Level:Program EQUATE(2)
Level:Fatal EQUATE(3)
Level:Cancel EQUATE(4)
Level:Notify EQUATE(5)

The Previous method is called by the Fetch and ResetThumbLimits methods.
Among other things, Previous calls the PARENT.Previous
(ViewManager.Previous) method. See ViewManager for more information.

Return Data Type: BYTE

Example:

CASE MyBrowse.Previous() !get previous record
OF Level:Benign !if successful, continue
OF Level:Fatal !if fatal error
RETURN ! end this procedure

OF Level:Notify !if end of file reached
MESSAGE(‘Reached end of file.’) ! acknowledge EOF

END

See Also: Fetch, ResetThumbLimits

Records (return the number of browse queue items)

Records, PROC

The Records method returns the number of records in the browse list queue
and disables appropriate controls if the record count is zero.

Return Data Type: LONG

Example:

DeleteMyBrowse ROUTINE
!delete code
MyBrowse.Records() !disable delete button (and menu) if no items

CHAPTER 11 BROWSECLASS 287

ResetFromAsk (reset browse after update)

ResetFromAsk(request, response), VIRTUAL, PROTECTED

ResetFromAsk Resets the BrowseClass object following an update.

request An integer constant, variable, EQUATE, or expression
that indicates the type of update requested. Valid updates
are insert, change, and delete.

response An integer constant, variable, EQUATE, or expression
that indicates whether the requested update was com-
pleted or cancelled.

The ResetFromAsk method resets the BrowseClass object following an Ask
or AskRecord update to a browse item.

Implementation: The Ask and AskRecord methods call ResetFromAsk as needed to reset the
BrowseClass object.

ResetFromAsk FLUSHes the BrowseClass object’s VIEW if needed, calls
the appropriate “reset” method (ResetQueue, ResetFromFile, or
ResetFromView) to refill the QUEUE, then carries out any pending scroll
request made concurrently with the update. See
WindowManager.VCRRequest.

EQUATEs for the request parameter are declared in
\LIBSRC\TPLEQU.CLW as follows:

InsertRecord EQUATE (1) !Add a record to table
ChangeRecord EQUATE (2) !Change the current record
DeleteRecord EQUATE (3) !Delete the current record

EQUATEs for the response parameter are declared in
\LIBSRC\TPLEQU.CLW as follows:

RequestCompleted EQUATE (1) !Update Completed
RequestCancelled EQUATE (2) !Update Aborted

288 CLARION 5 APPLICATION HANDBOOK

Example:

BrowseClass.Ask PROCEDURE(BYTE Req)
Response BYTE
 CODE
 LOOP
 SELF.Window.VCRRequest = VCR:None
 IF Req=InsertRecord THEN
 SELF.PrimeRecord
 END
 IF SELF.AskProcedure
 Response = SELF.Window.Run(SELF.AskProcedure,Req)
 SELF.ResetFromAsk(Req,Response) !reset the browse after update
 ELSE
 Response = SELF.AskRecord(Req)
 END
 UNTIL SELF.Window.VCRRequest = VCR:None
 RETURN Response

See Also: Ask, AskRecord, ResetQueue, ResetFromFile, ResetFromView,
WindowManager.VCRRequest

CHAPTER 11 BROWSECLASS 289

ResetFromBuffer (fill queue starting from record buffer)

ResetFromBuffer, VIRTUAL

The ResetFromBuffer method fills or refills the browse queue starting from
the record in the primary file buffer (and secondary file buffers if
applicable). If the record is found, ResetFromBuffer fills the browse queue
starting from that record. If the record is not found, ResetFromBuffer fills
the browse queue starting from the nearest matching record.

If the active sort order (key) allows duplicates and duplicate matches exist,
ResetFromBuffer fills the browse queue starting from the first matching
record.

Tip: Use ResetFromBuffer when the primary and secondary file
positions and values are valid, but the result set may no longer
match the buffer values. For example, after a locator or
scrollbar thumb move.

Implementation: ResetFromBuffer succeeds even if there is no exactly matching record and is
typically used to locate the appropriate record after a thumb movement.

ResetFromBuffer calls the ViewManager.Reset method for positioning, then
calls the ResetQueue method to fill the browse queue.

Example:

IF EVENT() = EVENT:ScrollDrag !if thumb moved
IF ?MyList{PROP:VScrollPos} <= 1 !handle scroll to top
POST(Event:ScrollTop, ?MyList)

ELSIF ?MyList{PROP:VScrollPos} = 100 !handle scroll to bottom
POST(Event:ScrollBottom, ?MyList)

ELSE !handle intermediate scroll
MyBrowse.Sort.FreeElement = MyBrowse.Sort.Step.GetValue(?MyList{PROP:VScrollPos})
MyBrowse.ResetFromBuffer !and reload the queue from that point

END
END

See Also: ViewManager.Reset, ResetQueue

290 CLARION 5 APPLICATION HANDBOOK

ResetFromFile (fill queue starting from file POSITION)

ResetFromFile, VIRTUAL

The ResetFromFile method fills or refills the browse queue starting from
the current POSITION of the primary file. If no POSITION has been
established, ResetFromFile fills the browse queue starting from the
beginning of the file.

Tip: Use ResetFromFile when the primary file position is valid but
secondary records and their contents may not be. For
example, when returning from an update.

Implementation: ResetFromFile succeeds even if the record buffer is cleared and is typically
used to get the current record after an update.

Example:

MyBrowseClass.ResetFromAsk PROCEDURE(*BYTE Request,*BYTE Response)
 CODE
 IF Response = RequestCompleted
 FLUSH(SELF.View)
 IF Request = DeleteRecord
 DELETE(SELF.ListQueue)
 SELF.ResetQueue(Reset:Queue) !refill queue after delete
 ELSE
 SELF.ResetFromFile !refill queue after insert or change
 END
 ELSE
 SELF.ResetQueue(Reset:Queue)
 END

CHAPTER 11 BROWSECLASS 291

ResetFromView (reset browse from current result set)

ResetFromView, VIRTUAL

The ResetFromView method resets the BrowseClass object to conform to
the current result set.

Tip: Use ResetFromView when you want to reset for any changes
that may have happened to the entire record set, such as new
records added or deleted by other workstations.

Implementation: The SetSort method calls the ResetFromView method.

The ResetFromView method readjusts the scrollbar thumb if necessary. The
ABC Templates override the BrowseClass.ResetFromView method to
recalculate totals if needed.

Example:

BRW1.ResetFromView PROCEDURE
ForceRefresh:Cnt LONG
CODE
SETCURSOR(Cursor:Wait)
SELF.Reset
LOOP
CASE SELF.Next()
OF Level:Notify
BREAK

OF Level:Fatal
RETURN

END
SELF.SetQueueRecord
ForceRefresh:Cnt += 1

END
ForceRefresh = ForceRefresh:Cnt
SETCURSOR()

292 CLARION 5 APPLICATION HANDBOOK

ResetQueue (fill or refill queue)

ResetQueue(resetmode), VIRTUAL

ResetQueue Fills or refills the browse queue.

resetmode A numeric constant, variable, EQUATE, or expression
that determines how ResetQueue determines the high-
lighted record after the reset. A value of Reset:Queue
highlights the currently selected item. A value of
Reset:Done highlights a record based on the view’s
current position and other factors, such as the
RetainRow property.

The ResetQueue method fills or refills the browse queue and appropriately
enables or disables Change, Delete, and Select controls. The refill process
depends on the value of the resetmode parameter and several other
BrowseClass properties, including ActiveInvisible, AllowUnfilled,
RetainRow, etc.

A resetmode value of Reset:Queue usually produces a more efficient queue
refill than Reset:Done.

Implementation: ResetQueue calls the Fetch method to fill the queue.

The resetmode EQUATEs are declared in ABBROWSE.INC as follows:

ITEMIZE,PRE(Reset)
Queue EQUATE
Done EQUATE

END

Example:

DeleteMyBrowse ROUTINE
!delete code
MyBrowse.ResetQueue(Reset:Queue) !after delete, refresh Q
MyBrowse.PostNewSelection !after delete, post a new selection event

!so window gets properly refreshed

See Also: ActiveInvisible, AllowUnfilled, RetainRow, ChangeControl, DeleteControl,
SelectControl, Fetch

CHAPTER 11 BROWSECLASS 293

ResetResets (copy the Reset fields)

ResetResets, PROTECTED

The ResetResets method copies the current values of the Reset fields so any
subsequent changes in their contents can be detected.

The AddResetField method adds an associated reset field for the sort order
defined by the preceding call to AddSortOrder. You may add multiple reset
fields for each sort order with multiple calls to AddResetField.

Example:

MyBrowse.CheckReset PROCEDURE
IF NOT SELF.Sort.Resets.Equal() !if reset fields changed,
SELF.ResetQueue(Reset:Queue) !refresh Q
SELF.ResetResets !take a new copy of the reset field values

END

See Also: AddResetField

294 CLARION 5 APPLICATION HANDBOOK

ResetSort (apply sort order to browse)

ResetSort(force), VIRTUAL, PROC

ResetSort Reapplies the active sort order to the browse list.

force A numeric constant, variable, EQUATE, or expression
that indicates whether to reset the browse conditionally
or unconditionally. A value of one (1 or True) uncondi-
tionally resets the browse; a value of zero (0 or False)
only resets the brose as circumstances require (sort order
changed, reset fields changed, first loading, etc.).

The ResetSort method reapplies the active sort order to the browse list and
returns one (1) if the sort order changed; it returns zero (0) if the order did
not change. Any range limits, locators, or reset fields associated with the sort
order are enabled.

Tip: Use ResetSort followed by UpdateWindow to refresh and
redisplay your ABC BrowseBoxes. Or, use the
WindowManager.Reset method.

Implementation: The ResetSort method calls the SetSort method to applt the current sort
order. The ABC Templates override the ResetSort method to apply the sort
order based on the selected tab.

Return Data Type: BYTE

Example:

BRW1.ResetSort FUNCTION(BYTE Force) !apply appropriate sort order

CODE
IF CHOICE(?CurrentTab) = 1 !If 1st tab selected
RETURN SELF.SetSort(1,Force) !apply first sort order

ELSE !otherwise
RETURN SELF.SetSort(2,Force) !apply second sort order

END

See Also: AddRange, AddResetField, AddSortOrder, SetSort, UpdateWindow

CHAPTER 11 BROWSECLASS 295

ScrollEnd (scroll to first or last item)

ScrollEnd(scrollevent), VIRTUAL, PROTECTED

ScrollEnd Scrolls to the first or last browse list item.

scrollevent A numeric constant, variable, EQUATE, or expression
that indicates the requested scroll action. Valid scroll
actions for this method are scrolls to the top or bottom of
the list.

The ScrollEnd method scrolls to the first or last browse list item.

Implementation: The BrowseClass.TakeScroll method calls the ScrollEnd method.

A hexadecimal scrollevent value of EVENT:ScrollTop scrolls to the first list
item. A value of EVENT:ScrollBottom scrolls to the last list item.
Corresponding scroll event EQUATEs are declared in EQUATES.CLW:

EVENT:ScrollTop EQUATE (07H)
EVENT:ScrollBottom EQUATE (08H)

Example:

BrowseClass.TakeScroll PROCEDURE(SIGNED Event)
CODE
IF RECORDS(SELF.ListQueue)
CASE Event
OF Event:ScrollUp OROF Event:ScrollDown
SELF.ScrollOne(Event)

OF Event:PageUp OROF Event:PageDown
SELF.ScrollPage(Event)

OF Event:ScrollTop OROF Event:ScrollBottom
SELF.ScrollEnd(Event)

END
END

See Also: TakeScroll

296 CLARION 5 APPLICATION HANDBOOK

ScrollOne (scroll up or down one item)

ScrollOne(scrollevent), VIRTUAL, PROTECTED

ScrollOne Scrolls up or down one browse list item.

scrollevent A numeric constant, variable, EQUATE, or expression
that indicates the requested scroll action. Valid scroll
actions for this method are scrolls up or down a single
list item.

The ScrollOne method scrolls up or down one browse list item.

Implementation: The BrowseClass.TakeScroll method calls the ScrollOne method.

A hexadecimal scrollevent value of EVENT:ScrollUp scrolls up one list item.
A value of EVENT:ScrollDown scrolls down one list item. Corresponding
scroll event EQUATEs are declared in EQUATES.CLW:

EVENT:ScrollUp EQUATE (03H)
EVENT:ScrollDown EQUATE (04H)

Example:

BrowseClass.TakeScroll PROCEDURE(SIGNED Event)
CODE
IF RECORDS(SELF.ListQueue)
CASE Event
OF Event:ScrollUp OROF Event:ScrollDown
SELF.ScrollOne(Event)

OF Event:PageUp OROF Event:PageDown
SELF.ScrollPage(Event)

OF Event:ScrollTop OROF Event:ScrollBottom
SELF.ScrollEnd(Event)

END
END

See Also: TakeScroll

CHAPTER 11 BROWSECLASS 297

ScrollPage (scroll up or down one page)

ScrollPage(scrollevent), VIRTUAL, PROTECTED

ScrollPage Scrolls up or down one page of browse list items.

scrollevent A numeric constant, variable, EQUATE, or expression
that indicates the requested scroll action. Valid scroll
actions for this method are scrolls up one page or down
one page of browse list items.

The ScrollPage method scrolls up or down one page of browse list items.

Implementation: The BrowseClass.TakeScroll method calls the ScrollPage method.

A hexadecimal scrollevent value of EVENT:PageUp scrolls up one page of
browse list items. A value of EVENT:PageDown scrolls down one page of
browse list items. Corresponding scroll event EQUATEs are declared in
EQUATES.CLW:

EVENT:PageUp EQUATE (05H)
EVENT:PageDown EQUATE (06H)

Example:

BrowseClass.TakeScroll PROCEDURE(SIGNED Event)
CODE
IF RECORDS(SELF.ListQueue)
CASE Event
OF Event:ScrollUp OROF Event:ScrollDown
SELF.ScrollOne(Event)

OF Event:PageUp OROF Event:PageDown
SELF.ScrollPage(Event)

OF Event:ScrollTop OROF Event:ScrollBottom
SELF.ScrollEnd(Event)

END
END

See Also: TakeScroll

298 CLARION 5 APPLICATION HANDBOOK

SetAlerts (alert keystrokes for list and locator controls)

SetAlerts, VIRTUAL

The SetAlerts method alerts standard keystrokes for the browse’s list control
and for any associated locator controls.

The BrowseClass.TakeKey method processes the alerted keystrokes.

Implementation: The BrowseClass.SetAlerts method alerts the mouse DOUBLE-CLICK, the
INSERT, DELETE and CTRL+ENTER keys for the browse’s list control and calls the
LocaorClass.SetAlerts method for each associated locator control.
Corresponding keycode EQUATEs are declared in KEYCODES.CLW.

The BrowseClass.SetAlerts method also sets up a popup menu for the browse
list that mimics the behavior of any control buttons (insert, change, delete,
select).

Example:

PrepareStateBrowse ROUTINE !Setup the BrowseClass object:
BrowseState.Init(?StateList, | ! identify its LIST control,

StateQ.Position, | ! its VIEW position string,
StateView, | ! its source/target VIEW,
StateQ, | ! the LIST’s source QUEUE,
Relate:State) ! and primary file RelationManager

BrowseState.SetAlerts !alert LIST and locator keystrokes

See Also: TakeKey

SetQueueRecord (copy data from file buffer to queue buffer)

SetQueueRecord, VIRTUAL

The SetQueueRecord method copies corresponding data from the filefield
fields to the queuefield fields specified by the AddField method. Typically
these are the file buffer fields and the browse list’s queue buffer fields so that
the queue buffer matches the file buffers.

Implementation: The BrowseClass.Fetch and BrowseClass.Ask methods call the
SetQueueRecord method.

Example:

MyBrowseClass.SetQueueRecord PROCEDURE
CODE
SELF.Fields.AssignLeftToRight !copy data from file to q buffer
SELF.ViewPosition = POSITION(SELF.View) !set the view position
!your custom code here

See Also: Ask, AddField, Fetch

CHAPTER 11 BROWSECLASS 299

SetSort (apply a sort order to the browse)

SetSort(order, force reset), VIRTUAL, PROC

SetSort Applies a specified sort order to the browse list.

order An integer constant, variable, EQUATE, or expression
that specifies the sort order to apply.

force reset A numeric constant, variable, EQUATE, or expression
that tells the method whether to reset the browse condi-
tionally or unconditionally. A value of zero (0 or False)
resets the browse only if circumstances require (sort
order changed, reset fields changed, first time loading); a
value of one (1 or True) unconditionally resets the browse.

The SetSort method applies the specified sort order to the browse list and
returns one (1) if the sort order changed; it returns zero (0) if the sort order
did not change. Any range limits, locators, and reset fields associated with
the sort order are enabled and applied.

The order value is typically a value returned by the AddSortOrder method
which identifies the particular sort order. Since AddSortOrder returns
sequence numbers, a value of one (1) applies the sort order specified by the
first call to AddSortOrder; two (2) applies the sort order specified by the next
call to AddSortOrder; etc. A value of zero (0) applies the default sort order.

Implementation: The ResetSort method calls the SetSort method.

Return Data Type: BYTE

Example:

IF FIELD() = ?FirstTab !if first tab selected
IF MyBrowse.SetSort(1,0) !apply the first sort order
MyBrowse.ResetThumbLimits !if sort changed, reset thumb limits

END
MyBrowse.UpdateBuffer !update file buffer from selected item

END

See Also: AddRange, AddResetField, AddSortOrder, ResetSort

300 CLARION 5 APPLICATION HANDBOOK

TakeAcceptedLocator (apply an accepted locator value)

TakeAcceptedLocator

The TakeAcceptedLocator method applies an accepted locator value to the
browse list—the BrowseClass object scrolls the list to the requested item.

Locators with entry controls are the only locators whose values are accepted.
Other types of locators are invoked in other ways, for example, with alerted
keys. Locator values are accepted whenthe end user TABS off or otherwise
switches focus away from the locator’s entry control.

The AddLocator method establishes locators for the browse.

Implementation: The TakeAcceptedLocator method calls the appropriate
LocatorClass.TakeAccepted method.

Example:

IF FIELD() = ?MyLocator !focus on locator field
IF EVENT() = EVENT:Accepted !if accepted
MyBrowse.TakeAcceptedLocator !BrowseClass object handles it

END
END

See Also: AddLocator

CHAPTER 11 BROWSECLASS 301

TakeEvent (process the current ACCEPT loop event)

TakeEvent, VIRTUAL

The TakeEvent method processes the current ACCEPT loop event for the
BrowseClass object. The TakeEvent method handles all events associated
with the browse list except a new selection event. The TakeNewSelection
method handles new selection events for the browse.

Implementation: The WindowManager.TakeEvent method calls the TakeEvent method. The
TakeEvent method calls the TakeScroll or TakeKey method as appropriate.

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
!procedure code
LOOP I = 1 TO RECORDS(SELF.Browses)
GET(SELF.Browses,I)
SELF.Browses.Browse.TakeEvent

END
LOOP i=1 TO RECORDS(SELF.FileDrops)
GET(SELF.FileDrops,i)
ASSERT(~ERRORCODE())
SELF.FileDrops.FileDrop.TakeEvent

END
RETURN RVal

See Also: TakeKey, TakeNewSelection, TakeScroll, WindowManager.TakeEvent

302 CLARION 5 APPLICATION HANDBOOK

TakeKey (process an alerted keystroke)

TakeKey, VIRTUAL, PROC

The TakeKey method processes an alerted keystroke for the BrowseClass
object, including DOUBLE-CLICK, INSERT, CTRLENTER, or DELETE, and returns a
value indicating whether any action was taken.

Implementation: TakeKey returns one (1) if any action is taken, otherwise it returns zero (0).

The TakeEvent method calls the TakeKey method as appropriate. The
BrowseClass.TakeKey method calls the Locator.TakeKey method as
appropriate.

Return Data Type: BYTE

Example:

IF FIELD() = ?MyBrowseList !focus on browse list
IF EVENT() EVENT:AlertKey !if alerted keystroke
MyBrowse.TakeKey !BrowseClass object handles it

END
END

See Also: TakeEvent

TakeLocate (collect and apply ad hoc query)

TakeLocate, VIRTUAL

The TakeLocate method collects and applies ad hoc queries for the
BrowseClass object.

Implementation: The TakeEvent method calls the TakeLocate method to collect ad hoc query
criteria from the end user and apply it so the browse displays a new result set
that matches the query criteria.

The TakeLocate method uses the Query property to solicit the query criteria
from the end user and to build the filter expression to apply. The TakeLocate
method implements the behavior specified by the QueryShared property.

Example:

MyBrowseClass.TakeLocate
CODE
CASE MESSAGE('Warning: new query resets browse totals! Continue?',,,'&Yes|&No')
OF 2 !user pressed No button
RETURN !don’t do a new query

END
PARENT.TakeLocate !do a new query

See Also: Query, QueryShared, TakeEvent

CHAPTER 11 BROWSECLASS 303

TakeNewSelection (process a new selection)

TakeNewSelection, VIRTUAL, PROC

The TakeNewSelection method processes a new browse list item selection
and returns a value indicating whether a window redraw is needed.

Implementation: TakeNewSelection returns one (1) if a window redraw is needed, otherwise it
returns zero (0).

The TakeEvent method calls the TakeNewSelection method when
appropriate. The BrowseClass.TakeNewSelection method calls the
appropriate Locator.TakeNewSelection method.

Return Data Type: BYTE

Example:

IF FIELD() = ?MyBrowse !focus on browse list
IF EVENT() = EVENT:NewSelection !if new selection
MyBrowse.TakeNewSelection() !BrowseClass object handles it

ELSE !if other event
MyBrowse.TakeEvent !BrowseClass object handles it

END
END

304 CLARION 5 APPLICATION HANDBOOK

TakeScroll (process a scroll event)

TakeScroll([scrollevent]), VIRTUAL

TakeScroll Processes a scroll event for the browse list.

scrollevent An integer constant, variable, EQUATE, or expression
that specifies the scroll event. Valid scroll events are up
one item, down one item, up one page, down one page,
up to the first item, and down to the last item. If omitted,
no scrolling occurs.

The TakeScroll mthod processes a scroll event for the browse list.

Implementation: A scrollevent value of EVENT:ScrollUp scrolls up one item;
EVENT:ScrollDown scrolls down one item; EVENT:PageUp scrolls up one
page; EVENT:PageDown scrolls down one page; EVENT:ScrollTop scrolls
to the first list item; EVENT:ScrollBottom scrolls to the last list item.
Corresponding scrollevent EQUATEs are declared in EQUATES.CLW.

EVENT:ScrollUp EQUATE (03H)
EVENT:ScrollDown EQUATE (04H)
EVENT:PageUp EQUATE (05H)
EVENT:PageDown EQUATE (06H)
EVENT:ScrollTop EQUATE (07H)
EVENT:ScrollBottom EQUATE (08H)

The TakeScroll method calls the ScrollEnd, ScrollOne, or ScrollPage method
as needed.

Example:

IF FIELD() = ?MyBrowse !focus on browse list
CASE EVENT() !scroll event
OF EVENT:ScrollUp
OROF EVENT:ScrollDown
OROF EVENT:PageUp
OROF EVENT:PageDown
OROF EVENT:ScrollTop
OROF EVENT:ScrollBottom
MyBrowse.TakeScroll !BrowseClass object handles it

END
END

See Also: ScrollEnd, ScrollOne, ScrollPage

CHAPTER 11 BROWSECLASS 305

TakeVCRScroll (process a VCR scroll event)

TakeVCRScroll([vcrevent]), VIRTUAL

TakeVCRScroll Processes a VCR scroll event for the browse list.

vcrevent An integer constant, variable, EQUATE, or expression
that specifies the scroll event. Valid scroll events are up
one item, down one item, up one page, down one page,
up to the first item, and down to the last item. If omitted,
no scrolling occurs.

The TakeVCRSroll method processes a VCR scroll event for the browse

Implementation: A vcrevent value of VCR:Forward scrolls down one item; VCR:Backward
scrolls up one item; VCR:PageForward scrolls down one page;
VCR:PageBackward scrolls up one page; VCR:Last scrolls to the last list
item; VCR:First scrolls to the first list item. Corresponding vcrevent
EQUATEs are declared in \LIBSRC\ABTOOLBA.INC.

ITEMIZE,PRE(VCR)
Forward EQUATE(Toolbar:Down)
Backward EQUATE(Toolbar:Up)
PageForward EQUATE(Toolbar:PageDown)
PageBackward EQUATE(Toolbar:PageUp)
First EQUATE(Toolbar:Top)
Last EQUATE(Toolbar:Bottom)
Insert EQUATE(Toolbar:Insert)
None EQUATE(0)

END
END

The TakeVCRScroll method calls the TakeScroll method, translating the
vcrevent to the appropriate scrollevent.

Example:

LOOP !process repeated scroll events
IF VCRRequest = VCR:None !if no more events
BREAK !break out of loop

ELSE !if scroll event
MyBrowse.TakeVCRScroll(VCRRequest) !BrowseClass object handles it

END
END

See Also: TakeScroll

306 CLARION 5 APPLICATION HANDBOOK

UpdateBuffer (copy selected item from queue buffer to file buffer)

UpdateBuffer, VIRTUAL

The UpdateBuffer method copies corresponding data from the queuefield
fields to the filefield fields specified by the AddField method for the
currently selected browse item. Typically these are the browse list’s queue
buffer fields and the file buffer fields so that the file buffers match the
currently selected browse list item.

Implementation: Many of the BrowseClass methods call the UpdateBuffer method.

Example:

IF FIELD() = ?FirstTab !if first tab selected
IF MyBrowse.SetSort(1,0) !apply the first sort order
MyBrowse.ResetThumbLimits !if sort changed, reset thumb limits

END
MyBrowse.UpdateBuffer !update file buffer from selected item
MyBrowse.UpdateResets !update file buffer from reset fields

END

See Also: AddField

CHAPTER 11 BROWSECLASS 307

UpdateQuery (set default query interface)

UpdateQuery(querymanager)

UpdateQuery Defines a default query interface for the BrowseClass
object.

querymanager The label of the BrowseClass object’s QueryClass
object. See QueryClass for more information.

The UpdateQuery method defines a default query interface (dialog) for the
BrowseClass object.

Tip: You may use the UpdateQuery method in combination with the
QueryClass.AddItem method to define a query interface that
contains the displayed fields plus other queryable items.

Implementation: The UpdateQuery method sets the value of the Query property, then calls the
QueryClass.AddItem method for each displayed field, so that each displayed
field accepts filter criteria in the query dialog.

Example:

QueryForm QueryFormClass
QueryVis QueryFormVisual
BRW1 CLASS(BrowseClass)
Q &CusQ

END

CusWindow.Init PROCEDURE()
 CODE
!open files, views, window, etc.
IF DefaultQuery
BRW1.UpdateQuery(QueryForm)

ELSE
BRW1.Query &= QueryForm
QueryForm.AddItem('UPPER(CUS:NAME)','','')
QueryForm.AddItem('UPPER(CUS:CITY)','','')
QueryForm.AddItem('CUS:ZIP_CODE','','')

END
RETURN Level:Benign

See Also: Query, QueryClass.AddItem

308 CLARION 5 APPLICATION HANDBOOK

UpdateResets (copy reset fields to file buffer)

UpdateResets, PROTECTED

The UpdateResets method copies reset field values to corresponding file
buffer fields.

The AddResetField method defines the reset fields for the BrowseClass
object.

Implementation: The Next and Previous methods call the UpdateResets method.

Example:

MyBrowseClass.Next PROCEDURE !method of class derived from BrowseClass
CODE
IF Level:Fatal = PARENT.Next() !do parent method
POST(EVENT:CloseWindow) !if fails, shut down

ELSE !otherwise
SELF.UpdateResets !update file buffer from reset fields

END

See Also: AddResetField, Next, Previous

UpdateThumb (position the scrollbar thumb)

UpdateThumb

The UpdateThumb method positions the scrollbar thumb and enables or
disables the vertical scroll bar depending on the number of items in the
browse list, the currently selected item, and the active step distribution
method. See Control Templates—BrowseBox for more information on thumb
behavior.

Implementation: The AddSortOrder method sets the stepdistribution methods for the
BrowseClass object.

Example:

IF FIELD() = ?MyBrowse !focus on browse list
IF EVENT() = EVENT:NewSelection !if new selection
IF MyBrowse.TakeNewSelection() !BrowseClass object handles it
MyBrowse.UdateThumb !Reposition the thumb

END
END

END

CHAPTER 11 BROWSECLASS 309

UpdateThumbFixed (position the scrollbar fixed thumb)

UpdateThumbFixed, PROTECTED

The UpdateThumbFixed method positions the scrollbar fixed thumb and
enables or disables the vertical scroll bar depending on the number of items
in the browse list, the currently selected item, and the active step distribution
method. See Control Templates—BrowseBox for more information on fixed
thumb behavior.

Implementation: The AddSortOrder method sets the step distribution methods for the
BrowseClass object.

Example:

MyBrowseClass.UpdateThumb PROCEDURE
CODE
IF SELF.Sort.Thumb &= NULL !if no step object
SELF.UpdateThumbFixed !reposition thumb as tho fixed

ELSE
!reposition thumb per step object

END

UpdateViewRecord (get view data for the selected item)

UpdateViewRecord, VIRTUAL

The UpdateViewRecord method regets the browse’s VIEW record for the
selected browse list item so the VIEW record can be written to disk. The
UpdateViewRecord method arms automatic optimistic concurrency checking
so the eventual write (PUT) to disk returns an error if another user changed
the data since it was retrieved by UpdateViewRecord.

Imlementation: The UpdateViewRecord method uses WATCH and REGET to implement
optimistic concurrency checking; see the Language Reference for more
information.

Example:

IF FIELD() = ?ChangeButton !on change button
IF EVENT() = EVENT:Accepted !if button clicked
MyBrowse.UpdateViewRecord !refresh buffers and arm WATCH
DO MyBrowse:ButtonChange !call the update routine

END
END

310 CLARION 5 APPLICATION HANDBOOK

UpdateWindow (update display variables to match browse)

UpdateWindow, VIRTUAL

The UpdateWindow method updates display variables to match the current
state of the browse list.

Tip: Use ResetSort followed by UpdateWindow to refresh and
redisplay your ABC BrowseBoxes. Or, use the
WindowManager.Reset method.

Implementation: The BrowseClass.UpdateWindow method calls the appropriate
LocatorClass.UpdateWindow method, which ensures the locator field
contains the current search value.

Example:

IF FIELD() = ?MyBrowse !focus on browse list
IF EVENT) = EVENT:NewSelection !if new selection
IF MyBrowse.TakeNewSelection() !BrowseClass object handles it
MyBrowse.SetSort(0,1) !reapply sort order
MyBrowse.UpdateBuffer !refresh file buffer from selected item
MyBrowse.UpdateWindow !update display variables (locator)
DISPLAY() !and redraw the window

. . .

CHAPTER 12 BROWSEEIPMANAGERCLASS 311

12- BROWSEEIPMANAGERCLASS

Overview
The BrowseEIPManagerClass is an EIPManager that displays an Edit-in-
place dialog, and handles events for that dialog. Each BrowseClass utilizing
Edit-in-place declares a BrowseEIPManagerClass to manage the events and
processes that are used by each Edit-in-place field in the browse.

BrowseEIPManagerClass Concepts

Each Edit-in-place control is a window created on top of the browse from
which it is called. The EIPManager dynamically creates an Edit-in-place
object and control upon request (Insert, Change, or Delete) by the end user.
When the end user accepts the edited record the EIPManager destroys the
edit-in-place object and control.

Relationship to Other Application Builder Classes

EIPManagerClass

The BrowseEIPManager class is derived from the EIPManager class.

BrowseClass

Each BrowseClass utilizing edit-in-place declares a
BrowseEIPManagerClass to manage the events and processes that are used
by each edit-in-place field in the browse.

The BrowseClass.AskRecord method is the calling method for edit-in-place
functionality when edit-in-place is enabled.

EditClass

The BrowseEIPManager provides the basic or “under the hood” interface
between the Edit classes and the Browse class. All fields in the browse
utilizing customized edit-in-place controls are kept track of by the
BrowseEIPManager via the BrowseEditQueue.

312 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

The Browse template declares a BrowseEIPManager when the
BrowseUpdateButtons control template enables default edit-in-place support
for the BrowseBox.

See Control Templates—BrowseBox, and BrowseUpdateButtons for more
information.

BrowseEIPManagerClass Source Files

The BrowseEIPManagerClass source code is installed by default to the
Clarion \LIBSRC folder. The specific BrowseEIPManagerClass source code
and their respective components are contained in:

ABBrowse.INC EditClass declarations
ABBrowse.CLW EditClass method definitions
ABBrowse.TRN EditClass translation strings

Conceptual Example

The following example shows a sequence of statements to declare, and
instantiate a BrowseEIPManager object. The example page-loads a LIST of
actions and associated priorities, then edits the list items via edit-in-place.
Note that the BrowseClass object declares a BrowseEIPManager which is a
refrence to the EIPManager as declared in ABBrowse.INC.

 PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABBROWSE.INC'),ONCE
 INCLUDE('ABEIP.INC'),ONCE
 INCLUDE('ABWINDOW.INC'),ONCE
 MAP
 END

Actions FILE,DRIVER('TOPSPEED'),PRE(ACT),CREATE,BINDABLE,THREAD
KeyAction KEY(ACT:Action),NOCASE,OPT
Record RECORD,PRE()
Action STRING(20)
Priority DECIMAL(2)
Completed DECIMAL(1)
 END
 END

Access:Actions &FileManager
Relate:Actions &RelationManager
GlobalErrors ErrorClass
GlobalRequest BYTE(0),THREAD

CHAPTER 12 BROWSEEIPMANAGERCLASS 313

ActionsView VIEW(Actions)
 END

Queue:Browse QUEUE
ACT:Action LIKE(ACT:Action)
ACT:Priority LIKE(ACT:Priority)
ViewPosition STRING(1024)
 END
BrowseWindow WINDOW('Browse Records'),AT(0,0,247,140),SYSTEM,GRAY
 LIST,AT(5,5,235,100),USE(?List),IMM,HVSCROLL,MSG('Browsing Records'),|
 FORMAT('80L~Action~@S20@8R~Priority~L@N2@'),FROM(Queue:Browse)
 BUTTON('&Insert'),AT(5,110,40,12),USE(?Insert),KEY(InsertKey)
 BUTTON('&Change'),AT(50,110,40,12),USE(?Change),KEY(CtrlEnter),DEFAULT
 BUTTON('&Delete'),AT(95,110,40,12),USE(?Delete),KEY(DeleteKey)
 END

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,DERIVED
Kill PROCEDURE(),BYTE,PROC,DERIVED
 END

BRW1 CLASS(BrowseClass)
Q &Queue:Browse
Init PROCEDURE(SIGNED ListBox,*STRING Posit,VIEW V,QUEUE Q,RelationManager

RM,WindowManager WM)
END

BRW1::EIPManager BrowseEIPManager ! Browse EIP Manager for Browse using ?List

 CODE
 GlobalErrors.Init
 Relate:Actions.Init
 GlobalResponse = ThisWindow.Run()
 Relate:Actions.Kill
 GlobalErrors.Kill

ThisWindow.Init PROCEDURE

ReturnValue BYTE,AUTO
 CODE
 SELF.Request = GlobalRequest
 ReturnValue =PARENT.Init()
 IF ReturnValue THEN RETURN ReturnValue.
 SELF.FirstField = ?List
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 SELF.AddItem(Toolbar)
 CLEAR(GlobalRequest)
 CLEAR(GlobalResponse)
 Relate:Actions.Open
 FilesOpened = True
 BRW1.Init(?List,Queue:Browse.ViewPosition,BRW1::View:Browse,Queue:Browse,Relate:Actions,SELF)
 OPEN(BrowseWindow)
 SELF.Opened=True
 BRW1.Q &= Queue:Browse
 BRW1.AddSortOrder(,ACT:KeyAction)
 BRW1.AddLocator(BRW1::Sort0:Locator)
 BRW1::Sort0:Locator.Init(,ACT:Action,1,BRW1)

314 CLARION 5 APPLICATION HANDBOOK

 BRW1.AddField(ACT:Action,BRW1.Q.ACT:Action)
 BRW1.AddField(ACT:Priority,BRW1.Q.ACT:Priority)
 BRW1.ArrowAction = EIPAction:Default+EIPAction:Remain+EIPAction:RetainColumn
 BRW1.InsertControl=?Insert
 BRW1.ChangeControl=?Change
 BRW1.DeleteControl=?Delete
 BRW1.AddToolbarTarget(Toolbar)
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE

ReturnValue BYTE,AUTO
 CODE
 ReturnValue =PARENT.Kill()
 IF ReturnValue THEN RETURN ReturnValue.
 IF FilesOpened
 Relate:Actions.Close
 END
 RETURN ReturnValue

BRW1.Init PROCEDURE(SIGNED ListBox,*STRING Posit,VIEW V,QUEUE Q,RelationManager
RM,WindowManager WM)

 CODE
 PARENT.Init(ListBox,Posit,V,Q,RM,WM)
 SELF.EIP &= BRW1::EIPManager

CHAPTER 12 BROWSEEIPMANAGERCLASS 315

BrowseEIPManagerClass Properties
The BrowseEIPManagerClass contains the following property and inherits
all the properties of the EIPManagerClass.

BC (browse class)

BC &BrowseClass, PROTECTED

The BC property is a reference to the calling BrowseClass object.

316 CLARION 5 APPLICATION HANDBOOK

BrowseEIPManagerClass Methods
The BrowseEIPManagerClass contains the following methods, and inherits
all the methods of the EIPManagerClass.

Functional Organization—Expected Use

As an aid to understanding the EIPManagerClass, it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the EIPManagerClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitD initialize the BrowseEditClass object
Kill D shut down the BrowseEditClass object

Mainstream Use:
TakeNewSelectionD handle Event:NewSelections

Occasional Use:
ClearColumnD reset column property values
TakeCompletedD process completion of edit

D These methods are also Derived

Derived Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are derived, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

InitD initialize the BrowseEditClass object
Kill D shut down the BrowseEditClass object
TakeNewSelectionD handle Event:NewSelections
ClearColumnD reset column property values
TakeCompletedD process completion of edit

CHAPTER 12 BROWSEEIPMANAGERCLASS 317

ClearColumn (reset column property values)

ClearColumn, DERIVED

The ClearColumn method checks for a value in the LastColumn property
and conditionally sets the column values to 0.

The TakeCompleted method calls the ClearColumn method.

Example:

BrowseEIPManager.TakeCompleted PROCEDURE(BYTE Force)
SaveAns UNSIGNED,AUTO
Id USHORT,AUTO
 CODE
 SELF.Again = 0
 SELF.ClearColumn
 SaveAns = CHOOSE(Force = 0,Button:Yes,Force)
 IF SELF.Fields.Equal()
 SaveAns = Button:No
 ELSE
 IF ~Force
 SaveAns = SELF.Errors.Message(Msg:SaveRecord,|

Button:Yes+Button:No+Button:Cancel,Button:Yes)
 END
 END
! code to handle user input from SaveRecord message

See Also: Column

Init (initialize the BrowseEIPManagerClass object)

Init, DERIVED, PROC

The Init method initializes the BrowseEIPManagerClass object.

Implementation: The Init method primes variables and calls the InitControls method which
then initializes the appropriate edit-in-place controls. It is indirectly called
by the BrowseClass.AskRecord method via a call to an inherited Run
method.

Return Data Type: BYTE

Example:

WindowManager.Run PROCEDURE
 CODE
 IF ~SELF.Init()
 SELF.Ask
 END
 SELF.Kill
 RETURN CHOOSE(SELF.Response=0,RequestCancelled,SELF.Response)

See Also: BrowseClass.ResetFromAsk

318 CLARION 5 APPLICATION HANDBOOK

Kill (shut down the BrowseEIPManagerClass object)

Kill, DERIVED, PROC

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code. The Kill method must leave
the object in a state in which it can be initialized.

Implementation: The Kill method calls the BrowseClass.ResetFromAsk method.

Return Data Type: BYTE

Example:

WindowManager.Run PROCEDURE
 CODE
 IF ~SELF.Init()
 SELF.Ask
 END
 SELF.Kill
 RETURN CHOOSE(SELF.Response=0,RequestCancelled,SELF.Response)

See Also: BrowseClass.ResetFromAsk

CHAPTER 12 BROWSEEIPMANAGERCLASS 319

TakeCompleted (process completion of edit)

TakeCompleted(force), DERIVED

TakeCompleted Determines the edit-in-place dialog’s action after either a
loss of focus or an end user action.

force An integer constant, variable, EQUATE, or expression
that indicates the record being edited should be saved
without prompting the end user.

The TakeCompleted method either saves the record being edited and end
the edit-in-place process, or prompts the end user to save the record and end
the edit-in-place process, cancel the changes and end the edit-in-place
process, or remain editing.

Implementation: The EIPManager.TakeFocusLoss and EIPManager.TakeAction methods call
the TakeCompleted method.

Note: TakeCompleted does not override the
WindowManager.TakeCompleted method.

Example:

EIPManager.TakeFocusLoss PROCEDURE
 CODE
 CASE CHOOSE(SELF.FocusLoss&=NULL,EIPAction:Default,BAND(SELF.FocusLoss,EIPAction:Save))
 OF EIPAction:Always OROF EIPAction:Default
 SELF.TakeCompleted(Button:Yes)
 OF EIPAction:Never
 SELF.TakeCompleted(Button:No)
 ELSE
 SELF.TakeCompleted(0)
 END

See Also: EIPManager.TakeFocusLoss, EIPManager.TakeAction

320 CLARION 5 APPLICATION HANDBOOK

TakeNewSelection (reset edit-in-place column)

TakeNewSelection, DERIVED, PROC

The TakeNewSelection method resets the edit-in-place column selected by
the end user.

Implementation: TakeNewSelection calls ResetColumn, and returns a Level:Benign.

Return Data Type: BYTE

Example:

WindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
 IF ~FIELD()
 RVal = SELF.TakeWindowEvent()
 IF RVal THEN RETURN RVal.
 END
 CASE EVENT()
 OF EVENT:Accepted
 RVal = SELF.TakeAccepted()
 OF EVENT:Rejected
 RVal = SELF.TakeRejected()
 OF EVENT:Selected
 RVal = SELF.TakeSelected()
 OF EVENT:NewSelection
 RVal = SELF.TakeNewSelection()
 OF EVENT:AlertKey
 IF SELF.HistoryKey AND KEYCODE() = SELF.HistoryKey
 SELF.RestoreField(FOCUS())
 END
 END
 IF RVal THEN RETURN RVal.

See Also: ResetColumn

CHAPTER 13 BUFFEREDPAIRSCLASS 321

13 - BUFFEREDPAIRSCLASS

Overview
The BufferedPairsClass is a FieldPairs class with a third buffer area (a “save”
area). The BufferedPairsClass can compare the save area with the primary
buffers, and can restore data from the save area to the primary buffers (to
implement a standard “cancel” operation).

BufferedPairsClass Concepts

The BufferedPairsClass lets you move data between field pairs, and lets you
compare the field pairs to detect whether any changes occurred since the last
operation.

This class provides methods that let you identify or “set up” the targeted
field pairs.

Note: The paired fields need not be contiguous in memory, nor do
they need to be part of a structure. You can build a virtual
structure simply by adding a series of otherwise unrelated
fields to a BufferedPairsClass object. The BufferedPairsClass
methods then operate on this virtual structure.

Once the field pairs are identified, you call a single method to move all the
fields in one direction (left to right), and others single methods to move all
the fields in the other directions (right to left, left to buffer, etc.). You simply
have to remember which entity (set of fields) you described as “left” and
which entity you described as “right.” Other methods compares the sets of
fields and return a value to indicate whether or not they are equivalent.

Relationship to Other Application Builder Classes

The BufferedPairsClass is derived from the FieldPairsClass. The
BrowseClass, ViewManager, and RelationManager use the FieldPairsClass
and BufferedPairsClass to accomplish various tasks.

ABC Template Implementation

Various ABC Library objects instantiate BufferedPairsClass objects as
needed; therefore, the template generated code does not directly reference
the BufferedPairsClass.

322 CLARION 5 APPLICATION HANDBOOK

BufferedPairsClass Source Files

The BufferedPairsClass source code is installed in the Clarion \LIBSRC
folder. The BufferedPairsClass source code and their respective components
are contained in:

ABUTIL.INC BufferedPairsClass declarations
ABUTIL.CLW BufferedPairsClass method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a BufferedPairsClass object.

Let’s assume you have a Customer file declared as:

Customer FILE,DRIVER('TOPSPEED'),PRE(CUST),CREATE,BINDABLE
ByNumber KEY(CUST:CustNo),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CustNo LONG
Name STRING(30)
Phone STRING(20)
Zip DECIMAL(5)

. .

And you have a Customer queue declared as:

CustQ QUEUE
CustNo LONG
Name STRING(30)
Phone STRING(20)
Zip DECIMAL(5)

END

And you want to move data between the file buffer and the queue buffer.

INCLUDE(‘ABUTIL.INC’) !declare BufferedPairsClass
Fields BufferedPairsClass !declare Fields object

CODE
Fields.Init !initialize Fields object
Fields.AddPair(CUST:CustNo, CustQ.CustNo) !establish CustNo pair
Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair
Fields.AddPair(CUST:Zip, CustQ.Zip) !establish Zip pair

Fields.AssignLeftToRight !copy from Customer FILE to CustQ QUEUE
Fields.AssignLeftToBuffer !copy from Customer FILE to save area
!accept user input
IF ACCEPTED() = ?RestoreButton
Fields.AssignBufferToLeft !copy from save area to Customer FILE
Fields.AssignBufferToRight !copy from save area to Customer QUEUE

END

Fields.Kill !shut down Fields object

CHAPTER 13 BUFFEREDPAIRSCLASS 323

BufferedPairsClass Properties
The BufferedPairsClass inherits the properties of the FieldPairsClass from
which it is derived. See FieldPairsClass Properties for more information.

In addition to (or instead of) the inherited properties, the BufferedPairsClass
contains the RealList property.

RealList (recognized field pairs)

RealList &FieldPairsQueue

The RealList property is a reference to the structure that holds all the field
pairs recognized by the BufferedPairsClass object.

Use the AddPair method to add field pairs to the RealList property. For each
field pair, the RealList property includes the designated “Left” field, the
designated “Right” field, plus a “Buffer” field you can use as an intermediate
storage area (a save area).

The “Left,” “Right,” and “Buffer” designations are reflected in other
BufferedPairsClass method names (for example, field assignment methods—
AssignLeftToRight and AssignRightToBuffer) so you can easily and
accurately control the movement of data between the three sets of fields.

Implementation: During initialization, the BufferedPairsClass initialization method “points”
the inherited List property to the RealList property so there is, in fact, only
one list of fields which may be referred to as RealList.

RealList is a reference to a QUEUE declared in ABUTIL.INC as follows:

BufferedPairsQueue QUEUE,TYPE
Left ANY
Right ANY
Buffer ANY

END

The Init method creates the List and RealList properties; the Kill method
disposes of them. AddPair adds field pairs to the RealList property.

See Also: AddPair, Init, Kill

324 CLARION 5 APPLICATION HANDBOOK

BufferedPairsClass Methods
The BufferedPairsClass inherits all the methods of the FieldPairsClass from
which it is derived. See FieldPairsClass Methods for more information.

In addition to (or instead of) the inherited methods, the BufferedPairsClass
contains the methods listed below.

Functional Organization—Expected Use

As an aid to understanding the BufferedPairsClass, it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the BufferedPairsClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the BufferedPairsClass object
AddPairV add a field pair to the List property
Kill shut down the BufferedPairsClass object

V These methods are also Virtual.

Occasional Use:
AssignLeftToRight assign each “left” field to its “right” counterpart
AssignLeftToBuffer assign each “left” field to its “buffer” counterpart
AssignRightToLeft assign each “right” field to its “left” counterpart
AssignRightToBuffer assign each “right” field to its “buffer” counterpart
AssignBufferToLeft assign each “buffer” field to its “left” counterpart
AssignBufferToRight assign each “buffer” field to its “right” counterpart
EqualLeftRight return 1 if each left equal right, otherwise return 0
EqualLeftBuffer return 1 if each left equal buffer, otherwise return 0
EqualRightBuffer return 1 if right equal buffer, otherwise return 0
ClearLeft CLEAR each “left” field
ClearRight CLEAR each “right” field

Inappropriate Use:

These methods are inherited from the FieldPairsClass and typically are not
used in the context of this (BufferedPairsClass) derived class.

AddItem add a field pair from one source field
Equal return 1 if each left equal right, otherwise return 0

CHAPTER 13 BUFFEREDPAIRSCLASS 325

Virtual Methods

Typically you will not call these methods directly. However, we anticipate
you will often want to override these methods, and because they are virtual,
they are very easy to override. These methods do provide reasonable default
behavior in case you do not want to override them.

AddPair add a field pair to the List property

326 CLARION 5 APPLICATION HANDBOOK

AddPair (add a field pair)

AddPair(left, right), VIRTUAL

AddPair Adds a field pair to the RealList property.

left The label of the “left” field of the pair. The field may be
any data type, but may not be an array.

right The label of the “right” field of the pair. The field may
be any data type, but may not be an array.

The AddPair method adds a field pair to the RealList property. A third
“buffer” field is supplied for you. You may use this third “buffer” as an
intermediate storage area (a save area).

The fields need not be contiguous in memory, nor do they need to be part of
a structure. Therefore you can build a virtual structure simply by adding a
series of otherwise unrelated fields to a BufferedPairs object. The other
BufferedPairs methods then operate on this virtual structure.

Implementation: AddPair assumes the RealList property has already been created by Init or by
some other method.

By calling AddPair for a series of fields (for example, the corresponding
fields in a RECORD and a QUEUE), you effectively build three virtual
structures containing the fields and a (one-to-one-to-one) relationship
between the structures.

Example:

INCLUDE(‘ABUTIL.INC’) !declare BufferedPairs Class
Fields &BufferedPairsClass !declare BufferedPairs reference

Customer FILE,DRIVER('TOPSPEED'),PRE(CUST),CREATE,BINDABLE
ByNumber KEY(CUST:CustNo),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CustNo LONG
Name STRING(30)
Phone STRING(20)

END
CustQ QUEUE
CustNo LONG
Name STRING(30)
Phone STRING(20)

END

CODE
Fields &= NEW BufferedPairsClass !instantiate BufferedPairs object
Fields.Init !initialize BufferedPairs object
Fields.AddPair(CUST:CustNo, CustQ.CustNo) !establish CustNo pair
Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair

See Also: Init, RealList

CHAPTER 13 BUFFEREDPAIRSCLASS 327

AssignBufferToLeft (copy from “buffer” fields to “left” fields)

AssignBufferToLeft

The AssignBufferToLeft method copies the contents of each “buffer” field
to its corresponding “left” field in the RealList property.

Implementation: The “left” field is the first (left) parameter of the AddPair method. The
“right” field is the second (right) parameter of the AddPair method. The
BufferedPairsClass automatically supplies the “buffer” field.

Example:

Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair
Fields.AddPair(CUST:ZIP, CustQ.ZIP) !establish ZIP pair
!some code
IF ~Fields.EqualRightBuffer !compare QUEUE fields to save buffer
CASE MESSAGE('Abandon Changes?',,,BUTTON:Yes+BUTTON:No)
OF BUTTON:No
Fields.AssignRightToLeft !copy changes to CUST (write) buffer

OF BUTTON:Yes
Fields.AssignBufferToLeft !restore original to CustQ (display) buffer

END
END

See Also: AddPair, RealList

AssignBufferToRight (copy from “buffer” fields to “right” fields)

AssignBufferToRight

The AssignBufferToRight method copies the contents of each “buffer” field
to its corresponding “right” field in the RealList property.

Implementation: The “left” field is the first (left) parameter of the AddPair method. The
“right” field is the second (right) parameter of the AddPair method. The
BufferedPairsClass automatically supplies the “buffer” field.

Example:

Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair
Fields.AddPair(CUST:ZIP, CustQ.ZIP) !establish ZIP pair
!some code
IF ~Fields.EqualRightBuffer !compare QUEUE fields to save buffer
CASE MESSAGE('Abandon Changes?',,,BUTTON:Yes+BUTTON:No)
OF BUTTON:No
Fields.AssignRightToBuffer

OF BUTTON:Yes
Fields.AssignBufferToRight

END
END

See Also: AddPair, RealList

328 CLARION 5 APPLICATION HANDBOOK

AssignLeftToBuffer (copy from “left” fields to “buffer” fields)

AssignLeftToBuffer

The AssignLeftToBuffer method copies the contents of each “left” field to
its corresponding “buffer” field in the RealList property.

Implementation: The “left” field is the first (left) parameter of the AddPair method. The
“right” field is the second (right) parameter of the AddPair method. The
BufferedPairsClass automatically supplies the “buffer” field.

Example:

Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair
Fields.AddPair(CUST:ZIP, CustQ.ZIP) !establish ZIP pair
!some code
IF ~Fields.EqualRightBuffer !compare QUEUE fields to save buffer
CASE MESSAGE('Abandon Changes?',,,BUTTON:Yes+BUTTON:No)
OF BUTTON:No
Fields.AssignRightToLeft

OF BUTTON:Yes
Fields.AssignLeftToBuffer

END
END

See Also: AddPair, RealList

AssignRightToBuffer (copy from “right” fields to “buffer” fields)

AssignRightToBuffer

The AssignRightToBuffer method copies the contents of each “right” field
to its corresponding “buffer” field in the RealList property.

Implementation: The “left” field is the first (left) parameter of the AddPair method. The
“right” field is the second (right) parameter of the AddPair method. The
BufferedPairsClass automatically supplies the “buffer” field.

Example:

Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair
Fields.AddPair(CUST:ZIP, CustQ.ZIP) !establish ZIP pair
!some code
IF ~Fields.EqualRightBuffer !compare QUEUE fields to save buffer
CASE MESSAGE('Abandon Changes?',,,BUTTON:Yes+BUTTON:No)
OF BUTTON:No
Fields.AssignRightToBuffer

OF BUTTON:Yes
Fields.AssignBufferToRight

END
END

See Also: AddPair, RealList

CHAPTER 13 BUFFEREDPAIRSCLASS 329

EqualLeftBuffer (compare “left” fields to “buffer” fields)

EqualLeftBuffer

The EqualLeftBuffer method returns one (1) if each “left” field equals its
corresponding “buffer” field; otherwise it returns zero (0).

Implementation: The “left” field is the first (left) parameter of the AddPair method. The
“right” field is the second (right) parameter of the AddPair method. The
BufferedPairsClass automatically supplies the “buffer” field.

Example:

Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair
Fields.AddPair(CUST:ZIP, CustQ.ZIP) !establish ZIP pair
!some code
IF ~Fields.EqualLeftBuffer !compare CUST fields to save buffer
CASE MESSAGE('Abandon Changes?',,,BUTTON:Yes+BUTTON:No)
OF BUTTON:No
Fields.AssignRightToLeft !copy changes to CUST (write) buffer

OF BUTTON:Yes
Fields.AssignBufferToLeft !restore original to CustQ (display) buffer

END
END

See Also: AddPair, RealList

EqualRightBuffer (compare “right” fields to “buffer” fields)

EqualRightBuffer

The EqualRightBuffer method returns one (1) if each “right” field equals
its corresponding “buffer” field; otherwise it returns zero (0).

Implementation: The “left” field is the first (left) parameter of the AddPair method. The
“right” field is the second (right) parameter of the AddPair method. The
BufferedPairsClass automatically supplies the “buffer” field.

Example:

Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair
Fields.AddPair(CUST:ZIP, CustQ.ZIP) !establish ZIP pair
!some code
IF ~Fields.EqualRightBuffer !compare CUST fields to save buffer
CASE MESSAGE('Abandon Changes?',,,BUTTON:Yes+BUTTON:No)
OF BUTTON:No
Fields.AssignRightToLeft !copy changes to CUST (write) buffer

OF BUTTON:Yes
Fields.AssignBufferToLeft !restore original to CustQ (display) buffer

END
END

See Also: AddPair, RealList

330 CLARION 5 APPLICATION HANDBOOK

Init (initialize the BufferedPairsClass object)

Init

The Init method initializes the BufferedPairsClass object.

Implementation: The Init method creates the List and RealList properties. This method
“points” the inherited List property to the RealList property so there is, in
fact, only one list of fields which may be referred to as RealList.

Example:

INCLUDE(‘ABUTIL.INC’) !declare BufferedPairs Class
Fields &BufferedPairsClass !declare BufferedPairs reference

CODE
Fields &= NEW BufferedPairsClass!instantiate BufferedPairs object
Fields.Init !initialize BufferedPairs object
.
.
.
Fields.Kill !terminate BufferedPairs object
DISPOSE(Fields) !release memory allocated for BufferedPairs object

See Also: Kill, List, RealList

Kill (shut down the BufferedPairsClass object)

Kill

The Kill method disposes any memory allocated during the object’s lifetime
and performs any other necessary termination code.

Implementation: The Kill method disposes the List and RealList properties created by the Init
method.

Example:

INCLUDE(‘ABUTIL.INC’) !declare BufferedPairs Class
Fields &BufferedPairsClass !declare BufferedPairs reference

CODE
Fields &= NEW BufferedPairsClass!instantiate BufferedPairs object
Fields.Init !initialize BufferedPairs object
.
.
.
Fields.Kill !terminate BufferedPairs object
DISPOSE(Fields) !release memory allocated for BufferedPairs object

See Also: Init, List, RealList

CHAPTER 14 CONSTANTCLASS 331

14 - CONSTANTCLASS

Overview
The ConstantClass provides an easy, flexible, and efficient way to “loop
through” constant data. That is, the ConstantClass parses structures like the
following so you can access each (unlabeled) data item discretely:

Errors GROUP,STATIC
Items USHORT(40) !item count

USHORT(Msg:RebuildKey) !begin item 1
BYTE(Level:Notify)
PSTRING('Invalid Key')
USHORT(Msg:RebuildFailed) !begin item 2
BYTE(Level:Fatal)
PSTRING('Key was not built')
!38 more USHORT,BYTE,PSTRING combinations

END

ConstantClass Concepts

The ConstantClass parses and loads constant data such as error messages or
translation text from the GROUP structure that declares the data into other
data structures or memory variables (one item at a time). It can also write all
the constant data into a QUEUE or a FILE.

The ConstantClass intelligently handles irregular data—you can declare the
constant text data with a series of strings of varying lengths so that no space
is wasted. The ConstantClass also handles a variety of numeric datatypes
including BYTE, SHORT, USHORT, and LONG.

The ConstantClass provides several ways to stop processing the constant
data, including a simple item count, a text match, and a read-to-the-end
option.

A single ConstantClass object can process multiple GROUP structures with
the same (or incremental) layouts.

Declaring the Data

To use the ConstantClass, you must declare the constant data within a
GROUP structure. The GROUP structure may declare a single sequence
using any combination of the permitted datatypes, or a series of such
sequences (the GROUP repeats the combination of datatypes as many times
as needed). The ConstantClass permits CSTRING, PSTRING, BYTE,
SHORT, USHORT, and LONG datatypes. The GROUP structure may
contain an initial BYTE or USHORT that specifies how many times a
sequence of datatypes is repeated. For example:

332 CLARION 5 APPLICATION HANDBOOK

Errors GROUP,STATIC
Items BYTE(2) !optional item count

USHORT(Msg:RebuildKey) !begin first item
BYTE(Level:Notify)
PSTRING('Invalid Key') !end first item
USHORT(Msg:RebuildFailed) !begin second item
BYTE(Level:Fatal)
PSTRING('Key not built') !end second item

END

Here is another example of a structure the ConstantClass can handle:

Translation GROUP,STATIC !no item count
PSTRING('&Across') !default text
PSTRING('') !translation text
PSTRING('Align all window Icons') !default text
PSTRING('') !translation text
PSTRING('Arrange Icons') !default text
PSTRING('') !translation text

END

If the GROUP is declared within a procedure it must have the STATIC
attribute. See the Language Reference for more information.

Describing the Data

The ConstantClass uses two methods to describe or understand the structure
of the constant data it processes: the Init method and the AddItem method.
The Init method (termination parameter) indicates whether or not the
GROUP structure declares an item count as well as the datatype of the item
count (see Init). The AddItem method identifies each repeating component of
the GROUP structure as well as the target variable that receives the contents
of the repeating component (see AddItem).

Relationship to Other Application Builder Classes

The TranslatorClass, ErrorClass, ToolbarClass, and PrintPreview classes all
use the ConstantClass. These classes automatically instantiate the
ConstantClass as needed.

ABC Template Implementation

All ABC Library references to the ConstantClass are encapsulated with ABC
Library methods—the ABC Templates do not directly reference the
ConstantClass.

CHAPTER 14 CONSTANTCLASS 333

ConstantClass Source Files

The ConstantClass source code is installed by default to the Clarion
\LIBSRC. The specific ConstantClass source code and their respective
components are contained in:

ABUTIL.INC ConstantClass declarations
ABUTIL.CLW ConstantClass method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a ConstantClass object. The
example loads translation pairs from a constant GROUP into two
CSTRINGs, which are then passed as parameters to another TranslatorClass
method. Note that the target CSTRINGs could just as easily be fields in a
QUEUE or FILE buffer.

INCLUDE(‘ABUTIL.INC’) !declare ConstantClass, TranslatorClass
Spanish GROUP !declare constant data
Items BYTE(50) !item count

PSTRING('One') !begin first item
PSTRING('Uno')
PSTRING('Two') !begin second item
PSTRING('Dos')
!48 more PSTRING pairs

END
LangQ QUEUE
Text CSTRING(50)
Repl CSTRING(50)

END
Const ConstantClass !declare & instantiate Const object
Text CSTRING(255),AUTO !a variable to receive a constant value
Repl CSTRING(255),AUTO !a variable to receive a constant value
CODE

!process items one-at-a-time:
Const.Init(Term:BYTE) !initialize the Const object,

! the first BYTE contains item count
Const.AddItem(ConstType:PString, Text) !Describe constant structure and
Const.AddItem(ConstType:PString, Repl) ! variables to accept the values
Const.Set(Spanish) !pass the constant data to Const object
LOOP WHILE Const.Next()=Level:Benign !copy constant data one at a time
!do something with Text and Repl ! to AddItem variables

END
Const.Kill !shut down Const object

!process all items at a time:
Const.Init(Term:BYTE) !re initialize the Const object,

! the first BYTE contains item count
Const.AddItem(ConstType:PString, LangQ.Text) !Describe constant structure and
Const.AddItem(ConstType:PString, LangQ.Repl) ! variables to accept the values
Const.Set(Spanish) !pass the constant data to Const object
Const.Next(LangQ) !copy all constant items to the LangQ
Const.Kill !shut down Const object

334 CLARION 5 APPLICATION HANDBOOK

ConstantClass Properties
The ConstantClass contains the following property:

TerminatorValue (end of data marker)

TerminatorValue CSTRING(33)

The TerminatorValue property contains a value that the ConstantClass
object looks for within the constant data. When the ConstantClass object
finds the TerminatorValue, it stops processing the constant data (inclusive).

The TerminatorValue property is only one of several techniques you can use
to mark the end of the constant data. See the Init method for more
information on this and other techniques.

Implementation: The Init method CLEARs the TerminatorValue property; therefore, you
should set the TerminatorValue property after the Init method executes.

The Next() method returns Level:Notify when the first 32 characters of the
constant data matches the value of the TerminatorValue property. The
Next(FILE) and Next(QUEUE) methods stop processing when the
ConstantClass object finds the TerminatorValue.

See Also: Init, Next

CHAPTER 14 CONSTANTCLASS 335

ConstantClass Methods
The ConstantClass contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the ConstantClass, it is useful to organize the its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the ConstantClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the ConstantClass object
AddItem set constant datatype and target variable
Set set the constant data to process
Kill shut down the ConstantClass object

Mainstream Use:
Next copy one or all constant items to targets

Occasional Use:
Reset reset the object to beginning of the constant data

Virtual Methods

The ConstantClass has no virtual methods.

336 CLARION 5 APPLICATION HANDBOOK

AddItem (set constant datatype and target variable)

AddItem(datatype, target)

AddItem Sets the (repeating) constant datatype and its corre-
sponding target variable.

datatype An integer constant, variable, EQUATE or expresssion
that identifies the datatype of a repeating constant within
the constant GROUP structure. Valid datatype values are
ConstType:Cstring, ConstType:Pstring, ConstType:Byte,
ConstType:Short, ConstType:Ushort, and
ConstType:Long.

target The label of the variable that receives the constant value.

The AddItem method sets a (repeating) constant datatype and its
corresponding target variable. Use multiple calls to the AddItem method to
“describe” the constant data structure as well as the target variables that
receive the constant data.

Implementation: You should call AddItem for each repeating datatype declared in the constant
GROUP structure. The Next method processes the constant data items
described by the AddItem calls.

EQUATEs for the datatype parameter are declared in ABUTIL.INC:

ITEMIZE(1),PRE(ConstType)
First EQUATE
Cstring EQUATE(ConstType:First)
Pstring EQUATE
Byte EQUATE !1 byte unsigned integer
Short EQUATE !2 byte signed integer
UShort EQUATE !2 byte unsigned interger
Long EQUATE !4 byte signed integer
Last EQUATE(ConstType:Long)

END

Example:

Errors GROUP,STATIC
USHORT(Msg:RebuildKey) !begin first item
PSTRING('Invalid Key') !end first item
USHORT(Msg:RebuildFailed) !begin second item
PSTRING('Key not built') !end second item

END
ErrorQ QUEUE
ID LONG
Text CSTRING(255)

END
CODE
!The following describes the Errors GROUP and its corresonding target variables
Const.AddItem(ConstType:Ushort, ErrorQ.ID) !USHORT constant maps to error ID
Const.AddItem(ConstType:PString, ErrorQ.Text) !PSTRING constant maps to error text

See Also: Next

CHAPTER 14 CONSTANTCLASS 337

Init (initialize the ConstantClass object)

Init([termination])

Init Initializes the ConstantClass object.

termination An integer constant, variable, EQUATE or expresssion
that controls when the Next(FILE) and Next(QUEUE)
methods stop processing the constant data. If omitted,
termination defaults to Term:Ushort. Valid termination
values are Term:Ushort, Term:Byte, Term:EndGroup,
andTerm:FieldValue

The Init method initializes the ConstantClass object. The termination
parameter provides two important pieces of information to the ConstantClass
object: it tells the ConstantClass object whether there is a non-repeating item
count declared at the beginning of the constant data (describes the structure
of the constant data), and it tells the ConstantClass object how to recognize
the end of the constant data. Valid termination values are:

Term:Ushort The GROUP declares a USHORT containing the
item count—stops reading when item count reached.

Term:Byte The GROUP declares a BYTE containing the
item count—stops reading when item count reached.

Term:EndGroup The GROUP does not declare an item count—stops
reading at end of GROUP structure.

Term:FieldValue The GROUP does not declare an item count—stops
reading when it finds the TerminatorValue within the
constant data.

Implementation: The Init method CLEARs the TerminatorValue property. The Init method
allocates memory and should always be paired with the Kill method, which
frees the memory.

EQUATEs for the termination parameter are declared in ABUTIL.INC:

ITEMIZE(1),PRE(Term)
EndGroup EQUATE !Stops reading at end of GROUP
UShort EQUATE !Reads number of items specified by USHORT at start of group
Byte EQUATE !Reads number of items specified by BYTE at start of group
FieldValue EQUATE !Stops when specified value is found in first AddItem field,

!only first 32 chars are compared
END

Example:

Const.Init(Term:BYTE) !Initialize the Const object,
! the first BYTE contains item count

Const.AddItem(ConstType:PString, LangQ.Text) !Describe constant structure and
Const.AddItem(ConstType:PString, LangQ.Repl) ! variables to accept the values
Const.Set(Spanish) !pass the constant data to Const object
Const.Next(LangQ) !copy all constant items to the LangQ
Const.Kill !shut down Const object

See Also: Kill, Next, TerminatorValue

338 CLARION 5 APPLICATION HANDBOOK

Kill (shut down the ConstantClass object)

Kill

The Kill method frees any memory allocated during the life of the object and
does any other required termination code.

Example:

Const.Init(Term:BYTE) !Initialize the Const object,
! the first BYTE contains item count

Const.AddItem(ConstType:PString, LangQ.Text) !Describe constant structure and
Const.AddItem(ConstType:PString, LangQ.Repl) ! variables to accept the values
Const.Set(Spanish) !pass the constant data to Const object
Const.Next(LangQ) !copy all constant items to the LangQ
Const.Kill !shut down Const object

CHAPTER 14 CONSTANTCLASS 339

Next (load all constant items to file or queue)

Next(| file |)
 | queue |)

Next Loads all the constant items to a file or queue.

file The label of the FILE to which to ADD each constant
item.

queue The label of the QUEUE to which to ADD each constant
item.

The Next method processes all of the constant items and executes an
ADD(file) or ADD(queue) for each item.

Prior calls to the AddItem method determine the makeup of the item as well
as the target variables that receive the item. The target variables should be
within the file or queue structure to make the corresponding ADD
meaningful.

The Init method determines what constitutes the end of the constant data.

Implementation: The Next(FILE) and Next(QUEUE) methods call the Next() method for each
constant item, then execute an ADD(file) or ADD(queue) for each item.

Example:

Spanish GROUP !declare constant data
Items BYTE(50) !item count

PSTRING('One') !begin first item
PSTRING('Uno')
PSTRING('Two') !begin second item
PSTRING('Dos')
!48 more PSTRING pairs

END

LangQ QUEUE
Text CSTRING(50)
Repl CSTRING(50)

END

Const ConstantClass !declare & instantiate Const object
Text CSTRING(255),AUTO !a variable to receive a constant value
Repl CSTRING(255),AUTO !a variable to receive a constant value
CODE
!process all items at a time
Const.Init(Term:BYTE) !Initialize the Const object,

! the first BYTE contains item count
Const.AddItem(ConstType:PString, LangQ.Text) !Describe constant structure and
Const.AddItem(ConstType:PString, LangQ.Repl) ! variables to accept the values
Const.Set(Spanish) !pass the constant data to Const object
Const.Next(LangQ) !copy all constant items to the LangQ
Const.Kill !shut down Const object

See Also: AddItem, Init, Next

340 CLARION 5 APPLICATION HANDBOOK

Next (copy next constant item to targets)

Next, PROC

The Next method copies the next constant item to its respective targets (as
defined by the AddItem method) and returns a value indicating whether the
item was copied. A return value of Level:Benign indicates the item was
copied successfully; a return value of Level:Notify indicates the item was not
copied because the end of the constant data, as defined by the Init method,
was reached.

Prior calls to the AddItem method determine the makeup of the item as well
as the target variables that receive the item.

Implementation: The Next method parses a single item in the constant data, performing any
required datatype conversions, and increments appropriate internal counters.

Return Data Type: BYTE

Example:

Spanish GROUP !declare constant data
Items BYTE(50) !item count

PSTRING('One') !begin first item
PSTRING('Uno')
PSTRING('Two') !begin second item
PSTRING('Dos')
!48 more PSTRING pairs

END

Const ConstantClass !declare & instantiate Const object
Text CSTRING(255),AUTO !a variable to receive a constant value
Repl CSTRING(255),AUTO !a variable to receive a constant value
CODE
!process items one-at-a-time
Const.Init(Term:BYTE) !initialize the Const object,

! the first BYTE contains item count
Const.AddItem(ConstType:PString, Text) !Describe constant structure and
Const.AddItem(ConstType:PString, Repl) ! variables to accept the values
Const.Set(Spanish) !pass the constant data to Const object
LOOP WHILE Const.Next()=Level:Benign !copy constant data one item at a time
!do something with Text and Repl ! to respective AddItem target variables

END
Const.Kill !shut down Const object

See Also: AddItem, Init

CHAPTER 14 CONSTANTCLASS 341

Reset (reset the object to the beginning of the constant data)

Reset

The Reset method resets internal counters to start processing constant data
from the beginning.

Implementation: The Set, Next(FILE) and Next(QUEUE) methods call the Reset method.
Typically you will not call this method.

Example:

ConstantClass.Set PROCEDURE(*STRING Src)
CODE
DISPOSE(SELF.Str)
SELF.Str &= NEW STRING(LEN(Src))
SELF.Str = Src
SELF.SourceSize=LEN(SELF.Str)
SELF.Reset

342 CLARION 5 APPLICATION HANDBOOK

Set (set the constant data to process)

Set(datasource)

Set Sets the GROUP structure to process.

datasource The label of the GROUP structure the ConstantClass
object processes.

The Set method sets the GROUP structure to process.

Implementation: The Set method takes a copy of datasource and calls the Reset method to
reset internal counters to process datasource copy from the beginning.

Example:

Spanish GROUP !declare constant data
Items BYTE(50) !item count

PSTRING('One') !begin first item
PSTRING('Uno')
PSTRING('Two') !begin second item
PSTRING('Dos')
!48 more PSTRING pairs

END

LangQ QUEUE
Text CSTRING(50)
Repl CSTRING(50)

END

Const ConstantClass !declare & instantiate Const object

CODE
!process all items at a time
Const.Init(Term:BYTE) !re initialize the Const object,

! the first BYTE contains item count
Const.AddItem(ConstType:PString, LangQ.Text) !Describe constant structure and
Const.AddItem(ConstType:PString, LangQ.Repl) ! variables to accept the values
Const.Set(Spanish) !pass the constant data to Const object
Const.Next(LangQ) !copy all constant items to the LangQ
Const.Kill !shut down Const object

See Also: Reset

CHAPTER 15 EDITCHECKCLASS 343

15 - EDITCHECKCLASS

Overview
The EditCheckClass is an EditClass that supports a CHECK control. The
EditCheckClass lets you implement a dynamic edit-in-place CHECK control
for a column in a LIST.

EditCheckClass Concepts

The EditCheckClass creates a CHECK control, accepts input from the end
user, then returns the input to the variable specified by the Init method,
typically the variable associated with a specific LIST cell—a field in the
LIST control’s data source QUEUE. The EditCheckClass also signals the
calling procedure whenever significant edit-in-place events occur, such as
tabbing to a new column, cancelling the edit, or completing the edit (moving
to a new record or row). The EditCheckClass provides a virtual TakeEvent
method to let you take control of significant edit-in-place events.

Relationship to Other Application Builder Classes

EditClass

The EditCheckClass is derived from the EditClass. The EditClass serves as
the foundation and framework for its derived classes. These derived classes
each provide a different type of input control or input user interface. You can
control the values returned by these derived EditClass objects by using their
virtual methods. See the Conceptual Example.

BrowseEIPManagerClass

The EditClass is managed by the BrowseEIPManagerClass. The
BrowseEIPManagerClass depends on the EditClass operating according to
it’s documented specifications; however, the EditClass may be called by non-
BrowseClass procedures and objects.

ABC Template Implementation

You can use the BrowseUpdateButtons control template (Configure
EditInPlace) to generate the code to instantiate an EditCheckClass object
called EditInPlace::fieldname and register the object with the BrowseClass
object. The BrowseClass object then calls the registered EditCheckClass
object’s methods as needed. See Control Templates—BrowseUpdateButtons
for more information.

344 CLARION 5 APPLICATION HANDBOOK

EditCheckClass Source Files

The EditCheckClass source code is installed by default to the Clarion
\LIBSRC folder. The specific EditCheckClass source code and their
respective components are contained in:

ABEIP.INC EditCheckClass declarations
ABEIP.CLW EditCheckClass method definitions

Conceptual Example

The following example shows a sequence of statements to declare,
instantiate, initialize, use, and terminate an EditCheckClass object and a
related BrowseClass object. The example page-loads a LIST of fieldnames
and associated control attributes (such as color, icon, etc.), then edits the
“Hide” items with an EditCheckClass object. Note that the BrowseClass
object calls the “registered” EditCheckClass object’s methods as needed.

 PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
 INCLUDE('ABWINDOW.INC') !declare WindowManager
 INCLUDE('ABBROWSE.INC') !declare BrowseClass
 INCLUDE('ABEIP.INC') !declare Edit-in-place classes

 MAP
 END
Property FILE,DRIVER('TOPSPEED'),PRE(PR),CREATE,BINDABLE,THREAD
NameKey KEY(PR:FieldName),NOCASE,OPT
Record RECORD,PRE()
FieldName STRING(30)
Color STRING(20)
Hidden STRING(1)
IconFile STRING(30)
ControlType STRING(12)

END
END

PropView VIEW(Property)
END

PropQ QUEUE
PR:FieldName LIKE(PR:FieldName)
PR:Color LIKE(PR:Color)
PR:ControlType LIKE(PR:ControlType)
PR:Hidden LIKE(PR:Hidden) !edit this LIST field with a CHECK control
PR:IconFile LIKE(PR:IconFile)
ViewPosition STRING(1024)

END

PropWindow WINDOW('Browse Field Properties'),AT(,,318,137),IMM,SYSTEM,GRAY
LIST,AT(8,4,303,113),USE(?PropList),IMM,HVSCROLL,FROM(PropQ),|
FORMAT('50L(2)|_M~Field Name~@s30@[70L(2)|_M~Color~@s20@' &|

'60L(2)|_M~Control Type~@s12@' &|

CHAPTER 15 EDITCHECKCLASS 345

'20L(2)|_M~Hide~L(0)@s1@/130L(2)|_M~Icon File~@s30@]|M')
BUTTON('&Insert'),AT(169,121),USE(?Insert)
BUTTON('&Change'),AT(218,121),USE(?Change),DEFAULT
BUTTON('&Delete'),AT(267,121),USE(?Delete)

END

Edit:PR:Hide CLASS(EditCheckClass) !declare Edit:PR:Color-EIP CHECK control
Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar),VIRTUAL

END

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

BRW1 CLASS(BrowseClass) !declare BRW1, the BrowseClass object
Q &PropQ ! that drives the EditClass objects--

END ! i.e. calls Init, TakeEvent, Kill

GlobalErrors ErrorClass
Access:Property CLASS(FileManager)
Init PROCEDURE

END

Relate:Property CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END
GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD
CODE
GlobalErrors.Init
Relate:Property.Init
GlobalResponse = ThisWindow.Run()
Relate:Property.Kill
GlobalErrors.Kill

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
SELF.Request = GlobalRequest
ReturnValue = PARENT.Init()
SELF.FirstField = ?PropList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
Relate:Property.Open
BRW1.Init(?PropList,PropQ.ViewPosition,PropView,PropQ,Relate:Property,SELF)
OPEN(PropWindow)
SELF.Opened=True

 BRW1.Q &= PropQ
 BRW1.AddSortOrder(,PR:NameKey)
 BRW1.AddField(PR:FieldName,BRW1.Q.PR:FieldName)
 BRW1.AddField(PR:Color,BRW1.Q.PR:Color)
 BRW1.AddField(PR:ControlType,BRW1.Q.PR:ControlType)
 BRW1.AddField(PR:Hidden,BRW1.Q.PR:Hidden)
 BRW1.AddField(PR:IconFile,BRW1.Q.PR:IconFile)
 BRW1.AddEditControl(Edit:PR:Hide,4) !Use Edit:PR:Hide to edit BRW1 column 4
 BRW1.ArrowAction = EIPAction:Default+EIPAction:Remain+EIPAction:RetainColumn

346 CLARION 5 APPLICATION HANDBOOK

 BRW1.InsertControl=?Insert
 BRW1.ChangeControl=?Change
 BRW1.DeleteControl=?Delete
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 Relate:Property.Close
 RETURN ReturnValue

Edit:PR:Hide.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
CODE
PARENT.Init(FieldNumber,ListBox,UseVar)
SELF.Feq{PROP:Text}='Hide ' !set EIP check box text
SELF.Feq{PROP:Value,1}='Y' !set EIP check box true value
SELF.Feq{PROP:Value,2}='N' !set EIP check box false value

Access:Property.Init PROCEDURE !initialize FileManager
CODE
PARENT.Init(Property,GlobalErrors)
SELF.FileNameValue = 'Property'
SELF.Buffer &= PR:Record
SELF.Create = 1
SELF.AddKey(PR:NameKey,'PR:NameKey',0)

Relate:Property.Init PROCEDURE !initialize RelationManager
CODE
Access:Property.Init
PARENT.Init(Access:Property,1)

Relate:Property.Kill PROCEDURE !shut down RelationManager
CODE
Access:Property.Kill
PARENT.Kill

CHAPTER 15 EDITCHECKCLASS 347

EditCheckClass Properties
The EditCheckClass inherits all the properties of the EditClass from which it
is derived. See EditClass Properties and EditClass Concepts for more
information.

348 CLARION 5 APPLICATION HANDBOOK

EditCheckClass Methods
The EditCheckClass inherits all the methods of the EditClass from which it
is derived. See EditClass Methods and EditClass Concepts.

In addition to (or instead of) the inherited methods, the EditCheckClass
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the EditCheckClass it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the EditCheckClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitVI initialize the EditCheckClass object
Kill VI shut down the EditCheckClass object

Mainstream Use:
TakeEventVI handle events for the CHECK control

Occasional Use:
CreateContolV create the CHECK control
SetAlertsVI alert keystrokes for the CHECK control

V These methods are also virtual.
I These methods are inherited from the EditClass

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

InitI initialize the EditCheckClass object
CreateContol create the CHECK control
SetAlertsI alert keystrokes for the CHECK control
TakeEventI handle events for the CHECK control
Kill I shut down the EditCheckClass object

CHAPTER 15 EDITCHECKCLASS 349

CreateControl (create the edit-in-place CHECK control)

CreateControl, VIRTUAL, PROTECTED

The CreateControl method creates the edit-in-place CHECK control and
sets the FEQ property.

Implementation: The Init method calls the CreateControl method. The CreateControl method
sets the value of the FEQ property. Use the Init method or the CreateControl
method to set any required properties of the CHECK control.

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: FEQ, EditClass.CreateControl

350 CLARION 5 APPLICATION HANDBOOK

CHAPTER 16 EDITCLASS 351

16 - EDITCLASS

Overview
The EditClass lets you implement a dynamic edit-in-place control for each
column in a LIST. The EditClass is an abstract class—it is not useful by
itself, but serves as the foundation and framework for its derived classes. See
EditCheckClass, EditColorClass, EditFileClass, EditDropListClass,
EditFontClass, and EditMultiSelectClass.

EditClass Concepts

The EditClass creates an input control (CHECK, ENTRY, SPIN, COMBO,
etc.), accepts input from the end user, then returns the input to a specified
variable, typically the variable associated with a specific LIST cell—a field
in the LIST control’s data source QUEUE. The EditClass also signals the
calling procedure whenever significant edit-in-place events occur, such as
tabbing to a new column, cancelling the edit, or completing the edit (moving
to a new record or row). The EditClass provides virtual methods (TakeEvent)
to allow you to take control of significant edit-in-place events.

The BrowseEIPManagerClass uses the EditClass to accomplish edit-in-place
data entry by assigning the EditClass input control to a specific LIST cell—
see BrowseEIPManagerClass.

Relationship to Other Application Builder Classes

Derived Classes

The EditClass serves as the foundation and framework for its derived classes.
See EditCheckClass, EditColorClass, EditEntryClass, EditFileClass,
EditFileDropClass, EditFontClass, EditMultiSelectClass, and EditSpinClass.
These derived classes each provide a different type of input control or input
user interface. You can control the values returned by these derived EditClass
objects by using their virtual methods. See the Conceptual Example.

BrowseEIPManagerClass

The BrowseEIPManagerClass is the engine for the edit-in-place
functionality. This class uses the EditClass to dynamically create the Edit-in-
place control upon request (Insert, Change, or Delete) by the end user. When
the end user moves off the edited record (enter key, click on another item)
the TakeCompleted method saves or deletes the record. The Kill method
calls the EditClass to destroy the Edit-in-place control.

352 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

The BrowseUpdateButtons template generates references to EditClass
objects as needed. One check box on the BrowseUpdateButtons control
template enables default edit-in-place support for a given BrowseBox—any
associated Form (update) procedure then becomes redundant.

If you accept the BrowseUpdateButtons default edit-in-place behavior, the
generated code does not reference the EditClass, because the default edit-in-
place behavior is implemented in the BrowseEIPManagerClass, and no
additional generated code is needed.

If you use custom (Configure EditInPlace) edit-in-place behavior, the
BrowseUpdateButtons template generates the code to instantiate the
requested object (derived from the EditClass) and register the object with the
BrowseClass object. The BrowseClass object then calls the registered
EditClass object’s methods as needed. See Control Templates—
BrowseUpdateButtons for more information.

EditClass Source Files

The EditClass source code is installed by default to the Clarion \LIBSRC
folder. The specific EditClass source code and their respective components
are contained in:

ABEIP.INC EditClass declarations
ABEIP.CLW EditClass method definitions
ABEIP.TRN EditClass translation strings

CHAPTER 16 EDITCLASS 353

Conceptual Example

The following example shows a sequence of statements to declare,
instantiate, initialize, use, and terminate several EditClass objects and a
related BrowseClass object. The example page-loads a LIST of fieldnames
and associated control attributes (such as color, icon, etc.), then edits the list
items with a variety of edit-in-place objects. Note that the BrowseClass
object calls the “registered” EditClass objects’ methods as needed.

 PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABWINDOW.INC') !declare WindowManager
 INCLUDE('ABBROWSE.INC') !declare BrowseClass
 INCLUDE('ABEIP.INC') !declare Edit-in-place classes
 MAP
 END

Property FILE,DRIVER('TOPSPEED'),PRE(PR),CREATE,BINDABLE,THREAD
NameKey KEY(PR:FieldName),NOCASE,OPT
Record RECORD,PRE()
FieldName STRING(30)
Color STRING(20)
Hidden STRING(1)
IconFile STRING(30)
ControlType STRING(12)

END
END

PropView VIEW(Property)
END

PropQ QUEUE
PR:FieldName LIKE(PR:FieldName)
PR:Color LIKE(PR:Color)
PR:ControlType LIKE(PR:ControlType)
PR:Hidden LIKE(PR:Hidden)
PR:IconFile LIKE(PR:IconFile)
ViewPosition STRING(1024)

END
PropWindow WINDOW('Browse Field Properties'),AT(,,318,137),IMM,SYSTEM,GRAY

LIST,AT(8,4,303,113),USE(?PropList),IMM,HVSCROLL,FROM(PropQ),|
FORMAT('50L(2)|_M~Field Name~@s30@[70L(2)|_M~Color~@s20@' &|

'60L(2)|_M~Control Type~@s12@' &|
'20L(2)|_M~Hide~L(0)@s1@/130L(2)|_M~Icon File~@s30@]|M')

BUTTON('&Insert'),AT(169,121),USE(?Insert)
BUTTON('&Change'),AT(218,121),USE(?Change),DEFAULT
BUTTON('&Delete'),AT(267,121),USE(?Delete)

END
Edit:PR:FieldName EditEntryClass !declare Edit:PR:FieldName-EIP ENTRY control

Edit:PR:Color CLASS(EditColorClass) !declare Edit:PR:Color-EIP color dialog
Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar),VIRTUAL

END

Edit:PR:Hide CLASS(EditCheckClass) !declare Edit:PR:Color-EIP CHECK control
Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar),VIRTUAL

END

354 CLARION 5 APPLICATION HANDBOOK

Edit:PR:IconFile CLASS(EditFileClass) !declare Edit:PR:IconFile-EIP file dialog
Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar),VIRTUAL

END

Edit:PR:ControlType CLASS(EditDropListClass) !declare Edit:PR:ContolType-EIP droplist
Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar),VIRTUAL

END

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

BRW1 CLASS(BrowseClass) !declare BRW1, the BrowseClass object
Q &PropQ ! that drives the EditClass objects--

END ! i.e. calls Init, TakeEvent, Kill

GlobalErrors ErrorClass
Access:Property CLASS(FileManager)
Init PROCEDURE

END

Relate:Property CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END
GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD
CODE
GlobalErrors.Init
Relate:Property.Init
GlobalResponse = ThisWindow.Run()
Relate:Property.Kill
GlobalErrors.Kill

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
SELF.Request = GlobalRequest
ReturnValue = PARENT.Init()
SELF.FirstField = ?PropList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
Relate:Property.Open
BRW1.Init(?PropList,PropQ.ViewPosition,PropView,PropQ,Relate:Property,SELF)
OPEN(PropWindow)
SELF.Opened=True
?PropList{PROP:LineHeight}=12 !enlarge rows to accomodate EditClass icons

 BRW1.Q &= PropQ
 BRW1.AddSortOrder(,PR:NameKey)
 BRW1.AddField(PR:FieldName,BRW1.Q.PR:FieldName)
 BRW1.AddField(PR:Color,BRW1.Q.PR:Color)
 BRW1.AddField(PR:ControlType,BRW1.Q.PR:ControlType)
 BRW1.AddField(PR:Hidden,BRW1.Q.PR:Hidden)
 BRW1.AddField(PR:IconFile,BRW1.Q.PR:IconFile)
BRW1.AddEditControl(Edit:PR:FieldName,1) !Register Edit:PR:FieldName with BRW1

 BRW1.AddEditControl(Edit:PR:Color,2) !Register Edit:PR:Color with BRW1
 BRW1.AddEditControl(Edit:PR:ControlType,3) !Register Edit:PR:ControlType with BRW1

CHAPTER 16 EDITCLASS 355

 BRW1.AddEditControl(Edit:PR:Hide,4) !Register Edit:PR:Hide with BRW1
 BRW1.AddEditControl(Edit:PR:IconFile,5) !Register Edit:PR:IconFile with BRW1
 BRW1.ArrowAction = EIPAction:Default+EIPAction:Remain+EIPAction:RetainColumn
 BRW1.InsertControl=?Insert
 BRW1.ChangeControl=?Change
 BRW1.DeleteControl=?Delete
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 Relate:Property.Close
 RETURN ReturnValue

Edit:PR:Color.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
CODE
PARENT.Init(FieldNumber,ListBox,UseVar)
SELF.Title='Select field color' !set EIP color dialog title

Edit:PR:Hide.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
CODE
PARENT.Init(FieldNumber,ListBox,UseVar)
SELF.Feq{PROP:Text}='Hide ' !set EIP check box text
SELF.Feq{PROP:Value,1}='Y' !set EIP check box true value
SELF.Feq{PROP:Value,2}='N' !set EIP check box false value

Edit:PR:IconFile.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
 CODE
 PARENT.Init(FieldNumber,ListBox,UseVar)
 SELF.Title='Select icon file' !set EIP file dialog title
 SELF.FilePattern='Icon files *.ico|*.ico' !set EIP file dialog file masks
 SELF.FileMask=FILE:KeepDir+FILE:LongName !set EIP file dialog behavior flag

Edit:PR:ControlType.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
CODE
PARENT.Init(FieldNumber,ListBox,UseVar)
SELF.Feq{PROP:From}='ENTRY|SPIN|TEXT|STRING' !set ControlType droplist choices

Access:Property.Init PROCEDURE !initialize FileManager
CODE
PARENT.Init(Property,GlobalErrors)
SELF.FileNameValue = 'Property'
SELF.Buffer &= PR:Record
SELF.Create = 1
SELF.AddKey(PR:NameKey,'PR:NameKey',0)

Relate:Property.Init PROCEDURE !initialize RelationManager
CODE
Access:Property.Init
PARENT.Init(Access:Property,1)

Relate:Property.Kill PROCEDURE !shut down RelationManager
CODE
Access:Property.Kill
PARENT.Kill

356 CLARION 5 APPLICATION HANDBOOK

EditClass Properties
The EditClass contains the following properties.

FEQ (the edit-in-place control number)

FEQ UNSIGNED

The FEQ property contains the control number of the edit-in-place control.

The CreateControl method sets the value of the FEQ property when it creates
the control.

See Also: CreateControl

ReadOnly (edit-in-place control is read-only)

ReadOnly BYTE

The ReadOnly property is a flag indicating that the edit-in-place control is
not editable.

See Also: SetReadOnly

CHAPTER 16 EDITCLASS 357

EditClass Methods
The EditClass contains the following methods.

Functional Organization—Expected Use

As an aid to understanding the EditClass, it is useful to organize its methods
into two large categories according to their expected use—the primary
interface and the virtual methods. This organization reflects what we believe
is typical use of the EditClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitV initialize the EditClass object
Kill V shut down the EditClass object

Mainstream Use:
TakeEventV handle events for the edit control

Occasional Use:
CreateContolV a virtual to create the edit control
SetAlertsV alert appropriate keystrokes for the edit control

V These methods are also virtual.

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

Init initialize the EditClass object
CreateContol a virtual to create the edit control
SetAlerts alert appropriate keystrokes for the edit control
TakeEventV handle events for the edit control
Kill shut down the EditClass object

358 CLARION 5 APPLICATION HANDBOOK

CreateControl (a virtual to create the edit control)

CreateControl, VIRTUAL, PROTECTED

The CreateControl method is a virtual placeholder to create the appropriate
window control for derived classes.

Implementation: The Init method calls the CreateControl method. The CreateControl method
must set the value of the FEQ property.

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: FEQ, EditCheckClass.CreateControl, EditColorClass.CreateControl,
EditEntryClass.CreateControl, EditFileClass.CreateControl,
EditDropListClass.CreateControl, EditMultiSelectClass.CreateControl

CHAPTER 16 EDITCLASS 359

Init (initialize the EditClass object)

Init(column, listbox, editedfield), VIRTUAL

Init Initializes the EditClass object.

column An integer constant, vriable, EQUATE, or expression
that contains the edited column number of the listbox.

listbox An integer constant, variable, EQUATE, or expression
that contains the control number f the edited LIST
control—typically a BrowseClass object’s LIST.

editedfield The fully qualifiedlabel of the edited field—typically a
field in the BrowseClass object’s QUEUE.

The Init method initializes the EditClass object.

Implementation: The EIPmanager.InitControls method calls the Init method. The Init method
creates the edit-in-place control, loads it with the selected list item’s data,
and alerts the appropriate edit-in-place navigation keys.

Example:

MyEditClass.Init(1,?MyList,StateQ:StateCode) !initialize EditClass object
!program code
MyEditClass.Kill !shut down EditClass object

See Also: EIPmanager.InitControls

Kill (shut down the EditClass object)

Kill, VIRTUAL

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code. The Kill method must leave
the object in an Initable state.

Implementation: The EIPmanager.Kill method calls the Kill method. The Kill method
destroys the edit-in-place control created by the Init method.

Example:

MyEditClass.Init(1,?MyList,StateQ:StateCode) !initialize EditClass object
!program code
MyEditClass.Kill !shut down EditClass object

See Also: EIPmanager.Kill

360 CLARION 5 APPLICATION HANDBOOK

SetAlerts (alert keystrokes for the edit control)

SetAlerts, VIRTUAL

The SetAlerts method alerts appropriate keystrokes for the edit-in-place
control.

Implementation: The Init method calls the CreateControl method to create the input control
and set the FEQ property. The Init method then calls the SetAlerts method to
alert standard edit-in-place keystrokes for the edit control. Alerted keys are:

TabKey !next field
ShiftTab !previous field
EnterKey !complete and save
EscKey !complete and cancel
DownKey !complete and save, then edit next row
UpKey !complete and save, then edit prior row

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: Init

SetReadOnly (set edit control to read-only)

SetReadOnly(state), VIRTUAL

SetReadOnly The SetReadOnly method places the edit-in-place
control in a read-only state.

state An integer constant, variable, EQUATE, or expression
that indicates whether to disable a droplist control’s
dropdown button. A value of one (1 or True) disables the
button. A value of zero (0 or False) has no effect on the
control.

Implementation: The SetReadOnly method uses PROP:ReadOnly to place the edit-in-place
conrol in a read-only state. After the parent call in the Init method of the
EditInPlace object is the recommended place to call SetReadonly.

Example:

EditInPlace::CUS:Number.SetReadOnly()

See Also: ReadOnly, EditDropListClass.SetReadOnly

CHAPTER 16 EDITCLASS 361

TakeEvent (process edit-in-place events)

TakeEvent(event), VIRTUAL

TakeEvent Processes an event for the EditClass object.

event An integer constant, variable, EQUATE, or expression
that contains the event number (see EVENT in the
Language Reference).

The TakeEvent method processes an event for the EditClass object and
returns a value indicating the user requested action. Valid actions are none,
complete or OK, cancel, next record, previous record, next field, and
previous field.

Implementation: The EIPManager.TakeFieldEvent method calls the TakeEvent method. The
TakeEvent method process an EVENT:AlertKey for the edit-in-place control
and returns a value indicating the user requested action.

Corresponding EQUATEs for the possible edit-in-place actions are declared
in ABEIP.INC as follows:

EditAction ITEMIZE(0),PRE
None EQUATE ! no action
Forward EQUATE ! next field
Backward EQUATE ! previous field
Complete EQUATE ! OK
Cancel EQUATE ! cancel
Next EQUATE ! next record
Previous EQUATE ! previous record

END

Return Data Type: BYTE

Example:

EditClassAction ROUTINE
 CASE SELF.EditList.Control.TakeEvent(EVENT())
 OF EditAction:Forward

!handle tab forward (new field, same record)
 OF EditAction:Backward

!handle tab backward (new field, same record)
 OF EditAction:Next

!handle down arrow (new record, offer to save prior record)
 OF EditAction:Previous

!handle up arrow (new record, offer to save prior record)
 OF EditAction:Complete

!handle OK or enter key (save record)
 OF EditAction:Cancel

!handle Cancel or esc key (restore record)
 END

See Also: BrowseClass.AskRecord

362 CLARION 5 APPLICATION HANDBOOK

CHAPTER 17 EDITCOLORCLASS 363

17 - EDITCOLORCLASS

Overview
The EditColorClass is an EditClass that supports the Windows Color dialog
by way of a dynamic edit-in-place COMBO control.

EditColorClass Concepts

The EditColorClass creates a COMBO control with an ellipsis button that
invokes the Windows Color dialog. The EditColorClass accepts a color
selection from the end user, then returns the selection to the variable
specified by the Init method, typically the variable associated with a specific
LIST cell—a field in the LIST control’s data source QUEUE.

The EditColorClass also signals the calling procedure whenever significant
edit-in-place events occur, such as tabbing to a new column, cancelling the
edit, or completing the edit (moving to a new record or row). The
EditColorClass provides a virtual TakeEvent method to let you take control
of significant edit-in-place events.

Relationship to Other Application Builder Classes

EditClass

The EditColorClass is derived from the EditClass. The EditClass serves as
the foundation and framework for its derived classes. These derived classes
each provide a different type of input control or input user interface. You can
control the values returned by these derived EditClass objects by using their
virtual methods. See the Conceptual Example.

BrowseEIPManagerClass

The EditClass is managed by the BrowseEIPManagerClass. The
BrowseEIPManagerClass depends on the EditClass operating according to
it’s documented specifications; however, the EditClass may be called by non-
BrowseClass procedures and objects.

364 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

You can use the BrowseUpdateButtons control template (Configure
EditInPlace) to generate the code to instantiate an EditColorClass object
called EditInPlace::fieldname and register the object with the BrowseClass
object. The BrowseClass object then calls the registered EditColorClass
object’s methods as needed. See Control Templates—BrowseUpdateButtons
for more information.

EditColorClass Source Files

The EditColorClass source code is installed by default to the Clarion
\LIBSRC folder. The specific EditColorClass source code and their
respective components are contained in:

ABEIP.INC EditColorClass declarations
ABEIP.CLW EditColorClass method definitions
ABEIP.TRN EditColorClass translation strings

Conceptual Example

The following example shows a sequence of statements to declare,
instantiate, initialize, use, and terminate an EditColorClass object and a
related BrowseClass object. The example page-loads a LIST of fieldnames
and associated control attributes (such as color, icon, etc.), then edits the
“Color” items with an EditColorClass object. Note that the BrowseClass
object calls the “registered” EditColorClass object’s methods as needed.

 PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABWINDOW.INC') !declare WindowManager
 INCLUDE('ABBROWSE.INC') !declare BrowseClass
 INCLUDE('ABEIP.INC') !declare Edit-in-place classes

 MAP
 END

Property FILE,DRIVER('TOPSPEED'),PRE(PR),CREATE,BINDABLE,THREAD
NameKey KEY(PR:FieldName),NOCASE,OPT
Record RECORD,PRE()
FieldName STRING(30)
Color STRING(20)
Hidden STRING(1)
IconFile STRING(30)
ControlType STRING(12)

END
END

CHAPTER 17 EDITCOLORCLASS 365

PropView VIEW(Property)
END

PropQ QUEUE
PR:FieldName LIKE(PR:FieldName)
PR:Color LIKE(PR:Color) !edit this LIST field with the color dialog
PR:ControlType LIKE(PR:ControlType)
PR:Hidden LIKE(PR:Hidden)
PR:IconFile LIKE(PR:IconFile)
ViewPosition STRING(1024)

END

PropWindow WINDOW('Browse Field Properties'),AT(,,318,137),IMM,SYSTEM,GRAY
LIST,AT(8,4,303,113),USE(?PropList),IMM,HVSCROLL,FROM(PropQ),|
FORMAT('50L(2)|_M~Field Name~@s30@[70L(2)|_M~Color~@s20@' &|

'60L(2)|_M~Control Type~@s12@' &|
'20L(2)|_M~Hide~L(0)@s1@/130L(2)|_M~Icon File~@s30@]|M')

BUTTON('&Insert'),AT(169,121),USE(?Insert)
BUTTON('&Change'),AT(218,121),USE(?Change),DEFAULT
BUTTON('&Delete'),AT(267,121),USE(?Delete)

END

Edit:PR:Color CLASS(EditColorClass) !declare Edit:PR:Color-EIP color dialog
Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar),VIRTUAL

END

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

BRW1 CLASS(BrowseClass) !declare BRW1, the BrowseClass object
Q &PropQ ! that drives the EditClass objects--

END ! i.e. calls Init, TakeEvent, Kill

GlobalErrors ErrorClass
Access:Property CLASS(FileManager)
Init PROCEDURE

END

Relate:Property CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END
GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD
CODE
GlobalErrors.Init
Relate:Property.Init
GlobalResponse = ThisWindow.Run()
Relate:Property.Kill
GlobalErrors.Kill

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
SELF.Request = GlobalRequest

366 CLARION 5 APPLICATION HANDBOOK

ReturnValue = PARENT.Init()
SELF.FirstField = ?PropList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
Relate:Property.Open
BRW1.Init(?PropList,PropQ.ViewPosition,PropView,PropQ,Relate:Property,SELF)
OPEN(PropWindow)
SELF.Opened=True

 BRW1.Q &= PropQ
 BRW1.AddSortOrder(,PR:NameKey)
 BRW1.AddField(PR:FieldName,BRW1.Q.PR:FieldName)
 BRW1.AddField(PR:Color,BRW1.Q.PR:Color)
 BRW1.AddField(PR:ControlType,BRW1.Q.PR:ControlType)
 BRW1.AddField(PR:Hidden,BRW1.Q.PR:Hidden)
 BRW1.AddField(PR:IconFile,BRW1.Q.PR:IconFile)
 BRW1.AddEditControl(Edit:PR:Color,2) !Use Edit:PR:Color to edit BRW1 column 2
 BRW1.ArrowAction = EIPAction:Default+EIPAction:Remain+EIPAction:RetainColumn
 BRW1.InsertControl=?Insert
 BRW1.ChangeControl=?Change
 BRW1.DeleteControl=?Delete
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 Relate:Property.Close
 RETURN ReturnValue

Edit:PR:Color.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
CODE
PARENT.Init(FieldNumber,ListBox,UseVar)
SELF.Title='Select field color' !set EIP color dialog title

Access:Property.Init PROCEDURE !initialize FileManager
CODE
PARENT.Init(Property,GlobalErrors)
SELF.FileNameValue = 'Property'
SELF.Buffer &= PR:Record
SELF.Create = 1
SELF.AddKey(PR:NameKey,'PR:NameKey',0)

Relate:Property.Init PROCEDURE !initialize RelationManager
CODE
Access:Property.Init
PARENT.Init(Access:Property,1)

Relate:Property.Kill PROCEDURE !shut down RelationManager
CODE
Access:Property.Kill
PARENT.Kill

CHAPTER 17 EDITCOLORCLASS 367

EditColorClass Properties
The EditColorClass inherits all the properties of the EditClass from which it
is derived. See EditClass Properties and EditClass Concepts for more
information.

In addition to the inherited properties, the EditColorClass contains the
following properties:

Title (color dialog title text)

Title CSTRING(256)

The Title property contains a string that sets the title bar text in the Windows
color dialog.

Implementation: The EditColorClass (TakeEvent method) uses the Title property as the title
parameter to the COLORDIALOG procedure. See COLORDIALOG in the
Language Reference for more information.

See Also: TakeEvent

368 CLARION 5 APPLICATION HANDBOOK

EditColorClass Methods
The EditColorClass inherits all the methods of the EditClass from which it is
derived. See EditClass Methods and EditClass Concepts.

In addition to (or instead of) the inherited methods, the EditColorClass
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the EditColorClass it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the EditColorClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitVI initialize the EditColorClass object
Kill VI shut down the EditColorClass object

Mainstream Use:
TakeEventV handle events for the edit control

Occasional Use:
CreateContolV create the edit (COMBO) control
SetAlertsVI alert keystrokes for the edit control

V These methods are also virtual.
I These methods are inherited from the EditClass

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

InitI initialize the EditColorClass object
CreateContol create the edit (COMBO) control
SetAlertsI alert keystrokes for the edit control
TakeEvent handle events for the edit control
Kill I shut down the EditColorClass object

CHAPTER 17 EDITCOLORCLASS 369

CreateControl (create the edit-in-place control)

CreateControl, VIRTUAL, PROTECTED

The CreateControl method creates the edit-in-place COMBO control and
sets the FEQ property.

Implementation: The Init method calls the CreateControl method. The CreateControl method
creates a COMBO control with an ellipsis button and sets the value of the
FEQ property.

Use the Init method or the CreateControl method to set any required
properties of the COMBO control.

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: FEQ, EditClass.CreateControl

370 CLARION 5 APPLICATION HANDBOOK

TakeEvent (process edit-in-place events)

TakeEvent(event), VIRTUAL

TakeEvent Processes an event for the EditColorClass object.

event An integer constant, variable, EQUATE, or expression
that contains the event number (see EVENT in the
Language Reference).

The TakeEvent method processes an event for the EditColorClass object and
returns a value indicating the user requested action. Valid actions are none,
complete or OK, cancel, next record, previous record, next field, and
previous field.

Implementation: The EIPManager.TakeFieldEvent method calls the TakeEvent method. The
TakeEvent method processes an EVENT:AlertKey for the edit-in-place
control. On EVENT:DroppingDown, TakeEvent invokes the Windows color
dialog and stores the color selection in the edited field specified by the Init
method. Finally, TakeEvent returns a value indicating the user requested
action.

Corresponding EQUATEs for the possible edit-in-place actions are declared
in ABEIP.INC as follows:

EditAction ITEMIZE(0),PRE
None EQUATE ! no action
Forward EQUATE ! next field
Backward EQUATE ! previous field
Complete EQUATE ! OK
Cancel EQUATE ! cancel
Next EQUATE ! next record
Previous EQUATE ! previous record
Ignore EQUATE ! no action

END

Return Data Type: BYTE

Example:

EditClassAction ROUTINE
 CASE SELF.EditList.Control.TakeEvent(EVENT())
 OF EditAction:Forward !handle tab forward (new field, same record)
 OF EditAction:Backward !handle tab backward (new field, same record)
 OF EditAction:Next !handle down arrow (new record, offer to save prior record)
 OF EditAction:Previous !handle up arrow (new record, offer to save prior record)
 OF EditAction:Complete !handle OK or enter key (save record)
 OF EditAction:Cancel !handle Cancel or esc key (restore record)
 END

See Also: Init, EIPManager.TakeFieldEvent

CHAPTER 18 EDITDROPLISTCLASS 371

18 - EDITDROPLISTCLASS

Overview
The EditDropListClass is an EditClass that supports a DROPLIST control.
The EditDropListClass lets you implement a dynamic edit-in-place
DROPLIST control for a column in a LIST.

EditDropListClass Concepts

The EditDropListClass creates a DROPLIST control, accepts input from the
end user, then returns the input to the variable specified by the Init method,
typically the variable associated with a specific LIST cell—a field in the
LIST control’s data source QUEUE. The EditDropListClass also signals the
calling procedure whenever significant edit-in-place events occur, such as
tabbing to a new column, cancelling the edit, or completing the edit (moving
to a new record or row). The EditDropListClass provides a virtual TakeEvent
method to let you take control of significant edit-in-place events.

Relationship to Other Application Builder Classes

EditClass

The EditDropListClass is derived from the EditClass. The EditClass serves
as the foundation and framework for its derived classes. These derived
classes each provide a different type of input control or input user interface.
You can control the values returned by these derived EditClass objects by
using their virtual methods. See the Conceptual Example.

BrowseEIPManagerClass

The EditClass is managed by the BrowseEIPManagerClass. The
BrowseEIPManagerClass depends on the EditClass operating according to
it’s documented specifications; however, the EditClass may be called by non-
BrowseClass procedures and objects.

ABC Template Implementation

You can use the BrowseUpdateButtons control template (Configure
EditInPlace) to generate the code to instantiate an EditDropListClass object
called EditInPlace::fieldname and register the object with the BrowseClass
object. The BrowseClass object then calls the registered EditDropListClass
object’s methods as needed. See Control Templates—BrowseUpdateButtons
for more information.

372 CLARION 5 APPLICATION HANDBOOK

EditDropListClass Source Files

The EditDropListClass source code is installed by default to the Clarion
\LIBSRC folder. The specific EditDropListClass source code and their
respective components are contained in:

ABEIP.INC EditDropListClass declarations
ABEIP.CLW EditDropListClass method definitions

Conceptual Example

The following example shows a sequence of statements to declare,
instantiate, initialize, use, and terminate an EditDropListClass object and a
related BrowseClass object. The example page-loads a LIST of fieldnames
and associated control attributes (such as color, icon, etc.), then edits the
“ControlType” items with an EditDropListClass object. Note that the
BrowseClass object calls the “registered” EditDropListClass object’s
methods as needed.

 PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
 INCLUDE('ABWINDOW.INC') !declare WindowManager
 INCLUDE('ABBROWSE.INC') !declare BrowseClass
 INCLUDE('ABEIP.INC') !declare Edit-in-place classes

 MAP
 END
Property FILE,DRIVER('TOPSPEED'),PRE(PR),CREATE,BINDABLE,THREAD
NameKey KEY(PR:FieldName),NOCASE,OPT
Record RECORD,PRE()
FieldName STRING(30)
Color STRING(20)
Hidden STRING(1)
IconFile STRING(30)
ControlType STRING(12)

END
END

PropView VIEW(Property)
END

PropQ QUEUE
PR:FieldName LIKE(PR:FieldName)
PR:Color LIKE(PR:Color)
PR:ControlType LIKE(PR:ControlType) !edit this field with a DROPLIST control
PR:Hidden LIKE(PR:Hidden)
PR:IconFile LIKE(PR:IconFile)
ViewPosition STRING(1024)

END

PropWindow WINDOW('Browse Field Properties'),AT(,,318,137),IMM,SYSTEM,GRAY
LIST,AT(8,4,303,113),USE(?PropList),IMM,HVSCROLL,FROM(PropQ),|
FORMAT('50L(2)|_M~Field Name~@s30@[70L(2)|_M~Color~@s20@' &|

CHAPTER 18 EDITDROPLISTCLASS 373

'60L(2)|_M~Control Type~@s12@' &|
'20L(2)|_M~Hide~L(0)@s1@/130L(2)|_M~Icon File~@s30@]|M')

BUTTON('&Insert'),AT(169,121),USE(?Insert)
BUTTON('&Change'),AT(218,121),USE(?Change),DEFAULT
BUTTON('&Delete'),AT(267,121),USE(?Delete)

END

Edit:PR:ControlType CLASS(EditDropListClass) !declare Edit:PR:ControlType-EIP DROPLIST
Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar),VIRTUAL

END

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

BRW1 CLASS(BrowseClass) !declare BRW1, the BrowseClass object
Q &PropQ ! that drives the EditClass objects--

END ! i.e. calls Init, TakeEvent, Kill

GlobalErrors ErrorClass
Access:Property CLASS(FileManager)
Init PROCEDURE

END

Relate:Property CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END
GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD
CODE
GlobalErrors.Init
Relate:Property.Init
GlobalResponse = ThisWindow.Run()
Relate:Property.Kill
GlobalErrors.Kill

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
SELF.Request = GlobalRequest
ReturnValue = PARENT.Init()
SELF.FirstField = ?PropList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
Relate:Property.Open
BRW1.Init(?PropList,PropQ.ViewPosition,PropView,PropQ,Relate:Property,SELF)
OPEN(PropWindow)
SELF.Opened=True

 BRW1.Q &= PropQ
 BRW1.AddSortOrder(,PR:NameKey)
 BRW1.AddField(PR:FieldName,BRW1.Q.PR:FieldName)
 BRW1.AddField(PR:Color,BRW1.Q.PR:Color)
 BRW1.AddField(PR:ControlType,BRW1.Q.PR:ControlType)
 BRW1.AddField(PR:Hidden,BRW1.Q.PR:Hidden)
 BRW1.AddField(PR:IconFile,BRW1.Q.PR:IconFile)
 BRW1.AddEditControl(Edit:PR:ControlType,3) !Use Edit:PR:ControlType to edit BRW1 col 3

374 CLARION 5 APPLICATION HANDBOOK

 BRW1.ArrowAction = EIPAction:Default+EIPAction:Remain+EIPAction:RetainColumn
 BRW1.InsertControl=?Insert
 BRW1.ChangeControl=?Change
 BRW1.DeleteControl=?Delete
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 Relate:Property.Close
 RETURN ReturnValue

Edit:PR:ControlType.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
CODE
PARENT.Init(FieldNumber,ListBox,UseVar)
SELF.Feq{PROP:From}='ENTRY|SPIN|TEXT|STRING'!set ControlType droplist choices

Access:Property.Init PROCEDURE !initialize FileManager
CODE
PARENT.Init(Property,GlobalErrors)
SELF.FileNameValue = 'Property'
SELF.Buffer &= PR:Record
SELF.Create = 1
SELF.AddKey(PR:NameKey,'PR:NameKey',0)

Relate:Property.Init PROCEDURE !initialize RelationManager
CODE
Access:Property.Init
PARENT.Init(Access:Property,1)

Relate:Property.Kill PROCEDURE !shut down RelationManager
CODE
Access:Property.Kill
PARENT.Kill

CHAPTER 18 EDITDROPLISTCLASS 375

EditDropListClass Properties
The EditDropListClass inherits all the properties of the EditClass from
which it is derived. See EditClass Properties and EditClass Concepts for
more information.

376 CLARION 5 APPLICATION HANDBOOK

EditDropListClass Methods
The EditDropListClass inherits all the methods of the EditClass from which
it is derived. See EditClass Methods and EditClass Concepts.

In addition to (or instead of) the inherited methods, the EditDropListClass
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the EditDropListClass it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the EditDropListClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitVI initialize the EditDropListClass object
Kill VI shut down the EditDropListClass object

Mainstream Use:
TakeEventVI handle events for the LIST control

Occasional Use:
CreateContolV create the LIST control
SetAlertsV alert keystrokes for the LIST control

V These methods are also virtual.
I These methods are inherited from the EditClass

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

InitI initialize the EditDropListClass object
CreateContol create the LIST control
SetAlerts alert keystrokes for the LIST control
TakeEventI handle events for the LIST control
Kill I shut down the EditDropListClass object

CHAPTER 18 EDITDROPLISTCLASS 377

CreateControl (create the edit-in-place DROPLIST control)

CreateControl, VIRTUAL, PROTECTED

The CreateControl method creates the edit-in-place DROPLIST control and
sets the FEQ property.

Implementation: The Init method calls the CreateControl method. The CreateControl method
sets the value of the FEQ property. Use the Init method or the CreateControl
method to set any required properties of the DROPLIST control.

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: FEQ, EditClass.CreateControl

378 CLARION 5 APPLICATION HANDBOOK

SetAlerts (alert keystrokes for the edit control)

SetAlerts, VIRTUAL

The SetAlerts method method alerts appropriate keystrokes for the edit-in-
place DROPLIST control.

Implementation: The Init method calls the CreateControl method to create the input control
and set the FEQ property. The Init method then calls the SetAlerts method to
alert appropriate edit-in-place keystrokes for the control. Alerted keys are:

TabKey !next field
ShiftTab !previous field
EnterKey !complete and save
EscKey !complete and cancel

Tip: Arrowup and Arrowdown keys are not alerted for a DROPLIST
control because these keys are used to navigate within the
DROPLIST.

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: Init

SetReadOnly (set edit control to read-only)

SetReadOnly(state), VIRTUAL

SetReadOnly The SetReadOnly method places the edit-in-place
control in a read-only state.

state An integer constant, variable, EQUATE, or expression
that indicates whether to disable the droplist control’s
dropdown button. A value of one (1 or True) disables the
button. A value of zero (0 or False) has no effect on the
control.

Implementation: The SetReadOnly method uses PROP:ReadOnly to place the edit-in-place
conrol in a read-only state. After the parent call in the Init method of the
EditInPlace object is the recommended place to call SetReadonly.

Example: EditInPlace::CUS:Number.SetReadOnly()

See Also: ReadOnly

CHAPTER 18 EDITDROPLISTCLASS 379

TakeEvent (process edit-in-place events)

TakeEvent(event), VIRTUAL

TakeEvent Processes an event for the EditDropListClass object.

event An integer constant, variable, EQUATE, or expression
that contains the event number (see EVENT in the
Language Reference).

The TakeEvent method processes an event for the EditDropListClass object
and returns a value indicating the user requested action. Valid actions are
none, complete or OK, cancel, next record, previous record, next field, and
previous field.

Implementation: The TakeEvent method is called by the WindowManager.TakeEvent method.
The TakeEvent method processes an EVENT:AlertKey for the edit-in-place
control. TakeEvent returns a value indicating the user requested action.

Corresponding EQUATEs for the possible edit-in-place actions are declared
in ABEIP.INC as follows:

EditAction ITEMIZE(0),PRE
None EQUATE ! no action
Forward EQUATE ! next field
Backward EQUATE ! previous field
Complete EQUATE ! OK
Cancel EQUATE ! cancel
Next EQUATE ! next record
Previous EQUATE ! previous record
Ignore EQUATE ! no action

END

Return Data Type: BYTE

Example:

WindowManager.TakeEvent PROCEDURE
CODE
! Event handling code

 LOOP i=1 TO RECORDS(SELF.FileDrops)
 GET(SELF.FileDrops,i)
 ASSERT(~ERRORCODE())
 SELF.FileDrops.FileDrop.TakeEvent
 END

See Also: Init

380 CLARION 5 APPLICATION HANDBOOK

CHAPTER 19 EDITENTRYCLASS 381

19 - EDITENTRYCLASS

Overview
The EditEntryClass is an EditClass that supports an ENTRY control. The
EditEntryClass lets you implement a dynamic edit-in-place ENTRY control
for a column in a LIST.

EditEntryClass Concepts

The EditEntryClass creates an ENTRY control, accepts input from the end
user, then returns the input to the variable specified by the Init method,
typically the variable associated with a specific LIST cell—a field in the
LIST control’s data source QUEUE. The EditEntryClass also signals the
calling procedure whenever significant edit-in-place events occur, such as
tabbing to a new column, cancelling the edit, or completing the edit (moving
to a new record or row). The EditEntryClass provides a virtual TakeEvent
method to let you take control of significant edit-in-place events.

Relationship to Other Application Builder Classes

EditClass

The EditEntryClass is derived from the EditClass. The EditClass serves as
the foundation and framework for its derived classes. These derived classes
each provide a different type of input control or input user interface. You can
control the values returned by these derived EditClass objects by using their
virtual methods. See the Conceptual Example.

BrowseEIPManagerClass

The EditClass is managed by the BrowseEIPManagerClass. The
BrowseEIPManagerClass depends on the EditClass operating according to
it’s documented specifications; however, the EditClass may be called by non-
BrowseClass procedures and objects.

Tip: The BrowseClass instantiates the EditEntryClass as the
default edit-in-place object whenever edit-in-place is
requested (when BrowseClass.AskProcedure is zero).

382 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

When you check the Use EditInPlace box and you do not set column-
specific configuration, the BrowseUpdateButtons control template relies on
the default BrowseBox edit-in-place behavior—which is the default
BrowseClass edit-in-place implementation—which instantiates an
EditEntryClass object for each BrowseBox column.

You can also use the BrowseUpdateButtons control template (Configure
EditInPlace) to explicitly instantiate an EditEntryClass object called
EditInPlace::fieldname and register the object with the BrowseClass object.
The BrowseClass object then calls the registered EditEntryClass object’s
methods as needed. By explicitly requesting an EditEntryClass object, you
gain access to EditEntryClass method embed points. See Control
Templates—BrowseUpdateButtons for more information.

EditEntryClass Source Files

The EditEntryClass source code is installed by default to the Clarion
\LIBSRC folder. The specific EditEntryClass source code and their
respective components are contained in:

ABEIP.INC EditEntryClass declarations
ABEIP.CLW EditEntryClass method definitions

Conceptual Example

The following example shows a sequence of statements to declare,
instantiate, initialize, use, and terminate an EditEntryClass object and a
related BrowseClass object. The example page-loads a LIST of fieldnames
and associated control attributes (such as color, icon, etc.), then edits the
items with an EditEntryClass object. Note that the BrowseClass object calls
the EditEntryClass object’s methods as needed.

 PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABWINDOW.INC') !declare WindowManager
 INCLUDE('ABBROWSE.INC') !declare BrowseClass
 INCLUDE('ABEIP.INC') !declare Edit-in-place classes

 MAP
 END

Property FILE,DRIVER('TOPSPEED'),PRE(PR),CREATE,BINDABLE,THREAD
NameKey KEY(PR:FieldName),NOCASE,OPT
Record RECORD,PRE()
FieldName STRING(30)

CHAPTER 19 EDITENTRYCLASS 383

Color STRING(20)
Hidden STRING(1)
IconFile STRING(30)
ControlType STRING(12)

END
END

PropView VIEW(Property)
END

PropQ QUEUE
PR:FieldName LIKE(PR:FieldName)
PR:Color LIKE(PR:Color)
PR:ControlType LIKE(PR:ControlType)
PR:Hidden LIKE(PR:Hidden)
PR:IconFile LIKE(PR:IconFile)
ViewPosition STRING(1024)

END
PropWindow WINDOW('Browse Field Properties'),AT(,,318,137),IMM,SYSTEM,GRAY

LIST,AT(8,4,303,113),USE(?PropList),IMM,HVSCROLL,FROM(PropQ),|
FORMAT('50L(2)|_M~Field Name~@s30@[70L(2)|_M~Color~@s20@' &|

'60L(2)|_M~Control Type~@s12@' &|
'20L(2)|_M~Hide~L(0)@s1@/130L(2)|_M~Icon File~@s30@]|M')

BUTTON('&Insert'),AT(169,121),USE(?Insert)
BUTTON('&Change'),AT(218,121),USE(?Change),DEFAULT
BUTTON('&Delete'),AT(267,121),USE(?Delete)

END

Edit:PR:Name CLASS(EditEntryClass) !declare Edit:PR:Name-EIP ENTRY control
Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar),VIRTUAL

END

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

BRW1 CLASS(BrowseClass) !declare BRW1, the BrowseClass object
Q &PropQ ! that drives the EditClass objects--

END ! i.e. calls Init, TakeEvent, Kill

GlobalErrors ErrorClass
Access:Property CLASS(FileManager)
Init PROCEDURE

END

Relate:Property CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END
GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD
CODE
GlobalErrors.Init
Relate:Property.Init
GlobalResponse = ThisWindow.Run()
Relate:Property.Kill
GlobalErrors.Kill

384 CLARION 5 APPLICATION HANDBOOK

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
SELF.Request = GlobalRequest
ReturnValue = PARENT.Init()
SELF.FirstField = ?PropList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
Relate:Property.Open
BRW1.Init(?PropList,PropQ.ViewPosition,PropView,PropQ,Relate:Property,SELF)
OPEN(PropWindow)
SELF.Opened=True

 BRW1.Q &= PropQ
 BRW1.AddSortOrder(,PR:NameKey)
 BRW1.AddField(PR:FieldName,BRW1.Q.PR:FieldName) !edit with Edit:PR:Name
 BRW1.AddField(PR:Color,BRW1.Q.PR:Color) !edit with default EditEntryClass
 BRW1.AddField(PR:ControlType,BRW1.Q.PR:ControlType) !edit with default EditEntryClass
 BRW1.AddField(PR:Hidden,BRW1.Q.PR:Hidden) !edit with default EditEntryClass
 BRW1.AddField(PR:IconFile,BRW1.Q.PR:IconFile) !edit with default EditEntryClass
 BRW1.AddEditControl(Edit:PR:Name,1) !Use Edit:PR:Name for BRW1 col 1
 BRW1.ArrowAction = EIPAction:Default+EIPAction:Remain+EIPAction:RetainColumn
 BRW1.InsertControl=?Insert
 BRW1.ChangeControl=?Change
 BRW1.DeleteControl=?Delete
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 Relate:Property.Close
 RETURN ReturnValue

Edit:PR:Name.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
CODE
PARENT.Init(FieldNumber,ListBox,UseVar)
SELF.Feq{PROP:CAP}=True !force EIP mixed case input

Access:Property.Init PROCEDURE !initialize FileManager
CODE
PARENT.Init(Property,GlobalErrors)
SELF.FileNameValue = 'Property'
SELF.Buffer &= PR:Record
SELF.Create = 1
SELF.AddKey(PR:NameKey,'PR:NameKey',0)

Relate:Property.Init PROCEDURE !initialize RelationManager
CODE
Access:Property.Init
PARENT.Init(Access:Property,1)

Relate:Property.Kill PROCEDURE !shut down RelationManager
CODE
Access:Property.Kill
PARENT.Kill

CHAPTER 19 EDITENTRYCLASS 385

EditEntryClass Properties
The EditEntryClass inherits all the properties of the EditClass from which it
is derived. See EditClass Properties and EditClass Concepts for more
information.

386 CLARION 5 APPLICATION HANDBOOK

EditEntryClass Methods
The EditEntryClass inherits all the methods of the EditClass from which it is
derived. See EditClass Methods and EditClass Concepts.

In addition to (or instead of) the inherited methods, the EditEntryClass
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the EditEntryClass it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the EditEntryClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitVI initialize the EditEntryClass object
Kill VI shut down the EditEntryClass object

Mainstream Use:
TakeEventVI handle events for the ENTRY control

Occasional Use:
CreateContolV create the ENTRY control
SetAlertsVI alert keystrokes for the ENTRY control

V These methods are also virtual.
I These methods are inherited from the EditClass

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

InitI initialize the EditEntryClass object
CreateContol create the ENTRY control
SetAlertsI alert keystrokes for the ENTRY control
TakeEventI handle events for the ENTRY control
Kill I shut down the EditEntryClass object

CHAPTER 19 EDITENTRYCLASS 387

CreateControl (create the edit-in-place ENTRY control)

CreateControl, VIRTUAL, PROTECTED

The CreateControl method creates the edit-in-place ENTRY control and
sets the FEQ property.

Implementation: The Init method calls the CreateControl method. The CreateControl method
sets the value of the FEQ property. Use the Init method or the CreateControl
method to set any required properties of the ENTRY control.

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: FEQ, EditClass.CreateControl

388 CLARION 5 APPLICATION HANDBOOK

CHAPTER 20 EDITFILECLASS 389

20 - EDITFILECLASS

Overview
The EditFileClass is an EditClass that supports the Windows File dialog by
way of a dynamic edit-in-place COMBO control.

EditFileClass Concepts

The EditFileClass creates a COMBO control with an ellipsis button that
invokes the Windows File dialog. The EditFileClass accepts a pathname
selection from the end user, then returns the selection to the variable
specified by the Init method, typically the variable associated with a specific
LIST cell—a field in the LIST control’s data source QUEUE.

The EditFileClass also signals the calling procedure whenever significant
edit-in-place events occur, such as tabbing to a new column, cancelling the
edit, or completing the edit (moving to a new record or row). The
EditFileClass provides a virtual TakeEvent method to let you take control of
significant edit-in-place events.

Relationship to Other Application Builder Classes

EditClass

The EditFileClass is derived from the EditClass. The EditClass serves as the
foundation and framework for its derived classes. These derived classes each
provide a different type of input control or input user interface. You can
control the values returned by these derived EditClass objects by using their
virtual methods. See the Conceptual Example.

BrowseEIPManagerClass

The EditClass is managed by the BrowseEIPManagerClass. The
BrowseEIPManagerClass depends on the EditClass operating according to
it’s documented specifications; however, the EditClass may be called by non-
BrowseClass procedures and objects.

390 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

You can use the BrowseUpdateButtons control template (Configure
EditInPlace) to generate the code to instantiate an EditFileClass object
called EditInPlace::fieldname and register the object with the BrowseClass
object. The BrowseClass object then calls the registered EditFileClass
object’s methods as needed. See Control Templates—BrowseUpdateButtons
for more information.

EditFileClass Source Files

The EditFileClass source code is installed by default to the Clarion \LIBSRC
folder. The specific EditFileClass source code and their respective
components are contained in:

ABEIP.INC EditFileClass declarations
ABEIP.CLW EditFileClass method definitions

Conceptual Example

The following example shows a sequence of statements to declare,
instantiate, initialize, use, and terminate an EditFileClass object and a related
BrowseClass object. The example page-loads a LIST of fieldnames and
associated control attributes (such as color, icon, etc.), then edits the
“IconFile” items with an EditFileClass object. Note that the BrowseClass
object calls the “registered” EditFileClass object’s methods as needed.

 PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABWINDOW.INC') !declare WindowManager
 INCLUDE('ABBROWSE.INC') !declare BrowseClass
 INCLUDE('ABEIP.INC') !declare Edit-in-place classes

 MAP
 END

Property FILE,DRIVER('TOPSPEED'),PRE(PR),CREATE,BINDABLE,THREAD
NameKey KEY(PR:FieldName),NOCASE,OPT
Record RECORD,PRE()
FieldName STRING(30)
Color STRING(20)
Hidden STRING(1)
IconFile STRING(30)
ControlType STRING(12)

END
END

PropView VIEW(Property)

CHAPTER 20 EDITFILECLASS 391

END

PropQ QUEUE
PR:FieldName LIKE(PR:FieldName)
PR:Color LIKE(PR:Color)
PR:ControlType LIKE(PR:ControlType)
PR:Hidden LIKE(PR:Hidden)
PR:IconFile LIKE(PR:IconFile) !edit this LIST field with the file dialog
ViewPosition STRING(1024)

END

PropWindow WINDOW('Browse Field Properties'),AT(,,318,137),IMM,SYSTEM,GRAY
LIST,AT(8,4,303,113),USE(?PropList),IMM,HVSCROLL,FROM(PropQ),|
FORMAT('50L(2)|_M~Field Name~@s30@[70L(2)|_M~Color~@s20@' &|

'60L(2)|_M~Control Type~@s12@' &|
'20L(2)|_M~Hide~L(0)@s1@/130L(2)|_M~Icon File~@s30@]|M')

BUTTON('&Insert'),AT(169,121),USE(?Insert)
BUTTON('&Change'),AT(218,121),USE(?Change),DEFAULT
BUTTON('&Delete'),AT(267,121),USE(?Delete)

END

Edit:PR:IconFile CLASS(EditFileClass) !declare Edit:PR:IconFile-EIP file dialog
Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar),VIRTUAL

END

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

BRW1 CLASS(BrowseClass) !declare BRW1, the BrowseClass object
Q &PropQ ! that drives the EditClass objects--

END ! i.e. calls Init, TakeEvent, Kill

GlobalErrors ErrorClass
Access:Property CLASS(FileManager)
Init PROCEDURE

END

Relate:Property CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END
GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD
CODE
GlobalErrors.Init
Relate:Property.Init
GlobalResponse = ThisWindow.Run()
Relate:Property.Kill
GlobalErrors.Kill

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
SELF.Request = GlobalRequest
ReturnValue = PARENT.Init()
SELF.FirstField = ?PropList

392 CLARION 5 APPLICATION HANDBOOK

SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
Relate:Property.Open
BRW1.Init(?PropList,PropQ.ViewPosition,PropView,PropQ,Relate:Property,SELF)
OPEN(PropWindow)
SELF.Opened=True

 BRW1.Q &= PropQ
 BRW1.AddSortOrder(,PR:NameKey)
 BRW1.AddField(PR:FieldName,BRW1.Q.PR:FieldName)
 BRW1.AddField(PR:Color,BRW1.Q.PR:Color)
 BRW1.AddField(PR:ControlType,BRW1.Q.PR:ControlType)
 BRW1.AddField(PR:Hidden,BRW1.Q.PR:Hidden)
 BRW1.AddField(PR:IconFile,BRW1.Q.PR:IconFile)
 BRW1.AddEditControl(Edit:PR:IconFile,5) !Use Edit:PR:IconFile to edit BRW1 col 5
 BRW1.ArrowAction = EIPAction:Default+EIPAction:Remain+EIPAction:RetainColumn
 BRW1.InsertControl=?Insert
 BRW1.ChangeControl=?Change
 BRW1.DeleteControl=?Delete
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 Relate:Property.Close
 RETURN ReturnValue

Edit:PR:IconFile.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
 CODE
 PARENT.Init(FieldNumber,ListBox,UseVar)
 SELF.Title='Select icon file' !set EIP file dialog title
 SELF.FilePattern='Icon files *.ico|*.ico' !set EIP file dialog file masks
 SELF.FileMask=FILE:KeepDir+FILE:LongName !set EIP file dialog behavior flag

Access:Property.Init PROCEDURE !initialize FileManager
CODE
PARENT.Init(Property,GlobalErrors)
SELF.FileNameValue = 'Property'
SELF.Buffer &= PR:Record
SELF.Create = 1
SELF.AddKey(PR:NameKey,'PR:NameKey',0)

Relate:Property.Init PROCEDURE !initialize RelationManager
CODE
Access:Property.Init
PARENT.Init(Access:Property,1)

Relate:Property.Kill PROCEDURE !shut down RelationManager
CODE
Access:Property.Kill
PARENT.Kill

CHAPTER 20 EDITFILECLASS 393

EditFileClass Properties
The EditFileClass inherits all the properties of the EditClass from which it is
derived. See EditClass Properties and EditClass Concepts for more
information.

In addition to the inherited properties, the EditFileClass contains the
following properties:

FileMask (file dialog behavior)

FileMask BYTE

The FileMask property is a bitmap that indicates the type of file action the
Windows file dialog performs (select, multi-select, save directory, lock
directory, suppress errors).

Implementation: The EditFileClass (TakeEvent method) uses the FileMask property as the
flag parameter to the FILEDIALOG procedure. See FILEDIALOG in the
Language Reference for more information.

See Also: TakeEvent

FilePattern (file dialog filter)

FilePattern CSTRING(1024)

The FilePattern property contains a text string that defines both the file
masks and the file mask descriptions that appear in the file dialog’s List
Files of Type drop-down list. The first mask is the default selection in the
file dialog.

The FilePattern property should contain one or more descriptions followed
by their corresponding file masks in the form
description|masks|description|masks. All elements in the string must be
delimited by the vertical bar (|). For example, ‘all files *.*|*.*|Clarion
source *.clw;*.inc|*.clw;*.inc’ defines two selections for the File dialog’s
List Files of Type drop-down list. See the extensions parameter to the
FILEDIALOG function in the Language Reference for more information.

394 CLARION 5 APPLICATION HANDBOOK

Title (file dialog title text)

Title CSTRING(256)

The Title property contains a string that sets the title bar text in the Windows
file dialog.

Implementation: The EditFileClass (TakeEvent method) uses the Title property as the title
parameter to the FILEDIALOG procedure. See FILEDIALOG in the
Language Reference for more information.

See Also: TakeEvent

CHAPTER 20 EDITFILECLASS 395

EditFileClass Methods
The EditFileClass inherits all the methods of the EditClass from which it is
derived. See EditClass Methods and EditClass Concepts.

In addition to (or instead of) the inherited methods, the EditFileClass
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the EditFileClass it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the EditFileClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitVI initialize the EditFileClass object
Kill VI shut down the EditFileClass object

Mainstream Use:
TakeEventVI handle events for the edit control

Occasional Use:
CreateContolV create the edit (COMBO) control
SetAlertsVI alert keystrokes for the edit control

V These methods are also virtual.
I These methods are inherited from the EditClass

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

InitI initialize the EditFileClass object
CreateContol create the edit (COMBO) control
SetAlertsI alert keystrokes for the edit control
TakeEventI handle events for the edit control
Kill I shut down the EditFileClass object

396 CLARION 5 APPLICATION HANDBOOK

CreateControl (create the edit-in-place control)

CreateControl, VIRTUAL, PROTECTED

The CreateControl method creates the edit-in-place COMBO control and
sets the FEQ property.

Implementation: The Init method calls the CreateControl method. The CreateControl method
creates a COMBO control with an ellipsis button and sets the value of the
FEQ property.

Use the Init method or the CreateControl method to set any required
properties of the COMBO control.

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: FEQ, EditClass.CreateControl

CHAPTER 20 EDITFILECLASS 397

TakeEvent (process edit-in-place events)

TakeEvent(event), VIRTUAL

TakeEvent Processes an event for the EditFileClass object.

event An integer constant, variable, EQUATE, or expression
that contains the event number (see EVENT in the
Language Reference).

The TakeEvent method processes an event for the EditFileClass object and
returns a value indicating the user requested action. Valid actions are none,
complete or OK, cancel, next record, previous record, next field, and
previous field.

Implementation: The EIPManager.TakeFieldEvent method calls the TakeEvent method. The
TakeEvent method processes an EVENT:AlertKey for the edit-in-place
control. On EVENT:DroppingDown, TakeEvent invokes the Windows file
dialog and stores the pathname selection in the edited field specified by the
Init method. Finally, TakeEvent returns a value indicating the user requested
action.

Corresponding EQUATEs for the possible edit-in-place actions are declared
in ABEIP.INC as follows:

EditAction ITEMIZE(0),PRE
None EQUATE ! no action
Forward EQUATE ! next field
Backward EQUATE ! previous field
Complete EQUATE ! OK
Cancel EQUATE ! cancel
Next EQUATE ! next record
Previous EQUATE ! previous record
Ignore EQUATE ! no action

END

Return Data Type: BYTE

Example:

EditClassAction ROUTINE
 CASE SELF.EditList.Control.TakeEvent(EVENT())
 OF EditAction:Forward !handle tab forward (new field, same record)
 OF EditAction:Backward !handle tab backward (new field, same record)
 OF EditAction:Next !handle down arrow (new record, offer to save prior record)
 OF EditAction:Previous !handle up arrow (new record, offer to save prior record)
 OF EditAction:Complete !handle OK or enter key (save record)
 OF EditAction:Cancel !handle Cancel or esc key (restore record)
 END

See Also: Init, BrowseClass.AskRecord

398 CLARION 5 APPLICATION HANDBOOK

CHAPTER 21 EDITFONTCLASS 399

21 - EDITFONTCLASS

Overview
The EditFontClass is an EditClass that supports the Windows Font dialog by
way of a dynamic edit-in-place COMBO control.

EditFontClass Concepts

The EditFontClass creates a COMBO control with an ellipsis button that
invokes the Windows Font dialog. The EditFontClass accepts a font
specification from the end user, then returns the specification to the variable
specified by the Init method, typically the variable associated with a specific
LIST cell—a field in the LIST control’s data source QUEUE.

The EditFontClass also signals the calling procedure whenever significant
edit-in-place events occur, such as tabbing to a new column, cancelling the
edit, or completing the edit (moving to a new record or row). The
EditFontClass provides a virtual TakeEvent method to let you take control of
significant edit-in-place events.

Relationship to Other Application Builder Classes

EditClass

The EditFontClass is derived from the EditClass. The EditClass serves as the
foundation and framework for its derived classes. These derived classes each
provide a different type of input control or input user interface. You can
control the values returned by these derived EditClass objects by using their
virtual methods. See the Conceptual Example.

BrowseEIPManagerClass

The EditClass is managed by the BrowseEIPManagerClass. The
BrowseEIPManagerClass depends on the EditClass operating according to
it’s documented specifications; however, the EditClass may be called by non-
BrowseClass procedures and objects.

400 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

You can use the BrowseUpdateButtons control template (Configure
EditInPlace) to generate the code to instantiate an EditFontClass object
called EditInPlace::fieldname and register the object with the BrowseClass
object. The BrowseClass object then calls the registered EditFontClass
object’s methods as needed. See Control Templates—BrowseUpdateButtons
for more information.

EditFontClass Source Files

The EditFontClass source code is installed by default to the Clarion
\LIBSRC folder. The specific EditFontClass source code and their respective
components are contained in:

ABEIP.INC EditFontClass declarations
ABEIP.CLW EditFontClass method definitions

Conceptual Example

The following example shows a sequence of statements to declare,
instantiate, initialize, use, and terminate an EditFontClass object and a
related BrowseClass object. The example page-loads a LIST of fieldnames
and associated control attributes (such as color, font, icon, etc.), then edits
the “Font” items with an EditFontClass object. Note that the BrowseClass
object calls the “registered” EditFontClass object’s methods as needed.

 PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABWINDOW.INC') !declare WindowManager
 INCLUDE('ABBROWSE.INC') !declare BrowseClass
 INCLUDE('ABEIP.INC') !declare EditInPlace classes

 MAP END

Property FILE,DRIVER('TOPSPEED'),PRE(PR),CREATE,BINDABLE,THREAD
NameKey KEY(PR:FieldName),NOCASE,OPT
Record RECORD,PRE()
FieldName STRING(30)
Color STRING(20)
Hidden STRING(1)
IconFile STRING(30)
Font STRING(40)
ControlType STRING(12)
ApplyTo CSTRING(500)

END
END

CHAPTER 21 EDITFONTCLASS 401

PropView VIEW(Property)
END

PropQ QUEUE
PR:FieldName LIKE(PR:FieldName)
PR:Color LIKE(PR:Color)
PR:Font LIKE(PR:Font)
PR:ControlType LIKE(PR:ControlType)
PR:Hidden LIKE(PR:Hidden)
PR:IconFile LIKE(PR:IconFile)
PR:ApplyTo LIKE(PR:ApplyTo)
ViewPosition STRING(1024)

END

BRW1 CLASS(BrowseClass) !declare BRW1--a BrowseClass object
Q &PropQ ! that drives the EditClass objects

END

Edit:PR:Font CLASS(EditFontClass) !declare Edit:PR:Font-EIP font dialog
Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar),VIRTUAL
TakeEvent PROCEDURE(UNSIGNED Event),BYTE,VIRTUAL
TypeFace CSTRING(30) !declare font typeface property
FontSize LONG !declare font size property
FontStyle LONG !declare font style property
FontColor LONG !declare font color property

END

PropWindow WINDOW('Browse Properties'),AT(,,318,137),IMM,SYSTEM,GRAY
LIST,AT(8,4,303,113),USE(?PropList),IMM,HVSCROLL,FROM(PropQ),|
FORMAT('50L(2)|_M~Field Name~@s30@[70L(2)|_M~Color~@s20@' &|

'60L(2)|_M~Font~@s40@60L(2)|_M~Control Type~@s12@' &|
'20L(2)|_M~Hide~L(0)@s1@/130L(2)|_M~Icon File~@s30@' &|
'120L(2)|_M~Apply To~L(0)@s25@]|M')

BUTTON('&Insert'),AT(169,121),USE(?Insert)
BUTTON('&Change'),AT(218,121),USE(?Change),DEFAULT
BUTTON('&Delete'),AT(267,121),USE(?Delete)

END

GlobalErrors ErrorClass
Access:Property CLASS(FileManager)
Init PROCEDURE

END

Relate:Property CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END

GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

402 CLARION 5 APPLICATION HANDBOOK

CODE
GlobalErrors.Init
Relate:Property.Init
GlobalResponse = ThisWindow.Run()
Relate:Property.Kill
GlobalErrors.Kill

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
SELF.Request = GlobalRequest
ReturnValue = PARENT.Init()
SELF.FirstField = ?PropList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
Relate:Property.Open
BRW1.Init(?PropList,PropQ.ViewPosition,PropView,PropQ,Relate:Property,SELF)
OPEN(PropWindow)
SELF.Opened=True
?PropList{PROP:LineHeight}=12 !enlarge rows to accomodate EIP icons

 BRW1.Q &= PropQ
 BRW1.AddSortOrder(,PR:NameKey)
 BRW1.AddField(PR:FieldName,BRW1.Q.PR:FieldName)
 BRW1.AddField(PR:Color,BRW1.Q.PR:Color)
 BRW1.AddField(PR:Font,BRW1.Q.PR:Font)
 BRW1.AddField(PR:ControlType,BRW1.Q.PR:ControlType)
 BRW1.AddField(PR:Hidden,BRW1.Q.PR:Hidden)
 BRW1.AddField(PR:IconFile,BRW1.Q.PR:IconFile)
 BRW1.AddField(PR:ApplyTo,BRW1.Q.PR:ApplyTo)
 BRW1.AddEditControl(Edit:PR:Font,3) !Use Edit:PR:Font to edit BRW1 col 3
 BRW1.ArrowAction = EIPAction:Default+EIPAction:Remain+EIPAction:RetainColumn
 BRW1.InsertControl=?Insert
 BRW1.ChangeControl=?Change
 BRW1.DeleteControl=?Delete
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 Relate:Property.Close
 RETURN ReturnValue

CHAPTER 21 EDITFONTCLASS 403

Edit:PR:Font.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
Comma BYTE(1)
SaveFont CSTRING(100) !indexable hold area for font spec
i USHORT
CODE
PARENT.Init(FieldNumber,ListBox,UseVar)
SaveFont=SELF.UseVar !comma separated font attributes
IF SaveFont ! e.g. Arial,14,255,400

 LOOP WHILE Comma !parse/separate the font attributes
 Comma = INSTRING(',',SaveFont,1,1)
 i+=1
 IF Comma
 EXECUTE i
 SELF.TypeFace = SaveFont[1 : Comma-1] !get Typeface
 SELF.FontSize = SaveFont[1 : Comma-1] !get FontSize
 BEGIN
 SELF.FontColor = SaveFont[1 : Comma-1] !get FontColor & Style
 SELF.FontStyle = SaveFont[Comma+1 : LEN(SaveFont)]
 END
 END
 SaveFont=SaveFont[Comma+1 : LEN(SaveFont)]
 END
 END
 END

Edit:PR:Font.TakeEvent PROCEDURE(UNSIGNED Event)
ReturnValue BYTE,AUTO
 CODE
 CASE Event
 OF EVENT:DroppingDown !call Font dialog & store result

! in comma separated string
 IF FONTDIALOG(SELF.Title,SELF.TypeFace,SELF.FontSize,SELF.FontColor,SELF.FontStyle)
 SELF.UseVar = SELF.TypeFace&','&SELF.FontSize&','&SELF.FontColor&','&SELF.FontStyle
 DISPLAY(SELF.Feq)
 END
 RETURN EditAction:Ignore !no I/O action on DroppingDown
 ELSE !otherwise, default I/O action:
 RETURN PARENT.TakeEvent(Event) ! save, cancel, next field, etc.
 END

Access:Property.Init PROCEDURE
CODE
PARENT.Init(Property,GlobalErrors)
SELF.FileNameValue = 'Property'
SELF.Buffer &= PR:Record
SELF.Create = 1
SELF.AddKey(PR:NameKey,'PR:NameKey',0)

Relate:Property.Init PROCEDURE
CODE
Access:Property.Init
PARENT.Init(Access:Property,1)

Relate:Property.Kill PROCEDURE
CODE
Access:Property.Kill
PARENT.Kill

404 CLARION 5 APPLICATION HANDBOOK

EditFontClass Properties
The EditFontClass inherits all the properties of the EditClass from which it is
derived. See EditClass Properties and EditClass Concepts for more
information.

In addition to the inherited properties, the EditFontClass contains the
following properties:

Title (font dialog title text)

Title CSTRING(256)

The Title property contains a string that sets the title bar text in the Windows
font dialog.

Implementation: The EditFontClass (TakeEvent method) uses the Title property as the title
parameter to the FONTDIALOG procedure. See FONTDIALOG in the
Language Reference for more information.

See Also: TakeEvent

CHAPTER 21 EDITFONTCLASS 405

EditFontClass Methods
The EditFontClass inherits all the methods of the EditClass from which it is
derived. See EditClass Methods and EditClass Concepts.

In addition to (or instead of) the inherited methods, the EditFontClass
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the EditFontClass it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the EditFontClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitVI initialize the EditFontClass object
Kill VI shut down the EditFontClass object

Mainstream Use:
TakeEventV handle events for the edit control

Occasional Use:
CreateContolV create the edit (COMBO) control
SetAlertsVI alert keystrokes for the edit control

V These methods are also virtual.
I These methods are inherited from the EditClass

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

InitI initialize the EditFontClass object
CreateContol create the edit (COMBO) control
SetAlertsI alert keystrokes for the edit control
TakeEvent handle events for the edit control
Kill I shut down the EditFontClass object

406 CLARION 5 APPLICATION HANDBOOK

CreateControl (create the edit-in-place control)

CreateControl, VIRTUAL, PROTECTED

The CreateControl method creates the edit-in-place COMBO control and
sets the FEQ property.

Implementation: The Init method calls the CreateControl method. The CreateControl method
creates a COMBO control with an ellipsis button and sets the value of the
FEQ property.

Use the Init method or the CreateControl method to set any required
properties of the COMBO control.

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: FEQ, EditClass.CreateControl

CHAPTER 21 EDITFONTCLASS 407

TakeEvent (process edit-in-place events)

TakeEvent(event), VIRTUAL

TakeEvent Processes an event for the EditFontClass object.

event An integer constant, variable, EQUATE, or expression
that contains the event number (see EVENT in the
Language Reference).

The TakeEvent method processes an event for the EditFontClass object and
returns a value indicating the user requested action. Valid actions are none,
complete or OK, cancel, next record, previous record, next field, and
previous field.

Implementation: The EIPManager.TakeFieldEvent method calls the TakeEvent method. The
TakeEvent method processes an EVENT:AlertKey for the edit-in-place
control. On EVENT:DroppingDown, TakeEvent invokes the Windows font
dialog and stores the font specification in the edited field specified by the Init
method. Finally, TakeEvent returns a value indicating the user requested
action.

Corresponding EQUATEs for the possible edit-in-place actions are declared
in ABEIP.INC as follows:

EditAction ITEMIZE(0),PRE
None EQUATE ! no action
Forward EQUATE ! next field
Backward EQUATE ! previous field
Complete EQUATE ! OK
Cancel EQUATE ! cancel
Next EQUATE ! next record
Previous EQUATE ! previous record
Ignore EQUATE ! no action

END

Return Data Type: BYTE

Example:

EditClassAction ROUTINE
 CASE SELF.EditList.Control.TakeEvent(EVENT())
 OF EditAction:Forward !handle tab forward (new field, same record)
 OF EditAction:Backward !handle tab backward (new field, same record)
 OF EditAction:Next !handle down arrow (new record, offer to save prior record)
 OF EditAction:Previous !handle up arrow (new record, offer to save prior record)
 OF EditAction:Complete !handle OK or enter key (save record)
 OF EditAction:Cancel !handle Cancel or esc key (restore record)
 END

See Also: Init, BrowseClass.AskRecord

408 CLARION 5 APPLICATION HANDBOOK

CHAPTER 22 EDITMULTISELECTCLASS 409

22 - EDITMULTISELECTCLASS

Overview
The EditMultiSelectClass is an EditClass that supports a MultiSelect dialog
by way of a dynamic edit-in-place COMBO control.

EditMultiSelectClass Concepts

The EditMultiSelectClass creates a COMBO control with an ellipsis button
that invokes the MultiSelect dialog. The MultiSelect dialog is an interface for
selecting and ordering items from a list. It looks something like this
illustration:

The EditMultiSelectClass provides an AddValue method so you can prime
the dialog’s Available Items and Selected Items lists.

The EditMultiSelectClass accepts input (selection actions) from the end user,
then signals the calling procedure when selection actions occur. The
EditMultiSelectClass provides a virtual TakeAction method to let you take
control of the end user input.

The EditMultiSelectClass also signals the calling procedure whenever
significant edit-in-place events occur, such as tabbing to a new column,
cancelling the edit, or completing the edit (moving to a new record or row).
The EditMultiSelectClass provides a virtual TakeEvent method to let you
take control of significant edit-in-place events.

410 CLARION 5 APPLICATION HANDBOOK

Relationship to Other Application Builder Classes

EditClass

The EditMultiSelectClass is derived from the EditClass. The EditClass
serves as the foundation and framework for its derived classes. These derived
classes each provide a different type of input control or input user interface.
You can control the values returned by these derived EditClass objects by
using their virtual methods. See the Conceptual Example.

BrowseEIPManagerClass

The EditClass is managed by the BrowseEIPManagerClass. The
BrowseEIPManagerClass depends on the EditClass operating according to
it’s documented specifications; however, the EditClass may be called by non-
BrowseClass procedures and objects.

ABC Template Implementation

You can use the BrowseUpdateButtons control template (Configure
EditInPlace) to generate the code to instantiate an EditMultiSelectClass
object called EditInPlace::fieldname and register the object with the
BrowseClass object. The BrowseClass object then calls the registered
EditMultiSelectClass object’s methods as needed. See Control Templates—
BrowseUpdateButtons for more information.

EditMultiSelectClass Source Files

The EditMultiSelectClass source code is installed by default to the Clarion
\LIBSRC folder. The specific EditMultiSelectClass source code and their
respective components are contained in:

ABEIP.INC EditMultiSelectClass declarations
ABEIP.CLW EditMultiSelectClass method definitions

CHAPTER 22 EDITMULTISELECTCLASS 411

Conceptual Example

The following example shows a sequence of statements to declare,
instantiate, initialize, use, and terminate an EditMultiSelectClass object and
a related BrowseClass object. The example page-loads a LIST of fieldnames
and associated control attributes (such as color, font, when-to-apply, etc.),
then edits the “when-to-apply” items with an EditMultiSelectClass object.
Note that the BrowseClass object calls the “registered” EditMultiSelectClass
object’s methods as needed.

 PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABWINDOW.INC')
 INCLUDE('ABBROWSE.INC')
 INCLUDE('ABEIP.INC')

 MAP
 END

Property FILE,DRIVER('TOPSPEED'),PRE(PR),CREATE,BINDABLE,THREAD
NameKey KEY(PR:FieldName),NOCASE,OPT
Record RECORD,PRE()
FieldName STRING(30)
Color STRING(20)
Hidden STRING(1)
IconFile STRING(30)
Font STRING(40)
ControlType STRING(12)
ApplyTo CSTRING(500)

END
END

PropView VIEW(Property)
END

PropQ QUEUE
PR:FieldName LIKE(PR:FieldName)
PR:Color LIKE(PR:Color)
PR:Font LIKE(PR:Font)
PR:ControlType LIKE(PR:ControlType)
PR:Hidden LIKE(PR:Hidden)
PR:IconFile LIKE(PR:IconFile)
PR:ApplyTo LIKE(PR:ApplyTo)
ViewPosition STRING(1024)

END

BRW1 CLASS(BrowseClass)
Q &PropQ

END

Edit:PR:ApplyTo CLASS(EditMultiSelectClass)!declare Edit:PR:ApplyTo-EIP multi dialog
Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar),VIRTUAL
TakeAction PROCEDURE(BYTE Action,<STRING Item>,LONG Pos1=0,LONG Pos2=0),VIRTUAL

END

412 CLARION 5 APPLICATION HANDBOOK

PropWindow WINDOW('Browse Properties'),AT(,,318,137),IMM,SYSTEM,GRAY
LIST,AT(8,4,303,113),USE(?PropList),IMM,HVSCROLL,FROM(PropQ),|
FORMAT('50L(2)|_M~Field Name~@s30@[70L(2)|_M~Color~@s20@' &|

'60L(2)|_M~Font~@s40@60L(2)|_M~Control Type~@s12@' &|
'20L(2)|_M~Hide~L(0)@s1@/130L(2)|_M~Icon File~@s30@' &|
'120L(2)|_M~Apply To~L(0)@s25@]|M')

BUTTON('&Insert'),AT(169,121),USE(?Insert)
BUTTON('&Change'),AT(218,121),USE(?Change),DEFAULT
BUTTON('&Delete'),AT(267,121),USE(?Delete)

END

GlobalErrors ErrorClass
Access:Property CLASS(FileManager)
Init PROCEDURE

END

Relate:Property CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END

GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

CODE
GlobalErrors.Init
Relate:Property.Init
GlobalResponse = ThisWindow.Run()
Relate:Property.Kill
GlobalErrors.Kill

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
SELF.Request = GlobalRequest
ReturnValue = PARENT.Init()
SELF.FirstField = ?PropList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
Relate:Property.Open
BRW1.Init(?PropList,PropQ.ViewPosition,PropView,PropQ,Relate:Property,SELF)
OPEN(PropWindow)
SELF.Opened=True
?PropList{PROP:LineHeight}=12 !enlarge rows to accomodate EIP icons

 BRW1.Q &= PropQ
 BRW1.AddSortOrder(,PR:NameKey)
 BRW1.AddField(PR:FieldName,BRW1.Q.PR:FieldName)
 BRW1.AddField(PR:Color,BRW1.Q.PR:Color)
 BRW1.AddField(PR:Font,BRW1.Q.PR:Font)
 BRW1.AddField(PR:ControlType,BRW1.Q.PR:ControlType)
 BRW1.AddField(PR:Hidden,BRW1.Q.PR:Hidden)
 BRW1.AddField(PR:IconFile,BRW1.Q.PR:IconFile)

CHAPTER 22 EDITMULTISELECTCLASS 413

 BRW1.AddField(PR:ApplyTo,BRW1.Q.PR:ApplyTo)
 BRW1.AddEditControl(Edit:PR:ApplyTo,7) !use Edit:PR:ApplyTo to edit BRW1 col 7
 BRW1.ArrowAction = EIPAction:Default+EIPAction:Remain+EIPAction:RetainColumn
 BRW1.InsertControl=?Insert
 BRW1.ChangeControl=?Change
 BRW1.DeleteControl=?Delete
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 Relate:Property.Close
 RETURN ReturnValue

Edit:PR:ApplyTo.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
 CODE
 PARENT.Init(FieldNumber,ListBox,UseVar)
 SELF.Reset
 SELF.AddValue('Browse',INSTRING('Browse',SELF.UseVar,1,1)) !set multi-select choice
 SELF.AddValue('Form',INSTRING('Form',SELF.UseVar,1,1)) !set multi-select choice
 SELF.AddValue('Report',INSTRING('Report',SELF.UseVar,1,1)) !set multi-select choice
 SELF.AddValue('Window',INSTRING('Window',SELF.UseVar,1,1)) !set multi-select choice

Edit:PR:ApplyTo.TakeAction PROCEDURE(BYTE Action,<STRING Item>,LONG Pos1=0,LONG Pos2=0)
HoldIt CSTRING(1024) !indexable string of end user choices
Pos USHORT !index to parse end user selections
Comma USHORT !index to parse end user selections
ItemQ QUEUE !Q to reorder end user selections
Item CSTRING(100)
Ord BYTE

END
CODE
PARENT.TakeAction(Action,Item,Pos1,Pos2)
HoldIt=SELF.UseVar
CASE Action
OF MSAction:Add !end user selected an Item

 IF HoldIt
 HoldIt=HoldIt&','&Item
 ELSE
 HoldIt=Item
 END
OF MSAction:Delete !end user deselected an Item

 Pos=INSTRING(Item,HoldIt,1,1)
 CASE Pos
 OF 0
 MESSAGE(Item&' not found!')
 OF 1 !first item
 HoldIt=HoldIt[Pos+LEN(Item)+1 : LEN(HoldIt)] !deselect first item
 ELSE
 IF Pos+LEN(Item) > LEN(HoldIt) !last item
 HoldIt=HoldIt[1 : Pos-2] !deselect last item
 ELSE !deselect any other item
 HoldIt=HoldIt[1 : Pos-1] & HoldIt[Pos+LEN(Item)+1 : LEN(HoldIt)]
 END
 END
 OF MSAction:Move !Selected Item moved up or down
 FREE(ItemQ) ! Pos1=Item's "old" position

414 CLARION 5 APPLICATION HANDBOOK

 CLEAR(ItemQ) ! Pos2=Item's "new" position
 Comma=1
 LOOP WHILE Comma !build Q of Selected Items
 Comma = INSTRING(',',HoldIt,1,1) ! to use for repositioning
 ItemQ.Ord+=1
 IF Comma
 ItemQ.Item = HoldIt[1 : Comma-1]
 ADD(ItemQ,ItemQ.Ord)

HoldIt=HoldIt[Comma+1 : LEN(HoldIt)] !comma separated list of user choices
 ELSE
 ItemQ.Item = HoldIt
 ADD(ItemQ,ItemQ.Ord)
 END
 END
 ItemQ.Ord=Pos2
 GET(ItemQ, ItemQ.Ord) !get the “bumped” item
 ItemQ.Ord=Pos1
 PUT(ItemQ) !reposition the “bumped” item
 ItemQ.Item=Item
 GET(ItemQ, ItemQ.Item) !get the selected item
 ItemQ.Ord=Pos2
 PUT(ItemQ) !reposition the selected item
 SORT(ItemQ,ItemQ.Ord) !reorder Q of selected items
 HoldIt=''
 LOOP Pos = 1 TO RECORDS(ItemQ) !refill comma separated list
 GET(ItemQ,Pos)
 IF HoldIt
 HoldIt=HoldIt&','&ItemQ.Item
 ELSE
 HoldIt=ItemQ.Item
 END
 END
OF MSAction:StartProcess !begin AddAll (>>) or DeleteAll (<<)
SETCURSOR(CURSOR:Wait)

OF MSAction:EndProcess !end AddAll (>>) or DeleteAll (<<)
SETCURSOR()

END
SELF.UseVar=HoldIt

Access:Property.Init PROCEDURE
CODE
PARENT.Init(Property,GlobalErrors)
SELF.FileNameValue = 'Property'
SELF.Buffer &= PR:Record
SELF.Create = 1
SELF.AddKey(PR:NameKey,'PR:NameKey',0)

Relate:Property.Init PROCEDURE
CODE
Access:Property.Init
PARENT.Init(Access:Property,1)

Relate:Property.Kill PROCEDURE
CODE
Access:Property.Kill
PARENT.Kill

CHAPTER 22 EDITMULTISELECTCLASS 415

EditMultiSelectClass Properties
The EditMultiSelectClass inherits all the properties of the EditClass from
which it is derived. See EditClass Properties and EditClass Concepts for
more information.

In addition to the inherited properties, the EditMultiSelectClass contains the
following properties:

Available (multi-select dialog available items queue)

Available &ItemQueue,PROTECTED

The Available property is a reference to the QUEUE containing the set of
items from which to select in the MultiSelect dialog.

FilePattern (multi-select dialog file pattern text)

FilePattern CSTRING(1024)

The FilePattern property contains a string that sets the pattern of files from
which to select in the MultiSelect dialog.

Selected (multi-select dialog selected items queue)

Selected &ItemQueue,PROTECTED

The Selected property is a reference to the QUEUE containing the set of
selected items in the MultiSelect dialog.

Title (multi-select dialog title text)

Title CSTRING(256)

The Title property contains a string that sets the title bar text in the
MultiSelect dialog.

416 CLARION 5 APPLICATION HANDBOOK

EditMultiSelectClass Methods
The EditMultiSelectClass inherits all the methods of the EditClass from
which it is derived. See EditClass Methods and EditClass Concepts.

In addition to (or instead of) the inherited methods, the EditMultiSelectClass
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the EditMultiSelectClass it is useful to organize
its methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the EditMultiSelectClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitV initialize the EditMultiSelectClass object
AddValue prime the MultiSelect dialog
Kill V shut down the EditMultiSelectClass object

Mainstream Use:
TakeActionV handle user actions for the dialog
TakeEventV handle events for the edit control

Occasional Use:
CreateContolV create the edit (COMBO) control
Reset clear the MultiSelect dialog
SetAlertsVI alert keystrokes for the edit control

V These methods are also virtual.
I These methods are inherited from the EditClass

CHAPTER 22 EDITMULTISELECTCLASS 417

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

Init initialize the EditMultiSelectClass object
CreateContol create the edit (COMBO) control
SetAlertsI alert keystrokes for the edit control
TakeAction handle user actions for the dialog
TakeEvent handle events for the edit control
Kill shut down the EditMultiSelectClass object

418 CLARION 5 APPLICATION HANDBOOK

AddValue (prime the MultiSelect dialog)

AddValue(item [,selected])

AddValue Primes the Available and Selected items lists in the
MultiSelect dialog.

item A string constant, variable, EQUATE, or expression that
contains the value to add to the item list.

selected An integer constant, variable, EQUATE, or expression
that indicates which list to update. A value of zero (0 or
False) adds the item to the Available Items list; a value of
one (1 or True) adds the item to the Selected Items list. If
omitted, selected defaults to zero and AddValue adds the
item to the Available Items list.

The AddValue method primes the Available and Selected items lists in the
MultiSelect dialog.

Example:

Edit:PR:ApplyTo.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
 CODE
 PARENT.Init(FieldNumber,ListBox,UseVar)
 SELF.Reset
 SELF.AddValue('Browse',INSTRING('Browse',SELF.UseVar,1,1)) !set multi-select choice
 SELF.AddValue('Form',INSTRING('Form',SELF.UseVar,1,1)) !set multi-select choice
 SELF.AddValue('Report',INSTRING('Report',SELF.UseVar,1,1)) !set multi-select choice
 SELF.AddValue('Window',INSTRING('Window',SELF.UseVar,1,1)) !set multi-select choice

CHAPTER 22 EDITMULTISELECTCLASS 419

CreateControl (create the edit-in-place control)

CreateControl, VIRTUAL, PROTECTED

The CreateControl method creates the edit-in-place COMBO control and
sets the FEQ property.

Implementation: The Init method calls the CreateControl method. The CreateControl method
creates a read only COMBO control with an ellipsis button and sets the value
of the FEQ property.

Use the Init method or the CreateControl method to set any required
properties of the COMBO control.

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: FEQ, EditClass.CreateControl

Reset (reset the EditMultiSelectClass object)

Reset

The Reset method resets the EditMultiSelectClass object.

Implementation: The Reset method clears the Available and Selected items lists in the
MultiSelect dialog. Use the AddValue method to refill these lists.

Example:

Edit:PR:ApplyTo.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
 CODE
 PARENT.Init(FieldNumber,ListBox,UseVar)
 SELF.Reset
 SELF.AddValue('Browse',INSTRING('Browse',SELF.UseVar,1,1)) !set multi-select choice
 SELF.AddValue('Form',INSTRING('Form',SELF.UseVar,1,1)) !set multi-select choice
 SELF.AddValue('Report',INSTRING('Report',SELF.UseVar,1,1)) !set multi-select choice
 SELF.AddValue('Window',INSTRING('Window',SELF.UseVar,1,1)) !set multi-select choice

See Also: AddValue

420 CLARION 5 APPLICATION HANDBOOK

TakeAction (process MultiSelect dialog action)

TakeAction(action [, item] [,oldposition] [,newposition]), VIRTUAL

TakeAction Processes a MultiSelect dialog action.

action An integer constant, variable, EQUATE, or expression
that contains the action to process. Valid actions are add
(select), delete (deselect), move, begin process, and end
process.

item A string constant, variable, EQUATE, or expression that
contains the value of the list item affected by the action.
If omitted, the action affects no item. For example a
begin process action is not associated with a list item.

oldposition An integer constant, variable, EQUATE, or expression
that contains the ordinal position of the item (in the
Selected Items list) prior to the move action. If omitted,
oldposition defaults to zero (0), indicating a non-move
action.

newposition An integer constant, variable, EQUATE, or expression
that contains the ordinal position of the item (in the
Selected Items list) after the move action. If omitted,
newposition defaults to zero (0), indicating a non-move
action.

The TakeAction method processes a MultiSelect dialog action for the
EditMultiSelectClass object. The TakeAction method is your opportunity to
interpret and implement the meaning of the end user’s selection.

Tip: The TakeAction processing is immediate and occurs while the
MultiSelect dialog is open. The MultiSelect dialog does not
generate an action or an event when the dialog closes.

Implementation: The TakeEvent method (indirectly) calls the TakeAction method each time
the end user makes a new selection or moves a selection in the MultiSelect
dialog.

Corresponding EQUATEs for the MultiSelect dialog action are declared in
ABEIP.INC as follows:

MSAction ITEMIZE(1),PRE
Add EQUATE !add / select
Delete EQUATE !delete / deselect
Move EQUATE !reposition a selected item
StartProcess EQUATE !begin an add/delete series
EndProcess EQUATE !end an add/delete series

END

CHAPTER 22 EDITMULTISELECTCLASS 421

Example:

!This implementation of TakeAction converts the end user selections into
! comma separated items in a string.
Edit:PR:ApplyTo.TakeAction PROCEDURE(BYTE Action,<STRING Item>,LONG Pos1=0,LONG Pos2=0)
HoldIt CSTRING(1024) !indexable string of end user choices
Pos USHORT !index to parse end user selections
Comma USHORT !index to parse end user selections
ItemQ QUEUE !Q to reorder end user selections
Item CSTRING(100)
Ord BYTE

END
CODE
PARENT.TakeAction(Action,Item,Pos1,Pos2)
HoldIt=SELF.UseVar
CASE Action
OF MSAction:Add !end user selected an Item
HoldIt=CHOOSE(HoldIt,HoldIt&','&Item,Item)

OF MSAction:Delete !end user deselected an Item
 Pos=INSTRING(Item,HoldIt,1,1)
 IF Pos=1 !first item
 HoldIt=HoldIt[Pos+LEN(Item)+1 : LEN(HoldIt)] !deselect first item
 ELSE
 IF Pos+LEN(Item) > LEN(HoldIt) !last item
 HoldIt=HoldIt[1 : Pos-2] !deselect last item
 ELSE !deselect any other item
 HoldIt=HoldIt[1 : Pos-1] & HoldIt[Pos+LEN(Item)+1 : LEN(HoldIt)]
 END
 END
 OF MSAction:Move !Selected Item moved up or down
 FREE(ItemQ) ! Pos1=Item's "old" position
 CLEAR(ItemQ) ! Pos2=Item's "new" position
 Comma=1
 LOOP WHILE Comma !build Q of Selected Items
 Comma = INSTRING(',',HoldIt,1,1) ! to use for repositioning
 ItemQ.Ord+=1
 IF Comma
 ItemQ.Item = HoldIt[1 : Comma-1]
 ADD(ItemQ,ItemQ.Ord)

HoldIt=HoldIt[Comma+1 : LEN(HoldIt)] !comma separated list of user choices
 ELSE
 ItemQ.Item = HoldIt
 ADD(ItemQ,ItemQ.Ord)
 END
 END
 ItemQ.Ord=Pos2
 GET(ItemQ, ItemQ.Ord) !get the “bumped” item
 ItemQ.Ord=Pos1
 PUT(ItemQ) !reposition the “bumped” item
 ItemQ.Item=Item
 GET(ItemQ, ItemQ.Item) !get the selected item
 ItemQ.Ord=Pos2
 PUT(ItemQ) !reposition the selected item
 SORT(ItemQ,ItemQ.Ord) !reorder Q of selected items
 HoldIt=''
 LOOP Pos = 1 TO RECORDS(ItemQ) !refill comma separated list
 GET(ItemQ,Pos)

HoldIt=CHOOSE(Holdit,HoldIt&','&ItemQ.Item,ItemQ.Item)
 END

422 CLARION 5 APPLICATION HANDBOOK

OF MSAction:StartProcess !begin AddAll (>>) or DeleteAll (<<)
SETCURSOR(CURSOR:Wait)

OF MSAction:EndProcess !end AddAll (>>) or DeleteAll (<<)
SETCURSOR()

END
SELF.UseVar=HoldIt

See Also: TakeEvent

CHAPTER 22 EDITMULTISELECTCLASS 423

TakeEvent (process edit-in-place events)

TakeEvent(event), VIRTUAL

TakeEvent Processes an event for the EditMultiSelectClass object.

event An integer constant, variable, EQUATE, or expression
that contains the event number (see EVENT in the
Language Reference).

The TakeEvent method processes an event for the EditMultiSelectClass
object and returns a value indicating the user requested action. Valid actions
are none, complete or OK, cancel, next record, previous record, next field,
and previous field.

Implementation: The EIPManager.TakeFieldEvent method calls the TakeEvent method. The
TakeEvent method processes an EVENT:AlertKey for the edit-in-place
control. On EVENT:DroppingDown, TakeEvent invokes the MultiSelect
dialog. Finally, TakeEvent returns a value indicating the user requested
action.

Corresponding EQUATEs for the possible edit-in-place actions are declared
in ABEIP.INC as follows:

EditAction ITEMIZE(0),PRE
None EQUATE ! no action
Forward EQUATE ! next field
Backward EQUATE ! previous field
Complete EQUATE ! OK
Cancel EQUATE ! cancel
Next EQUATE ! next record
Previous EQUATE ! previous record
Ignore EQUATE ! no action

END

Return Data Type: BYTE

Example:

EditClassAction ROUTINE
 CASE SELF.EditList.Control.TakeEvent(EVENT())
 OF EditAction:Forward !handle tab forward (new field, same record)
 OF EditAction:Backward !handle tab backward (new field, same record)
 OF EditAction:Next !handle down arrow (new record, offer to save prior record)
 OF EditAction:Previous !handle up arrow (new record, offer to save prior record)
 OF EditAction:Complete !handle OK or enter key (save record)
 OF EditAction:Cancel !handle Cancel or esc key (restore record)
 END

See Also: Init, BrowseClass.AskRecord

424 CLARION 5 APPLICATION HANDBOOK

CHAPTER 23 EDITSPINCLASS 425

23 - EDITSPINCLASS

Overview
The EditSpinClass is an EditClass that supports a SPIN control. The
EditSpinClass lets you implement a dynamic edit-in-place SPIN control for a
column in a LIST.

EditSpinClass Concepts

The EditSpinClass creates a SPIN control, accepts input from the end user,
then returns the input to the variable specified by the Init method, typically
the variable associated with a specific LIST cell—a field in the LIST
control’s data source QUEUE. The EditSpinClass also signals the calling
procedure whenever significant edit-in-place events occur, such as tabbing to
a new column, cancelling the edit, or completing the edit (moving to a new
record or row). The EditSpinClass provides a virtual TakeEvent method to let
you take control of significant edit-in-place events.

Relationship to Other Application Builder Classes

EditClass

The EditSpinClass is derived from the EditClass. The EditClass serves as the
foundation and framework for its derived classes. These derived classes each
provide a different type of input control or input user interface. You can
control the values returned by these derived EditClass objects by using their
virtual methods. See the Conceptual Example.

BrowseEIPManagerClass

The EditClass is managed by the BrowseEIPManagerClass. The
BrowseEIPManagerClass depends on the EditClass operating according to
it’s documented specifications; however, the EditClass may be called by non-
BrowseClass procedures and objects.

ABC Template Implementation

You can use the BrowseUpdateButtons control template (Configure
EditInPlace) to generate the code to instantiate an EditSpinClass object
called EditInPlace::fieldname and register the object with the BrowseClass
object. The BrowseClass object then calls the registered EditSpinClass
object’s methods as needed. See Control Templates—BrowseUpdateButtons
for more information.

426 CLARION 5 APPLICATION HANDBOOK

EditSpinClass Source Files

The EditSpinClass source code is installed by default to the Clarion
\LIBSRC folder. The specific EditSpinClass source code and their respective
components are contained in:

ABEIP.INC EditSpinClass declarations
ABEIP.CLW EditSpinClass method definitions

Conceptual Example

The following example shows a sequence of statements to declare,
instantiate, initialize, use, and terminate an EditSpinClass object and a
related BrowseClass object. The example page-loads a LIST of actions and
associated attributes (priority and completed), then edits the “Priority” items
with an EditSpinClass object. Note that the BrowseClass object calls the
“registered” EditSpinClass object’s methods as needed.

Note: The EditSpinClass requires values for PROP:RangeLow,
PROP:RangeHigh, and PROP:Step to function correctly. The
EditSpinClass.Init method is the proper place to set these
properties. See SPIN in the Language Reference for more
information.

 PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
 INCLUDE('ABWINDOW.INC'),ONCE
 INCLUDE('ABEIP.CLW'),ONCE
 INCLUDE('ABBROWSE.CLW'),ONCE
 MAP
 END
Actions FILE,DRIVER('TOPSPEED'),PRE(ACT),CREATE,BINDABLE,THREAD
KeyAction KEY(ACT:Action),NOCASE,OPT
Record RECORD,PRE()
Action STRING(20)
Priority DECIMAL(2)
Completed DECIMAL(1)
 END
 END
ViewActions VIEW(Actions)
 END
ActQ QUEUE
ACT:Action LIKE(ACT:Action)
ACT:Priority LIKE(ACT:Priority)
ACT:Completed LIKE(ACT:Completed)
ViewPosition STRING(1024)
 END

ActionWindow WINDOW('Actions File'),AT(,,164,144),IMM,HLP('BrowseActions'),SYSTEM,GRAY
LIST,AT(8,6,148,115),USE(?List),IMM,HVSCROLL,FORMAT('80L(2)|~Action~’&|
‘@S20@31C|~Priority~@N2@40L(2)|~Done~L(0)@N1@'),FROM(ActQ)
BUTTON('&Insert'),AT(10,126,45,14),USE(?Insert:2)

CHAPTER 23 EDITSPINCLASS 427

BUTTON('&Change'),AT(59,126,45,14),USE(?Change:2),DEFAULT
BUTTON('&Delete'),AT(108,126,45,14),USE(?Delete:2)

END
ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,DERIVED
Kill PROCEDURE(),BYTE,PROC,DERIVED
 END
BRW1 CLASS(BrowseClass)
Q &ActQ
 END
Edit:ACT:Priority CLASS(EditSpinClass) ! Edit-in-place class for field ACT:Priority
Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar),DERIVED
 END
 CODE
 GlobalResponse = ThisWindow.Run()

ThisWindow.Init PROCEDURE
ReturnValue BYTE,AUTO
 CODE
 SELF.Request = GlobalRequest
 ReturnValue =PARENT.Init()
 IF ReturnValue THEN RETURN ReturnValue.
 SELF.FirstField = ?List
 SELF.Errors &= GlobalErrors
 CLEAR(GlobalRequest)
 CLEAR(GlobalResponse)
 Relate:Actions.Open
 FilesOpened = True
 BRW1.Init(?List,ActQ.ViewActions,BRW1::ViewActions,ActQ,Relate:Actions,SELF)
 OPEN(ActionWindow)
 SELF.Opened=True
 BRW1.Q &= ActQ
 BRW1.AddSortOrder(ACT:KeyAction)
 BRW1.AddField(ACT:Action,BRW1.Q.ACT:Action)
 BRW1.AddField(ACT:Priority,BRW1.Q.ACT:Priority)
 BRW1.AddField(ACT:Completed,BRW1.Q.ACT:Completed)
 BRW1.AddEditControl(EditInPlace::ACT:Priority,2) !Add cutom edit-inplace class
 BRW1.ArrowAction = EIPAction:Default+EIPAction:Remain+EIPAction:RetainColumn
 BRW1.InsertControl=?Insert:2
 BRW1.ChangeControl=?Change:2
 BRW1.DeleteControl=?Delete:2
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE
ReturnValue BYTE,AUTO
 CODE
 ReturnValue =PARENT.Kill()
 IF ReturnValue THEN RETURN ReturnValue.
 IF FilesOpened
 Relate:Actions.Close
 END
 RETURN ReturnValue

Edit:ACT:Priority.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
 CODE
 PARENT.Init(FieldNumber,ListBox,UseVar)
 SELF.FEQ{PROP:RANGE,1} = 1 !Set the Low Range for the Spinbox
 SELF.FEQ{PROP:RANGE,2} = 10 !Set the High Range for the Spinbox
 SELF.FEQ{PROP:Step} = 1 !Set the incremental steps of the Spinbox

428 CLARION 5 APPLICATION HANDBOOK

EditSpinClass Properties
The EditSpinClass inherits all the properties of the EditClass from which it is
derived. See EditClass Properties and EditClass Concepts for more
information.

CHAPTER 23 EDITSPINCLASS 429

EditSpinClass Methods
The EditSpinClass inherits all the methods of the EditClass from which it is
derived. See EditClass Methods and EditClass Concepts.

In addition to (or instead of) the inherited methods, the EditSpinClass
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the EditSpinClass it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the EditSpinClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitVI initialize the EditSpinClass object
Kill VI shut down the EditSpinClass object

Mainstream Use:
TakeEventVI handle events for the SPIN control

Occasional Use:
CreateContolV create the SPIN control
SetAlertsVI alert keystrokes for the SPIN control

V These methods are also virtual.
I These methods are inherited from the EditClass

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

InitI initialize the EditSpinClass object
CreateContol create the SPIN control
SetAlertsI alert keystrokes for the SPIN control
TakeEventI handle events for the SPIN control
Kill I shut down the EditSpinClass object

430 CLARION 5 APPLICATION HANDBOOK

CreateControl (create the edit-in-place SPIN control)

CreateControl, VIRTUAL, PROTECTED

The CreateControl method creates the edit-in-place SPIN control and sets
the FEQ property.

Implementation: The Init method calls the CreateControl method. The CreateControl method
sets the value of the FEQ property. Use the Init method or the CreateControl
method to set any required properties of the SPIN control.

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: FEQ, EditClass.CreateControl

CHAPTER 24 EDITTEXTCLASS 431

24 - EDITTEXTCLASS

Overview
The EditTextClass is an EditClass that supports memo and large string fields
by way of an edit-in-place COMBO control.

EditTextClass Concepts

The EditTextClass creates a COMBO control with an ellipsis button that
invokes a text dialog.

The EditTextClass also signals the calling procedure whenever significant
edit-in-place events occur, such as tabbing to a new column, cancelling the
edit, or completing the edit (moving to a new record or row). The
EditTextClass provides a virtual TakeEvent method to let you take control of
significant edit-in-place events.

Relationship to Other Application Builder Classes

EditClass

The EditTextClass is derived from the EditClass. The EditClass serves as the
foundation and framework for its derived classes. These derived classes each
provide a different type of input control or input user interface. You can
control the values returned by these derived EditClass objects by using their
virtual methods. See the Conceptual Example.

BrowseEIPManagerClass

The EditClass is managed by the BrowseEIPManagerClass. The
BrowseEIPManagerClass depends on the EditClass operating according to
its documented specifications; however, the EditClass may be called by non-
BrowseClass procedures and objects.

432 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

You can use the BrowseUpdateButtons control template (Configure
EditInPlace) to generate the code to instantiate an EditTextClass object
called EditInPlace::fieldname and register the object with the BrowseClass
object. The BrowseClass object then calls the registered EditTextClass
object’s methods as needed. See Control Templates—BrowseUpdateButtons
for more information.

EditTextClass Source Files

The EditTextClass source code is installed by default to the Clarion
\LIBSRC folder. The specific EditTextClass source code and their respective
components are contained in:

ABEIP.INC EditTextClass declarations
ABEIP.CLW EditTextClass method definitions

CHAPTER 24 EDITTEXTCLASS 433

EditTextClass Properties
The EditTextClass inherits all the properties of the EditClass from which it is
derived. See EditClass Properties and EditClass Concepts for more
information.

In addition to the inherited properties, the EditTextClass contains the
following properties:

Title (text dialog title text)

Title CSTRING(256)

The Title property contains a string that sets the title bar text in the dialog
containing the text control.

Implementation: The EditTextClass (TakeEvent method) uses the Title property as the title
text for the titlebar of the dialog containing the text control.

See Also: TakeEvent

434 CLARION 5 APPLICATION HANDBOOK

EditTextClass Methods
The EditTextClass inherits all the methods of the EditClass from which it is
derived. See EditClass Methods and EditClass Concepts.

In addition to (or instead of) the inherited methods, the EditTextClass
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the EditTextClass it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the EditTextClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitVI initialize the EditTextClass object
Kill VI shut down the EditTextClass object

Mainstream Use:
TakeEventVI handle events for the edit control

Occasional Use:
CreateContolV create the edit (COMBO) control
SetAlertsVI alert keystrokes for the edit control

V These methods are also virtual.
I These methods are inherited from the EditClass

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

InitI initialize the EditTextClass object
CreateContol create the edit COMBO control
SetAlertsI alert keystrokes for the edit control
TakeEventI handle events for the edit control
Kill I shut down the EditTextClass object

CHAPTER 24 EDITTEXTCLASS 435

CreateControl (create the edit-in-place control)

CreateControl, VIRTUAL, PROTECTED

The CreateControl method creates the edit-in-place COMBO control.

Implementation: The Init method calls the CreateControl method. The CreateControl method
creates a COMBO control with an ellipsis button.

Use the Init method or the CreateControl method to set any required
properties of the COMBO control.

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: FEQ, EditClass.CreateControl

436 CLARION 5 APPLICATION HANDBOOK

TakeEvent (process edit-in-place events)

TakeEvent(event), VIRTUAL

TakeEvent Processes an event for the EditTextClass object.

event An integer constant, variable, EQUATE, or expression
that contains the event number (see EVENT in the
Language Reference).

The TakeEvent method processes an event for the EditTextClass object and
returns a value indicating the user requested action. Valid actions are none,
complete or OK, cancel, next record, previous record, next field, and
previous field.

Implementation: The EIPManager.TakeFieldEvent method calls the TakeEvent method. The
TakeEvent method processes an EVENT:AlertKey for the edit-in-place
control. On EVENT:DroppingDown, TakeEvent invokes a Windwo with a
text control. Finally, TakeEvent returns a value indicating the user requested
action.

Corresponding EQUATEs for the possible edit-in-place actions are declared
in ABEIP.INC as follows:

EditAction ITEMIZE(0),PRE
None EQUATE ! no action
Forward EQUATE ! next field
Backward EQUATE ! previous field
Complete EQUATE ! OK
Cancel EQUATE ! cancel
Next EQUATE ! next record
Previous EQUATE ! previous record
Ignore EQUATE ! no action

END

Return Data Type: BYTE

Example:

EditClassAction ROUTINE
 CASE SELF.EditList.Control.TakeEvent(EVENT())
 OF EditAction:Forward !handle tab forward (new field, same record)
 OF EditAction:Backward !handle tab backward (new field, same record)
 OF EditAction:Next !handle down arrow (new record, offer to save prior record)
 OF EditAction:Previous !handle up arrow (new record, offer to save prior record)
 OF EditAction:Complete !handle OK or enter key (save record)
 OF EditAction:Cancel !handle Cancel or esc key (restore record)
 END

See Also: Init

CHAPTER 25 EIPMANAGERCLASS 437

25 - EIPMANAGERCLASS

Overview
The EIPManagerClass is a WindowManager that displays an edit-in-place
dialog, and handles events for that dialog . The EIPManagerClass is an
abstract class—it is not useful by itself, but serves as the foundation and
framework for the BrowseEIPManagerClass. See BrowseEIPManagerClass.

EIPManagerClass Concepts

Each edit-in-place control is created on top of the browse from which it is
called. The EIPManager dynamically creates an edit-in-place object and
control upon request (Insert, Change, or Delete) by the end user. When the
end user accepts the edited record the EIPManager destroys the edit-in-place
object and control.

Relationship to Other Application Builder Classes

WindowClass

The EIPManager class is derived from the WindowManager class.

BrowseClass

Each BrowseClass utilizing edit-in-place requires an BrowseEIPManager to
manage the events and processes that are used by each edit-in-place field in
the browse.

The BrowseClass.AskRecord method is the calling method for edit-in-place
functionality.

EditClasses

The EIPManager provides the basic or “under the hood” interface between
the Edit classes and the Browse class. The EIPManager uses the EditQueue
to keep track of the fields in the browse utilizing edit-in-place.

438 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

The Browse template declares a BrowseEIPManager when the
BrowseUpdateButtons control template enables default edit-in-place support
for the BrowseBox.

See Control Templates—BrowseBox and BrowseUpdateButtons for more
information.

EIPManagerClass Source Files

The EIPManagerClass source code is installed by default to the Clarion
\LIBSRC folder. The specific EIPManagerClass source code and their
respective components are contained in:

ABEIP.INC EditClass declarations
ABEIP.CLW EditClass method definitions
ABEIP.TRN EditClass translation strings

Conceptual Example

The following example shows a sequence of statements to declare, and
instantiate an EIPManager object. The example page-loads a LIST of
actions and associated priorities, then edits the list items via edit-in-place.
Note that the BrowseClass object references the BrowseEIPManager which
is an EIPManager object, as referenced in ABBrowse.INC.

 PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABBROWSE.INC'),ONCE
 INCLUDE('ABEIP.INC'),ONCE
 INCLUDE('ABWINDOW.INC'),ONCE
 MAP
 END

Actions FILE,DRIVER('TOPSPEED'),PRE(ACT),CREATE,BINDABLE,THREAD
KeyAction KEY(ACT:Action),NOCASE,OPT
Record RECORD,PRE()
Action STRING(20)
Priority DECIMAL(2)
Completed DECIMAL(1)
 END
 END

Access:Actions &FileManager
Relate:Actions &RelationManager
GlobalErrors ErrorClass
GlobalRequest BYTE(0),THREAD

CHAPTER 25 EIPMANAGERCLASS 439

ActionsView VIEW(Actions)
 END

Queue:Browse QUEUE
ACT:Action LIKE(ACT:Action)
ACT:Priority LIKE(ACT:Priority)
ViewPosition STRING(1024)
 END
BrowseWindow WINDOW('Browse Records'),AT(0,0,247,140),SYSTEM,GRAY
 LIST,AT(5,5,235,100),USE(?List),IMM,HVSCROLL,MSG('Browsing Records'),|
 FORMAT('80L~Action~@S20@8R~Priority~L@N2@'),FROM(Queue:Browse)
 BUTTON('&Insert'),AT(5,110,40,12),USE(?Insert),KEY(InsertKey)
 BUTTON('&Change'),AT(50,110,40,12),USE(?Change),KEY(CtrlEnter),DEFAULT
 BUTTON('&Delete'),AT(95,110,40,12),USE(?Delete),KEY(DeleteKey)
 END

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,DERIVED
Kill PROCEDURE(),BYTE,PROC,DERIVED
 END

BRW1 CLASS(BrowseClass)
Q &Queue:Browse
Init PROCEDURE(SIGNED ListBox,*STRING Posit,VIEW V,QUEUE Q,RelationManager

RM,WindowManager WM)
END

BRW1::EIPManager BrowseEIPManager ! EIPManager for Browse using ?List

 CODE
 GlobalErrors.Init
 Relate:Actions.Init
 GlobalResponse = ThisWindow.Run()
 Relate:Actions.Kill
 GlobalErrors.Kill

ThisWindow.Init PROCEDURE

ReturnValue BYTE,AUTO
 CODE
 SELF.Request = GlobalRequest
 ReturnValue =PARENT.Init()
 IF ReturnValue THEN RETURN ReturnValue.
 SELF.FirstField = ?List
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 SELF.AddItem(Toolbar)
 CLEAR(GlobalRequest)
 CLEAR(GlobalResponse)
 Relate:Actions.Open
 FilesOpened = True
 BRW1.Init(?List,Queue:Browse.ViewPosition,BRW1::View:Browse,Queue:Browse,Relate:Actions,SELF)
 OPEN(BrowseWindow)
 SELF.Opened=True
 BRW1.Q &= Queue:Browse
 BRW1.AddSortOrder(,ACT:KeyAction)
 BRW1.AddLocator(BRW1::Sort0:Locator)
 BRW1::Sort0:Locator.Init(,ACT:Action,1,BRW1)

440 CLARION 5 APPLICATION HANDBOOK

 BRW1.AddField(ACT:Action,BRW1.Q.ACT:Action)
 BRW1.AddField(ACT:Priority,BRW1.Q.ACT:Priority)
 BRW1.ArrowAction = EIPAction:Default+EIPAction:Remain+EIPAction:RetainColumn
 BRW1.InsertControl=?Insert
 BRW1.ChangeControl=?Change
 BRW1.DeleteControl=?Delete
 BRW1.AddToolbarTarget(Toolbar)
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE

ReturnValue BYTE,AUTO
 CODE
 ReturnValue =PARENT.Kill()
 IF ReturnValue THEN RETURN ReturnValue.
 IF FilesOpened
 Relate:Actions.Close
 END
 RETURN ReturnValue

BRW1.Init PROCEDURE(SIGNED ListBox,*STRING Posit,VIEW V,QUEUE Q,RelationManager
RM,WindowManager WM)

 CODE
 PARENT.Init(ListBox,Posit,V,Q,RM,WM)
 SELF.EIP &= BRW1::EIPManager ! Browse object’s reference to the BrowseEIPManager

CHAPTER 25 EIPMANAGERCLASS 441

EIPManagerClass Properties
The EIPManagerClass contains the following properties.

Again (column usage flag)

Again BYTE, PROTECTED

The Again property contains a value that indicates whether or not the current
edit-in-place column has been selected by the user during an edit-in-place
process.

The TakeEvent method is where the Again property receives a value.

Arrow (edit-in-place action on arrow key)

Arrow &BYTE

The Arrow property is a reference to a BYTE which indicates the action to
take when the end user presses the up or down arrow key during an edit-in-
place process.

Note: The Arrow property should be treated as a PROTECTED
property except during initialization.

Implementation: When the EIPManager is instantiated from a browse the Arrow property will
point to the BrowseClass.ArrowAction.

See Also: BrowseClass.ArrowAction

Column (listbox column)

Column UNSIGNED

The Column property contains a value that indicates the column number of
the listbox field which currently has focus in an edit-in-place process.

442 CLARION 5 APPLICATION HANDBOOK

Enter (edit-in-place action on enter key)

Enter &BYTE

The Enter property is a reference to the BrowseClass.EnterAction property,
and indicates the action to take when the end user presses the ENTER key
during an edit-in-place process.

Note: The Enter property should be treated as a PROTECTED
property except during initialization.

See Also: BrowseClass.EnterAction

EQ (list of edit-in-place controls)

EQ &EditQueue

The EQ property is a reference to a structure containing a list of browse list
columns that will not utilize the default edit-in-place control. This list
includes columns that will not utilize edit-in-place.

Implementation: The AddControl method adds browse list columns to the EQ property. An
entry without an associated control indicates a column that has been
specified as non-edit-in-place.

You do not need to initialize this property to implement the default edit-in-
place controls. The EQ property supports custom edit-in-place controls.

The EQ property is a reference to a QUEUE declared in ABEdit.INC as
follows:

EditQueue QUEUE,TYPE
Field UNSIGNED
FreeUp BYTE
Control &EditClass

END

Note: The EQ property should be treated as a PROTECTED property
except during initialization.

See Also: AddControl

CHAPTER 25 EIPMANAGERCLASS 443

Fields (managed fields)

Fields &FieldPairsClass, PROTECTED

The Fields property is a reference to the FieldPairsClass object that moves
and compares data between the BrowseClass object’s FILE and the
EditClasses.

Note: The Fields property should be treated as a PROTECTED
property except during initialization.

See Also: BrowseClass.TabAction

FocusLoss (action on loss of focus)

FocusLoss &BYTE

The FocusLoss property is a reference to the BrowseClass.FocusLossAction
property, and indicates the action to take with regard to pending changes
when the edit control loses focus during an edit-in-place process.

Note: The FocusLoss property should be treated as a PROTECTED
property except during initialization.

See Also: BrowseClass.TabAction, BrowseClass.FocusLossAction

444 CLARION 5 APPLICATION HANDBOOK

Insert (placement of new record)

Insert BYTE

The Insert property indicates where in the list a new record will be added
when the end user inserts a new record. The default placement is below the
selected record.

Implementation: There are three places a new record can be placed in a list when using edit-
in-place: above the selected record; below the selected record (the default);
or appended to the bottom of the list.

Note: This does not change the sort order. After insertion, the list is
resorted and the new record appears in the proper position
within the sort sequence.

The specified placements are implemented by the BrowseEIPManager.Init
method. Set the record insertion point by assigning, adding, or subtracting
the following EQUATEd values to Insert. The following EQUATEs are in
ABEdit.INC:

 ITEMIZE,PRE(EIPAction)
Default EQUATE(0)
Always EQUATE(1)
Never EQUATE(2)
Prompted EQUATE(4)
Save EQUATE(7)
Remain EQUATE(8)
Before EQUATE(9) ! insert before/above selected record
Append EQUATE(10) ! insert at the bottom of the list
RetainColumn EQUATE(16)
 END

See Also: BrowseEIPManager.Init

ListControl (listbox control number)

ListControl SIGNED

The ListControl property contains the control number of the LIST control
that is utilizing edit-in-place.

Note: The ListControl property should be treated as a PROTECTED
property except during initialization.

See Also: BrowseClass.TabAction

CHAPTER 25 EIPMANAGERCLASS 445

LastColumn (previous edit-in-place column)

LastColumn BYTE, PROTECTED

The LastColumn property contains the column number of the previously
used edit-in-place control to facilitate the appropriate processing of a
NewSelection.

Implementation: The LastColumn method is assigned the value of the Column property in the
ResetColumn method.

Repost (event synchronization)

Repost UNSIGNED, PROTECTED

The Repost property indicates the appropriate event to post to the edit-in-
place control based on events posted from the browse procedure window.

Implementation: The TakeEvent and TakeFieldEvent methods assign the appropriate value to
the Repost property. The Kill method posts the specified event to the
appropriate edit-in-place control based on the value contained in the
RepostField property.

See Also: RepostField

RepostField (event synchronization field)

RepostField UNSIGNED, PROTECTED

The RepostField property contains the field control number of the listbox
field that is being edited.

Implementation: The TakeFieldEvent method assigns the appropriate value to the RepostField
property. The Kill method posts the specified event to the appropriate edit-
in-place control based on the value contained in the RepostField property.

See Also: Repost

446 CLARION 5 APPLICATION HANDBOOK

Req (database request)

Req BYTE, PROTECTED

The Req property indicates the database action the procedure is handling.
The EIPManager uses this property to make appropriate processing decisions
with regard to priming records, saving or abandoning changes, etc.

Implementation: The Run method is passed a parameter which contains the value assigned to
the Req property.

See Also: WindowManager.Request

SeekForward (get next field flag)

SeekForward BYTE, PROTECTED

The SeekForward property indicates that the end user has pressed the TAB

key during an edit-in-place process.

Implementation: The TakeAction method conditionally assigns a value of one (1) to the
SeekForward property based on the actions of the end user.

See Also: Next

Tab (action on a tab key)

Tab &BYTE

The Tab property is a reference to the BrowseClass.TabAction property that
indicates the action to take when the end user presses the TAB key during an
edit-in-place process.

Note: The Tab property should be treated as a PROTECTED property
except during initialization.

See Also: BrowseClass.TabAction

CHAPTER 25 EIPMANAGERCLASS 447

EIPManagerClass Methods
The EIPManagerClass contains the following methods.

Functional Organization—Expected Use

As an aid to understanding the EIPManagerClass, it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the EIPManagerClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Run run this procedure
InitD initialize the EditClass object
InitControls initialize edit-in-place controls
Kill D shut down the EditClass object

Mainstream Use:
TakeEventD handle events for the edit control
TakeNewSelectionD handle Event:NewSelection

Occasional Use:
AddControl register edit-in-place controls
ClearColumnV reset column property values
CreateContolV a virtual to create the edit control
GetEditV identify edit-in-place field
Next get the next edit-in-place field
ResetColumnV reset edit-in-place object to selected field
SetAlertsV alert appropriate keystrokes for the edit control
TakeActionV process end user actions
TakeCompletedV process completion of edit
TakeFocusLossV process loss of focus
TakeFieldEventD handle field specific events

D These methods are also derived.
V These methods are also virtual.

448 CLARION 5 APPLICATION HANDBOOK

Virtual and Derived Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are either derived or virtual, they are very
easy to override. These methods do provide reasonable default behavior in
case you do not want to override them.

InitD initialize the EditClass object
Kill D shut down the EditClass object
TakeEventD handle events for the edit control
TakeNewSelectionD handle Event:NewSelection
ClearColumnV reset column property values
CreateContolV a virtual to create the edit control
GetEditV identify edit-in-place field
ResetColumnV reset edit-in-place object to selected field
SetAlertsV alert appropriate keystrokes for the edit control
TakeActionV process end user actions
TakeCompletedV process completion of edit
TakeFocusLossV process loss of focus
TakeFieldEventD handle field specific events

CHAPTER 25 EIPMANAGERCLASS 449

AddControl (register edit-in-place controls)

AddControl([EditClass], Column , AutoFree)

AddControl Specifies an edit-in-place control.

EditClass The label of the EditClass. If omitted, the specified
column is not editable.

Column An integer constant, variable, EQUATE, or expression
that indicates the browse list column to edit with the
specified editclass object.

AutoFree A numeric constant, variable, EQUATE, or expression
that indicates whether the BrowseClass.Kill method
DISPOSEs of the editclass object. A zero (0) value
leaves the object intact. A non-zero value DISPOSEs the
object.

The AddControl method specifies the editclass that defines the edit-in-place
control for the browse column. Use autofree with caution; you should only
DISPOSE of memory allocated with a NEW statement. See the Language
Reference for more information on NEW and DISPOSE.

The AddControl method also registers fields which will not be editable via
edit-in-place. In this instance the EditClass parameter is omitted.

Implementation: The InitControls and BrowseClass.AddEditControl methods call the
AddControl method. The BrowseClass.AddEditControl method defines the
editclass for a column not utilizing the default editclass.

The AddControl method ADDs a record containing the values of EditClass,
Column, and AutoFree, to the EditQueue which is declared in ABEdit.INC as
follows:

EditQueue QUEUE,TYPE
Field UNSIGNED
FreeUp BYTE
Control &EditClass

END

Example:

BrowseClass.AddEditControl PROCEDURE(EditClass EC,UNSIGNED Id,BYTE Free)
 CODE
 SELF.CheckEIP
 SELF.EIP.AddControl(EC,Id,Free)

See Also: EQ, InitControls, BrowseClass.AddEditControl

450 CLARION 5 APPLICATION HANDBOOK

ClearColumn (reset column property values)

ClearColumn, VIRTUAL

The ClearColumn method checks for a value in the LastColumn property
and conditionally sets the column values to zero (0).

The TakeAction and TakeNewSelection methods call the ClearColumn
method.

Example:

EIPManager.TakeNewSelection PROCEDURE ! Must be overridden to handle out-of-row clicks
 CODE
 IF FIELD() = SELF.ListControl AND KEYCODE() = MouseLeft ! An in-row mouse click
 SELF.ClearColumn
 SELF.Column = SELF.ListControl{PROPLIST:MouseUpField}
 SELF.ResetColumn
 END
 RETURN Level:Benign

See Also: Column, TakeAction, TakeNewSelection

GetEdit (identify edit-in-place field)

GetEdit, VIRTUAL, PROTECTED

The GetEdit method checks for a value in the Control field of the
EditQueue.

Implementation: GetEdit is called by the Next method, and returns one (1) if any value is in
the Control field of the EditQueue, otherwise it returns zero (0).

Return Data Type: BYTE

Example:

EIPManager.Next PROCEDURE
 CODE

 GET(SELF.EQ,RECORDS(SELF.EQ))
? ASSERT(~ERRORCODE())
 LastCol=SELF.EQ.Field

 LOOP
 CLEAR(SELF.EQ)
 SELF.EQ.Field = SELF.Column
 GET(SELF.EQ,SELF.EQ.Field)
 IF ~ERRORCODE() AND SELF.GetEdit()
 BREAK
 END

!executable code

See Also: EQ, Next

CHAPTER 25 EIPMANAGERCLASS 451

Init (initialize the EIPManagerClass object)

Init, DERIVED, PROC

The Init method initializes the EIPManagerClass object.

Implementation: The BrowseEIPManager.Init method calls the Init method. The Init method
primes variables and calls the InitControls method which then initializes the
appropriate edit-in-place controls.

Return Data Type: BYTE

Example:

BrowseEIPManager.Init ! initialize BrowseEIPManagerClass object
!program code
RETURN PARENT.Init() ! call to the EIPManager.Init

See Also: BrowseEIPManager.Init, InitControls

InitControls (initialize edit-in-place controls)

InitControls, VIRTUAL

The InitControls method registers the default edit-in-place controls with the
EIPManager by calling the AddControl method, and initializes each added
control.

Implementation: The Init method calls the InitControls method. The InitControls method
checks for custom edit-in-place controls in the EditQueue before adding a
default edit-in-place control.

Example:

EIPManager.Init PROCEDURE
 CODE
 IF SELF.Column = 0 THEN SELF.Column = 1.
 SELF.LastColumn = 0
 SELF.Repost = 0
 SELF.RepostField = 0
 ASSERT(~SELF.EQ &= NULL)
 SELF.EQ.Field = 1

 SELF.InitControls
 SELF.ResetColumn
 RETURN Level:Benign

See Also: Init, EQ, AddControl

452 CLARION 5 APPLICATION HANDBOOK

Kill (shut down the EIPManagerClass object)

Kill, DERIVED, PROC

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code. The Kill method must leave
the object in a state in which an Init can be called.

Implementation: The BrowseEIPManager.Kill method calls the Kill method with a PARENT
call. The Kill method destroys the edit-in-place controls created by the
InitControls method.

Return Data Type: BYTE

Example:

BrowseEIPManager.Kill PROCEDURE
 CODE
 SELF.BC.ResetFromAsk(SELF.Req,SELF.Response)
 RETURN PARENT.Kill()

See Also: BrowseEIPManager.Kill

Next (get the next edit-in-place field)

Next, PROTECTED

The Next method gets the next edit-in-place control in the direction specified
(forward or backward) by the end user.

Implementation: The Next method loops through the EditQueue and gets the next edit-in-
place control based on the RETURN value of the GetEdit method.

Example:

EIPManager.ResetColumn PROCEDURE
 CODE
 SETKEYCODE(0)
 SELF.Next
 IF SELF.Column <> SELF.LastColumn
 SELF.ListControl{PROP:Edit,SELF.EQ.Field} = SELF.EQ.Control.Feq
 SELECT(SELF.EQ.Control.Feq)
 SELF.LastColumn = SELF.Column
 END

See Also: GetEdit, SeekForward, Column, EQ

CHAPTER 25 EIPMANAGERCLASS 453

ResetColumn (reset edit-in-place object to selected field)

ResetColumn, VIRTUAL, PROTECTED

The ResetColumn method selects the appropriate edit-in-place control
based on the selected listbox field.

Implementation: The ResetColumn method resets the FEQ to the selected ListControl field.

Example:

EIPManager.TakeCompleted PROCEDURE(BYTE Force)
 CODE
 SELF.Column = 1
 IF SELF.Again
 SELF.ResetColumn
 END

See Also: EditClass.FEQ, Init, ListControl, TakeAction, TakeCompleted,
TakeNewSelection

Run (run the EIPManager)

Run(request)

Run Run the EIPManager.

request An integer constant, variable, EQUATE, or expression
identifying the database action (insert, change, delete)
requested.

The Run method assigns the passed value to the Req property and executes
the EIPManager.

Implementation: Return value EQUATEs are declared in \LIBSRC\TPLEQU.CLW as follows:

RequestCompleted EQUATE (1) !Update Completed
RequestCancelled EQUATE (2) !Update Cancelled

Return Data Type: BYTE

Example:

BrowseClass.AskRecord PROCEDURE(BYTE Req)
 CODE
 SELF.CheckEIP
 RETURN SELF.EIP.Run(Req)

See Also: BrowseEIPManager.Run, Req

454 CLARION 5 APPLICATION HANDBOOK

TakeAction (process edit-in-place action)

TakeAction(action), VIRTUAL

TakeAction Processes edit-in-place action.

action An integer constant, variable, EQUATE, or expression
that contains the action to process. Valid EQUATEs are
forward, backward, next, previous, complete, and
cancel.

The TakeAction method processes an EIPManager dialog action. The
TakeAction method is your opportunity to interpret and implement the
meaning of the end user’s selection.

Implementation: The TakeFieldEvent conditionally calls the TakeAction method.

Corresponding EQUATEs are declared in ABEIP.INC as follows:

EditAction ITEMIZE(0),PRE
None EQUATE
Forward EQUATE ! Next field
Backward EQUATE ! Previous field
Complete EQUATE ! OK
Cancel EQUATE ! Cancel
Next EQUATE ! Focus moving to Next record
Previous EQUATE ! Focus moving to Previous record
Ignore EQUATE
 END

Example:

EIPManager.TakeFieldEvent PROCEDURE
I UNSIGNED(1)
 CODE
 IF FIELD() = SELF.ListControl THEN RETURN Level:Benign .
 LOOP I = 1 TO RECORDS(SELF.EQ)+1
 ! Optimised to pick up subsequent events from same field
 IF ~SELF.EQ.Control &= NULL AND SELF.EQ.Control.Feq = FIELD()
 SELF.TakeAction(SELF.EQ.Control.TakeEvent(EVENT()))
 RETURN Level:Benign
 END
 GET(SELF.EQ,I)
 END
 ! Code to handle an unknown field

See Also: TakeFieldEvent

CHAPTER 25 EIPMANAGERCLASS 455

TakeCompleted (process completion of edit)

TakeCompleted(force), VIRTUAL

TakeCompleted Determines the edit-in-place dialog’s action after either a
loss of focus or an end user action.

action An integer constant, variable, EQUATE, or expression
that indicates an end user requested action.

The TakeCompleted method conditionally calls the ResetColumn method.
The BrowseEIPManager.TakeCompleted provides the bulk of the process
completion functionality, and is derived from the TakeCompleted method.

Implementation: The BrowseEIPManager.TakeCompleted method calls the TakeCompleted
method via PARENT syntax. TakeFocusLoss and TakeAction also call the
TakeCompleted method.

Note: TakeCompleted does not override the
WindowManager.TakeCompleted method.

Example:

EIPManager.TakeFocusLoss PROCEDURE
 CODE
 CASE CHOOSE(SELF.FocusLoss&=NULL,EIPAction:Default,BAND(SELF.FocusLoss,EIPAction:Save))
 OF EIPAction:Always OROF EIPAction:Default
 SELF.TakeCompleted(Button:Yes)
 OF EIPAction:Never
 SELF.TakeCompleted(Button:No)
 ELSE
 SELF.TakeCompleted(0)
 END

See Also: BrowseEIPManager.TakeCompleted, TakeFocusLoss, TakeAction

456 CLARION 5 APPLICATION HANDBOOK

TakeEvent (process window specific events)

TakeEvent, DERIVED, PROC

The TakeEvent method processes window specific events and returns
Level:Notify for an EVENT:Size, EVENT:Iconize, or EVENT:Maximize; it
returns a Level:Fatal for an EVENT:CloseDown, EVENT:CloseWindow, or
EVENT:Sized; all other window events return a Level:Benign.

Implementation: The TakeFieldEvent method calls the TakeEvent method. The TakeEvent
method calls the TakeFocusLoss method subsequent to returning a
Level:Fatal.

Return Data Type: BYTE

Example:

EIPManager.TakeFieldEvent PROCEDURE
I UNSIGNED(1)
 CODE
 IF FIELD() = SELF.ListControl THEN RETURN Level:Benign .
 LOOP I = 1 TO RECORDS(SELF.EQ)+1
 ! Optimised to pick up subsequent events from same field
 IF ~SELF.EQ.Control &= NULL AND SELF.EQ.Control.Feq = FIELD()
 SELF.TakeAction(SELF.EQ.Control.TakeEvent(EVENT()))
 RETURN Level:Benign
 END
 GET(SELF.EQ,I)
 END
 ! Code to handle an unknown field

See Also: TakeFieldEvent, TakeFocusLoss

CHAPTER 25 EIPMANAGERCLASS 457

TakeFieldEvent (process field specific events)

TakeFieldEvent, DERIVED, PROC

The TakeFieldEvent method processes all field-specific/control-specific
events for the window. It returns a value indicating whether edit-in-place
process is complete and should stop.

TakeFieldEvent returns Level:Benign to indicate processing of this event
should continue normally; it returns Level:Notify to indicate processing is
completed for this event and the ACCEPT loop should CYCLE; it returns
Level:Fatal to indicate the event could not be processed and the ACCEPT
loop should BREAK.

Implementation: The WindowManager.TakeEvent method calls the TakeFieldEvent method.

Return value EQUATEs are declared in ABERROR.INC.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

458 CLARION 5 APPLICATION HANDBOOK

TakeFocusLoss (a virtual to process loss of focus)

TakeFocusLoss, VIRTUAL

The TakeFocusLoss method determines the appropriate action to take when
the EIPManager window loses focus, and calls the TakeCompleted method
with the appropriate parameter.

Implementation: TakeEvent and TakeFieldEvent methods conditionally call the
TakeFocusLoss method.

Example:

EIPManager.TakeFieldEvent PROCEDURE
I UNSIGNED(1)
 CODE
 IF FIELD() = SELF.ListControl THEN RETURN Level:Benign .
 LOOP I = 1 TO RECORDS(SELF.EQ)+1
 ! Optimised to pick up subsequent events from same field
 IF ~SELF.EQ.Control &= NULL AND SELF.EQ.Control.Feq = FIELD()
 SELF.TakeAction(SELF.EQ.Control.TakeEvent(EVENT()))
 RETURN Level:Benign
 END
 GET(SELF.EQ,I)
 END
 ! Code to handle an unknown field

See Also: TakeCompleted

TakeNewSelection (reset edit-in-place column)

TakeNewSelection, DERIVED, PROC

The TakeFieldEvent method resets the edit-in-place column selected by the
end user.

Implementation: TakeNewSelection is called by the BrowseEIPManager.TakeNewSelection
method.

TakeNewSelection calls ResetColumn, and returns a Level:Benign.

Return Data Type: BYTE

Example:

BrowseEIPManager.TakeNewSelection PROCEDURE
 CODE
 IF FIELD() = SELF.ListControl
 IF CHOICE(SELF.ListControl) = SELF.BC.CurrentChoice
 RETURN PARENT.TakeNewSelection()
 ELSE

! Code to handle Focus change to different record
END

END

See Also: ResetColumn

CHAPTER 26 ENTRYLOCATORCLASS 459

26 - ENTRYLOCATORCLASS

Overview
The EntryLocatorClass is a LocatorClass with an input control (ENTRY,
COMBO, or SPIN). An Entry Locator is a multi-character locator that
activates when the locator control is accepted (not upon each keystroke).

Use an Entry Locator when you want a multi-character search on numeric or
alphanumeric keys and you want to delay the search until the user accepts
the locator control. This delayed search reduces network traffic and provides
a smoother search in a client-server environment.

EntryLocatorClass Concepts

The EntryLocatorClass lets you specify a locator control and a sort field on
which to search (the free key element) for a BrowseClass object. The
BrowseClass object uses the EntryLocatorClass to locate and scroll to the
nearest matching item.

When the end user places one or more characters in the locator control, then
accepts the control by pressing TAB, pressing a locator button, or selecting
another control on the screen, the EntryLocatorClass object advances the
BrowseClass object’s LIST to the nearest matching record.

Relationship to Other Application Builder Classes

The BrowseClass uses the EntryLocatorClass to locate and scroll to the
nearest matching item. Therefore, if your program’s BrowseClass objects use
an Entry Locator, your program must instantiate the EntryLocatorClass for
each use. Once you register the EntryLocatorClass object with the
BrowseClass object (see BrowseClass.AddLocator), the BrowseClass object
uses the EntryLocatorClass object as needed, with no other code required.
See the Conceptual Example.

ABC Template Implementation

The ABC BrowseBox template generates code to instantiate the
EntryLocatorClass for your BrowseBoxes. The EntryLocatorClass objects
are called BRWn::Sort#:Locator, where n is the template instance number
and # is the sort sequence (id) number. As this implies, you can have a
different locator for each BrowseClass object sort order.

460 CLARION 5 APPLICATION HANDBOOK

You can use the BrowseBox’s Locator Behavior dialog (the Locator Class
button) to derive from the EntryLocatorClass. The templates provide the
derived class so you can modify the locator’s behavior on an instance-by-
instance basis.

EntryLocatorClass Source Files

The EntryLocatorClass source code is installed by default to the Clarion
\LIBSRC folder. The specific EntryLocatorClass source code and their
respective components are contained in:

ABBROWSE.INC EntryLocatorClass declarations
ABBROWSE.CLW EntryLocatorClass method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a BrowseClass object and related
objects, including an EntryLocatorClass object. The example initializes and
page-loads a LIST, then handles a number of associated events, including
scrolling, updating, and locating records.

Note that the WindowManager and BrowseClass objects internally handle
the normal events surrounding the locator.

 PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
 INCLUDE('ABWINDOW.INC') !declare WindowManager class
 INCLUDE('ABBROWSE.INC') !declare BrowseClass and Locator
 MAP
 END
State FILE,DRIVER('TOPSPEED'),PRE(ST),THREAD
StateCodeKey KEY(ST:STATECODE),NOCASE,OPT
Record RECORD,PRE()
STATECODE STRING(2)
STATENAME STRING(20)

END
END

StView VIEW(State) !declare VIEW to process
END

StateQ QUEUE !declare Q for LIST
ST:STATECODE LIKE(ST:STATECODE)
ST:STATENAME LIKE(ST:STATENAME)
ViewPosition STRING(512)

END
Access:State CLASS(FileManager) !declare Access:State object
Init PROCEDURE

END
Relate:State CLASS(RelationManager) !declare Relate:State object
Init PROCEDURE

END
VCRRequest LONG(0),THREAD

CHAPTER 26 ENTRYLOCATORCLASS 461

StWindow WINDOW('Browse States'),AT(,,123,152),IMM,SYSTEM,GRAY
PROMPT('Find:'),AT(9,6)
ENTRY(@s2),AT(29,4),USE(ST:STATECODE)
LIST,AT(8,5,108,124),USE(?StList),IMM,HVSCROLL,FROM(StateQ),|
FORMAT('27L(2)|M~CODE~@s2@80L(2)|M~STATENAME~@s20@')

END

ThisWindow CLASS(WindowManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END
BrowseSt CLASS(BrowseClass) !declare BrowseSt object
Q &StateQ

END

StLocator EntryLocatorClass !declare StLocator object
StStep StepStringClass !declare StStep object

CODE
ThisWindow.Run() !run the window procedure

ThisWindow.Init PROCEDURE() !initialize things
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init() !call base class init
IF ReturnValue THEN RETURN ReturnValue.
Relate:State.Init !initialize Relate:State object
SELF.FirstField = ?ST:STATECODE !set FirstField for ThisWindow
SELF.VCRRequest &= VCRRequest !VCRRequest not used
Relate:State.Open !open State and related files
!Init BrowseSt object by naming its LIST,VIEW,Q,RelationManager & WindowManager
BrowseSt.Init(?StList,StateQ.ViewPosition,StView,StateQ,Relate:State,SELF)
OPEN(StWindow)
SELF.Opened=True
BrowseSt.Q &= StateQ !reference the browse QUEUE
StStep.Init(+ScrollSort:AllowAlpha,ScrollBy:Runtime)!initialize the StStep object
BrowseSt.AddSortOrder(StStep,ST:StateCodeKey) !set the browse sort order
BrowseSt.AddLocator(StLocator) !plug in the browse locator
StLocator.Init(?ST:STATECODE,ST:STATECODE,1,BrowseSt)!initialize the locator object
BrowseSt.AddField(ST:STATECODE,BrowseSt.Q.ST:STATECODE) !set a column to browse
BrowseSt.AddField(ST:STATENAME,BrowseSt.Q.ST:STATENAME) !set a column to browse
SELF.SetAlerts() !alert any keys for ThisWindow
RETURN ReturnValue

ThisWindow.Kill PROCEDURE() !shut down things
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill() !call base class shut down
IF ReturnValue THEN RETURN ReturnValue.
Relate:State.Close !close State and related files
Relate:State.Kill !shut down Relate:State object
GlobalErrors.Kill !shut down GlobalErrors object
RETURN ReturnValue

462 CLARION 5 APPLICATION HANDBOOK

EntryLocatorClass Properties
The EntryLocatorClass inherits all the properties of the LocatorClass from
which it is derived. See LocatorClass Properties and LocatorClass Concepts
for more information.

In addition to the inherited properties, the EntryLocatorClass also contains
the following property:

Shadow (the search value)

ShadowCSTRING(40)

The Shadow property contains the search value for the entry locator.

The TakeKey method adds to the search value based on the end user’s
keyboard input. The BrowseClass.TakeAcceptedLocator method implements
the search for the specified value.

See Also: TakeKey, BrowseClass.TakeAcceptedLocator

CHAPTER 26 ENTRYLOCATORCLASS 463

EntryLocatorClass Methods
The EntryLocatorClass inherits all the methods of the LocatorClass from
which it is derived. See LocatorClass Methods and LocatorClass Concepts
for more information.

In addition to (or instead of) the inherited methods, the EntryLocatorClass
contains the following methods:

Init (initialize the EntryLocatorClass object)

Init([control] , freeelement [,ignorecase] [,browseclass])

Init Initializes the EntryLocatorClass object.

control An integer constant, variable, EQUATE, or expression
that sets the locator control for the locator. If omitted,
the control number defaults to zero (0) indicating there
is no locator control.

freeelement The fully qualified label of a component of the sort
sequence of the searched data set. The ABC Templates
further require this to be a free component of a key. A
free component is one that is not range limited to a
single value. Typically this is also the USE variable of
the locator control.

ignorecase An integer constant, variable, EQUATE, or expression
that determines whether the locator does case sensitive
searches or ignores case. A value of one (1) or True does
case insensitive searches; a value of zero (0) or False
ignores case. If omitted, nocase defaults to 0.

browseclass The label of the BrowseClass object for the locator. If
omitted, the LocatorClass object has no direct access to
the browse QUEUE or it’s underlying VIEW.

The Init method initializes the EntryLocatorClass object.

Implementation: The Init method sets the values of the Control, FreeElement, NoCase, and
ViewManager properties. The Shadow property is the control’s USE variable.

By default, only the StepLocatorClass and FilterLocatorClass use the
browseclass. The other locator classes do not.

Example:

BRW1::Sort1:Locator.Init(,CUST:StateCode,1) !without locator control
BRW1::Sort2:Locator.Init(?CUST:CustMo,CUST:CustNo,1) !with locator control

See Also: Control, FreeElement, NoCase, ViewManager

464 CLARION 5 APPLICATION HANDBOOK

Set (restart the locator)

Set, VIRTUAL

The Set method prepares the locator for a new search.

Implementation: The Set method clears the FreeElement property and the Shadow property.

Example:

MyBrowseClass.TakeScroll PROCEDURE(SIGNED Event) !process a scroll event
CODE
!handle the scroll
SELF.PostNewSelection !post EVENT:NewSelection to list
IF ~SELF.Sort.Locator &= NULL !if locator is present
SELF.Sort.Locator.Set ! clear it

END
IF SELF.Sort.Thumb &= NULL !if thumb is present
SELF.UpdateThumbFixed ! reposition it

END

See Also: FreeElement, Shadow

TakeAccepted (process an accepted locator value)

TakeAccepted, VIRTUAL

The TakeAccepted method processes the accepted locator value and returns
a value indicating whether the browse list display should change.

A locator value is accepted when the end user changes the locator value, then
TABS off the locator control or otherwise switches focus to another control on
the same window.

Implementation: The TakeAccepted method primes the FreeElement property with the entered
search value, then returns one (1 or True) if a new search is required or
returns zero (0 or False) if no new search is required.

Return Data Type: BYTE

Example:

MyBrowseClass.TakeAcceptedLocator PROCEDURE
CODE
IF ~SELF.Sort.Locator &= NULL !if locator is present
IF SELF.Sort.Locator.TakeAccepted() !if locator value requires a search
SELF.Reset(1) !reposition the view
SELECT(SELF.ListControl) !focus on the list control
SELF.ResetQueue(Reset:Done) !reset the browse queue
SELF.Sort.Locator.Reset !reset the locator USE variable

END
END

See Also: FreeElement

CHAPTER 26 ENTRYLOCATORCLASS 465

TakeKey (process an alerted keystroke)

TakeKey, VIRTUAL

The TakeKey method processes an alerted keystroke for the LIST control
that displays the data to be searched and returns a value indicating whether
the browse list display should change.

Tip: By default, all alphanumeric keys are alerted for LIST controls.

Implementation: The BrowseClass.TakeKey method calls the locator TakeKey method. The
TakeKey method stuffs the keystroke detected by the LIST into the locator’s
input control and returns zero (0 or False).

Return Data Type: BYTE

Example:

MyBrowseClass.TakeKey PROCEDURE
 CODE
IF RECORDS(SELF.ListQueue)
CASE KEYCODE()
OF InsertKey ;!handle insert
OF DeleteKey ;!handle delete
OF CtrlEnter ;!handle enter (change/select)
OF MouseLeft2 ;!handle double-click (change/select)
ELSE
DO CheckLocator !handle all other keystrokes

END
END
RETURN 0

CheckLocator ROUTINE
IF ~(SELF.Sort.Locator &= NULL)
IF SELF.Sort.Locator.TakeKey() !add keystroke to locator input control
SELF.Reset(SELF.GetFreeElementPosition()) !and refresh browse if necessary
SELF.ResetQueue(Reset:Done)
DO HandledOut

ELSE
IF RECORDS(SELF.ListQueue)
DO HandledOut

END
END

END

HandledOut ROUTINE
SELF.UpdateWindow
SELF.PostNewSelection
RETURN 1

See Also: BrowseClass.TakeKey

466 CLARION 5 APPLICATION HANDBOOK

Update (update the locator control and free elements)

Update, PROTECTED, VIRTUAL

The Update method redraws the locator control and updates the free key
elements in the record buffer with the current locator value.

Implementation: The Update method primes the FreeElement property with the current search
value (the Shadow property), then calls the UpdateWindow method to redraw
the locator control.

Example:

MyBrowseClass.UpdateWindow PROCEDURE !update browse related controls
CODE
IF ~(SELF.Sort.Locator &= NULL) !if locator is present
SELF.Sort.Locator.UpdateWindow ! redraw locator control

END

See Also: FreeElement, Shadow, UpdateWindow

UpdateWindow (redraw the locator control)

UpdateWindow, VIRTUAL

The UpdateWindow method redraws the locator control with the current
locator value.

Implementation: The Update method calls the UpdateWindow method to redraw the locator
control with the current locator contents.

Example:

MyBrowseClass.UpdateWindow PROCEDURE !update browse related controls
CODE
IF ~(SELF.Sort.Locator &= NULL) !if locator is present
SELF.Sort.Locator.UpdateWindow ! redraw locator control

END

See Also: Update

CHAPTER 27 ERROR CLASS 467

27 - ERROR CLASS

Overview
The ErrorClass declares an error manager which consistently and flexibly
handles any errors. That is, for a given program scope, you define all
possible errors by ID number, severity, and message text, then when an error
or other notable condition occurs, you simply pass the appropriate ID to the
error manager which processes it appropriately based on its severity level.

The defined “errors” may actually include questions, warnings, notifications,
messages, benign tracing calls, as well as true errors. The ErrorClass comes
with about forty general purpose database errors already defined. You can
expand this list to include additional general purpose errors, your own
application-specific errors, or even field specific data validation errors. Your
expansion of the errors list may be “permanent” or may be done dynamically
at runtime.

ErrorClass Source Files

The ErrorClass source code is installed by default to the Clarion \LIBSRC.
The specific ErrorClass source code and their respective components are
contained in:

ABERROR.INC ErrorClass declarations
ABERROR.CLW ErrorClass method definitions
ABERROR.TRN ErrorClass default error definitions

Multiple Customizable Levels of Error Treatment

Six Levels of Treatment

By default, the error manager recognizes six different levels of error severity.
The default actions for these levels range from no action for benign errors to
halting the program for fatal errors. The error manager also supports the
intermediate actions of simply notifying the user, or of notifying the user and
letting the user decide whether to continue or abort.

Customizable Treatments

These various levels of treatment are implemented with virtual methods so
they are easy to customize. The error manager calls a different virtual
method for each severity level, so you can override the default error actions
with your own application specific error actions. See the various Take
methods for examples.

468 CLARION 5 APPLICATION HANDBOOK

The recognized severity EQUATEs are declared in ABERROR.INC. These
severity levels and their default actions are:

Level:Benign no action, returns Level:Benign
Level:User displays message, returns Level:Benign or Level:Cancel
Level:Notify displays message, returns Level:Benign
Level:Fatal displays message, halts the program
Level:Program treated as Level:Fatal
any other value treated as Level:Program

You may define your own additional severity levels and their associated
actions.

Predefined Windows and Database Errors

A list of common database errors are defined in ABERROR.TRN for your
use and for the ABC Templates. The defined “errors” include questions,
warnings, messages, notifications, benign tracing calls, as well as true errors.

You may edit these error definitions to suit your own requirements. That is,
you may add new error definitions, change the wording of the error message
text, or even translate the English text to another language.

Note: If you use the ABC Templates you should not remove any of
the default error definitions or change their ID numbers.

Dynamic Extensibility of Errors

You may add new error definitions, override default error definitions, and
modify default error definitions at runtime with the methods provided for
these purposes:

AddErrors Adds new errors, overrides errors, or both.
RemoveErrors Removes errors, restores overridden errors, or both.
SetFatality Modifies the severity level of an error.

ABC Template Implementation

The ABC Templates instantiate a global ErrorClass object called
GlobalErrors. All template recognized errors are defined at program startup
and almost every generated procedure then relies on the GlobalErrors object
to handle known error conditions. You can use the Application Template’s
Global Properties dialog to specify a different class to instantiate as
GlobalErrors—providing complete flexibility for error handling in your
template generated procedures.

CHAPTER 27 ERROR CLASS 469

Relationship to Other Application Builder Classes

All the classes that access files (ASCIIFileClass, ASCIIViewerClass,
FileManager, RelationManager, ViewManager, and BrowseClass) use the
ErrorClass. Therefore, if your program instantiates any of these classes, it
must also instantiate the ErrorClass.

Macro Expansion

The following ErrorClass methods allow runtime customization of error
message text through expansion of macro symbols:

GetProcedureName Names the procedure that produced the error.
SetField Names the field that produced the error.
SetFile Names the file that produced the error.
ThrowFile Names the file that produced the error, then handles the error.
ThrowMessage Modifies error text, then handles the error.

Each error has associated message text. The error message text may contain
macro symbols recognized by the ErrorClass object. The ErrorClass object
expands these macro symbols to their current runtime values before
displaying the message. Supported macros and their runtime substitution
values are:

%File The ErrorClass.FileName property
%Field The ErrorClass.FieldName property
%Message The ErrorClass.MessageText property
%Error Value returned by ERROR()
%ErrorCode Value returned by ERRORCODE()
%FileError Value returned by FILEERROR()
%FileErrorCode Value returned by FILEERRORCODE()
%ErrorText %Error(%ErrorCode) or %FileError(%FileErrorCode)
%Previous Text from prior defined error with the same id
%Procedure The Window procedure enclosing the current error

The %ErrorText macro uses %FileError(%FileErrorCode)—the more
specific backend server error information—when it is available, otherwise it
uses %Error(%ErrorCode).

This macro expansion capability is a feature of the ErrorClass and is not a
feature of the Clarion language in general.

Tip: You do not need to specify two percent signs (%%) to display a
percent sign (%) in your message text.

470 CLARION 5 APPLICATION HANDBOOK

Multi-Language Capability

Because all error message text is defined in one place (ABERROR.TRN), it
is easy to implement non-English error messages. For static (permanent)
language translation, simply translate the English text in ABERROR.TRN to
the language of your choice. Alternatively, for dynamic language translation,
you may add an error definition block to ABERROR.TRN for each
supported language. For example in ABERROR.TRN declare:

DefaultErrors GROUP !English error messages
END

GermanErrors GROUP !German error messages
END

Then at runtime, initialize the error manager with the appropriate error
definition block. For example, you could override the Init method (defined in
ABERROR.CLW) with something like this:

INCLUDE(‘ABERROR.INC’) !declare ErrorClass
MyErrorClass CLASS(ErrorClass) !declare derived class
Init PROCEDURE(BYTE PreferredLanguage)

END

GlobalErrors MyErrorClass !declare GlobalErrors object
Language BYTE !Language Flag
Language:English EQUATE(0) !English equate
Language:German EQUATE(1) !German equate

CODE
Language = GETINI('Preferences','Language',0) !get language preference
GlobalErrors.Init(Language) !GlobalErrors initialization

!with preferred language
.
.
.

MyErrorClass.Init PROCEDURE(BYTE PreferredLanguage) !New Init method
CODE
SELF.Errors &= NEW ErrorEntry !allocate new Errors list
CASE PreferredLanguage !which language was selected
OF Language:German !if German
SELF.AddErrors(GermanErrors) !add German errors to list

ELSE !otherwise...
SELF.AddErrors(DefaultErrors) !add default (English) errors

END

Alternatively, you could call the AddErrors method to define additional
errors for the selected language as shown in the following example.

CHAPTER 27 ERROR CLASS 471

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate an ErrorClass object.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE(‘ABERROR.INC’) !include ErrorClass declarations

AppErrors GROUP !declare app specific errors
Number USHORT(2) !number of errors in this group

USHORT(Msg:DuplicateKey) !first error ID
BYTE(Level:Notify) !severity level
PSTRING('Duplicate Key') !window title
PSTRING('%File key is invalid.') !message text with macro
USHORT(Msg:FieldOutOfRange) !second error ID
BYTE(Level:Notify) !severity level
PSTRING('Range Error') !window title
PSTRING('%Field must be between %Message.') !message text

END

GlobalErrors ErrorClass !declare GlobalErrors object

CODE
GlobalErrors.Init !initialize (add default errors)
GlobalErrors.AddErrors(AppErrors) !add app specific errors
GlobalErrors.SetFatality(Msg:DuplicateKey,Level:Fatal)!modify severity of an error
!
!program code
!
!user attempts to enter invalid month value...
GlobalErrors.SetField(‘Month’) !set %Field for macro expansion
GlobalErrors.ThrowMessage(Msg:FieldOutOfRange,’1 and 12’) !pass error to errormanager
!
!user attempts to insert a duplicate key...
GlobalErrors.SetFile(‘Customer’) !set %File for macro expansion
GlobalErrors.Throw(Msg:DuplicateKey) !pass error to errormanager
!program code
!
GlobalErrors.Kill !shut down GlobalErrors object

472 CLARION 5 APPLICATION HANDBOOK

ErrorClass Properties
There are two types of ErrorClass properties, the Errors list and the macro
substitution values. The most important property is the Errors list—the list of
errors recognized by ErrorClass. The defined “errors” may actually include
questions, warnings, notifications, benign tracing calls, as well as true errors.
This list is established by the ErrorClass initialization method,
ErrorClass.Init. The list may be modified thereafter by methods provided for
this purpose, allowing application specific errors (such as field specific
invalid data messages).

The other three ErrorClass properties support the error text “macros”
recognized by the error manager. The error manager expands these macro
symbols to their current runtime values before displaying the message.

Errors (recognized error definitions)

Errors &ErrorEntry, PROTECTED

The Errors property is a reference to the data structure that holds all errors
recognized by the ErrorClass. The defined “errors” may actually include
questions, warnings, messages, notifications, benign tracing calls, as well as
true error conditions.

The default errors are defined in ABERROR.TRN. You may edit
ABERROR.TRN to customize the default error list. The Init method adds
these default error definitions to the Errors property at runtime. You may also
use the SetFatality method, the AddErrors method, and the RemoveErrors
method to customize the Errors property at runtime.

The SetFatality method changes the severity level of a specified error.

The AddErrors method lets you add more error definitions, override existing
error definitions, or both. The Errors property may have more than one error
with the same ID. Error definitions added later “override” any earlier
definitions with the same IDs. The “overridden” definitions are preserved for
substitution into the %Previous macro symbol.

The RemoveErrors method lets you remove error definitions, restore
previously overridden errors, or both.

The error message text may contain “macros” recognized by the error
manager. The error manager expands these macro symbols to their current
runtime values before displaying the message. See Macro Expansion for
more information.

CHAPTER 27 ERROR CLASS 473

Implementation: Errors is a reference to a queue declared in ABERROR.INC as follows. For
each recognized error, the Errors property includes an ID number, error
message text, window title text, and a severity indicator.

ErrorEntry QUEUE,TYPE !List of all error definitions
Id USHORT !Error message identifier
Message &STRING !Message text
Title &STRING !Error window caption bar text
Fatality BYTE !Severity of error

END

See Also: AddErrors, Init, RemoveErrors, SetFatality

FieldName (field that produced the error)

FieldName CSTRING(MessageMaxlen), PROTECTED

The FieldName property contains the name of the field that produced the
error. The SetField method sets the value of the FieldName property. The
FieldName value replaces any %Field symbols within the error message text.

MessageMaxlen is a constant EQUATE declared in ABERROR.INC.

See Also: SetField

FileName (file that produced the error)

FileName CSTRING(MessageMaxlen), PROTECTED

The FileName property contains the name of the file that produced the error.
The SetFile and ThrowFile methods both set the value of the FileName
property. The FileName value then replaces any %File symbols within the
error message text.

MessageMaxlen is a constant EQUATE declared in ABERROR.INC.

See Also: SetFile, ThrowFile

MessageText (custom error message text)

MessageText CSTRING(MessageMaxlen), PROTECTED

The MessageText property contains text to substitute for any %Message
symbols within the error message text. The ThrowMessage method sets the
value of the MessageText property. The MessageText value then replaces any
%Message symbols within the error message text.

MessageMaxlen is a constant EQUATE declared in ABERROR.INC.

See Also: ThrowMessage

474 CLARION 5 APPLICATION HANDBOOK

ErrorClass Methods

Functional Organization—Expected Use

As an aid to understanding the ErrorClass, it is useful to organize the various
ErrorClass methods into two large categories according to their expected
use—the primary interface and the virtual methods. This organization
reflects what we believe is typical use of the ErrorClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the ErrorClass object
AddErrors add or override recognized error definitions
SetFatality change the severity level of a specific error
Kill terminate the ErrorClass object

Mainstream Use:
Throw process an error
ThrowFile set substitution value of %File then process an error
ThrowMessage set substitution value of %Message then process an error
Message display an error message from the Errors list

Occasional Use:
SetField set the substitution value of the %Field macro
SetFile set the substitution value of the %File macro
SetErrors save the current error state
SetId make a selected error the current one
RemoveErrors remove (and/or restore) error definitions
TakeError process an error, assuming SetErrors has been called

Virtual Methods

Typically, you will not call these methods directly—the Primary Interface
methods call them. We anticipate you will want to override these methods,
and because they are virtual, they are very easy to override. However they do
provide reasonable default behavior in case you do not want to override
them. These methods are listed functionally rather than alphabetically.

TakeBenign process benign errors
TakeNotify process notify errors
TakeUser process user errors
TakeFatal process fatal errors
TakeProgram process program errors
TakeOther process any other errors

CHAPTER 27 ERROR CLASS 475

AddErrors (add or override recognized errors)

AddErrors(error block), VIRTUAL

AddErrors Adds entries to the Errors property from the error block
passed to it.

error block A GROUP whose first component field is a USHORT
containing the number of error entries in the GROUP.
Subsequent component fields define the error entries.

The AddErrors method receives error entries and adds them to the existing
Errors property. These later added Error definitions “override” any earlier
definitions with the same IDs. The “overridden” definitions are preserved for
substitution into the %Previous macro symbol, and may be fully restored by
removing the overriding error entries with the RemoveErrors method.

Implementation: AddErrors assumes the Errors property has already been created by Init or by
some other method.

Each error block entry consists of a USHORT containing the error ID, a
BYTE containing the severity level, a PSTRING containing the title to
display on the error message window, and another PSTRING containing the
error message text.

Example:

AppErrors GROUP
Number USHORT(2) !number of errors in the group

USHORT(Msg:RebuildKey) !first error ID
BYTE(Level:Notify) !severity level
PSTRING('Invalid Key') !window title
PSTRING('%File key is invalid.') !message text
USHORT(Msg:RebuildFailed) !second error ID
BYTE(Level:Fatal) !severity level
PSTRING('Key was not built') !window title
PSTRING('Repairing key for %File.') !message text

END
GlobalErrors ErrorClass !declare GlobalErrors object
CODE
GlobalErrors.Init !GlobalErrors initialization
GlobalErrors.AddErrors(AppErrors) !add some app specific errors
Main !call main procedure
GlobalErrors.Kill !GlobalErrors termination

See Also: Init, Errors, RemoveErrors

476 CLARION 5 APPLICATION HANDBOOK

GetProcedureName (return procedure name)

GetProcedureName

The GetProcedureName method returns the name of the procedure in
which it has been called.

Implementation: Returns the name of the procedure as established in t he .APP file providing
that the procedure name has been added to a PRIVATE queue by the
SetProcedureName method. The GetProcedureName method is not called by
any other methods or templates.

Return Data Type: STRING

Example: MESSAGE(GlobalErrors.GetProcedureName()) ! Displays the procedure name in
! a MESSAGE dialog

See Also: SetProcedureName

Init (initialize the ErrorClass object)

Init

The Init method initializes the ErrorClass object and adds the default errors.

Implementation: Creates the Errors property and calls the AddErrors method to initialize it
with the default errors defined in ABERROR.TRN. Default error ID
EQUATEs are defined in ABERROR.INC.

The standard templates instantiate a single global ErrorClass object and
make a single global call to Init. However, you may wish to instantiate an
ErrorClass object with a separate set of errors for each base class, or for any
other logical entity (for example a PayrollErrors object for the Payroll
segment of your program).

Example:

GlobalErrors ErrorClass !declare GlobalErrors object
CODE
GlobalErrors.Init !GlobalErrors initialization
Main !call main procedure
GlobalErrors.Kill !GlobalErrors termination

See Also: AddErrors, Errors, Kill

CHAPTER 27 ERROR CLASS 477

Kill (perform any necessary termination code)

Kill

The Kill method disposes any memory allocated during the object’s lifetime
and performs any other necessary termination code.

Implementation: Disposes the Errors queue created by the Init method.

Example:

GlobalErrors ErrorClass !declare GlobalErrors object
CODE
GlobalErrors.Init !GlobalErrors initialization
Main !call main procedure
GlobalErrors.Kill !GlobalErrors termination

See Also: Init

478 CLARION 5 APPLICATION HANDBOOK

Message (display an error message)

Message(error id, buttons, default button)

Message Displays an error message dialog box and returns the
button the user pressed.

error id An integer constant, variable, EQUATE, or expression
that indicates which ErrorClass.Errors message to show
in the dialog box.

buttons An integer constant, variable, EQUATE, or expression
that indicates which Windows standard buttons to place
on the dialog box. This may indicate multiple buttons.

default button An integer constant, variable, EQUATE, or expression
that indicates the default button on the dialog box.

The Message method displays a Windows-standard message box containing
the error message text from the Errors property, and returns the number of
the button the user presses to exit the dialog box. This method provides a
simple, centrally maintainable, consistent way to display messages.

Implementation: Uses the MESSAGE statement to display an application modal window with
a question icon, the caption defined in the Errors property, and the message
text defined in the Errors property.

The ABERROR.INC file contains a list of default symbolic constants for the
error id parameter.

The EQUATES.CLW file contains symbolic constants for the buttons and
default button parameters. The EQUATEs are:

BUTTON:OK
BUTTON:YES
BUTTON:NO
BUTTON:ABORT
BUTTON:RETRY
BUTTON:IGNORE
BUTTON:CANCEL
BUTTON:HELP

Return Data Type: LONG

Example:

!attempted auto increment of key has failed,
!show Message box with Yes and No buttons, the default is No

GlobalErrors.SetErrors !Set value of %ErrorText macro
IF GlobalErrors.Message(Msg:RetryAutoInc,BUTTON:Yes+BUTTON:No,BUTTON:No) = BUTTON:Yes
CYCLE

END

CHAPTER 27 ERROR CLASS 479

RemoveErrors (remove or restore recognized errors)

RemoveErrors(error block)

RemoveErrors Removes the entries specified in the error block from the
Errors property.

error block A GROUP whose first component field is a USHORT
containing the number of error entries in the GROUP.
Subsequent component fields define the error entries.

The RemoveErrors method receives error entries and deletes them from the
existing Errors property.

The Errors property may contain more than one error with the same ID.
Errors added later override earlier added errors with the same IDs. If you
remove an overriding error definition, the “overridden” error is fully
restored.

Implementation: RemoveErrors assumes the Errors property has already been created by Init
or by some other method.

Each error block entry consists of a USHORT containing the error ID, a
BYTE containing the severity level, a PSTRING containing the title to
display on the error message window, and another PSTRING containing the
error message text. However, RemoveErrors only considers the error ID
when removing errors.

Example:

GlobalErrors ErrorClass !declare GlobalErrors object
Payroll PROCEDURE
PayErrors GROUP,STATIC
Number USHORT(2) !number of errors in the group

USHORT(Msg:RebuildKey) !first error ID
BYTE(Level:Notify) !severity level
PSTRING('Invalid Key') !window title
PSTRING('%File key is invalid.') !message text
USHORT(Msg:RebuildFailed) !second error ID
BYTE(Level:Fatal) !severity level
PSTRING('Key was not built') !window title
PSTRING('Repairing key for %File.') !message text

END
CODE
GlobalErrors.AddErrors(PayErrors) !add Payroll specific errors
!process payroll
GlobalErrors.RemoveErrors(PayErrors) !remove Payroll specific errors

See Also: AddErrors, Init, Errors

480 CLARION 5 APPLICATION HANDBOOK

SetErrors (save the error state)

SetErrors

The SetErrors method saves the current error state for use by the
ErrorClass.

Implementation: The SetErrors method saves the return values from ERROR(),
ERRORCODE(), FILEERROR(), and FILERERRORCODE(). The saved
values are used for expansion of any %Error, %ErrorCode, %FileError, or
%FileErrorCode macro symbols within the error message text.

The Throw method calls SetErrors prior to handling the specified error,
therefore you only need to call the SetErrors method when you do not use the
Throw method.

Example:

!an error occurs
GlobalErrors.SetErrors !save the error state
OPEN(LogFile) !open log (changes the error state)
Log:Text = FORMAT(TODAY(),@D1)&’ ‘&FORMAT(CLOCK(),@T1)
ADD(LogFile) !write log (changes the error state)
RETURN GlobalErrors.TakeError(Msg:AddFailed) !process error with saved error state

See Also: Throw

CHAPTER 27 ERROR CLASS 481

SetFatality (set severity level for a particular error)

SetFatality(error id, severity)

SetFatality Specifies the severity of a particular error in the Errors
property.

error id An integer constant, variable, EQUATE, or expression
that indicates which error definition to modify.

severity An integer constant, variable, EQUATE, or expression
that indicates the severity of the error.

The SetFatality method specifies the severity of a particular error in the
Errors property. If there is more than one error with the same error id, only
the last matching error in the list is affected.

Implementation: The SetFatality method calls the SetId method to locate the specified error.

The ABERROR.INC file contains a list of default symbolic constants for the
error id parameter. It also contains symbolic constants for the severity
parameter. The severity EQUATEs and their default actions are:

Level:Benign no action, returns Level:Benign
Level:User displays message, returns Level:Benign or Level:Cancel
Level:Notify displays message, returns Level:Benign
Level:Fatal displays message, halts the program
Level:Program treated as Level:Fatal
any other value treated as Level:Program

You may define your own additional severity levels and their associated
actions.

Example:

GlobalErrors ErrorClass
CODE
GlobalErrors.Init
GlobalErrors.SetFatality(Msg:CreateFailed,Level:Fatal) !change severity to fatal
CREATE(MyFile)
IF ERRORCODE()
GlobalErrors.SetFile(‘MyFile’) !specify file that failed
GlobalErrors.Throw(Msg:CreateFailed) !issue fatal error message

END

See Also: Errors, SetId

482 CLARION 5 APPLICATION HANDBOOK

SetField (set the substitution value of the %Field macro)

SetField(fieldname)

SetField Sets the substitution value of the %Field macro.

fieldname A string constant, variable, EQUATE, or expression that
indicates which field produced the error.

The SetField method sets the substitution value of the %Field macro. This
value replaces any %Field symbols within the error message text.

Implementation: Assigns the fieldname parameter to the ErrorClass.FieldName property.

Example:

!Lookup on State Code failed
GlobalErrors.SetField(‘State’) !set field that failed
GlobalErrors.ThrowMessage(Msg:FieldNotInFile,’State File’) !process the error

See Also: FieldName

SetFile (set the substitution value of the %File macro)

SetFile(filename)

SetFile Sets the substitution value of the %File macro.

filename A string constant, variable, EQUATE, or expression that
indicates which file produced the error.

The SetFile method sets the substitution value of the %File macro. This
value replaces any %File symbols within the error message text.

The ThrowFile method sets the %File macro before processing the specified
error. That is, ThrowFile combines the functionality of SetFile and Throw
into a single method.

Implementation: Assigns the filename parameter to the ErrorClass.FileName property.

Example:

CREATE(MyFile)
IF ERRORCODE() !if error occurred
GlobalErrors.SetFile(NAME(MyFile)) !set file that failed
GlobalErrors.Throw(Msg:CreateFailed) !process the error

END

See Also: FileName, ThrowFile

CHAPTER 27 ERROR CLASS 483

SetId (make a specific error current)

SetId(error id), PROTECTED

SetId Makes the specified error the current one.

error id An integer constant, variable, EQUATE, or expression
that indicates which error definition is current.

The SetId method makes the specified error the current one for processing
by other ErrorClass methods. If more than one error definition matches the
specified error id, the last defined error is used. This lets errors defined later
override earlier defined errors with the same ID, while preserving the earlier
defined errors for substitution into the %Previous macro symbol.

This method is PROTECTED, therefore, it can only be called from an
ErrorClass method, or a method in a class derived from ErrorClass.

Implementation: The ABERROR.INC file contains a list of default EQUATEs for the error id
parameter.

Example:

ErrorClass.TakeError PROCEDURE(SHORT Id)
 CODE
SELF.SetId(Id)
CASE SELF.Errors.Fatality
OF Level:Benign
RETURN SELF.TakeBenign()

OF Level:User
OROF Level:Cancel
RETURN SELF.TakeUser()

OF Level:Program
RETURN SELF.TakeProgram()

OF Level:Fatal
RETURN SELF.TakeFatal()

OF Level:Notify
SELF.TakeNotify()
RETURN Level:Notify

ELSE
RETURN SELF.TakeOther()

END

See Also: Errors

484 CLARION 5 APPLICATION HANDBOOK

SetProcedureName (stores procedure names)

SetProcedureName([name])

SetProcedureName
The SetProcedureName method stores the
name ofthe procedure, as defined in the .APP
file, in a PRIVATE queue.

name A string constant, variable or EQUATE containing the
name of the procedure to add to ProcName queue. If
omitted, the current procedure name is deleted from the
ProcName queue.

Implementation: SetProcedureName is called by the ABWindow.tpw so that every template
generated procedure utilizing a window will have an entry in the ProcName
queue. SetProcedureName is inserted into the Init method of the window
using the %Procedure macro as the passed parameter. It is called again in
the Kill method of the window, and the name parameter is omitted.

The ProcName queue is a PRIVATE queue declared in ABError.clw.

Example:

GlobalErrors.SetProcedureName('%Procedure')

See Also: GetProcedureName

SubsString (resolves error message macros)

SubsString, PROTECTED

The SubsString method returns the current error message text with all
runtime macros resolved.

Implementation: The TakeFatal, TakeNotify, TakeUser, and Message methods call the
SubsString method to resolve macros.

Return Data Type: STRING

ErrorClass.TakeFatal PROCEDURE
 CODE
MESSAGE(Self.SubsString() & ' Press OK to end this application', |
Self.Errors.Title,ICON:Exclamation,Button:OK,BUTTON:OK,0)

HALT(0,Self.Errors.Title)
RETURN Level:Fatal

See Also: FileName, FieldName, Macro Expansion, Message, MessageText, TakeFatal,
TakeNotify, TakeUser

CHAPTER 27 ERROR CLASS 485

TakeBenign (process benign error)

TakeBenign, PROTECTED, VIRTUAL, PROC

The TakeBenign method is called when an error with Level:Benign is
“Thrown” to the ErrorClass (see Throw, ThrowFile, ThrowMessage).

TakeBenign must return a severity level.

Implementation: The base class method (ErrorClass.TakeBenign) returns Level:Benign.

Return Data Type: BYTE

Example:

INCLUDE(‘ABERROR.INC’) !declare ErrorClass
MyErrorClass CLASS(ErrorClass) !declare derived class
TakeBenign FUNCTION,BYTE,VIRTUAL !prototype corresponding virtual

END
GlobalErrors MyErrorClass !declare GlobalErrors object
CODE
GlobalErrors.Init !GlobalErrors initialization
.
.
.
GlobalErrors.Throw(Msg:NoError) !Throw method calls SELF.TakeBenign to

!automatically call the derived class method
!rather than the base class method

.

.

.

MyErrorClass.TakeBenign FUNCTION !derived class virtual to handle benign errors
CODE

 !your custom code here
RETURN Level:Benign

See Also: TakeError, Throw, ThrowFile, ThrowMessage

486 CLARION 5 APPLICATION HANDBOOK

TakeError (process specified error)

TakeError(error id), PROC

TakeError Locates the specified error, calls the appropriate method
to handle it, then returns the severity level.

error id An integer constant, variable, EQUATE, or expression
that indicates which error to process.

The TakeError method locates the specified error, then based on its severity
level calls the appropriate (TakeLevel) method to process the error, then
returns the severity level.

TakeError assumes SetErrors has already been called to save the current
error state.

Implementation: The ABERROR.INC file contains a list of default symbolic constants for the
error id parameter.

By default, the error manager recognizes six different levels of error severity.
The TakeError method calls a different virtual method (TakeLevel) for each
severity level, which makes it easy to override the default error actions with
your own application-specific error actions. The recognized severity
EQUATEs are declared in ABERROR.INC. These severity levels and their
default actions are:

Level:Benign no action, returns Level:Benign
Level:User displays message, returns Level:Benign or Level:Cancel
Level:Notify displays message, returns Level:Benign
Level:Fatal displays message, halts the program
Level:Program treated as Level:Fatal
any other value treated as Level:Program

Return Data Type: BYTE

See Also: Errors, SetErrors, TakeBenign, TakeNotify, TakeUser, TakeFatal,
TakeProgram, TakeOther, Throw

CHAPTER 27 ERROR CLASS 487

TakeFatal (process fatal error)

TakeFatal, PROTECTED, VIRTUAL, PROC

The TakeFatal method is called when an error with Level:Fatal is “Thrown”
to the ErrorClass (see Throw, ThrowFile, ThrowMessage).

TakeFatal must return a severity level (if the program is not HALTed).

Implementation: The base class method (ErrorClass.TakeFatal) displays the error message and
HALTs the program. Although this method does not actually return, the
RETURN statement is required to avoid compile errors.

Return Data Type: BYTE

Example:

INCLUDE(‘ABERROR.INC’) !declare ErrorClass
MyErrorClass CLASS(ErrorClass) !declare derived class
TakeFatal FUNCTION,BYTE,VIRTUAL !prototype corresponding virtual

END
GlobalErrors MyErrorClass !declare GlobalErrors object
CODE
GlobalErrors.Init !GlobalErrors initialization
!program code
GlobalErrors.Throw(Msg:CreateFailed) !Throw method calls SELF.TakeFatal to

!automatically call the derived class method
!rather than the base class method

!program code

MyErrorClass.TakeFatal FUNCTION !derived class virtual to handle fatal errors
CODE
!your custom code here
RETURN Level:Fatal

See Also: TakeError, Throw, ThrowFile, ThrowMessage

488 CLARION 5 APPLICATION HANDBOOK

TakeNotify (process notify error)

TakeNotify, PROTECTED, VIRTUAL

The TakeNotify method is called when an error with Level:Notify is
“Thrown” to the ErrorClass (see Throw, ThrowFile, ThrowMessage).

Implementation: The base class method (ErrorClass.TakeNotify) displays the error message
and returns nothing. Note however, that the various “Throw” methods return
Level:Benign (via the TakeError method) when a Level:Notify error is
“Thrown.”

Example:

INCLUDE(‘ABERROR.INC’) !declare ErrorClass
MyErrorClass CLASS(ErrorClass) !declare derived class
TakeNotify PROCEDURE,VIRTUAL !prototype corresponding virtual

END
GlobalErrors MyErrorClass !declare GlobalErrors object
CODE
GlobalErrors.Init !GlobalErrors initialization
!program code
GlobalErrors.Throw(Msg:CreateFailed) !Throw method calls SELF.TakeNotify to

!automatically call the derived class method
!rather than the base class method

!program code

MyErrorClass.TakeNotify PROCEDURE !derived class virtual to handle notify errors
 CODE
!your custom code here
RETURN

See Also: TakeError, Throw, ThrowFile, ThrowMessage

CHAPTER 27 ERROR CLASS 489

TakeOther (process other error)

TakeOther, PROTECTED, VIRTUAL, PROC

The TakeOther method is called when an error with an unrecognized
severity level is “Thrown” to the ErrorClass (see Throw, ThrowFile,
ThrowMessage). By default, an “other” error is treated as a program error.

TakeOther must return a severity level.

Implementation: The base class method (ErrorClass.TakeOther) calls TakeProgram.

Return Data Type: BYTE

Example:

INCLUDE(‘ABERROR.INC’) !declare ErrorClass
MyErrorClass CLASS(ErrorClass) !declare derived class
TakeOther FUNCTION,BYTE,VIRTUAL !prototype corresponding virtual

END
GlobalErrors MyErrorClass !declare GlobalErrors object
CODE
GlobalErrors.Init !GlobalErrors initialization
!program code
GlobalErrors.Throw(Msg:CreateFailed) !Throw calls SELF.TakeOther to

!automatically call the derived class method
!rather than the base class method

!program code

MyErrorClass.TakeOther FUNCTION !derived class virtual to handle “other” errors
 CODE
!your custom code here
RETURN Level:Program

See Also: TakeError, Throw, ThrowFile, ThrowMessage

490 CLARION 5 APPLICATION HANDBOOK

TakeProgram (process program error)

TakeProgram, PROTECTED, VIRTUAL, PROC

The TakeProgram method is called when an error with Level:Program is
“Thrown” to the ErrorClass (see Throw, ThrowFile, ThrowMessage). By
default, a program error is treated as a fatal error.

TakeProgram must return a severity level.

Implementation: The base class method (ErrorClass.TakeProgram) calls TakeFatal.

Return Data Type: BYTE

Example:

INCLUDE(‘ABERROR.INC’) !declare ErrorClass
MyErrorClass CLASS(ErrorClass) !declare derived class
TakeProgram FUNCTION,BYTE,VIRTUAL !prototype corresponding virtual

END
GlobalErrors MyErrorClass !declare GlobalErrors object
CODE
GlobalErrors.Init !GlobalErrors initialization
!program code
GlobalErrors.Throw(Msg:CreateFailed) !Throw calls SELF.TakeProgram to

!automatically call the derived class method
!rather than the base class method

!program code

MyErrorClass.TakeProgram FUNCTION !derived class virtual to handle program errors
 CODE
!your custom code here
RETURN Level:Program

See Also: TakeError, Throw, ThrowFile, ThrowMessage

CHAPTER 27 ERROR CLASS 491

TakeUser (process user error)

TakeUser, PROTECTED, VIRTUAL, PROC

The TakeUser method is called when an error with Level:User is “Thrown”
to the ErrorClass (see Throw, ThrowFile, ThrowMessage).

TakeUser must return a severity level to denote the user’s response.

Implementation: The base class method (ErrorClass.TakeUser) displays the error message and
returns either Level:Benign or Level:Cancel depending on the end user’s
response.

Return Data Type: BYTE

Example:

INCLUDE(‘ABERROR.INC’) !declare ErrorClass
MyErrorClass CLASS(ErrorClass) !declare derived class
TakeUser FUNCTION,BYTE,VIRTUAL !prototype corresponding virtual

END
GlobalErrors MyErrorClass !declare GlobalErrors object
CODE
GlobalErrors.Init !GlobalErrors initialization
!program code
GlobalErrors.Throw(Msg:CreateFailed) !Throw method calls SELF.TakeUser to

!automatically call the derived class method
. !rather than the base class method
!program code

MyErrorClass.TakeUser FUNCTION !derived class virtual to handle user errors
CODE
!your custom code here
IF MESSAGE(SELF.SubsString(),SELF.Errors.Title,ICON:Question, |
 Button:Yes+Button:No,BUTTON:Yes,0) = Button:Yes
!your custom code here
RETURN Level:Benign

ELSE
!your custom code here
RETURN Level:Cancel

END

See Also: TakeError, Throw, ThrowFile, ThrowMessage

492 CLARION 5 APPLICATION HANDBOOK

Throw (process specified error)

Throw(error id), PROC

Throw Processes the specified error then returns its severity
level.

error id An integer constant, variable, EQUATE, or expression
that indicates which error to process.

The Throw method processes the specified error by calling other ErrorClass
methods, then returns its severity level.

Typically, Throw is the method your program calls when it encounters a
known error. That is, as your program encounters errors or other notable
conditions, it simply calls the Throw method or one of its variations
(ThrowFile or ThrowMessage), passing it the appropriate error id. Throw
then calls any other ErrorClass methods required to handle the specified
error.

Implementation: The Throw method saves the error state (ERROR, ERRORCODE,
FILEERROR, and FILEERRORCODE), locates the specified error, calls the
appropriate method to handle the error according to its severity level, then
returns the severity level.

The ABERROR.INC file contains a list of default symbolic constants for the
error id parameter.

Note: The Throw method may or may not RETURN to your calling
program, depending on the severity of the error.

Return Data Type: BYTE

Example:

!user level error occurred. ask user to confirm
Severity = GlobalErrors.Throw(Msg:ConfirmCancel)!handle the error condition
IF Severity = Level:Cancel
LocalResponse = RequestCancelled
DO ProcedureReturn

END

See Also: Errors, ThrowFile, ThrowMessage

CHAPTER 27 ERROR CLASS 493

ThrowFile (set value of %File, then process error)

ThrowFile(error id, filename), PROC

ThrowFile Sets the substitution value of %File, then processes the
error.

error id An integer constant, variable, EQUATE, or expression
that indicates which error to process.

filename A string constant, variable, EQUATE, or expression that
indicates which file produced the error.

The ThrowFile method sets the substitution value of %File, then processes
the error, and finally returns the severity level of the error.

ThrowFile combines the functionality of SetFile and Throw into a single
method.

Implementation: The ABERROR.INC file contains a list of default symbolic constants for the
error id parameter. The value of the ErrorClass.FileName property is
substituted for any %File symbols in the error message text.

Note: The ThrowFile method may or may not RETURN to your calling
program, depending on the severity of the error.

Return Data Type: BYTE

Example:

OPEN(MyFile)
IF ERRORCODE()
Severity = GlobalErrors.ThrowFile(Msg:OpenFailed, NAME(MyFile))

END

See Also: FileName, SetFile, Throw

494 CLARION 5 APPLICATION HANDBOOK

CHAPTER 28 FIELDPAIRSCLASS 495

28 - FIELDPAIRSCLASS

Overview
In database oriented programs there are some fundamental operations that
occur over and over again. Among these repetitive operations is the saving
and restoring of field values, and comparing current field values against
previous values.

The ABC Library provides two classes (FieldPairsClass and
BufferedPairsClass) that supply this basic buffer management. These classes
are completely generic so that they may apply to any pairs of fields,
regardless of the fields’ origins.

Tip: The fundamental benefit of these classes is their generality;
that is, they let you move data between pairs of structures
such as FILE or QUEUE buffers, and compare the data, without
knowing in advance what the buffer structures look like or, for
that matter, without requiring that the fields even reside in
conventional buffer structures.

In some ways the FieldPairsClass is similar to Clarion’s deep assignment
operator (:=: see the Language Reference for a description of this operator).
However, the FieldPairsClass has the following advantages over deep
assignment:

• Field pair labels need not be an exact match
• Field pairs are not limited to GROUPs, RECORDs, and QUEUEs
• Field pairs are not restricted to a single source and a single destination
• You can compare the sets of fields for equivalence
• You can mimic a data structure where no structure exists

The FieldPairsClass has the disadvantage of not handling arrays (because the
FieldPairsClass relies on the ANY datatype which only accepts references to
simple datatypes). See the Language Reference for more information on the
ANY datatype.

FieldPairsClass Concepts

The FieldPairsClass lets you move data between field pairs, and lets you
compare the field pairs to detect whether any changes occurred since the last
operation.

This class provides methods that let you identify or “set up” the targeted
field pairs.

496 CLARION 5 APPLICATION HANDBOOK

Once the field pairs are identified, you call a single method to move all the
fields in one direction (left to right), and another method to move all the
fields in the other direction (right to left). You simply have to remember
which entity (set of fields) you described as “left” and which entity you
described as “right.” A third method compares the two sets of fields and
returns a value to indicate whether or not they are equivalent.

Note: The paired fields need not be contiguous in memory, nor do
they need to be part of a structure. You can build a virtual
structure simply by adding a series of otherwise unrelated
fields to a FieldPairs object. The other FieldPairs methods then
operate on this virtual structure.

Relationship to Other Application Builder Classes

The ViewManager and the BrowseClass use the FieldPairsClass and
BufferedPairsClass to accomplish various tasks.

The BufferedPairsClass is derived from the FieldPairs class, so it provides all
the functionality of the FieldPairsClass; however, this class also provides a
third buffer area (a “save” area), plus the ability to compare the save area
with the primary buffers, and the ability to restore data from the save area to
the primary buffers (to implement a standard “cancel” operation).

ABC Template Implementation

Various ABC Library objects instantiate the FieldPairsClass as needed;
therefore, the template generated code does not directly reference the
FieldPairsClass (or BufferedPairsClass).

FieldPairsClass Source Files

The FieldPairsClass source code is installed by default in the Clarion
\LIBSRC folder. The specific files and their respective components are:

ABUTIL.INC FieldPairsClass declarations
ABUTIL.CLW FieldPairsClass method definitions

CHAPTER 28 FIELDPAIRSCLASS 497

Conceptual Example

Here is a concrete example to help you understand the FieldPairsClass. The
following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a FieldPairsClass object.

Let’s assume you have a Customer file declared as:

Customer FILE,DRIVER('TOPSPEED'),PRE(CUST),CREATE,BINDABLE
ByNumber KEY(CUST:CustNo),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CustNo LONG
Name STRING(30)
Phone STRING(20)
Zip DECIMAL(5)

. .

And you have a Customer queue declared as:

CustQ QUEUE
CustNo LONG
Name STRING(30)
Phone STRING(20)
Zip DECIMAL(5)

END

And you want to move data between the file buffer and the queue buffer.

INCLUDE(‘ABUTIL.INC’) !declare FieldPairs Class
Fields FieldPairsClass !declare Fields object

CODE
Fields.Init !initialize FieldPairs object
Fields.AddPair(CUST:CustNo, CustQ.CustNo) !establish CustNo pair
Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair
Fields.AddPair(CUST:Zip, CustQ.Zip) !establish Zip pair

Fields.AssignLeftToRight !copy from Customer FILE to CustQ QUEUE

IF Fields.Equal() !compare the CustQ QUEUE and Customer FILE
MESSAGE(‘Buffers are equal’)

ELSE
MESSAGE(‘Buffers not equal’)

END

Fields.AssignRightToLeft !copy from CustQ QUEUE to Customer FILE

Fields.Kill !terminate FieldPairs object

498 CLARION 5 APPLICATION HANDBOOK

FieldPairsClass Properties
The FieldPairsClass contains the following properties.

List (recognized field pairs)

List &FieldPairsQueue

The List property is a reference to the structure that holds all the field pairs
recognized by the FieldPairsClass object. Use the AddPair or AddItem
methods to add field pairs to the List property. For each field pair, the List
property includes a “Left” field and a “Right” field.

The “Left” and “Right” designations are reflected in other method names
(for example, field assignments methods—AssignLeftToRight and
AssignRightToLeft) so you can easily and accurately control the movement
of data between the two sets of fields.

Implementation: List is a reference to a QUEUE declared in ABUTIL.INC as follows:

FieldPairsQueue QUEUE,TYPE
Left ANY
Right ANY

END

The Init method creates an empty List, and the Kill method disposes of the
List. AddPair and AddItem add field pairs to the List.

See Also: AddPair, AddItem, Init

CHAPTER 28 FIELDPAIRSCLASS 499

FieldPairsClass Methods
The FieldPairsClass contains the following methods.

Functional Organization—Expected Use

As an aid to understanding the FieldPairsClass, it is useful to organize its
various methods into two large categories according to their expected use—
the primary interface and the virtual methods. This organization reflects
what we believe is typical use of the FieldPairsClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the FieldPairsClass object
AddItem add a field pair based on one source field
Kill terminate the FieldPairsClass object

Mainstream Use:
AssignLeftToRight assign each “left” field to its “right” counterpart
AssignRightToLeft assign each “right” field to its “left” counterpart
Equal return 1 if all pairs are equal, 0 if any pair is not equal

Occasional Use:
ClearLeft CLEAR each “left” field
ClearRight CLEAR each “right” field
EqualLeftRight return 1 if all pairs are equal, 0 if any pair is not equal

Virtual Methods

Typically you will not call these methods directly. However, we anticipate
you will often want to override these methods, and because they are virtual,
they are very easy to override. These methods do provide reasonable default
behavior in case you do not want to override them.

AddPair add a field pair to the List property

500 CLARION 5 APPLICATION HANDBOOK

AddItem (add a field pair from one source field)

AddItem(left)

AddItem Adds a field pair to the List property from one source
field.

left The address of the “left” field of the pair. The field may
be any data type, but may not be an array.

The AddItem method adds a field pair to the List property from one source
field. The “right” field is supplied for you, and initially contains a copy of
the data in the “left” field.

The fields need not be contiguous in memory, nor do they need to be part of
a structure. Therefore you can build a virtual structure simply by adding a
series of otherwise unrelated fields to a FieldPairs object. The other
FieldPairs methods then operate on this virtual structure.

Implementation: AddItem assumes the List property has already been created by Init or by
some other method.

By calling AddItem for a series of fields, you effectively build two virtual
structures containing the fields—the “Left” is the original fields and the
“Right” contains a copy of the data in the original fields at the time you call
AddItem.

Example:

INCLUDE(‘ABUTIL.INC’) !declare FieldPairs Class
DKeyPair FieldPairsClass !declare FieldPairs reference

Org FILE !declare a file
DptKey KEY(Dept,Grade) !declare a multicomponent key

RECORD
Dept SHORT
Mgr SHORT
Grade SHORT

..
CODE
DKeyPair.Init !initialize FieldPairs object
DKeyPair.AddItem(Org:Dept) !add Dept (left) and a copy of Dept (right)
DKeyPair.AddItem(Org:Grade) !add Grade (left) and a copy of Grade (right)
!some code
DKeyPair.AssignLeftToRight !Save the current key fields’ values
SET(Org:DptKey,Org:DptKey) !position the file
NEXT(Org) !retrieve (hopefully) a specific record
IF ERRORCODE() OR | !confirm retrieval of matching record by
 ~DKeyPair.Equal() !comparing retrieved key values with saved values
MESSAGE('Record not found!')

END

See Also: Init, List

CHAPTER 28 FIELDPAIRSCLASS 501

AddPair (add a field pair)

AddPair(left, right), VIRTUAL

AddPair Adds a field pair to the List property.

left The label of the “left” field of the pair. The field may be
any data type, but may not be an array.

right The label of the “right” field of the pair. The field may
be any data type, but may not be an array.

The AddPair method adds a field pair to the List property. The fields need
not be contiguous in memory, nor do they need to be part of a structure.
Therefore you can build a virtual structure simply by adding a series of
otherwise unrelated fields to a FieldPairs object. The other FieldPairs
methods then operate on this virtual structure.

Implementation: AddPair assumes the List property has already been created by Init or by
some other method.

By calling AddPair for a series of fields (for example, the corresponding
fields in a RECORD structure and a QUEUE structure), you effectively build
two virtual structures containing the fields and a (one-to-one) relationship
between the two structures.

Example:

INCLUDE(‘ABUTIL.INC’) !declare FieldPairs Class
Fields FieldPairsClass !declare FieldPairs object
Customer FILE,DRIVER('TOPSPEED'),PRE(CUST)
ByNumber KEY(CUST:CustNo),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CustNo LONG
Name STRING(30)
Phone STRING(20)
ZIP DECIMAL(5)

END
CustQ QUEUE
CustNo LONG
Name STRING(30)
Phone STRING(20)
ZIP DECIMAL(5)

END
CODE
Fields.Init !initialize FieldPairs object
Fields.AddPair(CUST:CustNo, CustQ.CustNo) !establish CustNo pair
Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair
Fields.AddPair(CUST:ZIP, CustQ.ZIP) !establish ZIP pair

See Also: Init, List

502 CLARION 5 APPLICATION HANDBOOK

AssignLeftToRight (copy from “left” fields to “right” fields)

AssignLeftToRight

The AssignLeftToRight method copies the contents of each “left” field to its
corresponding “right” field in the List property.

Implementation: For AddPair pairs, the “left” field is the first (left) parameter of the AddPair
method; the “right” field is the second (right) parameter of the AddPair
method. For AddItem pairs, the “left” field is the only parameter of the
AddItem method. The “right” field is the FieldPairs supplied copy of the
“left” field.

Example:

Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair
Fields.AddPair(CUST:ZIP, CustQ.ZIP) !establish ZIP pair
!some code
IF ~Fields.Equal !compare field pairs
CASE MESSAGE('Abandon Changes?',,,BUTTON:Yes+BUTTON:No)
OF BUTTON:No
Fields.AssignRightToLeft !copy changes to CUST (write) buffer

OF BUTTON:Yes
Fields.AssignLeftToRight !restore original to CustQ (display) buffer

END
END

See Also: AddPair, AddItem, List

CHAPTER 28 FIELDPAIRSCLASS 503

AssignRightToLeft (copy from “right” fields to “left” fields)

AssignRightToLeft

The AssignRightToLeft method copies the contents of each “right” field to
its corresponding “left” field in the List property.

Implementation: For AddPair pairs, the “left” field is the first (left) parameter of the AddPair
method; the “right” field is the second (right) parameter of the AddPair
method. For AddItem pairs, the “left” field is the only parameter of the
AddItem method. The “right” field is the FieldPairs supplied copy of the
“left” field.

Example:

Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair
Fields.AddPair(CUST:ZIP, CustQ.ZIP) !establish ZIP pair
!some code
IF ~Fields.Equal !compare field pairs
CASE MESSAGE('Abandon Changes?',,,BUTTON:Yes+BUTTON:No)
OF BUTTON:No
Fields.AssignRightToLeft !copy changes to CUST (write) buffer

OF BUTTON:Yes
Fields.AssignLeftToRight !restore original to CustQ (display) buffer

END
END

See Also: AddPair, AddItem, List

504 CLARION 5 APPLICATION HANDBOOK

ClearLeft (clear each “left” field)

ClearLeft

The ClearLeft method clears the contents of each “left” field in the List
property.

Implementation: For AddPair pairs, the “left” field is the field whose label is the first (left)
parameter of the AddPair method; the “right” field is the field whose label is
the second (right) parameter of the AddPair method. For AddItem pairs, the
“left” field is the field whose label is the only parameter of the AddItem
method. The “right” field is the FieldPairs supplied copy of the “left” field.

The ClearLeft method CLEARs the field. See the Language Reference for
more information on CLEAR.

Example:

Fields &= NEW FieldPairsClass !instantiate FieldPairs object
Fields.Init !initialize FieldPairs object
Fields.AddPair(CUST:CustNo, CustQ.CustNo) !establish CustNo pair
Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair
Fields.AddPair(CUST:ZIP, CustQ.ZIP) !establish ZIP pair
!some code
IF LocalRequest = InsertRecord
Fields.ClearRight !clear the CustQ fields to blank or zero

END

See Also: AddPair, AddItem, List

CHAPTER 28 FIELDPAIRSCLASS 505

ClearRight (clear each “right” field)

ClearRight

The ClearRight method clears the contents of each “right” field in the List
property.

Implementation: For AddPair pairs, the “left” field is the field whose label is the first (left)
parameter of the AddPair method; the “right” field is the field whose label is
the second (right) parameter of the AddPair method. For AddItem pairs, the
“left” field is the field whose label is the only parameter of the AddItem
method. The “right” field is the FieldPairs supplied copy of the “left” field.

The ClearRight method CLEARs the field. See the Language Reference for
more information on CLEAR.

Example:

Fields &= NEW FieldPairsClass !instantiate FieldPairs object
Fields.Init !initialize FieldPairs object
Fields.AddPair(CUST:CustNo, CustQ.CustNo) !establish CustNo pair
Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair
Fields.AddPair(CUST:ZIP, CustQ.ZIP) !establish ZIP pair
!some code
IF LocalRequest = InsertRecord
Fields.ClearRight !clear the CustQ fields to blank or zero

END

See Also: AddPair, AddItem, List

506 CLARION 5 APPLICATION HANDBOOK

Equal (return 1 if all pairs are equal)

Equal

The Equal method returns one (1) if all pairs are equal and returns zero (0) if
any pairs are not equal.

Implementation: The Equal method simply calls the EqualLeftRight method which does all
the comparison work. Therefore, there are two different methods (Equal and
EqualLeftRight) that produce exactly the same result.

This provides an alternative calling convention for the FieldPairsClass and
the BufferedPairsClass. The EqualLeftRight method name is consistent with
the other comparison methods in the BufferedPairsClass and is provided for
that purpose. See BufferedPairsClass Methods for more information.

Example:

Fields.AddPair(CUST:Name, CustQ.Name) !establish Name pair
Fields.AddPair(CUST:Phone, CustQ.Phone) !establish Phone pair
Fields.AddPair(CUST:ZIP, CustQ.ZIP) !establish ZIP pair
!some code
IF ~Fields.Equal !compare field pairs
CASE MESSAGE('Abandon Changes?',,,BUTTON:Yes+BUTTON:No)
OF BUTTON:No
Fields.AssignRightToLeft !copy changes to CUST (write) buffer

OF BUTTON:Yes
Fields.AssignLeftToRight !restore original to CustQ (display) buffer

END
END

See Also: EqualLeftRight

EqualLeftRight (return 1 if all pairs are equal)

EqualLeftRight

The EqualLeftRight method returns one (1) if all pairs are equal and returns
zero (0) if any pairs are not equal.

Implementation: The Equal method simply calls the EqualLeftRight method which does all
the comparison work. Therefore, there are two different methods (Equal and
EqualLeftRight) that produce exactly the same result.

This provides an alternative calling convention for the FieldPairsClass and
the BufferedPairsClass. The EqualLeftRight method name is consistent and
compatible with the other comparison methods in the BufferedPairsClass and
is provided for that purpose. See BufferedPairsClass Methods for more
information.

See Also: Equal

CHAPTER 28 FIELDPAIRSCLASS 507

Init (initialize the FieldPairsClass object)

Init

The Init method initializes the FieldPairsClass object.

Implementation: The Init method creates the List property.

Example:

INCLUDE(‘ABUTIL.INC’) !declare FieldPairs Class
Fields &FieldPairsClass !declare FieldPairs reference

CODE
Fields &= NEW FieldPairsClass !instantiate FieldPairs object
Fields.Init !initialize FieldPairs object
.
.
.
Fields.Kill !terminate FieldPairs object
DISPOSE(Fields) !release memory allocated for FieldPairs object

See Also: Kill, List

Kill (shut down the FieldPairsClass object)

Kill

The Kill method disposes any memory allocated during the object’s lifetime
and performs any other necessary termination code.

Implementation: The Kill method disposes the List property created by the Init method.

Example:

INCLUDE(‘ABUTIL.INC’) !declare FieldPairs Class
Fields &FieldPairsClass !declare FieldPairs reference

CODE
Fields &= NEW FieldPairsClass !instantiate FieldPairs object
Fields.Init !initialize FieldPairs object
.
.
.
Fields.Kill !terminate FieldPairs object
DISPOSE(Fields) !release memory allocated for FieldPairs object

See Also: Init, List

508 CLARION 5 APPLICATION HANDBOOK

CHAPTER 29 FILEDROPCLASS 509

29 - FILEDROPCLASS

Overview

Future FileDropClasses

The current implementation of the FileDropClass is a place-holder
implementation. In the future the FileDropClass, or its replacement, will be
derived from the BrowseClass.

FileDropClass Concepts

The FileDropClass is a ViewManager that supports a file-loaded scrollable
list on a window. By convention, a FileDrop provides a “pick list” for the end
user. A pick list is a finite list of mutually exclusive or alternative choices—
the end user may choose only one of several items, but need not memorize
the choices, because all the choices are displayed.

Based on the end user selection, you can assign one or more values from the
selected item to one or more target fields. You may display one field (e.g., a
description field) but assign another field (e.g., a code field) from the
selected list item.

The FileDropClass also supports filters, range limits, colors, icons, sorting,
and multiple item selection (marking). See Control Templates—FileDrop for
information on the template implementation of these features.

Relationship to Other Application Builder Classes

The FileDropClasss is closely integrated with the WindowManager. These
objects register their presence with each other, set each other’s properties,
and call each other’s methods as needed to accomplish their respective tasks.

The FileDropComboClass is derived from the FileDropClass, and the
FileDropClass is derived from the ViewManager. The FileDropClass relies
on several of the other Application Builder Classes to accomplish its tasks.
Therefore, if your program instantiates the FileDropClass, it must also
instantiate these other classes. Much of this is automatic when you
INCLUDE the FileDropClass header (ABDROPS.INC) in your program’s
data section. See the Conceptual Example.

510 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

The ABC Templates automatically include all the classes and generate all the
code necessary to support the functionality specified in your application’s
FileDrop control templates.

The templates derive a class from the FileDropClass and instantiate an object
for each FileDropControl template in the application. The derived class and
object is called FDB# where # is the FileDrop Control template instance
number. The templates provide the derived class so you can use the
FileDropControl template Classes tab to modify the FileDrop’s behavior on
an instance-by-instance basis.

The derived FileDropClass is local to the procedure, is specific to a single
FileDropCombo and relies on the global file-specific RelationManager and
FileManager objects for the displayed lookup file.

FileDropClass Source Files

The FileDropClass source code is installed by default to the Clarion
\LIBSRC folder. The FileDropClass source code and their respective
components are contained in:

ABDROPS.INC FileDropClass declarations
ABDROPS.CLW FileDropClass method definitions

CHAPTER 29 FILEDROPCLASS 511

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a FileDropClass object and related
objects.

This example uses the FileDropClass object to let the end user select a valid
state code for a given client. The state code comes from the State file. When
they are initialized properly, the FileDropClass and WindowManager objects
do most of the work (event handling and field assignments) internally.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
INCLUDE('ABWINDOW.INC')
INCLUDE('ABDROPS.INC')
MAP
END

State FILE,DRIVER('TOPSPEED'),PRE(ST),THREAD
StateCodeKey KEY(ST:STATECODE),NOCASE,OPT
Record RECORD,PRE()
StateCode STRING(2)
StateName STRING(20)

END
END

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),CREATE,THREAD
BYNUMBER KEY(CUS:CUSTNO),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CUSTNO LONG
Name STRING(30)
State STRING(2)

END
END

GlobalErrors ErrorClass
VCRRequest LONG(0),THREAD

Access:State CLASS(FileManager)
Init PROCEDURE

END

Relate:State CLASS(RelationManager)
Init PROCEDURE

END

Access:Customer CLASS(FileManager)
Init PROCEDURE

END

Relate:Customer CLASS(RelationManager)
Init PROCEDURE

END

StateQ QUEUE

512 CLARION 5 APPLICATION HANDBOOK

ST:STATECODE LIKE(ST:STATECODE)
ViewPosition STRING(512)

END
StateView VIEW(State)

END
CusWindow WINDOW('Add Customer'),AT(,,157,58),IMM,SYSTEM,GRAY

PROMPT('Customer:'),AT(5,7),USE(?NamePrompt)
ENTRY(@s20),AT(61,5,88,11),USE(CUS:NAME)
PROMPT('State:'),AT(5,22),USE(?StatePrompt)
LIST,AT(61,20,65,11),USE(CUS:State),FROM(StateQ),|
FORMAT('8L~STATECODE~@s2@'),DROP(5)

BUTTON('OK'),AT(60,39),USE(?OK),DEFAULT
BUTTON('Cancel'),AT(104,39),USE(?Cancel)

END
ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

StateDrop CLASS(FileDropClass)
Q &StateQ

END
 CODE
 ThisWindow.Run()

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 GlobalErrors.Init
 Relate:State.Init
 Relate:Customer.Init
 SELF.Request = InsertRecord
 ReturnValue = PARENT.Init()
 IF ReturnValue THEN RETURN ReturnValue.
 SELF.FirstField = ?CUS:NAME
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 SELF.AddUpdateFile(Access:Customer)
 SELF.AddItem(?Cancel,RequestCancelled)
 SELF.OkControl = ?OK
 Relate:Customer.Open
 Relate:State.Open
 SELF.Primary &= Relate:Customer
 SELF.InsertAction = Insert:Batch
 IF SELF.PrimeUpdate() THEN RETURN Level:Notify.
 OPEN(CusWindow)
 SELF.Opened=True
!initialize the FileDrop Class with:
! the LISTS’s USE variable, LIST control, view POSITION, VIEW, LISTS’s FROM QUEUE,
! primary file RelationManager object, WindowManager object

 StateDrop.Init(?CUS:State,StateQ.ViewPosition,StateView,StateQ,Relate:State,ThisWindow)
 StateDrop.Q &= StateQ
 StateDrop.AddSortOrder()
 StateDrop.AddField(ST:STATECODE,StateDrop.Q.ST:STATECODE)
 StateDrop.AddUpdateField(ST:STATECODE,CUS:State)
 ThisWindow.AddItem(StateDrop)
 SELF.SetAlerts()
 RETURN ReturnValue

CHAPTER 29 FILEDROPCLASS 513

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 IF ReturnValue THEN RETURN ReturnValue.
 Relate:Customer.Close
 Relate:State.Close
 Relate:State.Kill
 Relate:Customer.Kill
 GlobalErrors.Kill
 RETURN ReturnValue

Access:State.Init PROCEDURE
 CODE
 PARENT.Init(State,GlobalErrors)
 SELF.FileNameValue = 'State'
 SELF.Buffer &= ST:Record
 SELF.LazyOpen = False
 SELF.AddKey(ST:StateCodeKey,'ST:StateCodeKey',0)

Access:Customer.Init PROCEDURE
 CODE
 PARENT.Init(Customer,GlobalErrors)
 SELF.FileNameValue = 'Customer'
 SELF.Buffer &= CUS:Record
 SELF.Create = True
 SELF.LazyOpen = False
 SELF.AddKey(CUS:BYNUMBER,'CUS:BYNUMBER',0)

Relate:State.Init PROCEDURE
 CODE
 Access:State.Init
 PARENT.Init(Access:State,1)

Relate:Customer.Init PROCEDURE
 CODE
 Access:Customer.Init
 PARENT.Init(Access:Customer,1)

514 CLARION 5 APPLICATION HANDBOOK

FileDropClass Properties
The FileDropClass inherits all the properties of the ViewManager from
which it is derived. See ViewManager Properties for more information.

In addition to the inherited properties, the FileDropClass contains the
properties listed below.

DefaultFill (initial display value)

DefaultFill BYTE

The DefaultFill property indicates whether FileDropClass object’s LIST
displays an initial value or blank, before the end user selects a value. A value
of one (1) displays an initial value; a value of zero (0) displays nothing.

Implementation: The Init method sets the DefaultFill property to one (1). The ResetQueue
method implements the behavior specified by DefaultFill.

See Also: Init, ResetQueue

InitSyncPair (initial list position)

InitSyncPair BYTE

The InitSyncPair property controls the initial position of the droplist. A
value of one (1 or True) initially positions the list closest to the value already
contained in the target assignment fields. A value of zero (0 or False)
positions the list to the first item in the specified sort order.

Implementation: The Init method sets the InitSyncPair property to one (1). The ResetQueue
method implements the behavior specified by the InitSyncPair property.

See Also: Init, ResetQueue

CHAPTER 29 FILEDROPCLASS 515

FileDropClass Methods
The FileDropClass inherits all the methods of the ViewManager from which
it is derived. See ViewManager Methods for more information.

In addition to (or instead of) the inherited methods, the FileDropClass
contains the methods listed below.

Functional Organization—Expected Use

As an aid to understanding the FileDropClass, it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the FileDropClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the FileDropClass object
AddField specify display fields
AddUpdateField specify field assignments
AddRangeI add a range limit to the active sort order
AppendOrderI refine the active sort order
Kill shut down the FileDropClass object

Mainstream Use:
ResetQueue fill or refill filedrop queue
TakeEventV process the current ACCEPT loop event
TakeNewSelectionV processes EVENT:Selected events

Occasional Use:
OpenI open the filedrop view
PrimeRecordI prepare an item for adding
SetFilterI specify a filter for the active sort order
ApplyFilterI range limit and filter the result set
ApplyOrderI sort the result set
GetFreeElementNameI return the free element field name
SetOrderI replace the active sort order
CloseI close the filedrop view

I These methods are inherited from the ViewManager Class.

V These methods are also virtual.

516 CLARION 5 APPLICATION HANDBOOK

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

SetQueueRecord copy data from file buffer to queue buffer
ResetI reset the view position
TakeEventV process the current ACCEPT loop event
TakeNewSelection processes EVENT:Selected events
ValidateRecord validate the current result set element

I These methods are inherited from the ViewManager Class.

AddField (specify display fields)

AddField(filefield, queuefield)

AddField Identifies the corresponding FILE and QUEUE fields for
a filedrop list column.

filefield The fully qualified label of the FILE field. The filefield
is the original source of the filedrop LIST’s data.

queuefield The fully qualified label of the corresponding QUEUE
field. The queuefield is loaded from the filefield, and is
the immediate source of the filedrop LIST’s data.

The AddField method identifies the corresponding FILE and QUEUE fields
for a filedrop list column. You must call AddField for each column displayed
in the filedrop list.

You may also use the AddField method to display memory variables by
specifying a variable label as the filefield parameter.

Implementation: The AddField method uses the FieldPairsClass to manage the specified field
pairs.

Example:

CODE
StFD.Init(?CLI:StCode,StateQ.Pos,StateView,StateQ,Relate:States,ThisWindow)
StFD.Q &= StateQ
StFD.AddSortOrder(StCodeKey)
StFD.AddField(STFile:StCode,StFD.Q.StCode)
StFD.AddField(STFile:StName,StFD.Q.StName)
StFD.AddUpdateField(STFile:StCode,CLI:StCode)

CHAPTER 29 FILEDROPCLASS 517

AddUpdateField (specify field assignments)

AddUpdateField(source, target)

AddUpdateField Identifies a source field and its corresponding target or
destination field.

source The fully qualified label of the field to copy from when
the end user selects a filedrop list item.

target The fully qualified label of the field to copy to when the
end user selects a filedrop list item.

The AddUpdateField method identifies a source field and its corresponding
target or destination field that receives the source field’s contents when the
end user selects a filedrop list item.

You may call the AddUpdateField multiple times to accomplish multiple
field assignments on end user selection.

Implementation: The AddUpdateField method uses the FieldPairsClass to manage the
specified field pairs.

The TakeEvent method performs the specified copy.

Example:

CODE
StFD.Init(?CLI:StCode,StateQ.Pos,StateView,StateQ,Relate:States,ThisWindow)
StFD.Q &= StateQ
StFD.AddSortOrder(StCodeKey)
StFD.AddField(STFile:StCode,StFD.Q.StCode)
StFD.AddField(STFile:StName,StFD.Q.StName)
StFD.AddUpdateField(STFile:StCode,CLI:StCode)

See Also: TakeEvent

518 CLARION 5 APPLICATION HANDBOOK

Init (initialize the FileDropClass object)

Init(listcontrol, viewposition, view, listqueue, relationmanager , window manager)

Init Initializes the FileDropClass object.

listcontrol A numeric constant, variable, EQUATE, or expression
containing the control number of the filedrop’s LIST
control.

viewposition The label of a string variable within the listqueue
containing the POSITION of the view.

view The label of the filedrop’s underlying VIEW.

listqueue The label of the listcontrol’s data source QUEUE.

relationmanager The label of the filedrop’s primary file RelationManager
object. See Relation Manager for more information.

windowmanager The label of the FileDrop object’s WindowManager
object. See Window Manager for more information.

The Init method initializes the FileDropClass object.

Implementation: Among other things, the Init method calls the PARENT.Init
(ViewManager.Init) method to initialize the view related parts of the
FileDropClass object. See View Manager for more information.

Example:

CODE
StFD.Init(?CLI:StCode,StateQ.Pos,StateView,StateQ,Relate:States,ThisWindow)
StFD.Q &= StateQ
StFD.AddSortOrder(StCodeKey)
StFD.AddField(STFile:StCode,StFD.Q.StCode)
StFD.AddField(STFile:StName,StFD.Q.StName)
StFD.AddUpdateField(STFile:StCode,CLI:StCode)

See Also: ViewManager.Init

CHAPTER 29 FILEDROPCLASS 519

Kill (shut down the FileDropClass object)

Kill, VIRTUAL

The Kill method releases any memory allocated during the life of the
FileDropClass object and performs any other required termination code.

Implementation: Among other things, the Kill method calls the PARENT.Kill
(ViewManager.Kill) method to shut down the initialize the view related parts
of the FileDropClass object. See View Manager for more information.

Example:

CODE
StFD.Init(?CLI:StCode,StateQ.Pos,StateView,StateQ,Relate:States,ThisWindow)
StFD.Q &= StateQ
StFD.AddSortOrder(StCodeKey)
StFD.AddField(STFile:StCode,StFD.Q.StCode)
StFD.AddField(STFile:StName,StFD.Q.StName)
StFD.AddUpdateField(STFile:StCode,CLI:StCode)
!procedure code
StFD.Kill

See Also: ViewManager.Kill

520 CLARION 5 APPLICATION HANDBOOK

ResetQueue (fill filedrop queue)

ResetQueue([force]), VIRTUAL, PROC

ResetQueue Fills or refills the filedrop’s display queue.

force A numeric constant, variable, EQUATE, or expression
that indicates whether to refill the queue even if the sort
order did not change. A value of one (1 or True) uncon-
ditionally refills the queue; a value of zero (0 or False)
only refills the queue if circumstances require it. If
omitted, force defaults to zero.

The ResetQueue method fills or refills the filedrop’s display queue, applying
the applicable sort order, range limits, and filters, then returns a value
indicating which item, if any, in the displayed lookup file already matches
the value of the target fields (specified by the AddUpdateField method). A
return value of zero (0) indicates no matching items; any other value
indicates the position of the matching item.

For example, if the filedrop “looks up” the state code for a customer, and the
current customer’s state code field already contains a valid value, then the
ResetQueue method conditionally (based on the InitSyncPair property)
positions the filedrop list to the current customer’s state code value.

Return Data Type: LONG

Example:

ACCEPT
 IF EVENT() = EVENT:OpenWindow
 StateFileDrop.ResetQueue
 END

!program code
END

See Also: InitSyncPair

CHAPTER 29 FILEDROPCLASS 521

SetQueueRecord (copy data from file buffer to queue buffer)

SetQueueRecord, VIRTUAL

The SetQueueRecord method copies corresponding data from the filefield
fields to the queuefield fields specified by the AddField method. Typically
these are the file buffer fields and the filedrop list’s queue buffer fields so
that the queue buffer matches the file buffers.

Implementation: The ResetQueue method calls the SetQueueRecord method.

Example:

MyFileDropClass.SetQueueRecord PROCEDURE
 CODE
 SELF.ViewPosition=POSITION(SELF.View)
 SELF.DisplayFields.AssignLeftToRight
!Custom code here

See Also: ResetQueue

TakeEvent (process the current ACCEPT loop event)

TakeEvent, VIRTUAL

The TakeEvent method processes the current ACCEPT loop event for the
FileDropClass object.

Implementation: The WindowManager.TakeEvent method calls the TakeEvent method. The
TakeEvent method calls the TakeNewSelection method.

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
!procedure code
LOOP I = 1 TO RECORDS(SELF.Browses)
GET(SELF.Browses,I)
SELF.Browses.Browse.TakeEvent

END
LOOP i=1 TO RECORDS(SELF.FileDrops)
GET(SELF.FileDrops,i)
ASSERT(~ERRORCODE())
SELF.FileDrops.FileDrop.TakeEvent

END
RETURN RVal

See Also: TakeNewSelection, WindowManager.TakeEvent

522 CLARION 5 APPLICATION HANDBOOK

TakeNewSelection (process EVENT:NewSelection events)

TakeNewSelection(field), VIRTUAL

TakeNewSelectionProcesses the EVENT:NewSelection event.

field A numeric constant, variable, EQUATE, or expression
containing the control number of the control that gener-
ated the EVENT:NewSelection event.

The TakeNewSelection method processes the EVENT:NewSelection event
for the FileDropClass object.

Implementation: The ResetQueue method and the TakeEvent method call the
TakeNewSelection method. If the FileDropClass object’s LIST generated the
new selection event, then the TakeNewSelection method does the field
assignments specified by the AddUpdateField method or clears the target
fields if there is no valid selection.

Example:

FileDropClass.TakeEvent PROCEDURE

 CODE
 CASE EVENT()
 OF EVENT:NewSelection
 SELF.TakeNewSelection(FIELD())
 END

See Also: AddUpdateField, ResetQueue, TakeEvent

CHAPTER 29 FILEDROPCLASS 523

ValidateRecord (a virtual to validate records)

ValidateRecord, VIRTUAL

The ValidateRecord method is a virtual called when the FileDropClass
object fills its display QUEUE. ValidateRecord returns a value indicating
whether to include the current record in the displayed list. Thus
ValidateRecord provides a filtering mechanism in addition to the
ViewManager.SetFilter method. Valid return values include:

Record:OK includes the record
Record:OutOfRange excludes the record
Record:Filtered excludes the record

Implementation: The ResetQueue method calls the ValidateRecord method. The
ValidateRecord method calls the PARENT.ValidateRecord method
(ViewManager.ValidateRecord).

Return value EQUATEs are declared in \LIBSRC\TPLEQU.CLW:

Record:OK EQUATE(0) !Record passes range and filter
Record:OutOfRange EQUATE(1) !Record fails range test
Record:Filtered EQUATE(2) !Record fails filter tests

Return Data Type: BYTE

Example:

MyFileDropClass.ResetQueue PROCEDURE
i LONG
 CODE
 SETCURSOR(CURSOR:Wait)
 FREE(SELF.ListQueue)
 SELF.ApplyRange
 SELF.Reset
 LOOP UNTIL SELF.Next()
 IF SELF.ValidateRecord()=Record:OK !Validate Records
 SELF.SetQueueRecord
 ADD(SELF.ListQueue)
 ASSERT(~ERRORCODE())
 IF SELF.UpdateFields.Equal()
 i=RECORDS(SELF.ListQueue)
 END
 END
 END
!procedure code

See Also: ResetQueue, ViewManager.SetFilter, ViewManager.ValidateRecord

524 CLARION 5 APPLICATION HANDBOOK

CHAPTER 30 FILEDROPCOMBOCLASS 525

30 - FILEDROPCOMBOCLASS

Overview
The FileDropComboClass is a FileDropClass based on a COMBO control
rather than a LIST control. Therefore it supports not only the selection of
existing list items but also the selection of values not in the list, and
optionally the addition of new values to the list. See Control Templates—
FileDropCombo for information on the template implementation of the
FileDropCombo control.

Future File DropCombo Classes

The current implementation of the FileDropComboClass is a place-holder
implementation. In the future the FileDropComboClass, or its replacement,
will be derived from the BrowseClass.

FileDropComboClass Concepts

Based on the end user selection, you can assign one or more values from the
selected item to one or more target fields. You may display one field (e.g., a
description field) but assign another field (e.g., a code field) from the
selected list item.

The FileDropClass also supports filters, range limits, colors, icons, sorting,
and multiple item selection (marking). See Control Templates—
FileDropCombo for information on the template implementation of these
features.

Relationship to Other Application Builder Classes

The FileDropComboClass is closely integrated with the WindowManager.
These objects register their presence with each other, set each other’s
properties, and call each other’s methods as needed to accomplish their
respective tasks.

The FileDropComboClass is derived from the FileDropClass, plus it relies
on several of the other Application Builder Classes to accomplish its tasks.
Therefore, if your program instantiates the FileDropClass, it must also
instantiate these other classes. Much of this is automatic when you
INCLUDE the FileDropClass header (ABDROPS.INC) in your program’s
data section. See the Conceptual Example.

526 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

The ABC Templates automatically include all the classes and generate all the
code necessary to support the functionality specified in your application’s
FileDropCombo control templates.

The templates derive a class from the FileDropComboClass and instantiate
an object for each FileDropComboControl template in the application. The
derived class and obect is called FDCB# where # is the FileDropCombo
Control template instance number. The templates provide the derived class
so you can use the FileDropComboControl template Classes tab to modify
the FileDropCombo’s behavior on an instance-by-instance basis.

The derived FileDropComboClass is local to the procedure, is specific to a
single FileDropCombo and relies on the global ErrorClass object and the
file-specific RelationManager and FileManager objects for the displayed
lookup file.

FileDropComboClass Source Files

The FileDropComboClass source code is installed by default to the Clarion
\LIBSRC folder. The FileDropComboClass source code and their respective
components are contained in:

ABDROPS.INC FileDropComboClass declarations
ABDROPS.CLW FileDropComboClass method definitions

CHAPTER 30 FILEDROPCOMBOCLASS 527

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a FileDropComboClass object and
related objects.

This example uses the FileDropComboClass object to let the end user select
or enter a valid state code for a given client. The state code comes from the
state file.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
INCLUDE('ABWINDOW.INC')
INCLUDE('ABDROPS.INC')
MAP
END

State FILE,DRIVER('TOPSPEED'),PRE(ST),THREAD
StateCodeKey KEY(ST:STATECODE),NOCASE,OPT
Record RECORD,PRE()
StateCode STRING(2)
StateName STRING(20)

END
END

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),CREATE,THREAD
BYNUMBER KEY(CUS:CUSTNO),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CUSTNO LONG
Name STRING(30)
State STRING(2)

END
END

GlobalErrors ErrorClass
VCRRequest LONG(0),THREAD

Access:State CLASS(FileManager)
Init PROCEDURE

END

Relate:State CLASS(RelationManager)
Init PROCEDURE

END

Access:Customer CLASS(FileManager)
Init PROCEDURE

END

Relate:Customer CLASS(RelationManager)
Init PROCEDURE

END

StateQ QUEUE
ST:STATECODE LIKE(ST:STATECODE)
ViewPosition STRING(512)

528 CLARION 5 APPLICATION HANDBOOK

END
StateView VIEW(State)

END

CusWindow WINDOW('Add Customer'),AT(,,157,58),IMM,SYSTEM,GRAY
PROMPT('Customer:'),AT(5,7),USE(?NamePrompt)
ENTRY(@s20),AT(61,5,88,11),USE(CUS:NAME)
PROMPT('State:'),AT(5,22),USE(?StatePrompt)
LIST,AT(61,20,65,11),USE(CUS:State),FROM(StateQ),|
FORMAT('8L~STATECODE~@s2@'),DROP(5)
BUTTON('OK'),AT(60,39),USE(?OK),DEFAULT
BUTTON('Cancel'),AT(104,39),USE(?Cancel)

END

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

StateDrop CLASS(FileDropClass)
Q &StateQ

END

 CODE
 ThisWindow.Run()

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 GlobalErrors.Init
 Relate:State.Init
 Relate:Customer.Init
 SELF.Request = InsertRecord
 ReturnValue = PARENT.Init()
 IF ReturnValue THEN RETURN ReturnValue.
 SELF.FirstField = ?CUS:NAME
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 SELF.AddUpdateFile(Access:Customer)
 SELF.AddItem(?Cancel,RequestCancelled)
 SELF.OkControl = ?OK
 Relate:Customer.Open
 Relate:State.Open
 SELF.Primary &= Relate:Customer
 SELF.InsertAction = Insert:Batch
 IF SELF.PrimeUpdate() THEN RETURN Level:Notify.
 OPEN(CusWindow)
 SELF.Opened=True
!initialize the FileDropCombo Class with:
! the combo’s USE variable, COMBO control, view POSITION, VIEW, combo’s FROM QUEUE,
! primary file RelationManager object, WindowManager object, ErrorClass object,
! add records flag, hot fields flag, case sensitive flag

 StateDrop.Init(?CUS:State,StateQ.ViewPosition,StateView,StateQ,Relate:State,ThisWindow,GlobalErrors,1,0,0)
 StateDrop.Q &= StateQ
 StateDrop.AddSortOrder()
 StateDrop.AddField(ST:STATECODE,StateDrop.Q.ST:STATECODE)
 StateDrop.AddUpdateField(ST:STATECODE,CUS:State)
 ThisWindow.AddItem(StateDrop)
 SELF.SetAlerts()

CHAPTER 30 FILEDROPCOMBOCLASS 529

 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 IF ReturnValue THEN RETURN ReturnValue.
 Relate:Customer.Close
 Relate:State.Close
 Relate:State.Kill
 Relate:Customer.Kill
 GlobalErrors.Kill
 RETURN ReturnValue

Access:State.Init PROCEDURE
 CODE
 PARENT.Init(State,GlobalErrors)
 SELF.FileNameValue = 'State'
 SELF.Buffer &= ST:Record
 SELF.LazyOpen = False
 SELF.AddKey(ST:StateCodeKey,'ST:StateCodeKey',0)

Access:Customer.Init PROCEDURE
 CODE
 PARENT.Init(Customer,GlobalErrors)
 SELF.FileNameValue = 'Customer'
 SELF.Buffer &= CUS:Record
 SELF.Create = True
 SELF.LazyOpen = False
 SELF.AddKey(CUS:BYNUMBER,'CUS:BYNUMBER',0)

Relate:State.Init PROCEDURE
 CODE
 Access:State.Init
 PARENT.Init(Access:State,1)

Relate:Customer.Init PROCEDURE
 CODE
 Access:Customer.Init
 PARENT.Init(Access:Customer,1)

530 CLARION 5 APPLICATION HANDBOOK

FileDropComboClass Properties
The FileDropComboClass inherits all the properties of the FileDropClass
from which it is derived. See FileDropClass Properties and ViewManager
Properties for more information.

EntryCompletion (automatic fill-ahead flag)

EntryCompletion BYTE

The EntryCompletion property indicates whether FileDropComboClass
tries to automatically complete the end user selection. A value of one (1) or
True enables the automatic completion; a value of zero (0) or False disables
automatic completion.

When EntryCompletion is enabled, the FileDropComboClass object displays
the list item that is nearest the value entered by the end user. The
FileDropComboClass object reevaluates the display immediately after each
end user keystroke.

Implementation: The Init method sets the EntryCompletion property to True. The TakeEvent
and TakeNewSelection methods implement the behavior specified by
EntryCompletion.

See Also: Init, TakeEvent,TakeNewSelection

UseField (COMBO USE variable)

UseField ANY, PROTECTED

The UseField property is a reference to the COMBO’s USE variable. The
FileDropComboClass uses this property to lookup the USE value in the
current queue.

Implementation: The Init method initializes the UseField property.

See Also: Init

CHAPTER 30 FILEDROPCOMBOCLASS 531

FileDropComboClass Methods
The FileDropComboClass inherits all the methods of the FileDropClass from
which it is derived. See FileDropClass Methods and ViewManager Methods
for more information.

In addition to (or instead of) the inherited methods, the FileDropComboClass
contains the methods listed below.

Functional Organization—Expected Use

As an aid to understanding the FileDropComboClass, it is useful to organize
its methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the FileDropComboClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the FileDropComboClass object
AddFieldI specify display fields
AddUpdateFieldI specify field assignments
AddRangeII add a range limit to the active sort order
AppendOrderII refine the active sort order
Kill I shut down the FileDropComboClass object

Mainstream Use:
ResetQueue refresh filedrop queue
GetQueueMatch locate a list item
AskV add a record to the lookup file
TakeEventV process the current ACCEPT loop event
TakeNewSelectionV process the EVENT:Selected events

Occasional Use:
OpenII open the filedrop view
PrimeRecordII prepare an item for adding
SetFilterII specify a filter for the active sort order
ApplyFilterII range limit and filter the result set
ApplyOrderII sort the result set
GetFreeElementNameII return the free element field name
SetOrderII replace the active sort order
CloseII close the filedrop view

I These methods are inherited from the FileDropClass.
II These methods are inherited from the ViewManager.

532 CLARION 5 APPLICATION HANDBOOK

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

Ask add a record to the lookup file
SetQueueRecordI copy data from file buffer to queue buffer
ResetII reset the view position
TakeEvent process the current ACCEPT loop event
TakeNewSelection process the EVENT:Selected events
ValidateRecordI validate the current result set element

I These methods are inherited from the FileDropClass.
II These methods are inherited from the ViewManager.

CHAPTER 30 FILEDROPCOMBOCLASS 533

Ask (add a record to the lookup file)

Ask, VIRTUAL, PROTECTED

The Ask method adds a new record to the filedrop’s lookup file and returns a
value indicating its success or failure. If it succeeds it returns Level:Benign,
otherwise it returns the severity level of the last error it encountered while
trying to add the record. See Error Class for more information on severity
levels.

Implementation: The TakeEvent method calls the Ask method. Return value EQUATEs are
declared in ABERROR.INC (see Error Class for more information):

Level:Benign EQUATE(0)
Level:User EQUATE(1)
Level:Program EQUATE(2)
Level:Fatal EQUATE(3)
Level:Cancel EQUATE(4)
Level:Notify EQUATE(5)

Return Data Type: BYTE

Example:

MyFileDropComboClass.TakeEvent PROCEDURE
UserStr CSTRING(256),AUTO
 CODE
!procedure code
IF SELF.Ask() = Level:Benign !update lookup file
SELF.UpdateFields.AssignLeftToRight
SELF.Close
SELF.ResetQueue
SELF.ListField{PROP:Selected} = SELF.GetQueueMatch(UserStr)
DISPLAY(SELF.ListField)

END
!procedure code

See Also: TakeEvent

534 CLARION 5 APPLICATION HANDBOOK

GetQueueMatch (locate a list item)

GetQueueMatch(search value), PROTECTED

GetQueueMatch Locates the search value within the first field of the
display queue.

search value A string constant, variable, EQUATE, or expression
containing the value to locate.

The GetQueueMatch method locates a value within the first field of the
display queue and returns the position of the matching item. A return value
of zero (0) indicates no matching items.

The Init method case parameter determines the type of search (case sensitive
or insensitive) performed.

Return Data Type: LONG

Example:

MyFileDropComboClass.TakeEvent PROCEDURE
UserStr CSTRING(256),AUTO
 CODE
 CASE EVENT()
 OF EVENT:Accepted

UserStr=CLIP(SELF.UseField)
IF SELF.GetQueueMatch(UserStr) = 0 !if entered value not in
SELF.Reset ! lookup file / queue
IF SELF.Ask()=Level:Benign !update the lookup file
SELF.UpdateFields.AssignLeftToRight
SELF.Close
SELF.ResetQueue
SELF.ListField{PROP:Selected}=SELF.GetQueueMatch(UserStr)!position to new item
DISPLAY(SELF.ListField)

END
!procedure code

See Also: Init

CHAPTER 30 FILEDROPCOMBOCLASS 535

Init (initialize the FileDropComboClass object)

Init(use, combo, position, view, queue, relationmgr, windowmgr, errormgr [,add] [,sync] [,case])

Init Initializes the FileDropCombClass object.

use The label of the combo’s USE attribute variable.

combo A numeric constant, variable, EQUATE, or expression
containing the control number of the filedrop’s COMBO
control.

position The label of a string variable within the queue contain-
ing the POSITION of the view.

view The label of the filedrop’s underlying VIEW.

queue The label of the combo’s data source QUEUE.

relationmgr The label of the filedrop’s primary file RelationManager
object. See Relation Manager for more information.

windowmgr The label of the filedrop’s WindowManager object. See
Window Manager for more information.

errormgr The label of the filedrop’s ErrorClass object. See Error
Management for more information.

add A numeric constant, variable, EQUATE, or expression
indicating whether records may be added to the lookup
file. A value of zero (0 or False) prevents adds; a value
of one (1or True) allows adds. If omitted, add defaults to
one (1).

sync A numeric constant, variable, EQUATE, or expression
indicating whether to reget the underlying data on a new
selection (allows hot fields). A value of one (1 or True)
regets the data (so it can be displayed in other controls
besides the COMBO control); a value of zero (0 or
False) does not. If omitted, sync defaults to one (1).

case A numeric constant, variable, EQUATE, or expression
indicating whether filedrop searches are case sensitive. A
value of one (1 or True) provides case sensitive searches;
a value of zero (0 or False) gives case insensitive
searches. If omitted, case defaults to zero (0).

The Init method initializes the FileDropComboClass object.

Implementation: Among other things, the Init method calls the PARENT.Init
(FileDropClass.Init) method. See FileDropClass for more information.

536 CLARION 5 APPLICATION HANDBOOK

Example:

ThisWindow.Init PROCEDURE
CODE
!procedure code !init filedropcombo object

 FDBC4.Init(CLI:StateCode, | ! USE variable
?CLI:StateCode, | ! COMBO control
Queue:FileDropCombo.ViewPosition, | ! VIEW POSITION variable
FDCB4::View:FileDropCombo, | ! VIEW
Queue:FileDropCombo, | ! QUEUE
Relate:States, | ! RelationManager object
ThisWindow, | ! WindowManager object
GlobalErrors, | ! ErrorClass object
1, | ! allow adds
0, | ! refresh hot fields on new selection
0) ! case insensitive searches

 FDBC4.Q &= Queue:FileDropCombo
 FDBC4.AddSortOrder()
 FDBC4.AddField(ST:StateCode,FDBC4.Q.ST:StateCode)
 FDBC4.AddField(ST:State,FDBC4.Q.ST:State)
 FDBC4.AddUpdateField(ST:StateCode,CLI:StateCode)

See Also: FileDropClass.Init

CHAPTER 30 FILEDROPCOMBOCLASS 537

ResetQueue (refill the filedrop queue)

ResetQueue([force]), VIRTUAL, PROC

ResetQueue Refills the filedrop queue and the COMBO’s USE
variable.

force A numeric constant, variable, EQUATE, or expression
that indicates whether to refill the queue even if the sort
order did not change. A value of one (1 or True) uncon-
ditionally refills the queue; a value of zero (0 or False)
only refills the queue if circumstances require it. If
omitted, force defaults to zero.

The ResetQueue method refills the filedrop’s display queue and the
COMBO’s USE variable, applying the applicable sort order, range limits,
and filters, then returns a value indicating which item, if any, in the displayed
lookup file already matches the target fields’ values specified by the
AddUpdateField method. A return value of zero (0) indicates no matching
items; any other value indicates the position of the matching item.

For example, if the filedrop “looks up” the state code for a customer, and the
current customer’s state code field already contains a valid value, then the
ResetQueue method positions the filedrop list to the current customer’s state
code value.

Implementation: The TakeEvent method calls the ResetQueue method. The ResetQueue calls
the PARENT.ResetQueue method, then enables or disables the drop button
depending on the presence or absence of pick list items.

Return Data Type: LONG

Example:

MyFileDropComboClass.TakeEvent PROCEDURE
UserStr CSTRING(256),AUTO
 CODE
 CASE EVENT()
 OF EVENT:Accepted

UserStr=CLIP(SELF.UseField)
IF SELF.GetQueueMatch(UserStr) = 0 !if entered value not in
SELF.Reset ! lookup file / queue
IF SELF.Ask()=Level:Benign !update the lookup file
SELF.UpdateFields.AssignLeftToRight
SELF.Close
SELF.ResetQueue(1) !refill the updated queue
SELF.ListField{PROP:Selected}=SELF.GetQueueMatch(UserStr)!position to new item
DISPLAY(SELF.ListField)

END
!procedure code

See Also: TakeEvent, FileDropClass.ResetQueue

538 CLARION 5 APPLICATION HANDBOOK

TakeEvent (process the current ACCEPT loop event)

TakeEvent, VIRTUAL

The TakeEvent method processes the current ACCEPT loop event for the
FileDropComboClass object.

Implementation: The WindowManager.TakeEvent method calls the TakeEvent method. On a
new item selection, the TakeEvent method calls the TakeNewSelection
method.

On EVENT:Accepted for the entry portion of the COMBO, the TakeEvent
method calls the GetQueueMatch method to locate the list item nearest to the
entered value. If the entered value is not in the lookup file, the TakeEvent
method calls the Ask method to add the new value to the lookup file. If the
add is successful, TakeEvent calls the ResetQueue method to refill the
display queue.

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
!procedure code
LOOP I = 1 TO RECORDS(SELF.Browses)
GET(SELF.Browses,I)
SELF.Browses.Browse.TakeEvent

END
LOOP i=1 TO RECORDS(SELF.FileDrops)
GET(SELF.FileDrops,i)
ASSERT(~ERRORCODE())
SELF.FileDrops.FileDrop.TakeEvent

END
RETURN RVal

See Also: Ask, GetQueueMatch, ResetQueue, TakeNewSelection,
WindowManager.TakeEvent

CHAPTER 30 FILEDROPCOMBOCLASS 539

TakeNewSelection (process EVENT:NewSelection events)

TakeNewSelection(field), VIRTUAL

TakeNewSelectionProcesses the EVENT:NewSelection event.

field A numeric constant, variable, EQUATE, or expression
containing the control number of the control that gener-
ated the EVENT:NewSelection event.

The TakeNewSelection method processes the EVENT:NewSelection event
for the FileDropComboClass object.

Implementation: The ResetQueue method and the TakeEvent method call the
TakeNewSelection method. If the FileDropComboClass object’s LIST
generated the new selection event, then the TakeNewSelection method does
the field assignments specified by the AddUpdateField method or clears the
target fields if there is no valid selection.

Example:

FileDropComboClass.TakeEvent PROCEDURE

 CODE
 CASE EVENT()
 OF EVENT:NewSelection
 SELF.TakeNewSelection(FIELD())
 SELF.WindowManager.Reset
 END

See Also: AddUpdateField, ResetQueue, TakeEvent

540 CLARION 5 APPLICATION HANDBOOK

CHAPTER 31 FILEMANAGER 541

31 - FILEMANAGER

Overview
The FileManager class declares a file manager which consistently and
flexibly handles all the routine database operations for a given file. The file
manager provides “setup” methods that let you describe the file and it’s keys,
as well as other methods to open, read, write, and close the file.

The file manager automatically handles autoincrementing keys, and, as
implemented by the ABC Templates, handles some of the validity checks
specified in the Clarion data dictionary, and some of the file handling
settings specified in the data dictionary or application generator. However,
even if you don’t use the data dictionary, the application generator, or if you
don’t specify validity checks in your dictionary, the file manager can still
competently and efficiently handle routine database operations for your files.

Note: The FileManager class handles individual files; it does not
handle referential integrity (RI) between related files. The
RelationManager class enforces RI between related files.

Dual Approach to Database Operations

The FileManager methods that do standard database operations come in two
versions—the plain (or interactive) version and the “Try” (or silent) version.

Interactive Database Operations

When any of these methods are called (Open, Fetch, Next, Previous, Insert,
and Update), they may take several approaches and several attempts to
complete the requested operation—including issuing error messages where
appropriate. They may solicit information from the end user in order to
proceed with the requested task. They may even terminate the application
under sufficient provocation. This means the programmer can rely on the fact
that if the method returned, it worked.

Silent Database Operations

When any of these methods are prepended with “Try” (TryOpen, TryFetch,
TryNext, TryPrevious, TryInsert, and TryUpdate), the method makes a single
attempt to complete the requested operation, then returns a success or failure
indicator to the calling procedure for it to handle accordingly.

542 CLARION 5 APPLICATION HANDBOOK

Relationship to Other Application Builder Classes

The FileManager relies on the ErrorClass for most of its error handling.
Therefore, if your program instantiates the FileManager it must also
instantiate the ErrorClass. See Error Class for more information.

Perhaps more significantly, the FileManager serves as the foundation or
“errand boy” of the RelationManager. If your program instantiates the
RelationManager it must also instantiate the FileManager. See Relation
Manager Class for more information.

FileManager and Threaded Files

FileManager objects are designed to support multiple execution threads in a
way that Clarion developers will recognize. That is, several MDI procedures
may access the same file at the same time, with each procedure maintaining
its own file buffer and file positioning information, so there is no conflict or
confusion between the procedures.

To accomplish this desirable state of independence among several MDI
procedures, you only need to add the THREAD attribute to your file
declaration (see the Language Reference for more information), then
instantiate a single global FileManager object for each file. This global
object automatically handles multiple execution threads, so you can use it
within each procedure that accesses the file. The ABC Templates generate
exactly this type of code for files with the THREAD attribute.

When you want to access a file with a single shared buffer from multiple
execution threads, you simply omit the THREAD attribute from the file
declaration and, again, instantiate a global file-specific FileManager object
within the program. This lets all your program’s procedures access the file
with a single shared record buffer and a single set of positioning information.

ABC Template Implementation

There are several important points to note regarding the ABC Template
implementation of the FileManager class.

First, the ABC Templates derive a class from the FileManager class for each
file the application processes. The derived classes are called
Hide:Access:filename, but may be referenced as Access:filename. These
derived classes and their methods are declared in the generated
appnaBC0.CLW through appnaBC9.CLW files (depending on how many
files your application uses). The derived class methods are specific to the file
being managed, and they implement many of the file properties specified in

CHAPTER 31 FILEMANAGER 543

the data dictionary such as access modes, keys, field validation and
initialization, etc.

Second, the ABC Templates generate housekeeping procedures to initialize
and shut down the FileManager objects. The procedures are DctInit and
DctKill. These are generated into the appnaBC.CLW file.

Third, the derived FileManager classes are configurable with the Global
Properties dialog. See Template Overview—File Control Options and
Classes Options for more information.

Finally, the ABC Templates also derive a RelationManager for each file.
These objects are called Hide:Relate:filename, but may be referenced as
Relate:filename. The template generated code seldom calls the derived
FileManager methods directly. Instead, it calls a RelationManager method
that echoes the command to the appropriate (related files’) FileManager
methods. See Relation Manager for more information on the
RelationManager class.

Tip: To derive from the FileManager, you can place code into
FileManager global embed points to override existing
FileManager methods, or you can create an ABC Compliant
FileManager (see ABC Compliant Classes) to add new
methods.

FileManager Source Files

The FileManager source code is installed by default to the Clarion \LIBSRC
folder. The specific FileManager source code and their respective
components are contained in:

ABFILE.INC FileManager declarations
ABFILE.CLW FileManager method definitions

544 CLARION 5 APPLICATION HANDBOOK

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a FileManager object.

This example uses the FileManager to insert a valid record with an auto-
incrementing key.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object
Init PROCEDURE !initialize Access:File object
PrimeRecord PROCEDURE,BYTE,PROC,VIRTUAL !prime new record (autoinc)
ValidateField PROCEDURE(UNSIGNED Id),BYTE,VIRTUAL !validate a field
ValidateRecord PROCEDURE(<*UNSIGNED Id>),BYTE,VIRTUAL!validate all fields

END

Client FILE,DRIVER('TOPSPEED'),PRE(CLI),CREATE,BINDABLE,THREAD
IDKey KEY(CLI:ID),NOCASE,OPT,PRIMARY
NameKey KEY(CLI:Name),DUP,NOCASE
Record RECORD,PRE()
ID LONG
Name STRING(20)
StateCode STRING(2)

END
END

InsertWindow WINDOW('Add a new Client'),AT(,,159,73),IMM,SYSTEM,GRAY
PROMPT('&Name:'),AT(8,20),USE(?CLI:Name:Prompt)
ENTRY(@s20),AT(61,20,84,10),USE(CLI:Name),MSG('Client Name'),REQ
PROMPT('State Code:'),AT(8,34),USE(?CLI:StateCode:Prompt)
ENTRY(@s2),AT(61,34,40,10),USE(CLI:StateCode),MSG('State Code')
BUTTON('OK'),AT(12,53,45,14),USE(?OK),DEFAULT

END

CODE
GlobalErrors.Init !initialize GlobalErrors object
Access:Client.Init !initial Access:Client object
Access:Client.Open !open the Client file

IF Access:Client.PrimeRecord() !prime Client record (autoinc)
POST(Event:CloseWindow) !if prime fails, close down

END

OPEN(InsertWindow)

CHAPTER 31 FILEMANAGER 545

ACCEPT
CASE FIELD()
OF ?OK
IF EVENT() = Event:Accepted !on OK button
IF Access:Client.Insert() = Level:Benign !add the new Client record
POST(Event:CloseWindow) !if add succeeds, close down

ELSE !if add fails
SELECT(?CLI:Name:Prompt) !select client name field
CYCLE !and start over

END
END

OF ?CLI:StateCode !on StateCode field
IF EVENT() = EVENT:Accepted
IF Access:Client.ValidateField(3) !validate the StateCode (3rd) field
SELECT(?CLI:StateCode) !if invalid, select StateCode field
CYCLE !and start over

. . . .

Access:Client.Close !close the Client file
Access:Client.Kill !shut down the Access:Client object
GlobalErrors.Kill !shut down the GlobalErrors object
RETURN

Access:Client.Init PROCEDURE
CODE
PARENT.Init(Client, GlobalErrors) !call the base class Init method
SELF.FileNameValue = 'Client' !set the file name
SELF.Buffer &= CLI:Record !point Access:Client to Client buffer
SELF.AddKey(CLI:IDKey,'Client ID',1) !describe the primary autoinc key
SELF.AddKey(CLI:NameKey,'Client Name') !describe another key

Access:Client.PrimeRecord PROCEDURE !called by base class Insert method
Result BYTE,AUTO
CODE
Result = PARENT.PrimeRecord() !call base class PrimeRecord method
CLI:StateCode = 'FL' !default statecode to Florida
RETURN Result

Access:Client.ValidateField PROCEDURE(UNSIGNED Id)!called by base class ValidateFields
CODE !and by this program too
IF ID = 3 !validate the statecode (3rd) field
GlobalErrors.SetField(‘StateCode’) !set field in case of error
IF ~CLI:StateCode !if statecode is blank
RETURN SELF.Throw(Msg:FieldNotInList) !pass error to error handler

END
END
RETURN Level:Benign

Access:Client.ValidateRecord PROCEDURE(<*UNSIGNED F>)!called by base class Insert
CODE
RETURN SELF.ValidateFields(1,3,F) !validate all 3 fields

546 CLARION 5 APPLICATION HANDBOOK

FileManagerClass Properties
The FileManager properties include references to the specific file being
managed, as well as several flags or switches that tell the FileManager how
to manage the referenced file.

The references are to the file, the file name, and the file’s record buffer.
These references allow the otherwise generic FileManager object to process
a specific file.

The processing switches include file access (sharing) mode, a create/
nocreate switch, a held records mode, and a LOCK wait time parameter.

Each of these properties is fully described below.

AliasedFile (the primary file)

AliasedFile &FileManager

The AliasedFile property is a reference to the actual file’s FileManager. A
nonnull value for this property indicates the managed file is an alias of
another file. The FileManager uses this property to synchronize commands,
buffers, etc. between the alias file and its actual file.

Tip: This property should be null (uninitialized) for the actual file
and initialized for any aliases.

Implementation: If the managed file is an alias, you should initialize the AliasedFile property
after the Init method is called, or within a derived Init method specific to the
managed file. See the Conceptual Example. The ABC Templates generate
code to set this property for alias files in the appnaBC0.CLW file.

Buffer (the record buffer)

Buffer &GROUP, PROTECTED

The Buffer property is a reference to the record buffer of the managed file.
You can use the property to access the buffer for the file from within a
generically derived class.

Implementation: The SaveBuffer method stores a copy of the current Buffer contents into the
Buffers property for subsequent retrieval by the RestoreBuffer method.

You should initialize the Buffer property after the Init method is called, or
within a derived Init method specific to the managed file. See the
Conceptual Example.

See Also: Buffers, RestoreBuffer, SaveBuffer

CHAPTER 31 FILEMANAGER 547

Buffers (saved record buffers)

Buffers &BufferQueue, PROTECTED

The Buffers property contains saved copies of the record buffer for the
managed file. The saved record images may be used to detect changes by
other workstations, to implement cancel operations, etc.

Implementation: The SaveBuffer method stores a copy of the current Buffer contents into the
Buffers property and returns an ID which may subsequently be used by the
RestoreBuffer method to retrieve the buffer contents.

The RestoreBuffer method releases memory allocated by the SaveBuffer
method. Therefore, to prevent a memory leak, each call to SaveBuffer should
be paired with a corresponding call to RestoreBuffer.

Buffers is a reference to a QUEUE declared in ABFILE.INC as follows:

BufferQueue QUEUE,TYPE !Saved records
Id LONG !Handle to recognize saved instance
Buffer &STRING !Reference to a saved record

END

See Also: Buffer, SaveBuffer, RestoreBuffer

Create (create file switch)

Create BYTE

The Create property contains a value that tells the file manager whether or
not to create the file if no file exists.

A value of one (1) creates the file; a value of zero (0) does not create the file.

Implementation: The Init method sets the Create property to a value of one (1), which invokes
automatic file creation. The ABC Templates override this default with the
appropriate setting from the data dictionary or application generator. See
Template Overview—File Handling for more information.

The Open method creates the file when an attempt to open the file fails
because there is no file.

See Also: Init, Open

548 CLARION 5 APPLICATION HANDBOOK

Errors (the ErrorManager)

Error &ErrorClass, PROTECTED

The Error property is a reference to the ErrorManager. The Error property
simply identifies the ErrorManager for the various FileManager methods.

Implementation: The Init method sets the value of the Error property.

See Also: Init

File (the managed file)

File &FILE

The File property is a reference to the managed file. The File property
simply identifies the managed file for the various FileManager methods.

Implementation: The Init method sets the value of the File property.

See Also: Init

CHAPTER 31 FILEMANAGER 549

FileName (variable filename)

FileName ANY, PROTECTED

The FileName property is a reference to the variable specified by the
managed file’s NAME attribute. The FileName property determines which
DOS/Windows file is accessed by the FileManager object. The FileName
property may also be used for error messages and other display purposes.

The SetName method sets the contents of the filename variable. The
GetName method returns the filename.

Implementation: You must initialize either the FileName property or the FileNameValue
property (but not both) after the Init method is called, or within a derived Init
method specific to the managed file. See the Conceptual Example.

Example:

Access:Client CLASS(FileManager) !derive Access:Client object
Init PROCEDURE !prototype Access:Client init

END
ClientFileName STRING(‘Client01.tps’) !variable for filename

Client FILE,DRIVER('TOPSPEED'),NAME(ClientFileName) !file with variable name
Record RECORD,PRE()
ID LONG
Name STRING(20)

. .
CODE
GlobalErrors.Init
Access:Client.Init
!program code

Access:Client.Init PROCEDURE !initialize Access:Client object
CODE
PARENT.Init(GlobalErrors) !call the base class Init method
SELF.File &= Client !set File property
SELF.FileName &= ClientFileName !set variable filename

See Also: FileNameValue, GetName, SetName

550 CLARION 5 APPLICATION HANDBOOK

FileNameValue (constant filename)

FileNameValue STRING(File:MaxFilePath), PROTECTED

The FileNameValue property contains the constant value specified by the
managed file’s NAME attribute. The FileNameValue property supplies the
managed file’s DOS filename for error messages or other display purposes.

The GetName method returns the DOS file name.

Implementation: You must initialize either the FileNameValue property or the FileName
property (but not both) after the Init method is called, or within a derived Init
method specific to the managed file. See the Conceptual Example.

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object
Init PROCEDURE !prototype Access:Client init

END

Client FILE,DRIVER('TOPSPEED'),NAME(‘Client.TPS’) !constant filename
Record RECORD,PRE()
ID LONG
Name STRING(20)

. .
CODE
GlobalErrors.Init
Access:Client.Init
!program code

Access:Client.Init PROCEDURE !initialize Access:Client object
CODE
PARENT.Init(GlobalErrors) !call the base class Init method
SELF.File &= Client !point Access:Client to Client file
SELF.FileNameValue = 'Client.TPS' !set constant DOS filename

See Also: FileName, GetName, SetName

CHAPTER 31 FILEMANAGER 551

LazyOpen (delay file open until access)

LazyOpen BYTE

The LazyOpen property indicates whether to open the managed file
immediately when a related file is opened, or to delay opening the file until it
is actually accessed. A value of one (1 or True) delays the opening; a value of
zero (0 or False) immediately opens the file.

Delaying the open can improve performance when accessing only one of a
series of related files.

Implementation: The Init method sets the LazyOpen property to True. The ABC Templates
override this default if instructed. See Template Overview—File Handling for
more information.

The various file access methods (Open, TryOpen, Fetch, TryFetch, Next,
TryNext, Insert, TryInsert, etc.) use the UseFile method to implement the
action specified by the LazyOpen property

See Also: Init, Open, TryOpen, Fetch, TryFetch, Next, TryNext, Insert, TryInsert,
UseFile

LockRecover (/RECOVER wait time parameter)

LockRecover SHORT

The LockRecover property contains the wait time parameter for the
/RECOVER driver string used by the Clarion database driver. See Database
Drivers—Clarion for more information on the /RECOVER driver string.

Implementation: The Init method sets the LockRecover property to a value of ten (10)
seconds. The ABC Templates override this default with the appropriate value
from the application generator. See Template Overview—File Handling for
more information.

The Open method implements the recovery when an attempt to open the file
fails because the file is LOCKed. See the Language Reference for more
information on LOCK.

See Also: Init, Open

552 CLARION 5 APPLICATION HANDBOOK

OpenMode (file access/sharing mode)

OpenMode BYTE

The OpenMode property contains a value that determines the level of access
granted to both the user opening the file and other users in a multi-user
system.

Implementation: The Init method sets the OpenMode property to a hexadecimal value of 42h
(ReadWrite/DenyNone). The ABC Templates override this default with the
appropriate value from the application generator. See Template Overview—
File Handling for more information.

The Open method uses the OpenMode property when it OPENs the file for
processing. See the Language Reference for more information on OPEN and
access modes.

See Also: Init, Open

SkipHeldRecords (HELD record switch)

SkipHeldRecords BYTE

The SkipHeldRecords property contains a value that tells the file manager
how to react when it encounters held records. See the Language Reference
for more information on HOLD.

A value of one (1) skips or omits the held record and continues processing; a
value of zero (0) aborts the current operation.

Implementation: The Init method sets the SkipHeldRecords property to a value of zero (0).

The Next, TryNext, Previous, and TryPrevious methods implement the action
specified by the SkipHeldRecords property when an attempt to read a record
fails because the record is held.

See Also: Init, Next, Previous, TryNext, TryPrevious

CHAPTER 31 FILEMANAGER 553

FileManagerClass Methods

Naming Conventions and Dual Approach to Database Operations

As you study the functional organization of the FileManager methods, please
keep this in mind: most of the common database operations (Open, Next,
Previous, Fetch, Insert, and Update) come in two versions. The versions are
easily identifiable based on their naming conventions:

Operation Do Operation and handle any errors (automatic)
TryOperation Do Operation but do not handle errors (manual)

Intereactive Database Operations

When any of these methods are called (Open, Fetch, Next, Previous, Insert,
and Update), they may take several approaches and several attempts to
complete the requested operation, including issuing error messages where
appropriate. These methods provide automatic error handling. They may
solicit information from the end user in order to proceed with the requested
task. They may even terminate the application under sufficient provocation.
This means the programmer can rely on the fact that if the method returned,
it worked.

Silent Database Operations

When any of these methods prepend “Try” (TryOpen, TryFetch, TryNext,
TryPrevious, TryInsert, and TryUpdate), the method makes a single attempt
to complete the requested operation, then returns a success or failure
indicator to the calling procedure for it to handle accordingly. These methods
require manual error handling.

554 CLARION 5 APPLICATION HANDBOOK

Functional Organization—Expected Use

As an aid to understanding the FileManager class, it is useful to organize the
various FileManager methods into two large categories according to their
expected use—the primary interface and the virtual methods. This
organization reflects what we believe is typical use of the FileManager
methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the FileManager object
Kill terminate the FileManager object

Mainstream Use:
OpenV open the file
TryOpenV open the file
NextV get the next record in sequence
TryNextV get the next record in sequence
PreviousV get the previous record in sequence
TryPreviousV get the previous record in sequence
FetchV get a specific record by key value
TryFetchV get a specific record by key value
Position return the unique position of the current record
TryReget get a specific record by unique position
PrimeAutoIncV prepare an autoincremented record for adding
Insert add a new record
TryInsertV add a new record
CancelAutoIncV restore file to its pre-PrimeAutoInc state
UpdateV change the current record
TryUpdateV change the current record
CloseV close the file

V These methods are also Virtual.

CHAPTER 31 FILEMANAGER 555

Occasional Use:
ClearKey clear a range of key component fields
SetKey make a specific key current for other methods
KeyToOrder return ORDER expression equal to specified key
GetComponents return the number of components of a key
GetField return a reference to a key component
GetFieldName return the field name of a key component
GetEOF return current end of file status
GetError return the current error ID
SetError save the current error state
GetName return the name of the file
SetName set the file name
SaveBuffer save the current record buffer contents
RestoreBuffer restore previously saved buffer contents
SaveFile save the current file state
RestoreFile restore a previously saved file state
UseFile open a LazyOpen file
AddKey describe the soft KEYs

Virtual Methods

Typically, with the possible exception of Open and Close, you will not call
these methods directly—the Primary Interface methods call them. However,
we anticipate you will often want to override these methods, and because
they are virtual, they are very easy to override. These methods do provide
reasonable default behavior in case you do not want to override them.

Open open the file
BindFields BIND all the file’s fields
PrimeAutoInc prepare an autoincremented record for adding
TryPrimeAutoInc prepare an autoincremented record for adding
CancelAutoInc restore file to its pre-PrimeAutoInc state
EqualBuffer detect record buffer changes
Fetch get a specific record by key value
TryFetch get a specific record by key value
Next get the next record in sequence
Previous get the previous record in sequence
PrimeFields prepare record fields for adding
PrimeRecord prepare a record for adding
Throw process an error
ThrowMessage set custom message text then process an error
TryInsert add a new record
TryNext get the next record in sequence
TryOpen open the file
TryPrevious get the previous record in sequence
Update change the current record
TryUpdate change the current record
ValidateField validate a specific field in the current buffer
ValidateFields validate a range of fields in the current buffer
ValidateRecord validate all fields in the current buffer
Close close the file

556 CLARION 5 APPLICATION HANDBOOK

AddKey (set the file’s keys)

AddKey (key, description [,autoincrement])

AddKey Describes a KEY or static INDEX of the managed file.

key The label of the KEY or static NDEX.

description A string constant, variable, EQUATE, or expression
describing the key.

autoincrement An integer constant, variable, EQUATE, or expression
that indicates whether the FileManager automatically
generates incrementing numeric values for the key when
inserting new records. A value of one (1 or True) auto-
matically increments the key; a value of zero (0 or False)
does not increment the key. If omitted, autoincrement
defaults to zero.

The AddKey method describes a KEY or static INDEX of the managed file
so that other FileManager methods can process it. You should typically call
AddKey after the Init method is called (or within your derived Init method).

Implementation: The description appears at runtime on certain key related error messages.

Example:

Access:Client.Init PROCEDURE
CODE
PARENT.Init(Client, GlobalErrors) !call the base class Init method
SELF.FileNameValue = 'Client' !set the file name
SELF.Buffer &= CLI:Record !point Access:Client to Client buffer
SELF.AddKey(CLI:IDKey,'Client ID',1) !describe the primary key
SELF.AddKey(CLI:NameKey,'Client Name') !describe another key

See Also: Init

CHAPTER 31 FILEMANAGER 557

BindFields (bind fields when file is opened)

BindFields, VIRTUAL

The BindFields method BINDs the fields when the file is opened. See the
Language Reference for more information on BIND.

Implementation: The Open method calls the BindFields method.

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object
BindFields PROCEDURE,VIRTUAL !prep fields for dynamic use

END

Client FILE,DRIVER('TOPSPEED'),PRE(CLI),CREATE,BINDABLE,THREAD
IDKey KEY(CLI:ID),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
ID LONG
Name STRING(20)
StateCode STRING(2)

END
END

CODE
!program code

Access:Client.BindFields PROCEDURE !called by the base class Open method
CODE
BIND(CLI:RECORD) !bind all fields for dynamic use

See Also: Open

558 CLARION 5 APPLICATION HANDBOOK

CancelAutoInc (undo PrimeAutoInc)

CancelAutoInc([relation manager]), VIRTUAL, PROC

CancelAutoInc Undoes any PrimeAutoInc action.

relation manager The label of the managed file’s RelationManager object.
If present, the “undo” action cascades to any related
files. If omitted, the “undo” action does not cascade to
related files.

The CancelAutoInc method restores the managed file, and optionally any
related files, to their pre-PrimeAutoInc state, typically when an insert
operation is cancelled. CancelAutoInc returns a value indicating its success
or failure. A return value of zero (0 or Level:Benign) indicates success; any
other return value indicates a problem.

Implementation: The PrimeAutoInc method adds a “dummy” record when inserting records
with autoincrementing keys. CancelAutoInc deletes this “dummy” record,
and, if the relation manager parameter is present, CancelAutoInc deletes any
children of the “dummy” record as well.

If CancelAutoInc succeeds, it returns Level:Benign (declared in
ABERROR.INC). If it ultimately fails, it returns the severity level of the
error it encountered while trying to restore the files. See ErrorClass for more
information on severity levels.

Return Data Type: BYTE

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object
Init PROCEDURE !prototype Access:File init
CancelAutoInc PROCEDURE,VIRTUAL !prototype CancelAutoInc

END

Client FILE,DRIVER('TOPSPEED'),PRE(CLI),CREATE,BINDABLE,THREAD
IDKey KEY(CLI:ID),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
ID LONG
Name STRING(20)
StateCode STRING(2)

END
END

CHAPTER 31 FILEMANAGER 559

InsertWindow WINDOW('Add a new Client'),AT(,,159,73),IMM,SYSTEM,GRAY
PROMPT('&Name:'),AT(8,20),USE(?CLI:Name:Prompt)
ENTRY(@s20),AT(61,20,84,10),USE(CLI:Name),MSG('Client Name'),REQ
PROMPT('State Code:'),AT(8,34),USE(?CLI:StateCode:Prompt)
ENTRY(@s2),AT(61,34,40,10),USE(CLI:StateCode),MSG('State Code')
BUTTON('OK'),AT(12,53,45,14),USE(?OK),DEFAULT
BUTTON('Cancel'),AT(82,53,45,14),USE(?Cancel)

END

CODE
GlobalErrors.Init !initialize GlobalErrors object
Access:Client.Init !initialize Access:Client object
Access:Client.Open !open the Client file
IF Access:Client.PrimeRecord() !prime Client record (autoinc)
POST(Event:CloseWindow) !if prime fails, close down

END

OPEN(InsertWindow)

ACCEPT
CASE FIELD()
OF ?OK
IF EVENT() = Event:Accepted !on OK button
IF Access:Client.Insert() = Level:Benign!finish adding the new Client record
POST(Event:CloseWindow) !if add succeeds, close down

ELSE !if add fails
SELECT(?CLI:Name:Prompt) !select client name field
CYCLE !and start over

END
END

OF ?Cancel
IF EVENT() = EVENT:Accepted !on Cancel button
Access:Client.CancelAutoInc !restore Client to pre-PrimeRecord
POST(Event:CloseWindow) !close down

END
EMD

END

Access:Client.Close !close the Client file
Access:Client.Kill !shut down the Access:Client object
GlobalErrors.Kill !shut down the GlobalErrors object
RETURN

Access:Client.CancelAutoInc PROCEDURE !restore file to pre-PrimeAutoInc
CODE
!your custom code here
PARENT.CancelAutoInc !call the base class method
!your custom code here

See Also: PrimeAutoInc

560 CLARION 5 APPLICATION HANDBOOK

ClearKey (clear specified key components)

ClearKey (key [, firstcomponent] [, lastcomponent] [, highvalue])

ClearKey Clears or (re)initializes the specified range of key
component fields.

key The label of the KEY.

firstcomponent A numeric constant, variable, EQUATE, or expression
that indicates the first component to clear. If omitted,
firstcomponent defaults to one (1).

lastcomponent A numeric constant, variable, EQUATE, or expression
that indicates the last component to clear. If omitted,
lastcomponent defaults to twenty-two (22).

highvalue An integer constant, variable, EQUATE, or expression
that indicates whether to clear the components to zero
(or spaces for string fields) or to their highest possible
values. A value of one (1) applies the highest possible
value; a value of zero (0) applies spaces for strings and
zeros for numerics. If omitted, highvalue defaults to zero
(0).

The ClearKey method clears or (re)initializes the specified range of key
component fields.

Implementation: ClearKey is useful for range limiting to the first instance of the first “free”
key component. By retaining higher order key component values and
clearing lower order key component values, you can fetch the first (or last)
record that matches the retained higher order component values; for example,
the first order (lower order key component) for a customer (higher order key
component).

The value ClearKey assigns depends on three things: the data type of the
component field (numeric or string), the sort direction of the component
(ascending or descending), and the value of the highvalue parameter (True or
False). The following table shows the values ClearKey assigns for each
combination of data type, sort direction, and highvalue.

Numeric Fields String Fields
highvalue Ascending Descending Ascending Descending
True (1) High Values zero High Values spaces
False (0) zero High Values spaces High Values

CHAPTER 31 FILEMANAGER 561

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Order CLASS(FileManager) !derive Access:Order object

END

Order FILE,DRIVER('TOPSPEED'),PRE(ORD),CREATE,BINDABLE,THREAD
IDKey KEY(Ord:Cust,Ord:ID,Ord:Date),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
Cust LONG
ID LONG
Date LONG

END
END

CODE
!program code
!find first order for current customer by clearing all components except Ord:Cust
Access:Order.ClearKey(ORD:IDKey, 2) !clear Ord:ID and Ord:Date
Access:Order.Fetch !get the next record by key

562 CLARION 5 APPLICATION HANDBOOK

Close (close the file)

Close, VIRTUAL, PROC

The Close method tells the FileManager the calling procedure is done with
the file, then closes the file if no other procedure is using it. The Close
method handles any errors that occur while closing the file.

Implementation: The Close method returns a value of Level:Benign (EQUATE declared in
ABERROR.INC). See Error Class for more information on Level:Benign
and other severity levels.

Return Data Type: BYTE

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object
Init PROCEDURE !prototype Access:File init

END

Client FILE,DRIVER('TOPSPEED'),PRE(CLI),CREATE,BINDABLE,THREAD
!file declaration
END

CODE
GlobalErrors.Init !initialize GlobalErrors object
Access:Client.Init !initialize Access:Client object
Access:Client.Open !open the Client file

!program code

Access:Client.Close !close the Client file
Access:Client.Kill !shut down the Access:Client object
GlobalErrors.Kill !shut down the GlobalErrors object

CHAPTER 31 FILEMANAGER 563

EqualBuffer (detect record buffer changes)

EqualBuffer(buffer id), VIRTUAL

EqualBuffer Compares the managed file’s record buffer with the
specified buffer and returns a value indicating whether
the buffers are equal.

buffer id An integer constant, variable, EQUATE, or expression
that identifies the buffer contents to compare—typically
a value returned by the SaveBuffer method.

The EqualBuffer method compares the managed file’s record buffer,
including any MEMOs, with the specified buffer and returns a value
indicating whether the buffers are equal. A return value of one (1 or True)
indicates the buffers are equal; a return value of zero (0 or False) indicates
the buffers are not equal.

Return Data Type: BYTE

Example:

MyWindowManager.TakeCloseEvent PROCEDURE
CODE
IF SELF.Response = RequestCancelled !if end user cancelled the form
IF ~SELF.Primary.Me.EqualBuffer(SELF.Saved) !check for any pending changes
!handle cancel of pending changes

END
END

See Also: SaveBuffer

564 CLARION 5 APPLICATION HANDBOOK

Fetch (get a specific record by key value)

Fetch(key), PROC, VIRTUAL

Fetch Gets a specific record by its key value and handles any
errors.

key The label of the primed KEY.

The Fetch method gets a specific record by its key value and handles any
errors. You must prime the key before calling Fetch. If the key is not unique,
Fetch gets the first record with the specified key value.

The TryFetch method provides a slightly different (manual) alternative for
fetching specific records.

Implementation: Fetch tries to get the specified record. If it succeeds, it returns Level:Benign
(declared in ABERROR.INC). If it fails, it returns Level:Notify (also
declared in ABERROR.INC) and clears the record buffer. See Error Class
for more information on severity levels.

Return Data Type: BYTE

Example:

 PROGRAM
 INCLUDE('ABFILE.INC') !declare FileManager class
 MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:States CLASS(FileManager) !declare Access:States object

END

States FILE,DRIVER('TOPSPEED'),PRE(ST),CREATE,BINDABLE,THREAD
StateCodeKey KEY(ST:StateCode),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
StateCode STRING(2)
State STRING(20)

. .
 CODE
!program code
!get the state record for Florida
ST:StateCode = ‘FL’ !prime the state key for the fetch
Access:States.Fetch(ST:StateCodeKey) !fetch the record and handle any errors

See Also: TryFetch

CHAPTER 31 FILEMANAGER 565

GetComponents (return the number of key components)

GetComponents(key)

GetComponents Returns the number of components in the specified key.

key The label of the KEY.

The GetComponents method returns the number of components in the
specified key.

Return Data Type: BYTE

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors objec
Access:Order CLASS(FileManager) !derive Access:Order object

END
I BYTE
Order FILE,DRIVER('TOPSPEED'),PRE(ORD),THREAD !declare order file
IDKey KEY(Ord:Cust,Ord:ID,Ord:Date),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
Cust LONG
ID LONG
Date LONG

. .
KeyQueue QUEUE,PRE(KeyQ) !a list of key components
Field ANY !component field reference
FieldName STRING(12) !component field name

END
CODE
!program code
LOOP Access:Order.GetComponents(ORD:IDKey) TIMES !step thru key components
I += 1 !increment counter
KeyQ.Field = Access:Order.GetField(ORD:IDKey,I) !get component reference
KeyQ.FieldName = Access:Order.GetFieldName(ORD:IDKey,I)!get component name

END

566 CLARION 5 APPLICATION HANDBOOK

GetEOF (return end of file status)

GetEOF

The GetEOF method returns the current end of file status for the managed
file.

Tip: GetEOF is designed to be used after a call to the Next or
Previous method. The GetEOF return value is undefined prior
to the call to Next or Previous.

Implementation: GetEOF returns one (1 or True) if the last record in a Next/Previous series
was read; otherwise it returns zero (0 or False).

Return Data Type: BYTE

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object

END
CODE
!program code
LOOP !loop through client file
CASE Access:Client.Next() !get next record in sequence
OF Level:Notify OROF Level:Fatal !if error occurred
POST(Event:CloseWindow) !shut down
BREAK

ELSE !otherwise
PRINT(Rpt:Detail) !print the record

END
UNTIL Access:Client.GetEOF() !stop looping at end of file

See Also: Next, TryNext, Previous, TryPrevious

CHAPTER 31 FILEMANAGER 567

GetError (return the current error ID)

GetError

The GetError method returns the current error ID for the managed file. See
Error Class for more information on error IDs.

Return Data Type: SIGNED

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map

LogError (STRING filename, SHORT error) !prototype LogError procedure
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object

END
ErrorLog FILE(TopSpeed),PRE(LOG),CREATE,THREAD !declare log file
Record RECORD
Date LONG
Time LONG
File STRING(20)
ErrorId SHORT

. .
CODE
!program code
IF Access:Client.Open() !if error occurs
LogError(Access:Client.GetName(),Access:Client.GetError()) !log name and error id

END
!program code

LogError PROCEDURE(STRING filename, SHORT error)
CODE
LOG:Date = TODAY() !store date
LOG:Time = CLOCK() !store time
LOG:File = filename !store filename
LOG:ErrorId = error !store error id
ADD(ErrorLog) !write logfile

568 CLARION 5 APPLICATION HANDBOOK

GetField (return a reference to a key component)

GetField(key, component)

GetField Returns a reference to the specified key component.

key The label of the KEY.

component A numeric constant, variable, EQUATE, or expression
that indicates the component field to reference. A value
of one (1) specifies the first component; two (2) speci-
fies the second component, etc.

The GetField method returns a reference to the specified key component.

Return Data Type: *? (untyped variable parameter)

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors objec
Access:Order CLASS(FileManager) !derive Access:Order object

END
I BYTE
Order FILE,DRIVER('TOPSPEED'),PRE(ORD),THREAD !declare order file
IDKey KEY(Ord:Cust,Ord:ID,Ord:Date),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
Cust LONG
ID LONG
Date LONG

. .
KeyQueue QUEUE,PRE(KeyQ) !a list of key components
Field ANY !component field reference
FieldName STRING(12) !component field name

END
CODE
!program code
LOOP Access:Order.GetComponents(ORD:IDKey) TIMES !step thru key components
I += 1 !increment counter
KeyQ.Field = Access:Order.GetField(ORD:IDKey,I) !get component reference
KeyQ.FieldName = Access:Order.GetFieldName(ORD:IDKey,I)!get component name

END

CHAPTER 31 FILEMANAGER 569

GetFieldName (return a key component field name)

GetFieldName(key, component)

GetFieldName Returns the field name of the specified key component.

key The label of the KEY.

component A numeric constant, variable, EQUATE, or expression
that indicates the component field. A value of one (1)
specifies the first component; two (2) specifies the
second component, etc.

The GetFieldName method returns the field name of the specified key
component.

Return Data Type: STRING

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors objec
Access:Order CLASS(FileManager) !derive Access:Order object

END
I BYTE
Order FILE,DRIVER('TOPSPEED'),PRE(ORD),THREAD !declare order file
IDKey KEY(Ord:Cust,Ord:ID,Ord:Date),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
Cust LONG
ID LONG
Date LONG

. .
KeyQueue QUEUE,PRE(KeyQ) !a list of key components
Field ANY !component field reference
FieldName STRING(12) !component field name

END
CODE
!program code
LOOP Access:Order.GetComponents(ORD:IDKey) TIMES !step thru key components
I += 1 !increment counter
KeyQ.Field = Access:Order.GetField(ORD:IDKey,I) !get component reference
KeyQ.FieldName = Access:Order.GetFieldName(ORD:IDKey,I)!get component name

END

570 CLARION 5 APPLICATION HANDBOOK

GetName (return the filename)

GetName

The GetName method returns the filename of the managed file for display in
error messages, etc.

The SetName method sets the (variable) filename of the managed file.

Implementation: GetName returns the value of the FileNameValue property if it has a value;
otherwise, it returns the value of the FileName property.

Return Data Type: STRING

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map

LogError (STRING filename, SHORT error) !prototype LogError procedure
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object

END
ErrorLog FILE(TopSpeed),PRE(LOG),CREATE,THREAD !declare log file
Record RECORD
Date LONG
Time LONG
File STRING(20)
ErrorId SHORT

. .
CODE
!program code
IF Access:Client.Open() !if error occurs
LogError(Access:Client.GetName(),Access:Client.GetError()) !log name and error id

END
!program code

LogError PROCEDURE(STRING filename, SHORT error)
CODE
LOG:Date = TODAY() !store date
LOG:Time = CLOCK() !store time
LOG:File = filename !store filename
LOG:ErrorId = error !store error id
ADD(ErrorLog) !write logfile

See Also: FileName, FileNameValue, SetName

CHAPTER 31 FILEMANAGER 571

Init (initialize the FileManager object)

Init(file, error handler)

Init Initializes the FileManager object.

file The label of the managed file.

error handler The label of an ErrorClass object. See Error Class for
more information.

The Init method initializes the FileManager object.

Implementation: The Init method does not initialize some file specific properties (Buffer,
FileName, and FileNameValue). You should explicitly initialize these
properties after the Init method is called (or within your derived Init method).
See the Conceptual Example.

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object
Init PROCEDURE !initialize Access:File object

END

Client FILE,DRIVER('TOPSPEED'),PRE(CLI),CREATE,BINDABLE,THREAD
IDKey KEY(CLI:ID),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
ID LONG
Name STRING(20)
StateCode STRING(2)

END
END

CODE
GlobalErrors.Init !initialize the GlobalErrors object
Access:Client.Init !initialize Access:Client object
!program code
Access:Client.Kill !shut down the Access:Client object
GlobalErrors.Kill !shut down the GlobalErrors object

Access:Client.Init PROCEDURE
CODE
PARENT.Init(Client, GlobalErrors) !call the base class Init method
SELF.FileNameValue = 'Client' !set the file name
SELF.Buffer &= CLI:Record !point Access:Client to Client buffer
SELF.AddKey(CLI:IDKey,'Client ID',1) !describe the primary key

See Also: Buffer, File, FileName, FileNameValue

572 CLARION 5 APPLICATION HANDBOOK

Insert (add a new record)

Insert, PROC, VIRTUAL

The Insert method adds a new record to the file, making sure the record is
valid, and automatically incrementing key values as required. The Insert
method handles any errors that occur while adding the record.

The TryInsert method provides a slightly different (manual) alternative for
adding new records, and allows for the use of GetError.

Implementation: If Insert succeeds, it returns Level:Benign (declared in ABERROR.INC). If it
fails, it returns the severity level of the last error it encountered while trying
to add the record. See Error Class for more information on severity levels.

Return Data Type: BYTE

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP . !program map

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) . !derive Access:Client object
InsertWindow WINDOW('Add a new Client'),AT(,,159,73),IMM,SYSTEM,GRAY

PROMPT('&Name:'),AT(8,20),USE(?CLI:Name:Prompt)
ENTRY(@s20),AT(61,20,84,10),USE(CLI:Name),MSG('Client Name'),REQ
PROMPT('State Code:'),AT(8,34),USE(?CLI:StateCode:Prompt)
ENTRY(@s2),AT(61,34,40,10),USE(CLI:StateCode),MSG('State Code')
BUTTON('OK'),AT(12,53,45,14),USE(?OK),DEFAULT

END CODE
!program code
ACCEPT
CASE FIELD()
OF ?OK
IF EVENT() = Event:Accepted !on OK button
IF Access:Client.Insert() = Level:Benign !add the new Client record
POST(Event:CloseWindow) !if add succeeds, close down

ELSE !if add fails
Access:Client.CancelPrimeAutoInc !restore the file
CYCLE !and start over

. .
!more code

See Also: TryInsert, PrimeRecord

CHAPTER 31 FILEMANAGER 573

KeyToOrder (return ORDER expression for a key)

KeyToOrder(key, component)

KeyToOrder Returns an ORDER attribute expression list (for a
VIEW) that mimics the specified key components.

key The label of the KEY.

component A numeric constant, variable, EQUATE, or expression
that indicates the first component field to include in the
expression. A value of one (1) specifies the first compo-
nent; two (2) specifies the second component, etc.

The KeyToOrder method returns an ORDER attribute expression list (for a
VIEW) that mimics the specified key components. The expression list
includes the specified component field plus all the subsequent component
fields in the key.

See the Language Reference for more information on ORDER.

Implementation: The component defaults to one (1). The maximum length of the returned
expression is 512 characters.

Return Data Type: STRING

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors
Access:Order CLASS(FileManager) !derive Access:Order

END
Order FILE,DRIVER('TOPSPEED'),PRE(ORD),THREAD !declare order file
IDKey KEY(ORD:Cust,ORD:ID,ORD:Date),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
Cust LONG
ID LONG
Date LONG

. .
ClientView VIEW(Order) !declare order view

PROJECT(ORD:Cust,ORD:ID,ORD:Date)
END

CODE
!program code
ClientView{PROP:Order}=Access:Order.KeyToOrder(ORD:IDKey,2) !set runtime view order
!ClientView{PROP:Order}=’ORD:ID,ORD:Date’ !equivalent to this
OPEN(ClientView)
SET(ClientView)

574 CLARION 5 APPLICATION HANDBOOK

Kill (shutdown the FileManager object)

Kill

The Kill method disposes any memory allocated during the object’s lifetime
and performs any other necessary termination code.

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object

END

Client FILE,DRIVER('TOPSPEED'),PRE(CLI),CREATE,BINDABLE,THREAD
IDKey KEY(CLI:ID),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
ID LONG
Name STRING(20)
StateCode STRING(2)

END
END

CODE
GlobalErrors.Init !initialize the GlobalErrors object
Access:Client.Init !initialize Access:Client object
!program code
Access:Client.Kill !shut down the Access:Client object
GlobalErrors.Kill

CHAPTER 31 FILEMANAGER 575

Next (get next record in sequence)

Next, VIRTUAL, PROC

The Next method gets the next record in sequence. The Next method handles
any errors, except end of file, that occur while getting the record.

The TryNext method provides slightly different (manual) alternative for
getting records in sequence.

Implementation: If Next succeeds, it returns Level:Benign (declared in ABERROR.INC). If it
ultimately fails, it returns the severity level of the last error it encountered
while trying to get the next record. See Error Class for more information on
severity levels.

Return Data Type: BYTE

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class

Access:Client CLASS(FileManager) !derive Access:Client object
END

CODE
!program code
LOOP !loop through client file
CASE Access:Client.Next() !get next record in sequence
OF Level:Notify OROF Level:Fatal !if error occurred
POST(Event:CloseWindow) !shut down
BREAK

ELSE !otherwise
PRINT(Rpt:Detail) !print the record

END
END

See Also: TryNext

576 CLARION 5 APPLICATION HANDBOOK

Open (open the file)

Open, VIRTUAL, PROC

The Open method tells the FileManager the calling procedure is using the
file, then OPENs the file if it is not already open. The Open method handles
any errors that occur while opening the file, including creating the file and
rebuilding keys if necessary.

The TryOpen method provides slightly different (manual) alternative for
opening files.

Implementation: If the file does not exist and the Create property is not zero, Open tries to
create the file. If Open succeeds, it returns Level:Benign (declared in
ABERROR.INC). If it ultimately fails, it returns the severity level of the last
error it encountered while trying to open the file. See Error Class for more
information on severity levels.

Return Data Type: BYTE

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object
Init PROCEDURE !prototype Access:File init

END

Client FILE,DRIVER('TOPSPEED'),PRE(CLI),CREATE,BINDABLE,THREAD
!file declaration
END

CODE
GlobalErrors.Init !initialize GlobalErrors object
Access:Client.Init !initialize Access:Client object
Access:Client.Open !open the Client file

!program code

Access:Client.Close !close the Client file
Access:Client.Kill !shut down the Access:Client object
GlobalErrors.Kill !shut down the GlobalErrors object

See Also: Create, TryOpen

CHAPTER 31 FILEMANAGER 577

Position (return the current record position)

Position

The Position method returns the unique position of the current record.

The TryReget method retrieves a record based on the value returned by
Position.

Implementation: Position returns the POSITION of the primary key if there is one; otherwise
it returns the file POSITION. See the Language Reference for more
information on POSITION.

Return Data Type: STRING

Example:

Hold = SELF.Position()
PUT(SELF.File)
CASE ERRORCODE()
OF NoError
OF RecordChangedErr
SELF.SetError(Msg:ConcurrencyFailedFromForm)
SELF.Throw
WATCH(SELF.File)
SELF.TryReget(Hold)

ELSE
SELF.SetError(Msg:PutFailed)
RETURN SELF.Throw()

END

See Also: TryReget

578 CLARION 5 APPLICATION HANDBOOK

Previous (get previous record in sequence)

Previous, VIRTUAL, PROC

The Previous method gets the previous record in sequence. The Previous
method handles any errors that occur while getting the record.

The TryPrevious method provides a slightly different (manual) alternative
for getting records in sequence.

Implementation: If Previous succeeds, it returns Level:Benign (declared in ABERROR.INC).
If it ultimately fails, it returns the severity level of the last error it
encountered while trying to get the previous record. See Error Class for
more information on severity levels.

Return Data Type: BYTE

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class

Access:Client CLASS(FileManager) !derive Access:Client object
END

CODE
!program code
LOOP !loop through client file
CASE Access:Client.Previous() !get previous record in sequence
OF Level:Notify OROF Level:Fatal !if error occurred
POST(Event:CloseWindow) !shut down
BREAK

ELSE !otherwise
PRINT(Rpt:Detail) !print the record

END
END

See Also: TryPrevious

CHAPTER 31 FILEMANAGER 579

PrimeAutoInc (prepare an autoincremented record for adding)

PrimeAutoInc, VIRTUAL, PROC

When a record is inserted, the PrimeAutoInc method prepares an
autoincremented record for adding to the managed file and handles any
errors it encounters. If you want to provide an update form that displays the
auto-inremented record ID or where RI is used to keep track of children, then
you should use the PrimeAutoInc method to prepare the record buffer.

Tip: If your autoincremented key has multiple component fields,
then you should prime the high-order component fields, either
in the global Global Objects, FileManager, PrimeAutoInc
embed point, or in the LocalObjects, Browser, PrimeRecord
embed point.

The TryPrimeAutoInc method provides a slightly different (manual)
alternative for preparing autoincremented records.

The CancelAutoInc method restores the managed file to its pre-
PrimeAutoInc state.

Implementation: The PrimeRecord method calls PrimeAutoInc if the file contains an
autoincrementing key.

If PrimeAutoInc succeeds, it returns Level:Benign (declared in
ABERROR.INC). If it ultimately fails, it returns the severity level of the
error it encountered while trying to prime the record. See Error Class for
more information on severity levels.

Return Data Type: BYTE

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object
Init PROCEDURE !initialize Access:File object
PrimeAutoInc PROCEDURE,VIRTUAL !prepare new record for adding

END

Client FILE,DRIVER('TOPSPEED'),PRE(CLI),CREATE,BINDABLE,THREAD
IDKey KEY(CLI:ID),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
ID LONG
Name STRING(20)
StateCode STRING(2)

END
END

580 CLARION 5 APPLICATION HANDBOOK

InsertWindow WINDOW('Add a new Client'),AT(,,159,73),IMM,SYSTEM,GRAY
PROMPT('&Name:'),AT(8,20),USE(?CLI:Name:Prompt)
ENTRY(@s20),AT(61,20,84,10),USE(CLI:Name),MSG('Client Name'),REQ
PROMPT('State Code:'),AT(8,34),USE(?CLI:StateCode:Prompt)
ENTRY(@s2),AT(61,34,40,10),USE(CLI:StateCode),MSG('State Code')
BUTTON('OK'),AT(12,53,45,14),USE(?OK),DEFAULT
BUTTON('Cancel'),AT(82,53,45,14),USE(?Cancel)

END
CODE
GlobalErrors.Init !initialize GlobalErrors object
Access:Client.Init !initialize Access:Client object
Access:Client.Open !open the Client file
IF Access:Client.PrimeAutoInc() !prime Client record
POST(Event:CloseWindow) !if prime fails, close down

END

OPEN(InsertWindow)
ACCEPT
CASE FIELD()
OF ?OK
IF EVENT() = Event:Accepted !on OK button
IF Access:Client.Insert() = Level:Benign!finish adding the new Client record
POST(Event:CloseWindow) !if add succeeds, close down

ELSE !if add fails
SELECT(?CLI:Name:Prompt) !select client name field
CYCLE !and start over

END
END

OF ?Cancel
IF EVENT() = EVENT:Accepted !on Cancel button
Access:Client.CancelAutoInc !restore Client to pre-PrimeRecord
POST(Event:CloseWindow) !close down

END
EMD

END

Access:Client.Close !close the Client file
Access:Client.Kill !shut down the Access:Client object
GlobalErrors.Kill !shut down the GlobalErrors object
RETURN

Access:Client.PrimeAutoInc PROCEDURE
CODE
!your custom code here
PARENT.PrimeAutoInc !call the base class method
!your custom code here

See Also: CancelAutoInc, PrimeRecord, TryPrimeAutoInc

CHAPTER 31 FILEMANAGER 581

PrimeFields (a virtual to prime fields)

PrimeFields, VIRTUAL

The PrimeFields method is a virtual placeholder method to prime fields
before adding a record.

Implementation: The ABC Templates use the PrimeFields method to implement field priming
specified in the Data Dictionary.

The PrimeRecord method calls the PrimeFields method before calling the
PrimeAutoInc method. You can use the PrimeRecord method to prime the
nonincrementing components of an autoincrementing key.

Example:

Access:Customer.PrimeFields PROCEDURE
CODE
CLI:StateCode = 'FL'

582 CLARION 5 APPLICATION HANDBOOK

PrimeRecord (prepare a record for adding)

PrimeRecord([suppress clear]), VIRTUAL, PROC

PrimeRecord Prepares a record for adding to the managed file.

suppress clear An integer constant, variable, EQUATE, or expression
that indicates whether or not to clear the record buffer. A
value of zero (0 or False) clears the buffer; a value of
one (1 or True) does not clear the buffer. If omitted,
suppress clear defaults to zero (0).

The PrimeRecord method prepares a record for adding to the managed file
and returns a value indicating success or failure. A return value of
Level:Benign indicates success; any other return value indicates a problem.

Implementation: PrimeRecord prepares the record by optionally clearing the record buffer,
then calling the PrimeFields method to prime field values, and the
PrimeAutoInc method to increment autoincrementing key values. If it
succeeds, it returns Level:Benign (declared in ABERROR.INC), otherwise it
returns the severity level of the last error it encountered. See Error Class for
more information on severity levels.

The suppress clear parameter lets you clear or retain any other values in the
record buffer.

Return Data Type: BYTE

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object
Init PROCEDURE !initialize Access:File object
PrimeAutoInc PROCEDURE,VIRTUAL !prepare new record for adding

END

Client FILE,DRIVER('TOPSPEED'),PRE(CLI),CREATE,BINDABLE,THREAD
IDKey KEY(CLI:ID),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
ID LONG
Name STRING(20)
StateCode STRING(2)

END
END

InsertWindow WINDOW('Add a new Client'),AT(,,159,73),IMM,SYSTEM,GRAY
PROMPT('&Name:'),AT(8,20),USE(?CLI:Name:Prompt)
ENTRY(@s20),AT(61,20,84,10),USE(CLI:Name),MSG('Client Name'),REQ
PROMPT('State Code:'),AT(8,34),USE(?CLI:StateCode:Prompt)

CHAPTER 31 FILEMANAGER 583

ENTRY(@s2),AT(61,34,40,10),USE(CLI:StateCode),MSG('State Code')
BUTTON('OK'),AT(12,53,45,14),USE(?OK),DEFAULT
BUTTON('Cancel'),AT(82,53,45,14),USE(?Cancel)

END

CODE
GlobalErrors.Init !initialize GlobalErrors object
Access:Client.Init !initialize Access:Client object
Access:Client.Open !open the Client file
IF Access:Client.PrimeRecord() !prime Client record
POST(Event:CloseWindow) !if prime fails, close down

END

OPEN(InsertWindow)
ACCEPT
CASE FIELD()
OF ?OK
IF EVENT() = Event:Accepted !on OK button
IF Access:Client.Insert() = Level:Benign!finish adding the new Client record
POST(Event:CloseWindow) !if add succeeds, close down

ELSE !if add fails
SELECT(?CLI:Name:Prompt) !select client name field
CYCLE !and start over

END
END

OF ?Cancel
IF EVENT() = EVENT:Accepted !on Cancel button
Access:Client.CancelAutoInc !restore Client to pre-PrimeRecord
POST(Event:CloseWindow) !close down

END
EMD

END

Access:Client.Close !close the Client file
Access:Client.Kill !shut down the Access:Client object
GlobalErrors.Kill !shut down the GlobalErrors object
RETURN

Access:Client.PrimeAutoInc PROCEDURE
CODE
!your custom code here
PARENT.PrimeAutoInc !call the base class method
!your custom code here

See Also: PrimeAutoInc, CancelAutoInc

584 CLARION 5 APPLICATION HANDBOOK

RestoreBuffer (restore a previously saved record buffer)

RestoreBuffer(buffer id [, restore])

RestoreBuffer Restores previously saved record buffer contents.

buffer id An integer constant, variable, EQUATE, or expression
that identifies the buffer contents to restore—this is a
value returned by the SaveBuffer method.

restore An integer constant, variable, EQUATE, or expression
that indicates whether to restore the managed file’s
buffer contents, or simply DISPOSE of the specified
buffer. A value of one (1 or True) updates the file’s
Buffer; a value of zero (0 or False) does not update the
file’s Buffer. If omitted, restore defaults to True.

The RestoreBuffer method restores record buffer contents to the managed
file’s record buffer (the Buffer property). RestoreBuffer restores values
previously saved by the SaveBuffer method, including MEMO fields.

Implementation: The RestoreBuffer method releases memory allocated by the SaveBuffer
method. Therefore, to prevent a memory leak, each call to SaveBuffer should
be paired with a corresponding call to RestoreBuffer.

The RestoreBuffer method retrieves and DISPOSEs the specified contents
from the Buffers property.

Example:

FileManager.RestoreFile PROCEDURE(*USHORT Id)
 CODE
IF ~SELF.UseFile()
SELF.Saved.Id = Id
GET(SELF.Saved,SELF.Saved.Id)
ASSERT(~ERRORCODE())
IF SELF.Saved.Key &= NULL
RESET(SELF.File,SELF.Saved.Pos)

ELSE
RESET(SELF.Saved.Key,SELF.Saved.Pos)

END
IF SELF.Saved.WHeld
HOLD(SELF.File)

END
IF SELF.Saved.WWatch
WATCH(SELF.File)

END
NEXT(SELF.File)
SELF.RestoreBuffer(SELF.Saved.Buffer)
DELETE(SELF.Saved)
Id = 0

END

See Also: Buffer, Buffers, SaveBuffer

CHAPTER 31 FILEMANAGER 585

RestoreFile (restore a previously saved file state)

RestoreFile(filestateid [, restore])

RestoreFile Restores a previously saved file state.

filestateid A USHORT returned by the SaveFile method that
identifies the file state to restore.

restore An integer constant, variable, EQUATE, or expression
that indicates whether to restore the managed file’s
buffer contents, or simply DISPOSE of the specified
buffer. A value of one (1 or True) updates the file’s
Buffer; a value of zero (0 or False) does not update the
file’s Buffer. If omitted, restore defaults to True.

The RestoreFile method restores the specified file state for the managed file.
RestoreFile restores from states previously saved by the SaveFile method.

Implementation: The RestoreFile method restores file position, as well as any active HOLD or
WATCH. RestoreFile calls the RestoreBuffer method to restore the managed
file’s record buffer contents.

Example:

SaveState USHORT !must be a USHORT
CODE
SaveState = Access:MyFile.SaveFile() !save the file state
SET(MyKey,MyKey) !access the file (change the file state)
LOOP UNTIL Access:MyFile.Next()
!Check range limits here
!Process the record here

END
Access:MyFile.RestoreFile(SaveState) !restore the previously saved file state

See Also: SaveFile, RestoreBuffer

586 CLARION 5 APPLICATION HANDBOOK

SaveBuffer (save a copy of the record buffer)

SaveBuffer

The SaveBuffer method saves a copy of the managed file’s record buffer
contents (the Buffer property) and returns a number that uniquely identifies
the saved record. SaveBuffer stores buffer contents for subsequent retrieval
by the RestoreBuffer method.

Implementation: SaveBuffer saves MEMO contents as well as other fields.

SaveBuffer allocates memory which is subsequently released by the
RestoreBuffer method. Therefore, to prevent a memory leak, each call to
SaveBuffer should be paired with a corresponding call to RestoreBuffer.

Return Data Type: USHORT

Example:

FileManager.SaveFile PROCEDURE
Id LONG,AUTO
I SHORT,AUTO
 CODE
 Id = RECORDS(SELF.Saved)
 IF Id
 GET(SELF.Saved,Id)
 ASSERT(~ERRORCODE())
 Id = SELF.Saved.Id + 1
 ELSE
 Id = 1
 END
 SELF.Saved.Id = Id
 SELF.Saved.Buffer = SELF.SaveBuffer()
 SELF.Saved.Key &= SELF.File{PROP:CurrentKey}
 SELF.Saved.WHeld = SELF.File{PROP:Held}
 SELF.Saved.WWatch = SELF.File{PROP:Watched}
 IF SELF.Saved.Key &= NULL
 SELF.Saved.Pos = POSITION(SELF.File)
 ELSE
 SELF.Saved.Pos = POSITION(SELF.Saved.Key)
 END
 ADD(SELF.Saved)
 RETURN Id

See Also: Buffer, Buffers, RestoreBuffer

CHAPTER 31 FILEMANAGER 587

SaveFile (save the current file state)

SaveFile

The SaveFile method saves the managed file’s current state and returns a
number that uniquely identifies the saved state. SaveFile saves the managed
file’s state for subsequent restoration by the RestoreFile method.

Implementation: The SaveFile method saves file position, as well as any active HOLD or
WATCH. SaveFile calls the SaveBuffer method to save a copy of the
managed file’s record buffer contents.

Return Data Type: USHORT

Example:

SaveState USHORT !must be a USHORT
CODE
SaveState = Access:MyFile.SaveFile() !save the file state
SET(MyKey,MyKey) !access the file (change the file state)
LOOP UNTIL Access:MyFile.Next()
!Check range limits here
!Process the record here

END
Access:MyFile.RestoreFile(SaveState) !restore the previously saved file state

See Also: RestoreFile, SaveBuffer

588 CLARION 5 APPLICATION HANDBOOK

SetError (save the specified error and underlying error state)

SetError(error id)

SetError Saves the specified error and the underlying error state
for use by the Throw method, etc.

error id A numeric constant, variable, EQUATE, or expression
that identifies the error. See Error Class for more
information on error id.

The SetError method saves the specified error and underlying error state for
use by the Throw method, etc.

Example:

Access:Client.Next FUNCTION(BYTE HandleError) !Next function
CODE ! with alternative error handling
LOOP
NEXT(SELF.File) !get the next record
CASE ERRORCODE() !check for error conditions
OF BadRecErr OROF NoError
RETURN Level:Benign

OF IsHeldErr !if record is HELD by another
SELF.SetError(Msg:RecordHeld) !make RecordHeld the current error
IF HandleError !if interactive error handling
RETURN SELF.Throw() !pass current error to error handler

ELSE !otherwise (silent error handling)
RETURN Level:Notify !return error code to caller

END
END

END

See Also: Throw

SetKey (set current key)

SetKey(key), PROTECTED

SetKey Makes the specified key current for use by other
FileManager methods.

key The label of the KEY.

The SetKey method makes the specified key the current one for use by other
FileManager methods.

Example:

FileManager.GetComponents FUNCTION(KEY K) !returns the number of key components
CODE
SELF.SetKey(K) !locate the specified key
RETURN RECORDS(SELF.Keys.Fields) !count the components

CHAPTER 31 FILEMANAGER 589

SetName (set current filename)

SetName(filename)

SetName Sets the variable filename of the managed file.

filename A string constant, variable, EQUATE, or expression that
contains the filename of the managed file.

The SetName method sets the variable filename (NAME attribute) of the
managed file. This value determines which file is actually opened and
processed by the FileManager object. The filename is also displayed in error
messages, etc.

The GetName method returns the name of the managed file.

Implementation: Setame assumes the FileName property is contains a reference to the file’s
NAME attribute variable.

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP . !program map

ClientFile STRING(8) !client filename variable
GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object
Init PROCEDURE !initialize Access:File object

END

Client FILE,DRIVER('TOPSPEED'),PRE(CLI),THREAD,NAME(CLientFile)
IDKey KEY(CLI:ID),NOCASE,OPT,PRIMARY
Record RECORD,PE()
ID LONG
Name STRING(20)
StateCode STRING(2)

. .
CODE
GlobalErrors.Init !initialize the GlobalErrors object
Access:Client.Init !initialize the Access:Client object
LOOP I# = 1 TO 12 !step through 12 monthly files
Access:Client.SetName(‘Client’&I#) !set the filename variable
Access:Client.Open !open the monthly file
!process the file
Access:Client.Close !close the monthly file

END

Access:Client.Init PROCEDURE
CODE
PARENT.Init(GlobalErrors) !call the base class Init method
SELF.File &= Client !point Access:Client to Client file
SELF.Buffer &= CLI:Record !point Access:Client to Client buffer
SELF.FileName &= ClientFile !point Access:Client to the filename variable

See Also: FileName, FileNameValue, GetName

590 CLARION 5 APPLICATION HANDBOOK

Throw (pass an error to the error handler for processing)

Throw([error id]), VIRTUAL, PROC

Throw Passes the specified error to the error handler object for
processing.

error id A numeric constant, variable, EQUATE, or expression
that indicates the error to process. If omitted, Throw
processes the current error—that is , the error identified
by the previous call to SetError or Throw.

The Throw method passes the current (last encountered) error to the
nominated error handler for processing, including FILEERROR() and
FILEERRORCODE() values, then returns the severity level of the error.

Implementation: The SetError method saves the specified error and underlying error state for
use by the Throw method. See Error Class for more information on error ids
and severity levels.

The Init method receives and sets the error handler object.

Return Data Type: BYTE

Example:

Access:Client.Next FUNCTION(BYTE HandleError) !Next function
CODE ! with alternative error handling
LOOP
NEXT(SELF.File) !get the next record
CASE ERRORCOD() !check for error conditions
OF BadRecErr OROF NoError
RETURN Level:Benign

OF IsHeldErr !if record is HELD by another
SELF.SetError(Msg:RecordHeld) !make RecordHeld the current error
IF HandleError !if interactive error handling
RETURN SELF.Throw() !pass current error to error handler

ELSE !otherwise (silent error handling)
RETURN Level:Notify !return error code to caller

END
END

END

See Also: Init, SetError

CHAPTER 31 FILEMANAGER 591

ThrowMessage (pass an error and text to the error handler)

ThrowMessage(error id, text), VIRTUAL, PROC

ThrowMessage Passes the specified error and text to the error handler
object for processing.

error id A numeric constant, variable, EQUATE, or expression
that indicates the error to process.

text A string constant, variable, EQUATE, or expression to
include in the error message.

The ThrowMessage method passes the specified error, including
FILEERROR() and FILEERRORCODE() values, and text to the error
handler object for processing, then returns the severity level of the error. See
Error Class for more about error ids and severity levels.

Implementation: The Init method receives and sets the error handler. The incorporation of the
text into the error message depends on the error handler. See Error Class.

Return Data Type: BYTE

Example:

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object
ValidateField FUNCTION(UNSIGNED Id),BYTE,VIRTUAL !prototype Access:File validation

END
Client FILE,DRIVER('TOPSPEED'),PRE(CLI),THREAD
IDKey KEY(CLI:ID),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
ID LONG
Name STRING(20)
StateCode STRING(2)

. .
CODE
!program code

Access:Client.ValidateField FUNCTION(UNSIGNED Id)
CODE
IF ID = 3 !validate statecode (3rd) field
IF ~CLI:StateCode !if no statecode,

!pass error & text to error handler
RETURN Access:Client.ThrowMessage(Msg:RequiredField,’StateCode’)

. .
RETURN Level:Notify

See Also: Init

592 CLARION 5 APPLICATION HANDBOOK

TryFetch (try to get a specific record by key value)

TryFetch(key), PROC, VIRTUAL

TryFetch Gets a specific record by its key value.

key The label of the primed KEY.

The TryFetch method gets a specific record by its key value. You must prime
the key before calling TryFetch. If the key is not unique, TryFetch gets the
first record with the specified key value.

The Fetch method provides a slightly different (automatic) alternative for
fetching specific records.

Implementation: Fetch tries to get the specified record. If it succeeds, it returns Level:Benign.
If it fails, it returns Level:Notify and does not clear the record buffer. See
Error Class for more information on Level:Benign and Level:Notify.

Return Data Type: BYTE

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:States CLASS(FileManager) !declare Access:States object

END

States FILE,DRIVER('TOPSPEED'),PRE(ST),CREATE,BINDABLE,TREAD
StateCodeKey KEY(ST:StateCode),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
StateCode STRING(2)
State STRING(20)

. .
 CODE
!program code
!get the state record for Florida
ST:StateCode = ‘FL’ !prime the state key for the fetch
IF Access:States.TryFetch(ST:StateCodeKey) !fetch the record
GlobalErrors.Throw(Msg:FieldNotInFile) !handle any errors yourself

END

See Also: Fetch

CHAPTER 31 FILEMANAGER 593

TryInsert (try to add a new record)

TryInsert, PREVIOUS, PROC

The TryInsert method adds a new record to the file, making sure the record
is valid, and automatically incrementing key values as required. The
TryInsert method does not attempt to handle errors.

The Insert method provides a slightly different (automatic) alternative for
adding records.

Implementation: TryInsert tries to add the record. If it succeeds, it returns Level:Benign
(declared in ABERROR.INC). If it fails, it returns the severity level of the
error it encountered while trying to add the record. See Error Class for more
information on severity levels.

Return Data Type: BYTE

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP . !program map

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) . !derive Access:Client object
InsertWindow WINDOW('Add a new Client'),AT(,,159,73),IMM,SYSTEM,GRAY

PROMPT('&Name:'),AT(8,20),USE(?CLI:Name:Prompt)
ENTRY(@s0),AT(61,20,84,10),USE(CLI:Name),MSG('Client Name'),REQ
PROMPT('State Code:'),AT(8,34),USE(?CLI:StateCode:Prompt)
ENTRY(@s2),AT(61,34,40,10),USE(CLI:StateCode),MSG('State Code')
BUTTON('OK'),AT(12,53,45,14),USE(?OK),DEFAULT

END
CODE
!program code
ACCEPT
CASE FIELD()
OF ?OK
IF EVENT() = Event:Accepted !on OK button
IF Access:Client.TryInsert() = Level:Benign !add the new Client record
POST(Event:CloseWindow) !if add succeeds, close down

ELSE !if add fails
Access:Client.Throw(Msg:InsertFailed) !handle the error
Access:Client.CancelPrimeAutoInc !restore the file
CYCLE !and start over

. .
!more code

See Also: Insert, PrimeRecord

594 CLARION 5 APPLICATION HANDBOOK

TryNext (try to get next record in sequence)

TryNext, PREVIOUS, PROC

The TryNext method gets the next record in sequence. The TryNext method
does not attempt to handle errors that occur while getting the next record.

The Next method provides a slightly different (automatic) alternative for
getting records in sequence.

Implementation: TryNext tries to get the next record. If it succeeds, it returns Level:Benign
(declared in ABERROR.INC). If it fails, it returns the severity level of the
error it encountered while trying to get the record. See Error Class for more
information on severity levels.

Return Data Type: BYTE

Example:

PROGRAM BatchReport !batch process—don’t display errors
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object

END
CODE
!program code
LOOP !loop through client file
CASE Access:Cliet.TryNext() !get next record in sequence
OF Level:Notify OROF Level:Fatal !if error occurred
POST(Event:CloseWindow) !shut down
BREAK

ELSE !otherwise
PRINT(Rpt:Detail) !print the record

END
END

See Also: Next

CHAPTER 31 FILEMANAGER 595

TryOpen (try to open the file)

TryOpen, PREVIOUS, PROC

The TryOpen method tells the FileManager the calling procedure is using
the file, then OPENs the file if it is not already open. The TryOpen method
does not attempt to handle errors that occur while opening the file.

The Open method provides a slightly different (automatic) alternative for
opening files.

Implementation: TryOpen tries to open the file. If it succeeds, it returns Level:Benign
(declared in ABERROR.INC). If it fails, it returns the severity level of the
error it encountered while trying to open the file. See Error Class for more
information on severity levels.

Return Data Type: BYTE

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP . !program map

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object
Init PROCEDURE !prototype Access:File init

END

Client FILE,DRIVER('TOPSPEED'),PRE(CLI),CREATE,BINDABLE,THREAD
!file declaration

END
CODE
GlobalErrors.Init !initialize GlobalErrors object
Access:Client.Init !initialize Access:Client object
IF Access:Client.TryOpen !try to open the Client file
MESSAGE(‘Could not open the Client file’) !handle the error yourseLf
RETURN

END

!program code

Access:Client.Close !close the Client file
Access:Client.Kill !shut down the Access:Client object
GlobalErrors.Kill !shut down the GlobalErrors object

See Also: Open

596 CLARION 5 APPLICATION HANDBOOK

TryPrevious (try to get previous record in sequence)

TryPrevious, VIRTUAL, PROC

The TryPrevious method gets the previous record in sequence. The
TryPrevious method does not attempt to handle errors that occur while
getting the previous record.

The Previous method provides a slightly different (automatic) alternative for
getting records in sequence.

Implementation: TryPrevious tries to get the previous record. If it succeeds, it returns
Level:Benign (declared in ABERROR.INC). If it fails, it returns the severity
level of the error it encountered while trying to get the record. See Error
Class for more information on severity levels.

Return Data Type: BYTE

Example:

PROGRAM BatchReport !batch report—don’t display errors
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object

END
CODE
!program code
LOOP !loop through client file
CASE Access:Client.TryPrevious() !get previous record in sequence
OF Level:Notify OROF Level:Fatal !if error occurred
POST(Event:CloseWindow) !shut down
BREAK

ELSE !otherwise
PRINT(Rpt:Detail) !print the record

END
END

See Also: Previous

CHAPTER 31 FILEMANAGER 597

TryPrimeAutoInc (try to prepare an autoincremented record for adding)

TryPrimeAutoInc, VIRTUAL, PROC

When a record is Inserted, the TryPrimeAutoInc method prepares an
autoincremented record for adding to the managed file. The
TryPrimeAutoInc method does not handle any errors it encounters.

The PrimeAutoInc method provides a slightly different (automatic)
alternative for preparing autoincremented records.

The CancelAutoInc method restores the managed file to its pre-
TryPrimeAutoInc state.

Implementation: TryPrimeAutoInc tries to prime the record. If it succeeds, it returns
Level:Benign (declared in ABERROR.INC). If it fails, it returns the severity
level of the error it encountered while trying to prime the record. See Error
Class for more information on severity levels.

Return Data Type: BYTE

Example:

PROGRAM
INCLUDE('ABFILE.INC') !declare FileManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
Access:Client CLASS(FileManager) !derive Access:Client object
Init PROCEDURE !initialize Access:File object
PrimeAutoInc PROCEDURE,VIRTUAL !prepare new record for adding

END

Client FILE,DRIVER('TOPSPEED'),PRE(CLI),CREATE,BINDABLE,THREAD
IDKey KEY(CLI:ID),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
ID LONG
Name STRING(20)
StateCode STRING(2)

END
END

598 CLARION 5 APPLICATION HANDBOOK

InsertWindow WINDOW('Add a new Client'),AT(,,159,73),IMM,SYSTEM,GRAY
PROMPT('&Name:'),AT(8,20),USE(?CLI:Name:Prompt)
ENTRY(@s20),AT(61,20,84,10),USE(CLI:Name),MSG('Client Name'),REQ
PROMPT('State Code:'),AT(8,34),USE(?CLI:StateCode:Prompt)
ENTRY(@s2),AT(61,34,40,10),USE(CLI:StateCode),MSG('State Code')
BUTTON('OK'),AT(12,53,45,14),USE(?OK),DEFAULT
BUTTON('Cancel'),AT(82,53,45,14),USE(?Cancel)

END
CODE
GlobalErrors.Init !initialize GlobalErrors object
Access:Client.Init !initialize Access:Client object
Access:Client.Open !open the Client file
IF Access:Client.TryPrimeAutoInc() !prime Client record
POST(Event:CloseWindow) !if prime fails, close down

END

OPEN(InsertWindow)
ACCEPT
CASE FIELD()
OF ?OK
IF EVENT() = Event:Accepted !on OK button
IF Access:Client.Insert() = Level:Benign !finish adding the new Client record
POST(Event:CloseWindow) !if add succeeds, close down

ELSE !if add fails
SELECT(?CLI:Name:Prompt) !select client name field
CYCLE !and start over

END
END

OF ?Cancel
IF EVENT() = EVENT:Accepted !on Cancel button
Access:Client.CancelAutoInc !restore Client to pre-PrimeRecord
POST(Event:CloseWindow) !close down

END
EMD

END

Access:Client.Close !close the Client file
Access:Client.Kill !shut down the Access:Client object
GlobalErrors.Kill !shut down the GlobalErrors object
RETURN

Access:Client.PrimeAutoInc PROCEDURE
CODE
!your custom code here
PARENT.PrimeAutoInc !call the base class method
!your custom code here

See Also: CancelAutoInc, PrimeAutoInc

CHAPTER 31 FILEMANAGER 599

TryReget (try to get a specific record by position)

TryReget(position), PROC

TryReget Gets a specific record by position.

position A string constant, variable, EQUATE, or expression that
indicates the position of the record to retrieve—typically
the value returned by the Position method.

The TryReget method retrieves a specific record based its position and
returns a success or failure indicator.

Implementation: The TryReget method tries to retrieve the specified record. If it succeeds, it
returns Level:Benign; otherwise it returns the severity level of the last error
encountered. See Error Class for more information on severity levels.

Return Data Type: BYTE

See Also: Position

TryUpdate (try to change the current record)

TryUpdate, VIRTUAL, PROC

The TryUpdate method changes (rewrites) the current record. The
TryUpdate method does not attempt to handle errors that occur while
changing the record.

The Update method provides a slightly different (auomatic) alternative for
changing records.

Implementation: TryUpdate tries to change the record. If it succeeds, it returns Level:Benign
(declared in ABERROR.INC). If it fails, it returns the severity level of the
error it encountered while trying to change the record. See Error Class for
more information on severity levels.

Note: This method does not handle referential integrity (RI) between
related files. The RelationManager class enforces RI between
related files.

Return Data Type: BYTE

See Also: Update

600 CLARION 5 APPLICATION HANDBOOK

Update (change the current record)

Update, VIRTUAL, PROC

The Update method changes (rewrites) the current record. The Update
method handles any errors that occur while changing the record.

The TryUpdate method provides a slightly different (manual) alternative for
changing records.

Implementation: If Update succeeds, it returns Level:Benign (declared in ABERROR.INC). If
it ultimately fails, it returns the severity level of the last error it encountered
while trying to change the record. See Error Class for more information on
severity levels.

Note: This method does not handle referential integrity (RI) between
related files. The RelationManager class enforces RI between
related files.

Return Data Type: BYTE

See Also: TryUpdate

CHAPTER 31 FILEMANAGER 601

UseFile (use LazyOpen file)

UseFile(usetype), PROC

UseFile The UseFile method notifies ABC Library objects that
the managed file whose opening was delayed by the
LazyOpen property is about to be used. UseFile returns a
value indicating whether the file is ready for use. A
return value of Level:Benign indicates the file is ready;
any other return value indicates a problem.

usetype A numeric constant, variable, EQUATE, or expression
that determines how UseFile handles the file buffer. A
value of UseType:Corrupts changes the value in the file
buffer but does not rely on the new value. A value of
UseType:Uses changes the value of the file buffer and
then uses that value. A value of UseType:Returns holds a
value from the file buffer to return it to the parent. A
value of UseType:Benign indicates that no special file
buffer handling is requested.

Implementation: UseFile return values are declared in ABERROR.INC. See Error Class for
more information on these severity levels. The UseType EQUATEs are
declared in ABFILE.INC as follows:

UseType ITEMIZE(1),PRE
Corrupts EQUATE
Uses EQUATE
Returns EQUATE
Benign EQUATE
 END

Return Data Type: BYTE

Example:

FileManager.TryFetch PROCEDURE(KEY Key)
CODE
IF SELF.UseFile() THEN RETURN Level:Fatal. !really open the file
GET(SELF.File,Key)
IF ERRORCODE()
RETURN Level:Notify

ELSE
RETURN Level:Benign

END

See Also: LazyOpen

602 CLARION 5 APPLICATION HANDBOOK

ValidateField (validate a field)

ValidateField(field id), VIRTUAL, PROC

ValidateField Validates the current record buffer value of the specified
field and returns a success or failure indicator.

field id A numeric constant, variable, EQUATE, or expression
that identifies the field to validate. The field is ientified
by its position in the FILE declaration. A value of one
(1) indicates the first field, two (2) indicates the second
field, etc.

The ValidateField method validates the specified field in the current record
buffer and returns a success or failure indicator.

Implementation: The ValidateField method simply returns a zero (0). By convention a return
value of zero (0) indicates a valid field and any other value indicates a
problem. The ABC Templates derive a file-specific ValidateFild method for
each file that implements Validity Checks specified in the Clarion data
dictionary.

The ValidateFields and ValidateRecord methods each invoke the
ValidateField method for each field within their respective scopes.

Return Data Type: BYTE

Example:

MyFile FILE,DRIVER('TOPSPEED'),THREAD
Record RECORD,PRE()
TGroup GROUP !field id 1
Name STRING(20) !field id 2
Name2 STRING(20) !field id 3
FirstName STRING(10),OVER(Name2) !field id 4

CHAPTER 31 FILEMANAGER 603

END
Another STRING(10) !field id 5

END
END

CODE
!program code
Access:MyFile.ValidateField(4) !validate FirstName

See Also: ValidateFields, ValidateRecord

604 CLARION 5 APPLICATION HANDBOOK

CHAPTER 32 FILTERLOCATORCLASS 605

32 - FILTERLOCATORCLASS

Overview
The FilterLocatorClass is an IncrementalLocatorClass that filters or limits
the result set of the BrowseClass object’s underlying view. That is, it not only
locates matching items in the result set, but it limits the result set to only
those items.

Use a Filter Locator when you want a multi-character search on
alphanumeric keys and you want to minimize network traffic.

FilterLocatorClass Concepts

A Filter Locator is a multi-character locator, with no locator control required
(but strongly recommended). The FilterLocatorClass lets you specify a
locator control and a field on which to search for a BrowseClass object. The
locator control accepts a search value which the FilterLocatorClass applies to
the search field. The search can match the search value beginning with the
first position of the search field (“begins with” search), or it can match the
search value anywhere within the search field (“contains” search).

When the end user places one or more characters in the locator control, then
accepts the control by pressing TAB, pressing a locator button, or selecting
another control on the screen, the FilterLocatorClass creates a filter
expression based on the input search value and applies the filter. Each
additional (incremental) search character supplied results in a smaller, more
refined result set. For example, a search value of ‘A’ returns all records from
‘AA’ to ‘Az’; a search value of ‘AB’ returns all records from ‘ABA’ to ‘ABz’,
and so on.

The Filter Locator determines the boundaries for the search based on the user
specified search value. The implementation of the boundaries depends on the
database—for SQL databases, the Filter Locator uses a LIKE; for ISAM
databases it supplies upper and lower bounds.

Tip: The Filter Locator performs very well on SQL databases and
on high order key component fields; however, performance
may suffer if applied to non-key fields or low order key fields
of non-SQL databases.

606 CLARION 5 APPLICATION HANDBOOK

Relationship to Other Application Builder Classes

The BrowseClass optionally uses the FilterLocatorClass. Therefore, if your
BrowseClass objects use a FilterLocator, then your program must instantiate
the FilterLocatorClass for each use. Once you register the FilterLocatorClass
object with the BrowseClass object (see BrowseClass.AddLocator), the
BrowseClass object uses the FilterLocatorClass object as needed, with no
other code required. See the Conceptual Example.

ABC Template Implementation

The ABC BrowseBox template generates code to instantiate the
FilterLocatorClass for your BrowseBoxes. The FilterLocatorClass objects
are called BRWn::Sort#:Locator, where n is the template instance number
and # is the sort sequence (id) number. As this implies, you can have a
different locator for each BrowseClass object sort order.

You can use the BrowseBox’s Locator Behavior dialog (the Locator Class
button) to derive from the EntryLocatorClass. The templates provide the
derived class so you can modify the locator’s behavior on an instance-by-
instance basis.

FilterLocatorClass Source Files

The FilterLocatorClass source code is installed by default to the Clarion
\LIBSRC folder. The specific FilterLocatorClass source code and its
respective components are contained in:

ABBROWSE.INC FilterLocatorClass declarations
ABBROWSE.CLW FilterLocatorClass method definitions

CHAPTER 32 FILTERLOCATORCLASS 607

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a BrowseClass object and related
objects, including a Locator object. The example initializes and page-loads a
LIST, then handles a number of associated events, including scrolling,
updating, and locating records.

Note that the WindowManager and BrowseClass objects internally handle
the normal events surrounding the locator.

 PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
 INCLUDE('ABWINDOW.INC') !declare WindowManager class
 INCLUDE('ABBROWSE.INC') !declare BrowseClass and Locator
 MAP
 END

State FILE,DRIVER('TOPSPEED'),PRE(ST),THREAD
StateCodeKey KEY(ST:STATECODE),NOCASE,OPT
Record RECORD,PRE()
STATECODE STRING(2)
STATENAME STRING(20)

END
END

StView VIEW(State) !declare VIEW to process
END

StateQ QUEUE !declare Q for LIST
ST:STATECODE LIKE(ST:STATECODE)
ST:STATENAME LIKE(ST:STATENAME)
ViewPosition STRING(512)

END

Access:State CLASS(FileManager) !declare Access:State object
Init PROCEDURE

END
Relate:State CLASS(RelationManager) !declare Relate:State object
Init PROCEDURE

END
VCRRequest LONG(0),THREAD

StWindow WINDOW('Browse States'),AT(,,123,152),IMM,SYSTEM,GRAY
PROMPT('Find:'),AT(9,6)
ENTRY(@s2),AT(29,4),USE(ST:STATECODE)
LIST,AT(8,5,108,124),USE(?StList),IMM,HVSCROLL,FROM(StateQ),|
FORMAT('27L(2)|M~CODE~@s2@80L(2)|M~STATENAME~@s20@')

END

ThisWindow CLASS(WindowManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END
BrowseSt CLASS(BrowseClass) !declare BrowseSt object
Q &StateQ

608 CLARION 5 APPLICATION HANDBOOK

END

StLocator FilterLocatorClass !declare StLocator object
StStep StepStringClass !declare StStep object

CODE
ThisWindow.Run() !run the window procedure

ThisWindow.Init PROCEDURE() !initialize things
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init() !call base class init
IF ReturnValue THEN RETURN ReturnValue.
Relate:State.Init !initialize Relate:State object
SELF.FirstField = ?ST:STATECODE !set FirstField for ThisWindow
SELF.VCRRequest &= VCRRequest !VCRRequest not used
Relate:State.Open !open State and related files
!Init BrowseSt object by naming its LIST,VIEW,Q,RelationManager & WindowManager
BrowseSt.Init(?StList,StateQ.ViewPosition,StView,StateQ,Relate:State,SELF)
OPEN(StWindow)
SELF.Opened=True
BrowseSt.Q &= StateQ !reference the browse QUEUE
StStep.Init(+ScrollSort:AllowAlpha,ScrollBy:Runtime)!initialize the StStep object
BrowseSt.AddSortOrder(StStep,ST:StateCodeKey) !set the browse sort order
BrowseSt.AddLocator(StLocator) !plug in the browse locator
StLocator.Init(?ST:STATECODE,ST:STATECODE,1,BrowseSt)!initialize the locator object
BrowseSt.AddField(ST:STATECODE,BrowseSt.Q.ST:STATECODE) !set a column to browse
BrowseSt.AddField(ST:STATENAME,BrowseSt.Q.ST:STATENAME) !set a column to browse
SELF.SetAlerts() !alert any keys for ThisWindow
RETURN ReturnValue

ThisWindow.Kill PROCEDURE() !shut down things
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill() !call base class shut down
IF ReturnValue THEN RETURN ReturnValue.
Relate:State.Close !close State and related files
Relate:State.Kill !shut down Relate:State object
GlobalErrors.Kill !shut down GlobalErrors object
RETURN ReturnValue

CHAPTER 32 FILTERLOCATORCLASS 609

FilterLocatorClass Properties
The FilterLocatorClass inherits all the properties of the
IncrementalLocatorClass from which it is derived. See
IncrementalLocatorClass Properties and LocatorClass Concepts for more
information.

In addition to the inherited properties, the FilterLocatorClass also contains
the following property:

FloatRight (“contains” or “begins with” flag)

FloatRight BYTE

The FloatRight property determines whether the FilterLocator applies the
search value to the entire field (field contains search value) or only to the
leftmost field positions (field begins with search value). A value of one (1 or
True) applies the “contains” test; a value of zero (0 or False) applies the
“begins with” test.

The FilterLocatorClass does not initialize the FloatRight property, therefore
FloatRight defaults to zero.

Implementation: The UpdateWindow method implements the action specified by the
FloatRight property.

Example: A FilterLocator searching for “ba” returns:

FloatRight=False FloatRight=True

Bain Bain
Barber Barber
Bayert Bayert

Dunbar
Suba

See Also: UpdateWindow

610 CLARION 5 APPLICATION HANDBOOK

FilterLocatorClass Methods
The FilterLocatorClass inherits all the methods of the
IncrementalLocatorClass from which it is derived. See
IncrementalLocatorClass Methods and LocatorClass Concepts for more
information.

In addition to (or instead of) the inherited methods, the FilterLocatorClass
contains the following methods:

TakeAccepted (process an accepted locator value)

TakeAccepted, VIRTUAL

The TakeAccepted method processes the accepted locator value and returns
a value indicating whether the BrowseClass list display should be updated. A
return value of one (1 or True) indicates the list should be refreshed; a return
value of zero (0 of False) indicates no refresh is needed.

This method is only appropriate for LocatorClass objects with locator
controls that accept user input; for example, entry controls, combo controls,
or spin controls.

A locator value is accepted when the end user changes the locator value, then
TABS off the locator control or otherwise switches focus to another control on
the same window.

Implementation: The TakeAccepted method primes the FreeElement property with the
appropriate search value. If there is a search value, TakeAccepted calls the
UpdateWindow method to apply the search value.

Return Data Type: BYTE

Example:

BrowseClass.TakeAcceptedLocator PROCEDURE !process an accepted locator entry
CODE
IF ~SELF.Sort.Locator &= NULL AND ACCEPTED() = SELF.Sort.Locator.Control
IF SELF.Sort.Locator.TakeAccepted() !call locator take accepted method
SELF.Reset(1) !if search needed, reset the view
SELECT(SELF.ListControl) !focus on the browse list control
SELF.ResetQueue(Reset:Done) !reload the browse queue
IF ~SELF.Sort.Locator &= NULL !if locator is present
SELF.Sort.Locator.Reset ! match search value to actual record

END
END

END

See Also: FreeElement

CHAPTER 32 FILTERLOCATORCLASS 611

UpdateWindow (apply the search criteria)

UpdateWindow, VIRTUAL

The UpdateWindow method applies the search criteria and redraws the
locator control with its current value.

Implementation: The UpdateWindow method refilters the underlying view, primes the
FreeElement property with the current search value (the Shadow property),
then redraws the locator control.

Example:

MyBrowseClass.UpdateWindow PROCEDURE !update browse related controls
CODE
IF ~(SELF.Sort.Locator &= NULL) !if locator is present
SELF.Sort.Locator.UpdateWindow ! redraw locator control

END

See Also: FreeElement, Shadow

612 CLARION 5 APPLICATION HANDBOOK

CHAPTER 33 INCREMENTALLOCATORCLASS 613

33 - INCREMENTALLOCATORCLASS

Overview
The IncrementalLocatorClass is an EntryLocatorClass that activates on each
additional search character added to the search value (not when the locator
control is accepted).

Use an Incremental locator when you want a multi-character search on
numeric or alphanumeric keys and you want the search to take place
immediately upon the end user’s keystroke.

IncrementalLocatorClass Concepts

An IncrementalLocator is a multi-character locator, with no locator control
required (but strongly recommended).

The locator control may be a STRING, ENTRY, COMBO, or SPIN,
however, any control other than a STRING causes the Incremental locator to
behave like an Entry locator—the search is delayed until the control is
accepted.

With a STRING control (or no control), when the BrowseClass LIST has
focus, keyboard input characters are automatically added to the locator’s
search value string for each keystroke, and the BrowseClass immediately
advances to the nearest matching record. The Backspace key removes
characters from the locator’s search value string.

We strongly recommend using a STRING control as the Incremental Locator
control for the following reasons:

So the search occurs immediately with each keystoke, and

So the user can see the value for which the BrowseClass object is
searching.

Relationship to Other Application Builder Classes

The BrowseClass uses the IncrementalLocatorClass to locate and scroll to
the nearest matching item. Therefore, if your program’s BrowseClass objects
use an Incremental Locator, your program must instantiate the
IncrementalLocatorClass for each use. Once you register the
IncrementalLocatorClass object with the BrowseClass object (see
BrowseClass.AddLocator), the BrowseClass object uses the

614 CLARION 5 APPLICATION HANDBOOK

IncrementalLocatorClass object as needed, with no other code required. See
the Conceptual Example.

ABC Template Implementation

The ABC BrowseBox template generates code to instantiate the
IncrementalLocatorClass for your BrowseBoxes. The
IncrementalLocatorClass objects are called BRWn::Sort#:Locator, where n is
the template instance number and # is the sort sequence (id) number. As this
implies, you can have a different locator for each BrowseClass object sort
order.

You can use the BrowseBox’s Locator Behavior dialog (the Locator Class
button) to derive from the EntryLocatorClass. The templates provide the
derived class so you can modify the locator’s behavior on an instance-by-
instance basis.

IncrementalLocatorClass Source Files

The IncrementalLocatorClass source code is installed by default to the
Clarion \LIBSRC folder. The IncrementalLocatorClass source code and its
respective components are contained in:

ABBROWSE.INC IncrementalLocatorClass declarations
ABBROWSE.CLW IncrementalLocatorClass method definitions

CHAPTER 33 INCREMENTALLOCATORCLASS 615

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a BrowseClass object and related
objects, including a IncrementalLocatorClass object. The example initializes
and page-loads a LIST, then handles a number of associated events,
including scrolling, updating, and locating records.

Note that the WindowManager and BrowseClass objects internally handle
the normal events surrounding the locator.

 PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
 INCLUDE('ABWINDOW.INC') !declare WindowManager class
 INCLUDE('ABBROWSE.INC') !declare BrowseClass and Locator
 MAP
 END

State FILE,DRIVER('TOPSPEED'),PRE(ST),THREAD
StateCodeKey KEY(ST:STATECODE),NOCASE,OPT
Record RECORD,PRE()
STATECODE STRING(2)
STATENAME STRING(20)

END
END

StView VIEW(State) !declare VIEW to process
END

StateQ QUEUE !declare Q for LIST
ST:STATECODE LIKE(ST:STATECODE)
ST:STATENAME LIKE(ST:STATENAME)
ViewPosition STRING(512)

END

Access:State CLASS(FileManager) !declare Access:State object
Init PROCEDURE

END
Relate:State CLASS(RelationManager) !declare Relate:State object
Init PROCEDURE

END
VCRRequest LONG(0),THREAD

StWindow WINDOW('Browse States'),AT(,,123,152),IMM,SYSTEM,GRAY
PROMPT('Find:'),AT(9,6)
STRING(@s2),AT(29,4),USE(ST:STATECODE) !locator control
LIST,AT(8,5,108,124),USE(?StList),IMM,HVSCROLL,FROM(StateQ),|
FORMAT('27L(2)|M~CODE~@s2@80L(2)|M~STATENAME~@s20@')

END

ThisWindow CLASS(WindowManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END
BrowseSt CLASS(BrowseClass) !declare BrowseSt object
Q &StateQ

616 CLARION 5 APPLICATION HANDBOOK

END

StLocator IncrementalLocatorClass !declare StLocator object
StStep StepStringClass !declare StStep object

CODE
ThisWindow.Run() !run the window procedure

ThisWindow.Init PROCEDURE() !initialize things
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init() !call base class init
IF ReturnValue THEN RETURN ReturnValue.
Relate:State.Init !initialize Relate:State object
SELF.FirstField = ?StList !set FirstField for ThisWindow
SELF.VCRRequest &= VCRRequest !VCRRequest not used
Relate:State.Open !open State and related files
!Init BrowseSt object by naming its LIST,VIEW,Q,RelationManager & WindowManager
BrowseSt.Init(?StList,StateQ.ViewPosition,StView,StateQ,Relate:State,SELF)
OPEN(StWindow)
SELF.Opened=True
BrowseSt.Q &= StateQ !reference the browse QUEUE
StStep.Init(+ScrollSort:AllowAlpha,ScrollBy:Runtime)!initialize the StStep object
BrowseSt.AddSortOrder(StStep,ST:StateCodeKey) !set the browse sort order
BrowseSt.AddLocator(StLocator) !plug in the browse locator
StLocator.Init(?ST:STATECODE,ST:STATECODE,1,BrowseSt)!initialize the locator object
BrowseSt.AddField(ST:STATECODE,BrowseSt.Q.ST:STATECODE) !set a column to browse
BrowseSt.AddField(ST:STATENAME,BrowseSt.Q.ST:STATENAME) !set a column to browse
SELF.SetAlerts() !alert any keys for ThisWindow
RETURN ReturnValue

ThisWindow.Kill PROCEDURE() !shut down things
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill() !call base class shut down
IF ReturnValue THEN RETURN ReturnValue.
Relate:State.Close !close State and related files
Relate:State.Kill !shut down Relate:State object
GlobalErrors.Kill !shut down GlobalErrors object
RETURN ReturnValue

CHAPTER 33 INCREMENTALLOCATORCLASS 617

IncrementalLocatorClass Properties
The IncrementalLocatorClass inherits all the properties of the
EntryLocatorClass from which it is derived. See EntryLocatorClass
Properties and LocatorClass Properties for more information.

IncrementalLocatorClass Methods
The IncrementalLocatorClass inherits all the methods of the
EntryLocatorClass from which it is derived. See EntryLocatorClass Methods
and LocatorClass Methods for more information.

In addition to (or instead of) the inherited methods, the
IncrementalLocatorClass contains the following methods:

SetAlerts (alert keystrokes for the LIST control)

SetAlerts(control), VIRTUAL

SetAlerts Alerts appropriate keystrokes for the specified LIST
control.

control An integer constant, variable, EQUATE, or expression
that resolves to the control number of the LIST or
COMBO control displaying the data to be searched.

The SetAlerts method alerts appropriate keystrokes for the specified LIST
control.

Implementation: The SetAlerts method alerts the backspace key and the space key.

Example:

MyBrowseClass.SetAlerts PROCEDURE !alert keys for browse object
I BYTE,AUTO
CODE
LOOP I = 1 TO RECORDS(SELF.Sort) !for each sort order
GET(SELF.Sort, I)
IF ~ (SELF.Sort.Locator &= NULL) !if locator is present
SELF.Sort.Locator.SetAlerts(SELF.ListControl) ! call Locator.SetAlerts method

END
END

618 CLARION 5 APPLICATION HANDBOOK

TakeKey (process an alerted keystroke)

TakeKey, VIRTUAL

The TakeKey method processes an alerted locator keystroke for the LIST
control that displays the data to be searched, and returns a value indicating
whether the browse display should change.

Tip: By default, all alphanumeric keys are alerted for LIST controls.

Implementation: The TakeKey method adds to or subtracts from the search value (the Shadow
property) based on the end user’s keystrokes, then returns one (1) if a new
search is required or returns zero (0) if no new search is required. A search is
required only if the keystroke is a valid search character.

Return Data Type: BYTE

Example:

CheckLocator ROUTINE
IF SELF.Sort.Locator.TakeKey() !handle locator alerted keys
SELF.Reset(1) !if search needed, reset view
SELF.ResetQueue(Reset:Done) ! and relead queue

ELSE !if no search needed
SELF.ListControl{PROP:Selected}=SELF.CurrentChoice ! highlight selected list item

END

See Also: EntryLocatorClass.Shadow

CHAPTER 34 INICLASS 619

34 - INICLASS

Overview
The INIClass object centrally handles reads and writes for a given
configuration (.INI) file.

INI Class Concepts

By convention an INI file is an ASCII text file that stores information between
computing sessions and contains entries of the form:

[SECTION1]
ENTRY1=value
ENTRYn=value
[SECTIONn]
ENTRY1=value
ENTRYn=value

The INIClass automatically creates INI files and the sections and entries
within them. The INI class also updates and deletes sections and entries. In
particular, the INIClass makes it very easy to save and restore Window sizes
and positions between sessions; plus it provides a single repository for INI
file code, so you only need to specify the INI file name in one place.

Relationship to Other Application Builder Classes

The PopupClass and the PrintPreviewClass optionally use the INIClass;
otherwise, it is completely independent of other Application Builder Classes.

ABC Template Implementation

The ABC Templates generate code to instantiate a global INIClass object
called INIMgr. If you request to Use INI file to save and restore program
settings in the Global Properties dialog, then each procedure based on the
Window procedure template (Frame, Browse, and Form) calls the INIMgr to
save and restore its WINDOW’s position and size.

620 CLARION 5 APPLICATION HANDBOOK

INI Class Source Files

The INIClass source code is installed by default to the Clarion \LIBSRC
folder. The INIClass source code and its respective components are
contained in:

ABUTIL.INC INIClass declarations
ABUTIL.CLW INIClass method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate an INIClass object.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE('ABUTIL.INC') !declare INIClass class
MAP
END

INIMgr INIClass !declare INIMgr object
Sound STRING('ON ') !user’s sound preference
Volume BYTE(3) !user’s volume preference

PWindow WINDOW('Preferences'),AT(,,89,34),MAX,RESIZE
CHECK('&Sound'),AT(8,6),USE(Sound),VALUE('ON','OFF')
PROMPT('&Volume'),AT(31,19),USE(?VolumePrompt)
SPIN(@s20),AT(8,20,21,7),USE(Volume),HVSCROLL,RANGE(0,9),STEP(1)
BUTTON('OK'),AT(57,3,30,10),USE(?OK)

END
CODE
INIMgr.Init('.\MyApp.INI') !initialize the INIMgr object
INIMgr.Fetch('Preferences','Sound',Sound) !get sound, default ‘ON’
Volume=INIMgr.TryFetch('Preferences','Volume') !get volume, no default
IF Volume
Sound=INIMgr.FetchField('Preferences','Sound&Vol',1) !get comma delimited sound
Volume=INIMgr.FetchField('Preferences','Sound&Vol',2) !get comma delimited volume

END
OPEN(PWindow)
INIMgr.Fetch('Preferences',PWindow) !restore window size & pos
ACCEPT
IF EVENT() = EVENT:Accepted
IF FIELD() = ?OK
INIMgr.Update('Preferences','Sound',Sound) !store sound
INIMgr.Update('Preferences','Volume',Volume) !store volume
INIMgr.Update('Preferences','Sound&Vol',| !store comma delimited values

CLIP(Sound)&','&Volume) !e.g., Sound&Vol=ON,3
POST(EVENT:CloseWindow)

END
END

END
INIMgr.Update('Preferences',PWindow) !store window size & pos

CHAPTER 34 INICLASS 621

INIClass Properties
The INIClass contains the following properties.

FileName

FileName CSTRING(File:MaxFilePath)

The FileName property contains the name of the managed INI file. The
INIClass methods use the FileName property to identify the INI file.

If a full path is specified, the INIClass looks for the file in the specified path.
If no path is specified, the INIClass looks for the file in the Windows
directory. If no name is specified (‘’), the INIClass uses the WIN.INI file.
For example:

FileName Property Resulting INI File
‘’ c:\Windows\WIN.INI
‘invoice.cfg’ c:\Windows\invoice.cfg
‘.\invoice.cfg’ current directory\invoice.cfg
‘c:\invoice\invoice.cfg’ c:\invoice\invoice.cfg

The Init method sets the contents of the FileName property.

Implementation: The INIClass methods use the FileName property as the file parameter in
GETINI and PUTINI statements. See the Language Reference for more
information.

See Also: Init

622 CLARION 5 APPLICATION HANDBOOK

INIClass Methods
The INIClass contains the following methods.

Fetch (get INI file entries)

Fetch(section, | entry [, value] |), VIRTUAL
 | window |

Fetch Gets or returns values from the INI file.

section A string constant, variable, EQUATE, or expression
containing the INI file section name.

entry A string constant, variable, EQUATE, or expression
containing the INI file entry name.

value The label of a variable that contains the default fetched
value and receives the actual fetched value. If omitted,
there must be a matching section and entry in the INI file
for the Fetch method to return.

window The label of the WINDOW or APPLICATION to restore
to its previously stored position and size. If this param-
eter is present, Fetch does not return a value, but restores
the window’s position and size.

The Fetch method gets or returns values from the INI file.

Fetch(section,entry[,value])
Retrieves a single value specified by section and entry. If a value
parameter is present, the Fetch method updates it with the
requested value and returns nothing. If no value parameter is
present the Fetch method returns the requested value.

Fetch(section,window)
Restores several WINDOW attributes saved by a prior
corresponding call to Update(section,window). Restoring the
values returns the specified WINDOW to its saved position and
size.

Implementation: If a window is present, the Fetch method gets five entries from the specified
INI file section: Maximize, XPos, YPos, Height, and Width. Then it applies
the retrieved values to the specified WINDOW or APPLICATION.

Return Data Type: STRING

CHAPTER 34 INICLASS 623

Example:

Sound STRING('ON ')
PWindow WINDOW('Preferences'),AT(,,89,34),IMM,MAX,RESIZE

CHECK('&Sound'),AT(8,6),USE(Sound),VALUE('ON','OFF')
BUTTON('OK'),AT(57,3,30,10),USE(?OK)

END
CODE
INIMgr.Fetch('Preferences','Sound',Sound) !get ‘Sound’, default ON
Sound=INIMgr.Fetch('Preferences','Sound') !return ‘Sound’, no default
OPEN(PWindow)
INIMgr.Fetch('Preferences',PWindow) !restore PWindow size & position

See Also: Update

624 CLARION 5 APPLICATION HANDBOOK

FetchField (return comma delimited INI file value)

FetchField(section, entry, field)

FetchField Returns a comma delimited value from the INI file.

section A string constant, variable, EQUATE, or expression
containing the INI file section name.

entry A string constant, variable, EQUATE, or expression
containing the INI file entry name.

field An integer constant, variable, EQUATE, or expression
identifying the comma delimited value to return.

The FetchField method returns one of several comma delimited values from
the INI file. FetchField assumes the value for the entry is one of several
comma delimited values of the form V1,V2,...,Vn. For example:

[MySection]
MyEntry=M,35,Blue,Brown,160

A field value of one (1) returns the value prior to the first comma in the
string; a value of two (2) returns the value between the first and second
commas; a three (3) returns the value between the second and third commas,
etc.

Return Data Type: STRING

Example:

Sound STRING('ON ')
Volume BYTE(3)
 CODE
INIMgr.Update('Preferences','Sound&Volume', | !create INI entry like

CLIP(Sound)&','&Volume) !Sound&Volume=ON,3
!program code
Sound=INIMgr.FetchField('Preferences','Sound&Volume',1) !get 1st value - ‘ON’
Volume=INIMgr.FetchField('Preferences','Sound&Volume',2) !get 2nd value - 3

CHAPTER 34 INICLASS 625

FetchQueue (get INI file queue entries)

FetchQueue(section, entry, queue, field [,field] [,field])

FetchQueue Adds a series of values from the INI file to a QUEUE.

section A string constant, variable, EQUATE, or expression
containing the INI file section name.

entry A string constant, variable, EQUATE, or expression
containing the INI file entry name.

queue The label of the QUEUE to receive the values.

field The label of the field in the QUEUE to receive the value.
You must specify at least one field, and you may specify
up to three fields.

The FetchQueue method adds a series of values from the INI file into the
specified fields in the specified queue.

Implementation: FetchQueue assumes multiple entry values of the form:

[section]
entry=ItemsInQueue
entry_n=value,optionalvalue,optionalvalue

for example:

[Users]
User=3
User_1=Fred,1
User_2=Barney,0
User_3=Wilma,1

Example:

UserQ QUEUE
Name STRING(20)
Auth BYTE

END
CODE
INIMgr.FetchQueue('Users','User',UserQ,UserQ.Name,UserQ.Auth) !get UserQ
!program code
INIMgr.Update(‘Users’,’User’,RECORDS(UserQ)) !put UserQ count
LOOP i# = 1 TO RECORDS(UserQ) !put UserQ entries
GET(UserQ,i#)
INIMgr.Update(‘Users’,’User_’&i#,CLIP(UserQ.Name)&’,’&UserQ.Auth)

END

626 CLARION 5 APPLICATION HANDBOOK

Init (initialize the INIClass object)

Init(filename)

Init Initializes the INIClass object.

filename A string constant, variable, EQUATE, or expression
containing the INI file name. If filename specifies a full
path, the INIClass looks for the file in the specified path.
If no path is specified, the INIClass looks for the file in
the Windows directory. If filename is specified as null
(‘’), the INIClass uses the WIN.INI file.

The Init method initializes the INIClass object.

Implementation: The Init method assigns filename to the FileName property.

Example:

INCLUDE('UTILITY.INC')
INIMgr INIClass
CODE
INIMgr.Init('c:\MyApp\MyApp.INI') !read & write from c:\MyApp\MyApp.INI
INIMgr.Init('.\MyApp.INI') !read & write from currentdirectory\MyApp.INI
INIMgr.Init('') !read & write from c:\Windows\WIN.INI
INIMgr.Init('MyApp.INI') !read & write from c:\Windows\MyApp.INI

See Also: FileName

CHAPTER 34 INICLASS 627

TryFetch (get a value from the INI file)

TryFetch(section, entry)

TryFetch Returns a value from the INI file.

section A string constant, variable, EQUATE, or expression
containing the INI file section name.

entry A string constant, variable, EQUATE, or expression
containing the INI file entry name.

The TryFetch method returns a value from the INI file. If the specified
section and entry do not exist, TryFetch returns an empty string. This allows
you to check the return value and take appropriate action when the INI file
entry is missing.

Return Data Type: STRING

Example:

Color BYTE
DefaultColor EQUATE(5)
CODE
Color=INIMgr.TryFetch('Preferences','Color') !return ‘Color’, no default
IF NOT Color
Color=DefaultColor

END

628 CLARION 5 APPLICATION HANDBOOK

TryFetchField (return comma delimited INI file value)

TryFetchField(section, entry, field)

TryFetchField Returns a comma delimited value from the INI file.

section A string constant, variable, EQUATE, or expression
containing the INI file section name.

entry A string constant, variable, EQUATE, or expression
containing the INI file entry name.

field An integer constant, variable, EQUATE, or expression
identifying the comma delimited value to return.

The TryFetchField method returns one of several comma delimited values
from the INI file. If the specified section and entry do not exist,
TryFetchField returns an empty string. This allows you to check the return
value and take appropriate action when the INI file entry is missing.

TryFetchField assumes the entry value is a comma delimited string of the
form V1,V2,...,Vn. A field value of one (1) returns the value prior to the first
comma in the string; a value of two (2) returns the value between the first
and second commas; a three (3) returns the value between the second and
third commas, etc.

Return Data Type: STRING

Example:

Sound STRING(3)
Volume BYTE
 CODE
Sound=INIMgr.TryFetchField('Preferences','Sound&Volume',1) !get Sound value
IF NOT Sound !if not present
Sound=’ON’ !default to on

END
Volume=INIMgr.TryFetchField('Preferences','Sound&Volume',2) !get Volume value
IF NOT Volume !if not present
Volume=3 !default to 3

END
!program code
INIMgr.Update('Preferences','Sound&Volume', | !create INI entry like

CLIP(Sound)&','&Volume) !Sound&Volume=ON,3

CHAPTER 34 INICLASS 629

Update (write INI file entries)

Update(section, | entry, value |), VIRTUAL
| window |
| entry, queue, field, [field], [field] |

Update Writes entries to the INI file.

section A string constant, variable, EQUATE, or expression
containing the INI file section name.

entry A string constant, variable, EQUATE, or expression
containing the INI file entry name.

value A constant, variable, EQUATE, or expression containing
the value to store for the section and entry.

window The label of a WINDOW or APPLICATION whose
position and size parameters the Update method stores.

queue The label of a QUEUE.

field The label of a FIELD within the QUEUE.

The Update method writes entries to the INI file. If the specified value is
null (‘’), the existing entry is deleted.

Update(section,entry,value)
Writes a single value specified by section and entry.

Update(section,window)
Writes several WINDOW position and size attributes for
retrieval by a subsequent corresponding call to
Fetch(section,window). Restoring the values returns the
specified WINDOW to its saved position and size.

Update(queue, field, [field], [field])
Writes the records of a QUEUE with a maximum of three fields.

Implementation: If a window is present, the Update method writes five entries to the specified
INI file section: Maximize, XPos, YPos, Height, and Width. These entries are
retrieved and applied by the Fetch method to restore the window’s postion
and size.

630 CLARION 5 APPLICATION HANDBOOK

Example:

Sound STRING('ON ')
PWindow WINDOW('Preferences'),AT(,,89,34),IMM,MAX,RESIZE

CHECK('&Sound'),AT(8,6),USE(Sound),VALUE('ON','OFF')
BUTTON('OK'),AT(57,3,30,10),USE(?OK)

END
CODE
OPEN(PWindow)
INIMgr.Fetch('Preferences',PWindow) !restore PWindow size & position
INIMgr.Fetch(‘Preferences’,’Sound’,Sound) !get ‘Sound’ entry
!program code
INIMgr.Update(‘Preferences’,’Sound’,Sound) !save ‘Sound’ entry
INIMgr.Update(‘Preferences’,PWindow) !save PWindow size & position

See Also: Fetch

CHAPTER 35 LOCATORCLASS 631

35 - LOCATORCLASS

Overview
The LocatorClass is an abstract class—it is not useful by itself. However,
other useful classes are derived from it and other structures (such as the
BrowseClass) use it to reference its derived classes.

LocatorClass Concepts

The classes derived from LocatorClass let you specify a locator control and a
sort field on which to search for each sort order of a BrowseClass object.
These LocatorClass objects help the BrowseClass locate and scroll to the
requested items.

LocatorClass objects implement some of the common variations in locator
controls (none, STRING, ENTRY), locator invocation (keystroke, ENTER key,
TAB key), and search methods (single character search starting from current
item, incremental character, exclusive search) that occur in the browse
context.

Relationship to Other Application Builder Classes

The BrowseClass optionally uses the classes derived from the LocatorClass.
Therefore, if your BrowseClass objects use a locator, then your program
must instantiate a LocatorClass for each use.

The StepLocatorClass, EntryLocatorClass, IncrementalLocatorClass,and
FilterLocatorClass are all derived (directly or indirectly) from the
LocatorClass. Each of these derived classes provides slightly different search
behaviors and characteristics.

Step Locator
Use a Step Locator when the search field is a STRING,
CSTRING, or PSTRING, a single character search is sufficient
(a step locator is not appropriate when there are many key values
that begin with the same character), and you want the search to
take place immediately upon the end user’s keystroke. Step
Locators are not appropriate for numeric keys.

Entry Locator
Use an Entry Locator when you want a multi-character search
(more precise) on numeric or alphanumeric keys and you want
to delay the search until the user accepts the locator control. The
delayed search reduces network traffic and provides a smoother
search in a client-server environment.

632 CLARION 5 APPLICATION HANDBOOK

Incremental Locator
Use an Incremental locator when you want a multi-character
search (more precise) on numeric or alphanumeric keys and you
want the search to take place immediately upon the end user’s
keystroke.

Filter Locator
Use a Filter Locator when you want a multi-character search
(more precise) on alphanumeric keys and you want to minimize
network traffic.

ABC Template Implementation

Because the LocatorClass is abstract, the ABC Template generated code does
not directly reference the LocatorClass.

LocatorClass Source Files

The LocatorClass source code is installed by default to the Clarion \LIBSRC
folder. The LocatorClass source code and its respective components are
contained in:

ABBROWSE.INC LocatorClass declarations
ABBROWSE.CLW LocatorClass method definitions

CHAPTER 35 LOCATORCLASS 633

LocatorClass Properties
The LocatorClass has the several properties described below. These
properties are inherited by classes derived from the LocatorClass.

Control (the locator control number)

Control SIGNED

The Control property contains the locator control number if there is a
locator control. If there is no locator control, it contains zero (0). The
LocatorClass uses the Control property to refresh the control or change its
properties.

The Init method sets the value of the Control property.

See Also: Init

FreeElement (the locator’s first free key element)

FreeElement ANY

The FreeElement property contains a reference to a component of the sort
sequence of the searched data set. The ABC Templates further require this to
be a free component of a key. A free component is one that is not range
limited to a single value. Typically this is also the USE variable of the locator
control. The LocatorClass uses the FreeElement property to prime the free
component with the appropriate search value.

The Init method sets the value of the FreeElement property.

See Also: Init

NoCase (case sensitivity flag)

NoCase BYTE

The NoCase property determines whether the LocatorClass object performs
case sensitive searches or case insensitive searches.

The Init method sets the value of the NoCase property.

Implementation: If NoCase contains a non-zero value, the search is not case sensitive. That is,
searches for “Tx,” “tx,” or “TX” all produce the same result. If NoCase
contains a value of zero (0), the search is case sensitive.

See Also: Init

634 CLARION 5 APPLICATION HANDBOOK

ViewManager (the locator’s ViewManager object)

ViewManager &BrowseClass

The ViewManager property is a reference to the BrowseClass object that the
LocatorClass object is working for. See ViewManager and BrowseClass for
more information. The LocatorClass uses this property to manipulate the
searched data set as well as the displayed LIST.

The Init method sets the value of the ViewManager property.

See Also: Init

CHAPTER 35 LOCATORCLASS 635

LocatorClass Methods
The LocatorClass contains the following methods.

Init (initialize the LocatorClass object)

Init([control] , freeelement, nocase [,browseclass])

Init Initializes the LocatorClass object.

control An integer constant, variable, EQUATE, or expression
that sets the locator control number for the LocatorClass
object. If omitted, the control number defaults to zero
(0) indicating there is no locator control.

freeelement The fully qualified label of a component of the sort
sequence of the searched data set. The ABC Templates
further require this to be a free component of a key. A
free component is one that is not range limited to a
single value. Typically this is also the USE variable of
the locator control.

nocase An integer constant, variable, EQUATE, or expression
that determines whether the LocatorClass object per-
forms case sensitive searches or case insensitive
searches.

browseclass The label of the BrowseClass object for the locator. If
omitted, the LocatorClass object has no direct access to
the browse QUEUE or it’s underlying VIEW.

The Init method initializes the LocatorClass object.

Implementation: The Init method sets the values of the Control, FreeElement, NoCase, and
ViewManager properties.

A nocase value of zero (0 or False) produces case sensitive searches; a value
of one (1 or True) produces case insensitive searches.

By default, only the StepLocatorClass and FilterLocatorClass use the
browseclass. The other locator classes do not.

Example:

BRW1::Sort1:Locator.Init(,CUST:StateCode,1) !without locator control
BRW1::Sort2:Locator.Init(?CUST:CustMo,CUST:CustNo,1) !with locator control

See Also: Control, FreeElement, NoCase, ViewManager

636 CLARION 5 APPLICATION HANDBOOK

Reset (reset the locator for next search)

Reset, VIRTUAL

The Reset method is a virtual placeholder method to reset the locator for the
next search.

Implementation: The BrowseClass.TakeAcceptedLocator method calls the Reset method.

Example:

BrowseClass.TakeAcceptedLocator PROCEDURE !process an accepted locator entry
CODE
IF ~SELF.Sort.Locator &= NULL AND ACCEPTED() = SELF.Sort.Locator.Control
IF SELF.Sort.Locator.TakeAccepted() !call locator take accepted method
SELF.Reset(1) !if search needed, reset the view
SELECT(SELF.ListControl) !focus on the browse list control
SELF.ResetQueue(Reset:Done) !reload the browse queue
SELF.Sort.Locator.Reset !reset the locator
SELF.UpdateWindow !update (redraw) the window
END

END
END

See Also: BrowseClass.TakeAcceptedLocator

Set (restart the locator)

Set, VIRTUAL

The Set method prepares the locator for a new search.

Implementation: The Set method clears the FreeElement property.

Example:

MyBrowseClass.TakeScroll PROCEDURE(SIGNED Event)
CODE
CASE Event
OF Event:ScrollUp OROF Event:ScrollDown
SELF.ScrollOne(Event)

OF Event:PageUp OROF Event:PageDown
SELF.ScrollPage(Event)

OF Event:ScrollTop OROF Event:ScrollBottom
SELF.ScrollEnd(Event)

END !after a scroll event
IF ~SELF.Sort.Locator &= NULL THEN !if locator is present
SELF.Sort.Locator.Set !set it to blank

END

CHAPTER 35 LOCATORCLASS 637

SetAlerts (alert keystrokes for the LIST control)

SetAlerts(control), VIRTUAL

SetAlerts Alerts appropriate keystrokes for the specified control.

control An integer constant, variable, EQUATE, or expression
containing the control number of the control displaying
the data to search.

The SetAlerts method alerts appropriate keystrokes for the specified control,
typically a LIST or COMBO.

The SetAlerts method is a placeholder method for classes derived from
LocatorClass—IncrementalLocatorClass, etc.

See Also: IncrementalLocatorClass.SetAlerts

SetEnabled (enable or disable the locator control)

SetEnabled(enabled)

SetEnabled Enables or disables the locator control.

enabled An integer constant, variable, EQUATE, or expression
that enables or disables the locator control. A value of
zero (0 or False) disables the control; a value of one (1
or True) enables the control.

The SetEnabled method enables or disables the locator control for this
LocatorClass object. See ENABLE and DISABLE in the Language Reference.

Example:

MyBrowseClass.Enable PROCEDURE
CODE
IF ~SELF.Sort.Locator &= NULL !if locator is present
SELF.Sort.Locator.SetEnabled(RECORDS(SELF.ListQueue)) !disable locator if 0 items

END

638 CLARION 5 APPLICATION HANDBOOK

TakeAccepted (process an accepted locator value)

TakeAccepted, VIRTUAL

The TakeAccepted method processes the accepted locator value and returns
a value indicating whether the browse list display must change. The
TakeAccepted method is only a placeholder method for classes derived from
LocatorClass—EntryLocatorClass, FilterLocatorClass, etc.

This method is only appropriate for LocatorClass objects with locator
controls that accept user input; for example, entry controls, combo controls,
or spin controls. A locator value is accepted when the end user changes the
locator value, then TABS off the locator control or otherwise switches focus to
another control on the same window.

Return Data Type: BYTE

See Also: EntryLocatorClass.TakeAccepted, FilterLocatorClass.TakeAccepted

TakeKey (process an alerted keystroke)

TakeKey, VIRTUAL

The TakeKey method processes an alerted keystroke for the LIST control
and returns a value indicating whether the browse list display must change.

Tip: By default, all alphanumeric keys are alerted for LIST controls.

The TakeKey method is only a placeholder method for classes derived from
LocatorClass—StepLocatorClass, EntryLocatorClass,
IncrementalLocatorClass, etc.

Return Data Type: BYTE

See Also: StepLocatorClass.TakeKey, EntryLocatorClass.TakeKey,
IncrementalLocatorClass.TakeKey

UpdateWindow (redraw the locator control with its current value)

UpdateWindow, VIRTUAL

The UpdateWindow method redraws the locator control with its current
value.

The UpdateWindow method is only a placeholder method for classes derived
from LocatorClass—IncrementalLocatorClass, FilterLocatorClass, etc.

See Also: IncrementalLocatorClass.UpdateWindow, FilterLocatorClass.UpdateWindow

CHAPTER 36 POPUPCLASS 639

36 - POPUPCLASS

Overview
The PopupClass object defines and manages a full featured popup (context)
menu (including multi-level or nested menus with icon support). The
PopupClass object optionally presents the popup menu choices in the form
of a floating toolbox. The PopupClass object makes it easy to add fully
functional popup menus to your procedures.

PopupClass Concepts

You can set the popup menu items to mimic existing buttons on a window, so
that associated menu item text/icon matches the button text/icon, is enabled
only when the button is enabled, and, when selected, invokes the button
action.

Alternatively, you can set the popup menu item to POST a particular event or
simply return its ID so you can trap it and custom code the item’s
functionality. Finally, you can custom code the action associated with a
menu item.

The PopupClass supports runtime language translation (see TranslatorClass)
and runtime reordering of menu items without otherwise changing the code
that displays and processes the popup menu or toolbox.

Relationship to Other Application Builder Classes
The PopupClass optionally uses the TranslatorClass so you can translate
menu text to other languages without changing your popup menu code. The
PopupClass optionally uses the INIClass to save and restore menu definitions
to a configuration (.INI) file. Neither class is required by the PopupClass;
however, if you use either facility, you must instantiate them in your
program. See the Conceptual Example.

The ASCIIViewerClass, BrowseClass, and PrintPreviewClass all use the
PopupClass to manage their popup menus. This PopupClass use is automatic
when you INCLUDE the class header (ABASCII.INC, ABBROWSE.INC, or
ABPRINT.INC) in your program’s data section.

ABC Template Implementation
The ABC Templates declare a local PopupClass class and object for each
instance of the Popup code template.

640 CLARION 5 APPLICATION HANDBOOK

The class is named PopupMgr# where # is the instance number of the Popup
code template. The templates provide the derived class so you can use the
Popup code template Classes tab to easily modify the popup menu behavior
on an instance-by-instance basis.

The template generated code does not reference the PopupClass objects
encapsulated within the ASCIIViewerClass, BrowseClass, and
PrintPreviewClass.

PopupClass Source Files

The PopupClass source code is installed by default to the Clarion \LIBSRC
folder. The PopupClass source code and its respective components are
contained in:

ABPOPUP.INC PopupClass declarations
ABPOPUP.CLW PopupClass method definitions
ABPOPUP.TRN PopupClass translation strings

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a PopupClass object.

This example displays a dialog with a right-click popup menu that mimics
the dialog buttons with three different PopupClass techniques. The dialog
buttons demonstrate the PopupClass’ ability to save and restore menus to and
from an INI file.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

MAP
END
INCLUDE('ABPOPUP.INC') !declare PopupClass
INCLUDE('ABUTIL.INC') !declare INIClass & Translator
INCLUDE('KEYCODES.CLW') !declare right-click EQUATE

PopupString STRING(20) !to receive menu selection
PopupMgr PopupClass !declare PopupMgr object
Translator TranslatorClass !declare Translator object
INIMgr INIClass !declare INIMgr object
INIFile EQUATE('.\Popup.ini') !declare INI pathname EQUATE

PopupWin WINDOW('Popup Demo'),AT(,,184,50),ALRT(MouseRight),GRAY
BUTTON('&Save Popup'),AT(17,16),USE(?Save),ICON(‘Save.ico’)
BUTTON('&Restore Popup'),AT(74,16),USE(?Restore),DISABLE
BUTTON('Close'),AT(140,16),USE(?Close)

END
CODE
OPEN(PopupWin)

CHAPTER 36 POPUPCLASS 641

 Translator.Init !initialize Translator object
INIMgr.Init(INIFile) !initialize INIMgr object
PopupMgr.Init(INIMgr) !initialize PopupMgr object
PopupMgr.AddItemMimic('Save',?Save) !Save item mimics ?Save button
PopupMgr.AddItem('Restore Popup',’Restore’) !add menu item: Restore
PopupMgr.SetItemEnable('Restore',False) !initially disable Restore item
PopupMgr.AddItem('-','Separator1') !add a menu item separator
PopupMgr.AddItem('Disable Save','Disable') !add a menu item: Disable
PopupMgr.AddItem('-','Separator2') !add a menu item separator
PopupMgr.AddItem('Close (EVENT:Accepted)','Close') !add a menu item: Close
PopupMgr.AddItemEvent('Close',EVENT:Accepted,?Close) !Close POSTs event to a control
PopupMgr.AddItem('Close (EVENT:CloseWindow)','Close2')!add a menu item: Close2
PopupMgr.AddItemEvent('Close2',EVENT:CloseWindow,0) !Close2 POSTs independent event
PopupMgr.SetTranslator(Translator) !enable popup text translation

ACCEPT
CASE EVENT()
OF EVENT:AlertKey !trap for alerted keys
IF KEYCODE() = MouseRight !if right-click
PopupString=PopupMgr.Ask() !display popup menu
CASE PopupString !check for selected item
OF 'Disable' !if Disable item selected
IF PopupMgr.GetItemChecked('Disable')
PopupMgr.SetItemCheck('Disable',False) !toggle the menu check mark
ENABLE(?Save) !toggle ?Save button state

ELSE !which automatically toggles
PopupMgr.SetItemCheck('Disable',True) !the Save menu item, because
DISABLE(?Save) !it mimics the ?Save button

END
OF 'Restore' !if Restore item selected
POST(EVENT:Accepted,?Restore) !code your own functionality

ELSE !if any other item selected
END !Ask automatically handled it

END
END
CASE FIELD()
OF ?Save !Save button mimiced by Save item
CASE EVENT()
OF EVENT:Accepted
PopupMgr.Save('MyPopup') !save menu definition to INI
RUN('NotePad '&INIFile) !display/edit menu definition
ENABLE(?Restore) !enable the Restore button
PopupMgr.SetItemEnable('Restore',True) !enable the Restore item

END
OF ?Restore
CASE EVENT()
OF EVENT:Accepted
PopupMgr.Restore('MyPopup') !restore/define menu from INI

END
OF ?Close !Close btn Accepted by Close item
CASE EVENT()
OF EVENT:Accepted
POST(Event:CloseWindow)

END
END

END
PopupMgr.Kill

642 CLARION 5 APPLICATION HANDBOOK

PopupClass Properties
The PopupClass contains the properties described below.

ClearKeycode (clear KEYCODE character)

ClearKeycode BYTE

The ClearKeycode property determines whether the PopupClass object
clears the (MouseRight) value from the KEYCODE() “buffer” before
invoking the selected menu item’s action. A value of one (1 or True) sets the
KEYCODE() “buffer” to zero; a value of zero (0 or False) leaves the
KEYCODE() “buffer” intact. See KEYCODE and SETKEYCODE in the
Language Reference for more information.

Tip: The uncleared KEYCODE() value can cause the popup menu to
reappear in some circumstances; therefore we recommend
setting the ClearKeycode property to True.

Implementation: The ABC Templates set the ClearKeycode property to True by default. The
Ask method implements the action specified by the ClearKeycode property.

See Also: Ask, Init

CHAPTER 36 POPUPCLASS 643

PopupClass Methods
The PopupClass contains the methods listed below.

Functional Organization—Expected Use

As an aid to understanding the PopupClass, it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the PopupClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the PopupClass object
AddMenu add a menu
AddItem add menu item
AddItemEvent set menu item action
AddItemMimic tie menu item to a button
AddSubMenu add submenu
Kill shut down the PopupClass object

Mainstream Use:
Ask display and process the popup menu
GetItemChecked return toggle item status
GetItemEnabled return item status
SetItemCheck set toggle item status
SetItemEnable set item status
Toolbox display and process toolbox

Occasional Use:
DeleteItem remove menu item
GetLastSelection return last selected item
SetTranslator set run-time translator
Save save a menu for restoration
SetIcon set menu item icon
SetLevel set menu item hierarchy level
SetText set menu item text
SetToolbox set menu item text
Restore restore a saved menu

Virtual Methods

The PopupClass has no virtual methods.

644 CLARION 5 APPLICATION HANDBOOK

AddItem (add menu item)

AddItem(text | [,name] |)
 | name, position, level |

AddItem Adds an item to the popup menu.

text A string constant, variable, EQUATE, or expression
containing the text of the menu item. A single hyphen (-)
creates a non-selectable separator (a 3D horizontal bar)
on the menu. An ampersand (&) designates the next
character as the menu item’s hot key.

name A string constant, variable, EQUATE, or expression
containing the menu item name. If omitted, AddItem
derives the name from the text.

position A string constant, variable, EQUATE, or expression
containing the name after which to add the new menu
item.

level An integer constant, variable, EQUATE, or expression
containing the nesting level or depth of the new menu
item.

The AddItem method adds an item to the popup menu.

You set the action taken for each menu item with the AddItemMimic or
AddItemEvent methods, or with your own custom code. These methods (and
your code) must refer to the menu items by name (not by text).

AddItem(text)
Adds a single menu item at the end of the menu. The item name
is derived.

AddItem(text, name)
Adds a single menu item at the end of the menu with the name
specified.

AddItem(text, name, position, level)
Adds a single menu item following item position, at level level,
with name specified.

Other PopupClass methods refer to the menu item by its name, not by its
text. This lets you apply runtime translation or dynamic reordering of menu
and items without otherwise changing the code that displays and processes
the popup menu/toolbox.

CHAPTER 36 POPUPCLASS 645

Implementation: The text and name parameters accept up to 1024 characters.

Each derived menu item name is the same as its text minus any special
characters. That is, the name contains only characters ‘A-Z’, ‘a-z’, and ‘0-9’.
If the resulting name is not unique, the PopupClass appends a sequence
number to the name to make it unique.

Tip: By default, menu items added with this method do not appear
on the PopupClass object’s toolbox because they have no
associated action to execute. Use the AddItemMimic or
AddItemEvent methods to include items on the toolbox.

Example:

PopupMgr.AddItem('Save Popup') !add menu item named SavePopup
PopupMgr.AddItem('Save Popup','Save') !add menu item named Save
PopupMgr.AddItem('-','Separator') !add a separator
PopupMgr.AddItem('Restore Popup','Restore','Save',1)!add Restore item after Save item

See Also: AddItemEvent, AddItemMimic, SetText

646 CLARION 5 APPLICATION HANDBOOK

AddItemEvent (set menu item action)

AddItemEvent(name, event [,control]), PROC

AddItemEvent Associates an event with a menu item.

name A string constant, variable, EQUATE, or expression
containing the name of the menu item associated with
the event. If the named item does not exist,
AddItemEvent adds it at the bottom of the popup menu.

event An integer constant, variable, EQUATE, or expression
containing the event number to POST when the end user
selects the menu item.

control An integer constant, variable, EQUATE, or expression
containing the control number to POST the event to
when the end user selects the menu item. To post a field-
independent event, use a control value of zero (0). If
omitted, control defaults to zero (0).

The AddItemEvent method associates an event with a menu item and
returns the name of the item. When the end user selects the menu item, the
PopupClass object POSTs the event to the control.

Implementation: The Ask method traps the selected item and POSTs the event.

The name parameter accepts up to 1024 characters.

Tip: By default, menu items added with this method appear on the
PopupClass object’s toolbox because they have an associated
action to execute. Use the SetToolbox method to explicitly
include or exclude items from the toolbox.

Return Data Type: STRING

Example:

PopupMgr.AddItem('Close (control event)','Close') !add a menu item: Close
PopupMgr.AddItemEvent('Close',EVENT:Accepted,?Close) !Close POSTs event to a control
PopupMgr.AddItem('Close (window event)','Close2') !add a menu item: Close2
PopupMgr.AddItemEvent('Close2',EVENT:CloseWindow,0) !Close2 POSTs independent event

See Also: AddItem, AddItemMimic, AddMenu, Ask, SetToolbox

CHAPTER 36 POPUPCLASS 647

AddItemMimic (tie menu item to a button)

AddItemMimic(name, button [, text]), PROC

AddItemMimic Associates a menu item with a BUTTON.

name A string constant, variable, EQUATE, or expression
containing the menu item name to associate with the
button. If the named item does not exist, AddItemMimic
adds it at the bottom of the popup menu. To add a new
item, the button must have text, or you must supply the
text parameter.

button A numeric constant, variable, EQUATE, or expression
containing the associated BUTTON’s control number. If
the button has no text, you should supply the text parameter.

text A string constant, variable, EQUATE, or expression
containing the text of the menu item. This overrides any
button text. If omitted, or if the first character is an
exclamation point (!), AddItemMimic uses the button
text as the text of the menu item.

The AddItemMimic method associates a menu item with a button and
returns the name of the item. AddItemMimic can add a new menu item, or
add an association to an existing menu item. The associated menu item text
and icon matches the button text and icon, is enabled only when the button is
enabled, and, when selected, invokes the button action.

Other PopupClass methods refer to the menu item by its name, not by its
text. This lets you apply runtime translation or dynamic reordering of menu
and items without otherwise changing the code that displays and processes
the popup menu/toolbox.

Implementation: The Ask method traps the selected item and POSTs an EVENT:Accepted to
the button. If button does not represent a BUTTON, AddItemMimic does
nothing.

The text and name parameters accept up to 1024 characters.

Tip: By default, menu items added with this method appear on the
PopupClass object’s toolbox because they have an associated
action to execute. Use the SetToolbox method to explicitly
include or exclude items from the toolbox.

Return Data Type: STRING

Example:
PopupMgr.AddItem('Save Popup','Save') !add menu item: Save
PopupMgr.AddItemMimic('Save',?Save) !Save item mimics ?Save button
PopupMgr.AddItemMimic('Insert',?Insert) !add Insert item & mimic ?Insert button

See Also: AddItem, AddMenu, Ask, SetText, SetToolbox

648 CLARION 5 APPLICATION HANDBOOK

AddMenu (add a menu)

AddMenu(selections [, position])

AddMenu Adds a popup menu.

selections A string constant, variable, EQUATE, or expression
containing the text for the popup menu choices.

position An integer constant, variable, EQUATE, or expression
containing the position within the PopupClass’ existing
menu at which to add the selections. If omitted or zero
(0), AddMenu clears any existing menu selections.

The AddMenu method adds an entire popup menu or adds additional
selections to an existing menu. The AddMenu method creates a popup menu
item with a unique name for each text specified by the selections parameter.
The selections parameter is identical to the selections parameter for the
POPUP command. See POPUP in the Language Reference for more
information.

You set the action taken for each menu item with the AddItemMimic or
AddItemEvent methods, or with your own custom code. These methods (and
your code) must refer to the menu items by name (not by text).

Implementation: The AddMenu method optionally replaces any previously defined menu for
this PopupClass object.

The Ask method displays the popup menu and returns the selected item’s name.

The Popup class object derives the menu item name from its text. Each
derived item name is the same as its text minus any special characters. That
is, the name contains only characters ‘A-Z’, ‘a-z’, and ‘0-9’. If the resulting
name is not unique, the PopupClass appends a sequence number to the name
to make it unique.

The selections parameter accepts up to 10,000 characters.

Tip: By default, menu items added with this method do not appear
on the PopupClass object’s toolbox because they have no
associated action to execute. Use the AddItemMimic or
AddItemEvent methods to include items on the toolbox.

CHAPTER 36 POPUPCLASS 649

Example:

MenuChoices EQUATE('&Save Menu|&Restore Menu|-|&Close') !declare menu definition string
CODE
PopupMgr.AddMenu(MenuChoices) !add Popup menu
PopupMgr.AddItemMimic('SaveMenu',?Save) !SaveMenu mimics ?Save button
PopupMgr.AddItemEvent('Close',EVENT:Accepted,?Close) !Close POSTs event to a control
!program code
IF PopupMgr.Ask() = 'RestoreMenu' !if RestoreMenu item selected
PopupMgr.Restore(‘MyMenu’) !code your own functionality

ELSE !if any other item selected
END !Ask automatically handled it

See Also: AddItemEvent, AddItemMimic, Ask

650 CLARION 5 APPLICATION HANDBOOK

AddSubMenu (add submenu)

AddSubMenu([text] ,selections, name to follow)

AddSubMenu Adds a submenu to an existing menu.

text A string constant, variable, EQUATE, or expression
containing the submenu text. If omitted, the submenu
text must be prepended to the selections parameter.

selections A string constant, variable, EQUATE, or expression
containing the text for the submenu items. The submenu
items must be preceded by a double open curly brace
({{) and followed by a single close curly brace (}).

name to follow A string constant, variable, EQUATE, or expression
containing the menu name or item name after which to
insert the submenu.

The AddSubMenu method adds a submenu to an existing menu. The
AddSubMenu method adds a submenu and its items, including a unique
name for each item specified by the selections parameter. The selections
parameter is identical to the submenu section of the selections parameter for
the POPUP command. See POPUP in the Language Reference for more
information.

You set the action taken for each menu item with the AddItemMimic or
AddItemEvent methods, or with your own custom code. These methods (and
your code) must refer to the menu items by name (not by text).

Implementation: The Ask method displays the popup menu and returns the selected item’s
name.

The Popup class object derives the menu item name from its text. Each
derived item name is the same as its text minus any special characters. That
is, the name contains only characters ‘A-Z’, ‘a-z’, and ‘0-9’. If the resulting
name is not unique, the PopupClass appends a sequence number to the name
to make it unique.

The text parameter accepts up to 1,024 characters; the selections parameter
accepts up to 10,000 characters.

Tip: By default, menu items added with this method do not appear
on the PopupClass object’s toolbox because they have no
associated action to execute. Use the AddItemMimic or
AddItemEvent methods to include items on the toolbox.

CHAPTER 36 POPUPCLASS 651

Example:

MenuChoices EQUATE('&Insert|&Change|&Delete') !declare menu definition string
SubChoices EQUATE('{{by &name|by &ZIP code}') !declare submenu definition
CODE
PopupMgr.AddMenu(MenuChoices) !add Popup menu
PopupMgr.AddSubMenu('&Print',SubChoices,'Delete') !add Print submenu after delete
CASE PopupMgr.Ask() !display popup menu
OF ('Insert') ;DO Update(1) !process end user choice
OF ('Change') ;DO Update(2) !process end user choice
OF ('Delete') ;DO Update(3) !process end user choice
OF ('byname') ;DO PrintByName !process end user choice
OF ('byZIPcode') ;DO PrintByZIP !process end user choice
END

See Also: AddItemEvent, AddItemMimic, AddMenu, Ask

652 CLARION 5 APPLICATION HANDBOOK

Ask (display the popup menu)

Ask([x] [,y]), PROC

Ask Returns the selected popup menu item name.

x An integer constant, variable, EQUATE, or expression
that specifies the horizontal position of the top left
corner of the menu. If omitted, the menu appears at the
current cursor position.

y An integer constant, variable, EQUATE, or expression
that specifies the vertical position of the top left corner
of the menu. If omitted, the menu appears at the current
cursor position.

The Ask method displays the popup menu, performs any action set by
AddItemEvent or AddItemMimic for the selected item, then returns the
selected item’s name. The AddItem, AddItemMimic, or AddMenu method
sets the item name.

Return Data Type: STRING

Example:

MenuChoices EQUATE('&Save Menu|&Restore Menu|-|&Close') !declare menu definition string
CODE
PopupMgr.AddMenu(MenuChoices) !add Popup menu
PopupMgr.AddItemMimic('SaveMenu',?Save) !SaveMenu mimics ?Save button
PopupMgr.AddItemEvent('Close',EVENT:Accepted,?Close) !Close POSTs event to a control
!program code
IF PopupMgr.Ask() = 'RestoreMenu' !if RestoreMenu item selected
PopupMgr.Restore(‘MyMenu’) !code your own functionality

ELSE !if any other item selected
END !Ask automatically handled it

See Also: AddItem, AddItemMimic, AddMenu

CHAPTER 36 POPUPCLASS 653

DeleteItem (remove menu item)

DeleteItem(name)

DeleteItem Deletes a popup menu item.

name A string constant, variable, EQUATE, or expression
containing the menu item name. The AddItem,
AddItemMimic, or AddMenu methods set the item
name.

The DeleteItem method deletes a popup menu item and any associated
submenu items.

Implementation: The name parameter accepts up to 1024 characters.

Example:

PopupMgr.AddItem('&Insert',’Insert’) !Insert item
PopupMgr.AddItem('&Change',’Change’) !Change item
PopupMgr.AddItem('&Delete',’Delete’) !Delete item
PopupMgr.AddItem('&Select',’Select’) !Select item
IF No_Records_Found
PopupMgr.DeleteItem('Change') !remove change item
PopupMgr.DeleteItem('Delete') !remove delete item
PopupMgr.DeleteItem('Select') !remove select item

END

See Also: AddItem, AddItemMimic, AddMenu

654 CLARION 5 APPLICATION HANDBOOK

GetItemChecked (return toggle item status)

GetItemChecked(name)

GetItemChecked Returns the status of a toggle menu item.

name A string constant, variable, EQUATE, or expression
containing the menu item name. The AddItem,
AddItemMimic, or AddMenu methods set the item
name.

The GetItemChecked method returns one (1) if the item is checked (on) and
zero (0) if the item is not checked (off). The SetItemCheck method sets the
state of a toggle menu item.

Implementation: The name parameter accepts up to 1024 characters.

Return Data Type: BYTE

Example:

IF PopupMgr.Ask() = 'Disable' !if Disable item selected
IF PopupMgr.GetItemChecked('Disable') !if item is checked/on
PopupMgr.SetItemCheck('Disable',False) ! toggle it off
ENABLE(?Save) ! take appropriate action

ELSE !if item is not checked/off
PopupMgr.SetItemCheck('Disable',True) ! toggle it on
DISABLE(?Save) ! take appropriate action

END
END

See Also: AddItem, AddItemMimic, AddMenu, SetItemCheck

CHAPTER 36 POPUPCLASS 655

GetItemEnabled (return item status)

GetItemEnabled(name)

GetItemEnabled Returns the enabled/disabled status of a menu item.

name A string constant, variable, EQUATE, or expression
containing the menu item name. The AddItem,
AddItemMimic, or AddMenu methods set the item
name.

The GetItemEnabled method returns one (1) if the item is enabled and zero
(0) if the item is disabled. The SetItemEnable method sets the enabled/
disabled state of a menu item.

Implementation: The name parameter accepts up to 1024 characters.

Return Data Type: BYTE

Example:

IF PopupMgr.GetItemEnabled('Save') !if item is enabled
PopupMgr.SetItemEnable('Save',False) ! disable it

ELSE !if item is disabled
PopupMgr.SetItemEnable('Save',True) ! enable it

END

See Also: AddItem, AddItemMimic, AddMenu, SetItemEnable

GetLastSelection (return selected item)

GetLastSelection

The GetLastSelection method returns the name of the last selected item.

The AddItem, AddItemMimic, AddMenu, or AddSubMenu method sets the
item name.

Return Data Type: STRING

Example:

MenuChoices EQUATE('Fred|Barney|Wilma') !declare menu definition string
CODE
PopupMgr.AddMenu(MenuChoices) !add Popup menu
!program code
PopupMgr.Ask() !display menu
MESSAGE(‘Thank you for choosing ‘&PopupMgr.GetLastSelection)

See Also: AddItem, AddItemMimic, AddMenu, AddSubMenu

656 CLARION 5 APPLICATION HANDBOOK

Init (initialize the PopupClass object)

Init([INIClass])

Init Initializes the PopupClass object.

INIClass The label of the INIClass object for this PopupClass
object. The Save method uses the INIClass object to save
menu definitions to an INI file; the Restore method uses
it to restore the saved menu definitions. If omitted, the
Save and Restore methods do nothing.

The Init method initializes the PopupClass object.

Example:

PopupMgr PopupClass !declare PopupMgr object
INIMgr INIClass !declare INIMgr object
CODE
PopupMgr.Init(INIMgr) !initialize PopupMgr object
PopupMgr.AddItem('Save Popup','Save') !add menu item: Save
PopupMgr.AddItemMimic('Save',?Save) !Save item mimics ?Save button

See Also: Restore, Save

Kill (shut down the PopupClass object)

Kill

The Kill method frees any memory allocated during the life of the
PopupClass object and performs any other required termination code.

Example:

PopupMgr.Init !initialize PopupMgr object
!program code
PopupMgr.Kill !shut down PopupMgr object

CHAPTER 36 POPUPCLASS 657

Restore (restore a saved menu)

Restore(menu)

Restore Restores a menu saved by the PopupClass.Save method.

menu A string constant, variable, EQUATE, or expression
containing the name of the menu to restore.

The Restore method restores a menu saved by the Save method. The Restore
method restores all menu attributes that the PopupClass object knows about,
including associated menu actions.

Implementation: The Restore method requires an INIClass object. The Init method specifies
the INIClass object.

Example:

PopupMgr PopupClass !declare PopupMgr object
INIMgr INIClass !declare INIMgr object
MenuChoices EQUATE('&Save Menu|&Restore Menu|-|&Close') !declare menu definition

CODE
PopupMgr.Init(INIMgr) !initialize PopupMgr object
PopupMgr.AddMenu(MenuChoices) !add Popup menu
ACCEPT
CASE FIELD()
OF ?Save
CASE EVENT()
OF EVENT:Accepted
PopupMgr.Save('MyPopup') !save menu definition to INI

END
OF ?Restore
CASE EVENT()
OF EVENT:Accepted
PopupMgr.Restore('MyPopup') !restore menu from INI

END
END

END

See Also: Init, Save

658 CLARION 5 APPLICATION HANDBOOK

Save (save a menu for restoration)

Save(menu)

Save Saves a menu for restoration by the PopupClass.Restore
method.

menu A string constant, variable, EQUATE, or expression
containing the name of the menu to save.

The Save method saves a menu for restoration by the Restore method. The
Save method saves all menu attributes that the PopupClass object knows
about, including associated menu actions.

Implementation: The Save method requires an INIClass object. The Init method specifies the
INIClass object.

Example:

PopupMgr PopupClass !declare PopupMgr object
INIMgr INIClass !declare INIMgr object
MenuChoices EQUATE('&Save Menu|&Restore Menu|-|&Close') !declare menu definition

CODE
PopupMgr.Init(INIMgr) !initialize PopupMgr object
PopupMgr.AddMenu(MenuChoices) !add Popup menu
ACCEPT
CASE FIELD()
OF ?Save
CASE EVENT()
OF EVENT:Accepted
PopupMgr.Save('MyPopup') !save menu definition to INI

END
OF ?Restore
CASE EVENT()
OF EVENT:Accepted
PopupMgr.Restore('MyPopup') !restore menu from INI

END
END

END

See Also: Init, Restore

CHAPTER 36 POPUPCLASS 659

SetIcon (set menu item icon)

SetIcon(name, iconpathname)

SetIcon Sets the menu item icon.

name A string constant, variable, EQUATE, or expression
containing the menu item name. The AddItem,
AddItemMimic, or AddMenu methods set the item
name.

iconpathname A string constant, variable, EQUATE, or expression
containing the pathname of the icon to display.

The SetIcon method sets the icon for a menu item.

Implementation: The name parameter accepts up to 1024 characters.

Example:

PopupMgr.SetText('Save', ‘&Save’)
PopupMgr.SetIcon('Save', ‘save.ico’)

See Also: AddItem, AddItemMimic, AddMenu

660 CLARION 5 APPLICATION HANDBOOK

SetItemCheck (set toggle item status)

SetItemCheck(name, status)

SetItemCheck Sets the status of a toggle menu item.

name A string constant, variable, EQUATE, or expression
containing the menu item name. The AddItem,
AddItemMimic, or AddMenu methods set the item
name.

status A Boolean constant, variable, EQUATE, or expression
containing the status to which to set the toggle item. A
status value of one (1) idicates a checked (on) item; zero
(0) indicates an unchecked (off) item.

The SetItemCheck method sets the status of a toggle menu item. The
GetItemChecked method returns the status of a toggle menu item.

Implementation: The name parameter accepts up to 1024 characters.

Example:

IF PopupMgr.Ask() = 'Disable' !if Disable item selected
IF PopupMgr.GetItemChecked('Disable') !if item is checked/on
PopupMgr.SetItemCheck('Disable',False) ! toggle it off
ENABLE(?Save) ! take appropriate action

ELSE !if item is not checked/off
PopupMgr.SetItemCheck('Disable',True) ! toggle it on
DISABLE(?Save) ! take appropriate action

END
END

See Also: AddItem, AddItemMimic, AddMenu, GetItemChecked

CHAPTER 36 POPUPCLASS 661

SetItemEnable (set item status)

SetItemEnable(name)

SetItemEnable Sets the enabled/disabled status of a menu item.

name A string constant, variable, EQUATE, or expression
containing the menu item name. The AddItem,
AddItemMimic, or AddMenu methods set the item name.

status A Boolean constant, variable, EQUATE, or expression
containing the status to which to set the item. A status
value of one (1) idicates an enabled item; zero (0)
indicates a disabled item.

The SetItemEnable method sets the enabled/disabled status of a menu item.
The GetItemEnabled method returns the enabled/disabled status of a menu
item.

Implementation: The name parameter accepts up to 1024 characters.

Example:

IF PopupMgr.GetItemEnabled('Save') !if item is enabled
PopupMgr.SetItemEnable('Save',False) ! disable it

ELSE !if item is disabled
PopupMgr.SetItemEnable('Save',True) ! enable it

END

See Also: AddItem, AddItemMimic, AddMenu, GetItemEnabled

SetLevel (set menu item level)

SetLevel(name, level)

SetLevel Sets the menu item hierarchy level.

name A string constant, variable, EQUATE, or expression
containing the menu item name. The AddItem,
AddItemMimic, or AddMenu methods set the item
name.

level An integer constant, variable,a EQUATE, or expression
containing the level of the menu item.

The SetLevel method sets the menu item hierarchy (nesting) level.

Implementation: The name parameter accepts up to 1024 characters.

Example:

PopupMgr.SetLevel('Save',2)

See Also: AddItem, AddItemMimic, AddMenu

662 CLARION 5 APPLICATION HANDBOOK

SetText (set menu item text)

SetText(name, text)

SetText Sets the menu item text.

name A string constant, variable, EQUATE, or expression
containing the menu item name. The AddItem,
AddItemMimic, or AddMenu methods set the item
name.

text A string constant, variable, EQUATE, or expression
containing the text of the menu item. A single hyphen
creates a non-selectable separator (a 3D horizontal bar)
on the menu.

The SetText method sets the text for a menu item.

Implementation: The name and text parameters accept up to 1024 characters.

Example:

PopupMgr.SetText('Save',’&Save’)

See Also: AddItem, AddItemMimic, AddMenu

CHAPTER 36 POPUPCLASS 663

SetToolbox (include item on toolbox)

SetToolbox(name, show)

SetToolbox Includes or excludes the item from the PopupClass
toolbox.

name A string constant, variable, EQUATE, or expression
containing the menu item name. The AddItem,
AddItemMimic, or AddMenu methods set the item
name.

show An integer constant, variable, EQUATE, or expression
indicating whether the item is included in the
PopupClass toolbox. A value of one (1 or True) includes
the item; a value of zero (0 or False) excludes the item.

The SetToolbox method includes or excludes the item from the PopupClass
toolbox.

Tip: Use the SetToolbox method to exclude the “Start Toolbox”
choice from the Toolbox.

Implementation: The name parameter accepts up to 1024 characters.

By default, menu items added by the AddItemMimic and AddItemEvent
methods are included on the toolbox because they have associated actions the
PopupClass can execute. Menu items added with other methods (AddItem,
AddMenu, AddSubmenu) are not included on the toolbox.

Example:

PopupMgr.SetToolbox('Start Toolbox',False)

See Also: AddItemEvent, AddItemMimic, Toolbox

664 CLARION 5 APPLICATION HANDBOOK

SetTranslator (set run-time translator)

SetTranslator(translator)

SetTranslator Sets the TranslatorClass object for the PopupClass
object.

translator The label of the TranslatorClass object for this
PopupClass object.

The SetTranslator method sets the TranslatorClass object for the
PopupClass object. By specifying a TranslatorClass object for the
PopupClass object, you can automatically translate the popup menu text—
the TranslatorClass object does not otherwise translate popup menus because
they are not part of the WINDOW structure.

Implementation: The Ask method uses the TranslatorClass object to translate popup menu
text before displaying it.

Example:

PopupMgr PopupClass !declare PopupMgr object
Translator TranslatorClass !declare Translator object
MenuChoices EQUATE('&Save Menu|&Restore Menu|&Close') !declare menu definition
CODE

 Translator.Init !initialize Translator object
PopupMgr.Init(INIMgr) !initialize PopupMgr object
PopupMgr.AddMenu(MenuChoices) !add Popup menu
PopupMgr.SetTranslator(Translator) !enable popup text translation
!program code
PopupMgr.Ask() !display translated menu

See Also: Ask

CHAPTER 36 POPUPCLASS 665

Toolbox (display the popup toolbox)

Toolbox(caption)

Toolbox Displays the popup menu choices in a floating toolbox.

caption A string constant, variable, EQUATE, or expression
containing the toolbox caption (titlebar text).

The Toolbox method displays the popup menu choices in a floating toolbox
and performs any action set by AddItemEvent or AddItemMimic for the
selected item.

Implementation: The Toolbox method displays only those items that have an associated action
or that are designated as toolbox items by the SetToolbox method. By
default, menu items added by the AddItemMimic and AddItemEvent
methods are included on the toolbox because they have associated actions the
PopupClass can execute. Menu items added with other methods (AddItem,
AddMenu, AddSubmenu) are not included on the toolbox.

The Toolbox method indirectly calls the Ask method to invoke the menu
item’s action.

Example:

MyBrowseClass.TakeEvent PROCEDURE
CODE
!browse event processing
CASE ACCEPTED()
OF SELF.ToolControl
SELF.Popup.Toolbox('Browse Actions') !start the toolbox

END

See Also: AddItemEvent, AddItemMimic, Ask, SetToolbox

ViewMenu (popup menu debugger)

ViewMenu

The ViewMenu method displays information about the structure of the
popup menu built up by the various ‘Add’ methods.

Implementation: The ViewMenu method only works when the program is compiled with
debug information turned on. See The Debuggers in the User’s Guide for
more information.

666 CLARION 5 APPLICATION HANDBOOK

CHAPTER 37 PRINTPREVIEWCLASS 667

37 - PRINTPREVIEWCLASS

Overview
The PrintPreviewClass is a WindowManager that implements a full-featured
print preview dialog.

PrintPreviewClass Concepts

This print preview facility includes pinpoint zoom-in and zoom-out with
configurable zoom magnification, random and sequential page navigation,
plus thumbnail views of each report page. You can even specify how many
rows and columns of thumbnails the print preview facility displays.

When you finish viewing the report, you can send it directly to the printer for
immediate What You See Is What You Get (WYSIWYG) printing.

The PrintPreviewClass previews reports in the form of a Windows metafile
(.WMF) per report page. The PREVIEW attribute generates reports in
Windows metafile format, and the Clarion Report templates provide this
capability as well. See PREVIEW in the Language Reference for more
information, and see Procedure Templates—Report for more information on
Report templates.

668 CLARION 5 APPLICATION HANDBOOK

Relationship to Other Application Builder Classes

The PrintPreviewClass is derived from the WindowManager class (see
Window Manager Class for more information).

The PrintPreviewClass relies on the PopupClass and, optionally, the
TranslatorClass to accomplish some of its tasks. Therefore, if your program
instantiates the PrintPreviewClass, it should also instantiate the PopupClass
and may need the Translator class as well. Much of this is automatic when
you INCLUDE the PrintPreviewClass header (ABREPORT.INC) in your
program’s data section. See the Conceptual Example.

The ASCIIPrintClass and the ReportManager use te PrintPreviewClass to
provide a print preview facility.

ABC Template Implementation

The Report and Viewer Procedure templates and the Report Wizard Utility
template automatically generate all the code and include all the classes
necessary to provide the print preview facility for your application’s reports.

These Report templates instantiate a PrintPreviewClass object called
Previewer for each report procedure in the application. This object supports
all the functionality specified in the Preview Options section of the Report
template’s Report Properties dialog. See Procedure Templates—Report for
more information.

The template generated ReportManager object (ThisWindow) “drives” the
Previewer object, so generally, the only references to the Previewer object
within the template generated code are to initially configure the Previewer’s
properties.

PrintPreviewClass Source Files

The PrintPreviewClass source code is installed by default to the Clarion
\LIBSRC folder. The PrintPreviewClass source code and its respective
components are contained in:

ABREPORT.INC PrintPreviewClass declarations
ABREPORT.CLW PrintPreviewClass method definitions
ABREPORT.TRN PrintPreviewClass user interface text

CHAPTER 37 PRINTPREVIEWCLASS 669

Zoom Configuration

The user interface text and the standard zoom choices the PrintPreviewClass
displays at runtime are defined in the ABREPORT.TRN file. To modify or
customize this text or the standard zoom choices, simply back up the
ABREPORT.TRN file then edit it to suit your needs. See ZoomIndex for
more information.

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a PrintPreviewClass object and
some related objects.

This example uses the PrintPreviewClass object to preview a very simple
report before printing it. The program specifies an initial position and size
for the print preview window and allows custom zoom factors.

 PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
 INCLUDE('ABREPORT.INC') !declare ReportManager &

! and PrintPreviewClass
 MAP
 END

GlobalErrors ErrorClass
VCRRequest LONG(0),THREAD

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),THREAD
BYNUMBER KEY(CUS:CUSTNO),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CUSTNO LONG
Name STRING(30)
State STRING(2)

END
END

Access:Customer CLASS(FileManager) !declare Access:Customer object
Init PROCEDURE

END

Relate:Customer CLASS(RelationManager) !declare Relate:Customer object
Init PROCEDURE

END

CusView VIEW(Customer) !declare CusView VIEW
END

PctDone BYTE !track progress variable

670 CLARION 5 APPLICATION HANDBOOK

report REPORT,AT(1000,1542,6000,7458),PRE(RPT),FONT('Arial',10,,),THOUS
HEADER,AT(1000,1000,6000,542),FONT(,,,FONT:bold)
STRING('Customers'),AT(2000,20),FONT(,14,,)
STRING('Id'),AT(52,313),TRN
STRING('Name'),AT(2052,313),TRN
STRING('State'),AT(4052,313),TRN

END
detail DETAIL,AT(,,6000,281),USE(?detail)

STRING(@n-14),AT(52,52),USE(CUS:CUSTNO)
STRING(@s30),AT(2052,52),USE(CUS:NAME)
STRING(@s2),AT(4052,52),USE(CUS:State)

END
FOOTER,AT(1000,9000,6000,219)
STRING(@pPage <<<#p),AT(5250,31),PAGENO,USE(?PageCount)

END
END

ProgressWindow WINDOW('Progress...'),AT(,,142,59),CENTER,TIMER(1),GRAY,DOUBLE
PROGRESS,USE(PctDone),AT(15,15,111,12),RANGE(0,100)
STRING(''),AT(0,3,141,10),USE(?UserString),CENTER
STRING(''),AT(0,30,141,10),USE(?TxtDone),CENTER
BUTTON('Cancel'),AT(45,42),USE(?Cancel)

END

ThisProcedure CLASS(ReportManager) !declare ThisProcedure object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

CusReport CLASS(ProcessClass) !declare CusReport object
TakeRecord PROCEDURE(),BYTE,PROC,VIRTUAL

END

Previewer PrintPreviewClass !declare Previewer object
! for use with ThisProcedure

 CODE
 ThisProcedure.Run() !run the procedure

ThisProcedure.Init PROCEDURE() !initialize ThisProcedure
ReturnValue BYTE,AUTO
 CODE
 GlobalErrors.Init
 Relate:Customer.Init
 ReturnValue = PARENT.Init()
 SELF.FirstField = ?PctDone
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 Relate:Customer.Open
 OPEN(ProgressWindow)
 SELF.Opened=True
 CusReport.Init(CusView,Relate:Customer,?TxtDone,PctDone,RECORDS(Customer))
 CusReport.AddSortOrder(CUS:BYNUMBER)
 SELF.AddItem(?Cancel,RequestCancelled)
 SELF.Init(CusReport,report,Previewer) !register Previewer with ThisProcedure
 SELF.Zoom = PageWidth
 Previewer.AllowUserZoom=True !allow custom zoom factors
 Previewer.Maximize=True !initially maximize preview window
 SELF.SetAlerts()
 RETURN ReturnValue

CHAPTER 37 PRINTPREVIEWCLASS 671

ThisProcedure.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 Relate:Customer.Close
 Relate:Customer.Kill
 GlobalErrors.Kill
 RETURN ReturnValue

CusReport.TakeRecord PROCEDURE()
ReturnValue BYTE,AUTO
SkipDetails BYTE
 CODE
 ReturnValue = PARENT.TakeRecord()
 PRINT(RPT:detail)
 RETURN ReturnValue

Access:Customer.Init PROCEDURE
 CODE
 PARENT.Init(Customer,GlobalErrors)
 SELF.FileNameValue = 'Customer'
 SELF.Buffer &= CUS:Record
 SELF.Create = 0
 SELF.LazyOpen = False
 SELF.AddKey(CUS:BYNUMBER,'CUS:BYNUMBER',0)

Relate:Customer.Init PROCEDURE
 CODE
 Access:Customer.Init
 PARENT.Init(Access:Customer,1)

672 CLARION 5 APPLICATION HANDBOOK

PrintPreviewClass Properties
The PrintPreviewClass contains properties that primarily allow configuration
of the print preview window and its features. The PrintPreviewClass
properties are described below.

AllowUserZoom (allow any zoom factor)

AllowUserZoom BYTE

The AllowUserZoom property indicates whether the PrintPreviewClass
object provides user zoom capability for the end user. The user zoom lets the
end user apply any zoom factor. Without user zoom, the end user may only
apply the standard zoom choices.

The ZoomIndex property indicates whether a user zoom factor or a standard
zoom factor is applied.

Implementation: A value of one (1) enables user zoom capability; a value of zero (0) disables
user zoom. The UserPercentile property contains the user zoom factor.

See Also: UserPercentile, ZoomIndex

ConfirmPages (force 'pages to print' confirmation)

ConfirmPages BYTE

The ConfirmPages property indicates whether or not the AskPrintPages
method should be called before printing.

Implementation: Zero (0) is the default; a value of one (1) forces the enduser to choose the
pages to print before the print job is sent to the printer.

See Also: AskPrintPages

CurrentPage (the selected report page)

CurrentPage LONG

The CurrentPage property contains the number of the selected report page.
The PrintPreviewClass object uses this property to highlight the selected
report page when more than one page is displayed, to navigate pages, and to
dislay the current page number for the end user.

CHAPTER 37 PRINTPREVIEWCLASS 673

ImageQueue (page list)

ImageQueue &PreviewQueue, PROTECTED

The ImageQueue property is a reference to the
ReportManager.PreviewQueue property which contains a list of the full
pathnames for the page images generated by the report.

Maximize (number of pages displayed horizontally)

Maximize BYTE

The Maximize property indicates whether to open the preview window
mazimized. A value of one (1 or True) maximizes the window; a value of
zero (0 or False) opens the window according to the WindowSizeSet
property.

See Also: WindowSizeSet

PagesAcross (number of pages displayed horizontally)

PagesAcross USHORT

The PagesAcross property contains the number of thumbnail pages the
PrintPreviewClass object displays horizontally within the preview window.
The PrintPreviewClass object uses this property to calculate appropriate
positions and sizes when displaying several pages at a time.

The PrintPreviewClass object displays the PagesAcross value at runtime and
lets the end user set the value as well.

PagesDown (number of vertical thumbnails)

PagesDown USHORT

The PagesDown property contains the number of thumbnail pages the
PrintPreviewClass object displays vertically within the preview window. The
PrintPreviewClass object uses this property to calculate appropriate positions
and sizes when displaying several pages at a time.

The PrintPreviewClass object displays the PagesDown value at runtime and
lets the end user set the value as well.

674 CLARION 5 APPLICATION HANDBOOK

PagesToPrint (the pages to print)

PagesToPrint CSTRING(256), PROTECTED

The PagesToPrint property contains the page range to print.

The default value is 1-n, where n is equal to the total number of pages in the
report. Individual pages can be printed by seperating page numbers by
commas. A range of pages to print can be specified by seperating the first
page number to print and the last page number to print by a dash (-).
Combinations of individual pages and ranges of pages are allowed.

Popup (popup menu)

Popup &PopupClass, PROTECTED

The Popup property is a reference to the PopupClass object PrintPreview
uses to provide alternate zoom factors.

UserPercentile (custom zoom factor)

UserPercentile USHORT

The UserPercentile property contains the user specified zoom factor. The
PrintPreviewClass object solicits this factor from the end user and applies it
to the selected report page when the AllowUserZoom property is True. The
SetZoomPercentile method sets the UserPercentile property.

See Also: AllowUserZoom, SetZoomPercentile

WindowPosSet (use a non-default initial preview window position)

WindowPosSet BYTE

The WindowPosSet property contains a value indicating whether a non-
default initial position is specified for the print preview window. The
PrintPreviewClass object uses this property to determine the initial position
of the print preview window.

Implementation: The SetPosition method sets the value of this property. A value of one (1 or
True) indicates a non-default initial position is specified and is applied; a
zero (0 or False) indicates no position is specified and the default position is
applied.

See Also: SetPosition

CHAPTER 37 PRINTPREVIEWCLASS 675

WindowSizeSet (use a non-default initial preview window size)

WindowSizeSet BYTE

The WindowSizeSet property contains a value indicating whether a non-
default initial size is specified for theprint preview window. The
PrintPreviewClass object uses this property to determine the initial size of
the print preview window.

Implementation: The SetPosition method sets the value of this property. A value of one (1 or
True) indicates a non-default initial size is specified and is applied; a zero (0
of False) indicates no size is specified and the default size is applied.

See Also: SetPosition

ZoomIndex (index to applied zoom factor)

ZoomIndex BYTE

The ZoomIndex property contains a value indicating which zoom factor is
applied. The PrintPreviewClass object uses this property to identify and
apply the selected zoom factor. The SetZoomPercentile method sets the
ZoomIndex property.

Implementation: The ZoomIndex value “points” to one of the 7 standard zoom settings or to a
user zoom setting. The PrintPreviewClass object sets the ZoomIndex value
when the end user selects a zoom setting from one of the zoom menus or
from the zoom combo box. The standard zoom choices are defined in
ABREPORT.TRN as follows:

No Zoom Displays the specified number of pages
(PagesAcross and PagesDown properties) in a tiled
arrangement in the preview window.

Page Width Displays a single page whose width is the same as
the width of the preview window.

50% Displays a single page at 50% of actual print size.

75% Displays a single page at 75% of actual print size.

100% Displays a single page at 100% of actual print size.

200% Displays a single page at 200% of actual print size.

300% Displays a single page at 300% of actual print size.

A ZoomIndex value of zero (0) indicates a nonstandard zoom factor is
specified. Nonstandard zoom factors may be specified when the
AllowUserZoom property is True. The UserPercentile property contains the
nonstandard zoom factor.

See Also: AllowUserZoom, PagesAcross, PagesDown, UserPercentile, SetZoomPercentile

676 CLARION 5 APPLICATION HANDBOOK

PrintPreviewClass Methods
The PrintPreviewClass contains the methods listed below.

Functional Organization—Expected Use

As an aid to understanding the PrintPreviewClass, it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the PrintPreviewClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into two categories:

Housekeeping (one-time) Use:
InitV initialize the PrintPreviewClass object
SetPosition set initial preview window coordinates
DisplayV preview the report
Kill V shut down the PrintPreviewClass object

Occasional Use:
SetINIManager save and restore window coordinates
SetPosition set print preview position and size
SetZoomPercentile set user or standard zoom factor

V These methods are also Virtual.

Virtual Methods

Typically you will not call these methods directly—the Display method calls
them. However, we anticipate you will often want to override these methods,
and because they are virtual, they are very easy to override. These methods
do provide reasonable default behavior in case you do not want to override
them.

InitV initialize the PrintPreviewClass object
AskPage prompt for new report page
AskThumbnails prompt for new thumbnail configuration
Display preview the report
Open prepare preview window for display
TakeAccepted process EVENT:Accepted events
TakeEvent process all events
TakeFieldEvent a virtual to process field events
TakeWindowEvent process non-field events
Kill V shut down the PrintPreviewClass object

CHAPTER 37 PRINTPREVIEWCLASS 677

AskPage (prompt for new report page)

AskPage, PROC, VIRTUAL, PROTECTED

The AskPage method prompts the end user for a specific report page to
display and returns a value indicating whether a new page is selected. A
return value of one (1) indicates a new page is selected and a screen redraw
is required; a return value of zero (0) indicates a new page is not selected and
a screen redraw is not required.

Implementation: The PrintPreviewClass.Display method calls the AskPage method. The
AskPage method displays a dialog that prompts for a specific report page.

Return Data Type: BYTE

Example:

!Virtual implementation of AskPage: a simplified version with no translator...
PrintPreviewClass.AskPage FUNCTION
JumpPage LONG,AUTO
RVal BOOL(False)

JumpWin WINDOW('Jump to Page'),AT(,,181,26),CENTER,GRAY,DOUBLE
PROMPT('&Page:'),AT(5,8),USE(?JumpPrompt)
SPIN(@n5),AT(30,7),USE(JumpPage),RANGE(1,10),STEP(1)
BUTTON('OK'),AT(89,7),USE(?OKButton),DEFAULT
BUTTON('Cancel'),AT(134,7),USE(?CancelButton)

END
CODE
JumpPage=SELF.CurrentPage
OPEN(JumpWin)
ACCEPT
CASE EVENT()
OF EVENT:OpenWindow
?JumpPage{PROP:RangeHigh}=RECORDS(SELF.ImageQueue)

OF EVENT:Accepted
CASE ACCEPTED()
OF ?OKButton
IF JumpPage NOT=SELF.CurrentPage
RVal=True !SELF.CurrentPage changed
SELF.CurrentPage=JumpPage

END
POST(EVENT:CloseWindow)

OF ?CancelButton
POST(EVENT:CloseWindow)

. . .
 CLOSE(JumpWin)
 RETURN RVal

678 CLARION 5 APPLICATION HANDBOOK

AskPrintPages (prompt for pages to print)

AskPrintPages, VIRTUAL, PROTECTED, PROC

The AskPrintPages method prompts the end user for the number(s) of the
pages to print from the previewed report.

Implementation: The PrintPreviewClass.TakeAccepted method calls the AskPrintPages
method and returns TRUE (1) when completed or FALSE (0) if the user
presses the cancel button. The AskPrintPages method displays a dialog that
prompts for the page numbers to print.

Return Data Type: BYTE

Example:

!Virtual implementation of AskThumbnails
PrintPreviewClass.AskPrintPages PROCEDURE
Preserve LIKE(PrintPreviewClass.PagesToPrint),AUTO
Window WINDOW('Pages to Print'),AT(,,260,37),CENTER,SYSTEM,GRAY
 PROMPT('&Pages to Print:'),AT(4,8),USE(?Prompt)
 ENTRY(@s255),AT(56,4,200,11),USE(SELF.PagesToPrint, , ?PagesToPrint)
 BUTTON('&Reset'),AT(116,20,45,14),USE(?Reset)
 BUTTON('&Ok'),AT(164,20,45,14),USE(?Ok),DEFAULT
 BUTTON('&Cancel'),AT(212,20,45,14),USE(?Cancel),STD(STD:Close)
 END
RVal BYTE(False)
 CODE
 Preserve = SELF.PagesToPrint
 OPEN(Window)
 ACCEPT
 CASE EVENT()
 OF EVENT:Accepted
 CASE ACCEPTED()
 OF ?Cancel
 SELF.PagesToPrint = Preserve
 POST(EVENT:CloseWindow)
 OF ?Ok
 RVal = True
 POST(EVENT:CloseWindow)
 OF ?Reset
 SELF.SetDefaultPages
 SELECT(?PagesToPrint)
 END
 OF EVENT:OpenWindow
 ! INIMgr code for FETCHing window settings
 OF EVENT:CloseWindow
 ! INIMgr code for UPDATEing window settings
 END
 END
 CLOSE(Window)
 RETURN RVal

CHAPTER 37 PRINTPREVIEWCLASS 679

AskThumbnails (prompt for new thumbnail configuration)

AskThumbnails, VIRTUAL, PROTECTED

The AskThumbnails method prompts the end user for the number of pages
to tile across and down the preview window.

Implementation: The PrintPreviewClass.Display method calls the AskThumbnails method.
The AskThumbnails method displays a dialog that prompts for the number of
thumbnails to display horizontally, and the number of thumbnails to display
vertically.

Example:

!Virtual implementation of AskThumbnails
! a slightly simplified version with no translator...
PrintPreviewClass.AskThumbnails PROCEDURE

SelectWindow WINDOW('Pages Displayed'),AT(,,141,64),GRAY,DOUBLE
 GROUP('Across'),AT(7,10,62,32),BOXED
 SPIN(@N2),AT(13,22,15),USE(SELF.PagesAcross,,?PagesAcross),RANGE(1,10)
 END
 GROUP('Down'),AT(72,10,62,32),BOXED
 SPIN(@N2),AT(79,22,15),USE(SELF.PagesDown,,?PagesDown),RANGE(1,10)
 END
 BUTTON('OK'),AT(98,47,40,14),KEY(EnterKey),USE(?OK)
 END

 CODE
 OPEN(SelectWindow)
 ACCEPT
 CASE EVENT()
 OF EVENT:Accepted
 CASE FIELD()
 OF ?OK
 IF SELF.PagesAcross*SELF.PagesDown>RECORDS(SELF.ImageQueue)
 SELECT(?PagesAcross)
 ELSE
 POST(EVENT:CloseWindow)
 END
 END
 END
 END
 CLOSE(SelectWindow)

680 CLARION 5 APPLICATION HANDBOOK

DeleteImageQueue (remove non-selected pages)

DeleteImageQueue(page), VIRTUAL, PROC

DeleteImageQueueRemoves a page number from the ImageQueue.

page An integer constant, variable, EQUATE, or expression
containing the page number to delete.

The DeleteImageQueue method removes records from the ImageQueue,
and the associated image file, which have not been selected for printing.

Implementation: The SyncImageQueue method calls the DeleteImageQueue method. The
value contained in the PagesToPrint property determines which records and
images are deleted.

Return Data Type: BYTE

Example:

PrintPreviewClass.SyncImageQueue PROCEDURE
i LONG,AUTO

 CODE
 LOOP i = RECORDS(SELF.ImageQueue) TO 1 BY -1
 IF ~SELF.InPageList(i)
 SELF.DeleteImageQueue(i)
 END
 END

See Also: PagesToPrint,ImageQueue

CHAPTER 37 PRINTPREVIEWCLASS 681

Display (preview the report)

Display([zoom] [, page] [, across] [, down]), VIRTUAL, PROC

Display Displays the report image metafiles.

zoom An integer constant, variable, EQUATE, or expression
containing the initial zoom factor for the print preview
display. If omitted, the Display method uses the default
zoom factor in the ABREPORT.TRN file.

page An integer constant, variable, EQUATE, or expression
containing the initial page number to display. If omitted,
page defaults to one (1).

across An integer constant, variable, EQUATE, or expression
containing the number of horizontal thumbnails for the
initial print preview display. If omitted, across defaults
to one (1).

down An integer constant, variable, EQUATE, or expression
containing the number of vertical thumbnails for the
initial print preview display. If omitted, down defaults to
one (1).

The Display method displays the report image metafiles and returns a value
indicating whether or not to print them. A return value of one (1 or True)
indicates the end user asked to print the report; a return value of zero (0 or
False) indicates the end user did not ask to print the report.

The Display method is the print preview engine. It manages the print
preview, providing navigation, zoom, thumbnail configuration, plus the
option to immediately print the report.

Implementation: The Display method declares the preview WINDOW, then calls the
WindowManager.Ask method to display the preview WINDOW and process
its events.

EQUATEs for the zoom parameter are declared in ABREPORT.INC:

NoZoom EQUATE(-2)
PageWidth EQUATE(-1)

In addition to the EQUATE values, you may specify any integer zoom factor,
such as 50 (50% zoom) or 200 (200% zoom).

Return Data Type: BYTE

682 CLARION 5 APPLICATION HANDBOOK

Example:

IF ReportCompleted !if report was not cancelled
ENDPAGE(report) !force final page overflow
IF PrtPrev.Display() !preview the report on-line
report{PROP:FlushPreview} = True !and print it if user asked to

END
END

See Also: WindowManager.Ask

CHAPTER 37 PRINTPREVIEWCLASS 683

Init (initialize the PrintPreviewClass object)

Init(image queue), VIRTUAL

Init Initializes the PrintPreviewClass object.

image queue The label of the QUEUE containing the filenames of the
report image metafiles. See PREVIEW in the Language
Reference for more information on report image
metafiles.

The Init method Initializes the PrintPreviewClass object.

Implementation: The PrintPreviewClass.Init method instantiates a PopupClass object for the
PrintPreviewClass object, using the menu text defined in ABREPORT.TRN.

The image queue parameter names a QUEUE with the same structure as the
PreviewQueue declared in \ABREPORT.INC as follows:

PreviewQueue QUEUE,TYPE
Filename STRING(128)
 END

Example:

PrintPreviewQueue PreviewQueue !declare report image queue
PrtPrev PrintPreviewClass !declare PrtPrev object
CODE
PrtPrev.Init(PrintPreviewQueue) !initialize PrtPrev object
!program code
PrtPrev.Kill !shut down PrtPrev object

684 CLARION 5 APPLICATION HANDBOOK

InPageList (check page number)

InPageList(page)

InPageList Evaluates page against value(s) in PagesToPrint.

page An integer constant, variable, EQUATE, or expression
containing the page number to check.

The InPageList method evaluates a page number against the value(s)
contained in the PagesToPrint property, and returns TRUE (1) if the page is
in PagesToPrint or FALSE (0) if it is not.

Implementation: The PageManagerClass.Draw and SyncImageQueue methods call the
InPageList method to verify report pages for inclusion in the preview
window and the printed report respectively.

Return Data Type: BYTE

Example:

PrintPreviewClass.SyncImageQueue PROCEDURE
i LONG,AUTO
 CODE
 LOOP i = RECORDS(SELF.ImageQueue) TO 1 BY -1
 IF ~SELF.InPageList(i)
 SELF.DeleteImageQueue(i)
 . .

See Also: PagesToPrint, PageManagerClass.Draw

Kill (shut down the PrintPreviewClass object)

Kill, VIRTUAL, PROC

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code.Kill returns a value to indicate
the status of the shut down.

Implementation: The Kill method calls the WindowManager.Kill method and returns
Level:Benign to indicate a normal shut down. Return value EQUATEs are
declared in ABERROR.INC.

Return Data Type: BYTE

Example:

PrintPreviewQueue PreviewQueue !declare report image queue
PrtPrev PrintPreviewClass !declare PrtPrev object
CODE
PrtPrev.Init(PrintPreviewQueue) !initialize PrtPrev object
!program code
PrtPrev.Kill !shut down PrtPrev object

See Also: WindowManager.Kill

CHAPTER 37 PRINTPREVIEWCLASS 685

Open (prepare preview window for display)

Open, VIRTUAL

The Open method prepares the PrintPreviewClass window for initial display.
It is designed to execute on window opening events such as
EVENT:OpenWindow and EVENT:GainFocus.

Implementation: The Open method sets the window’s initial size and position, enables and
disables controls as needed, and sets up the specified zoom configuration.

The WindowManager.TakeWindowEvent method calls the Open method.

Example:

ThisWindow.TakeWindowEvent PROCEDURE
 CODE
 CASE EVENT()
 OF EVENT:OpenWindow
 IF ~BAND(SELF.Inited,1)
 SELF.Open
 END
 OF EVENT:GainFocus
 IF BAND(SELF.Inited,1)
 SELF.Reset
 ELSE
 SELF.Open
 END
 END
 RETURN Level:Benign

See Also: WindowManager.TakeWindowEvent

686 CLARION 5 APPLICATION HANDBOOK

SetINIManager (save and restore window coordinates)

SetINIManager(INI manager)

SetINIManager Enables save and restore of preview window position
and size between computing sessions.

INI manager The label of the INIClass object that saves and restores
window coordinates. See INI Class for more informa-
tion.

The SetINIManager method names an INIClass object to save and restore
window coordinates between computing sessions.

Implementation: The Open method uses the INI manager to restore the window’s initial size
and position. The TakeEvent method uses the INI manager to save the
window’s size and position.

Example:

ThisWindow.Init PROCEDURE()
 CODE
!procedure code

 ThisWindow.Init(Process,report,Previewer)
 Previewer.SetINIManager(INIMgr)

See Also: Open, TakeEvent

SetDefaultPages (set the default pages to print)

SetDefaultPages, VIRTUAL

The SetDefaultPages method sets the initial value of the PagesToPrint
property. The initial value is 1-n, where n is equal to the total number of
pages in the report.

Implementation: The Display and AskPrintPreview methods call the SetDefaultPages method.

Example:

!Virtual implementation of SetDefaultPages method
PrintPreviewClass.SetDefaultPages PROCEDURE
 CODE
 SELF.PagesToPrint = '1-' & RECORDS(SELF.ImageQueue)

See Also: PagesToPrint

CHAPTER 37 PRINTPREVIEWCLASS 687

SetPosition (set initial preview window coordinates)

SetPosition([x] [,y] [,width] [,height])

SetPosition Sets the initial position and size of the print preview
window.

x An integer constant, variable, EQUATE, or expression
containing the initial horizontal position of the print
preview window. If omitted, the print preview window
opens to the default Windows position.

y An integer constant, variable, EQUATE, or expression
containing the initial vertical position of the print
preview window. If omitted, the print preview window
opens to the default Windows position.

width An integer constant, variable, EQUATE, or expression
containing the initial width of the print preview window.
If omitted, the print preview window opens to its default
width.

height An integer constant, variable, EQUATE, or expression
containing the initial height of the print preview window.
If omitted, the print preview window opens to its default
height.

The SetPosition method sets the initial position and size of the print preview
window.

Implementation: The SetPosition method sets the WindowPosSet and WindowSizeSet
properties.

The Display method definition determines the default width and height of the
print preview window.

Example:

PrtPrev.SetPosition(1,1,300,250) !set initial position and size
PrtPrev.SetPosition(1,1) !set initial position only
PrtPrev.SetPosition(,,300,250) !set initial size only

See Also: WindowPosSet, WindowSizeSet

688 CLARION 5 APPLICATION HANDBOOK

SetZoomPercentile (set user or standard zoom factor)

SetZoomPercentile(zoom factor)

SetZoomPercentileSets the ZoomIndex and UserPercentile properties.

zoom factor An integer contant, variable, EQUATE, or expression
indicating the zoom factor to apply.

The SetZoomPercentile method sets the ZoomIndex property and the
UserPercentile property.

Implementation: The SetZoomPercentile method assumes the AllowUserZoom property is
True. If the zoom factor equals a defined ZoomIndex choice,
SetZoomPercentile sets the ZoomIndex property to that choice and sets the
UserPercentile property to zero. If the zoom factor does not equal a defined
ZoomIndex choice, SetZoomPercentile sets the UserPercentile property to
the zoom factor and sets the ZoomIndex property to zero.

Example:

ThisWindow.Init PROCEDURE()
 CODE
!procedure code

 ThisWindow.Init(Process,report,Previewer)
 Previewer.SetZoomPercentile(120)

See Also: AllowUserZoom, UserPercentile, ZoomIndex

SyncImageQueue (sync image queue with PagesToPrint)

SyncImageQueue, VIRTUAL

The SyncImageQueue method synconizes the image queue with the
contents of PagesToPrint to ensure that only the specified pages are sent to
the printer.

Implementation: The Display method calls the SyncImageQueue method. The value
contained in the PagesToPrint property determines which pages are printed.

Example:

PrintPreviewClass.Display PROCEDURE
! Window declaration
! executable Display code
 IF SELF.PrintOk
 SELF.SyncImageQueue
 END
 RETURN SELF.PrintOK

See Also: PagesToPrint,ImageQueue

CHAPTER 37 PRINTPREVIEWCLASS 689

TakeAccepted (process EVENT:Accepted events)

TakeAccepted, VIRTUAL, PROC

The TakeAccepted method processes EVENT:Accepted events for all the
controls on the preview window, then returns a value indicating whether
window ACCEPT loop processing is complete and should stop.
TakeAccepted returns Level:Benign to indicate processing of this event
should continue normally; it returns Level:Notify to indicate processing is
completed for this event and the ACCEPT loop should CYCLE; it returns
Level:Fatal to indicate the event could not be processed and the ACCEPT
loop should BREAK.

Implementation: The TakeEvent method calls the TakeAccepted method. The TakeAccepted
method calls the WindowManager.TakeAccepted method, then processes
EVENT:Accepted events for all the controls on the preview window,
including zoom controls, print button, navigation controls, thumbnail
configuration controls, etc.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: TakeEvent, WindowManager.TakeEvent

690 CLARION 5 APPLICATION HANDBOOK

TakeEvent (process all events)

TakeEvent, VIRTUAL, PROC

The TakeEvent method processes all preview window events and returns a
value indicating whether ACCEPT loop processing is complete and should
stop. TakeEvent returns Level:Benign to indicate processing of this event
should continue normally; it returns Level:Notify to indicate processing is
completed for this event and the ACCEPT loop should CYCLE; it returns
Level:Fatal to indicate the event could not be processed and the ACCEPT
loop should BREAK.

Implementation: The Ask method calls the TakeEvent method. The TakeEvent method calls
the WindowManager.TakeEvent method, then processes
EVENT:CloseWindow, EVENT:Sized and EVENT:AlertKey events for the
preview window.

Return Data Type: BYTE

Example:

WindowManager.Ask PROCEDURE
 CODE
 IF SELF.Dead THEN RETURN .
 CLEAR(SELF.LastInsertedPosition)
 ACCEPT
 CASE SELF.TakeEvent()
 OF Level:Fatal
 BREAK
 OF Level:Notify
 CYCLE ! Not as dopey at it looks, it is for 'short-stopping' certain events
 END
 END

See Also: WindowManager.Ask

CHAPTER 37 PRINTPREVIEWCLASS 691

TakeFieldEvent (a virtual to process field events)

TakeFieldEvent, VIRTUAL, PROC

The TakeFieldEvent method is a virtual placeholder to process all field-
specific/control-specific events for the window. It returns a value indicating
whether window process is complete and should stop. TakeFieldEvent
returns Level:Benign to indicate processing of this event should continue
normally; it returns Level:Notify to indicate processing is completed for this
event and the ACCEPT loop should CYCLE; it returns Level:Fatal to
indicate the event could not be processed and the ACCEPT loop should
BREAK.

Implementation: The TakeEvent method calls the TakeFieldEvent method. The
TakeFieldEvent method processes EVENT:NewSelection events for the
preview window SPIN controls.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: Ask

692 CLARION 5 APPLICATION HANDBOOK

TakeWindowEvent (process non-field events)

TakeWindowEvent, VIRTUAL, PROC

The TakeWindowEvent method processes all non-field events for the
preview window and returns a value indicating whether window ACCEPT
loop processing is complete and should stop. TakeWindowEvent returns
Level:Benign to indicate processing of this event should continue normally;
it returns Level:Notify to indicate processing is completed for this event and
the ACCEPT loop should CYCLE; it returns Level:Fatal to indicate the event
could not be processed and the ACCEPT loop should BREAK.

Implementation: The TakeEvent method calls the TakeWindowEvent method. The
TakeWindowEvent method calls the WindowManager.TakeWindowEvent
method for all events except EVENT:GainFocus.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: TakeEvent

CHAPTER 38 PROCESSCLASS 693

38 - PROCESSCLASS

Overview
The ProcessClass is a ViewManager with a progress window. The
ProcessClass can process multiple levels of related views (parent, child,
grandchild, etc.) by reading all the child items for a specific parent item, all
the grandchildren of each child item, and so on.

ProcessClass Concepts

The ProcessClass lets you “batch” process a VIEW, applying sort orders,
range limits, and filters as needed to process only the specific result set in the
specific sequence you require; plus the ProcessClass supplies appropriate
(configurable) visual feedback to the end user on the progress of the batch
process.

Relationship to Other Application Builder Classes

The ProcessClass is derived from the ViewManager, plus it relies on many of
the other Application Builder Classes to accomplish its tasks. Therefore, if
your program instantiates the ProcessClass, it must also instantiate these
other classes. Much of this is automatic when you INCLUDE the
ProcessClass header (ABREPORT.INC) in your program’s data section. See
the Conceptual Example.

The ReportManager uses the ProcessClass to process report data and provide
appropriate visual feedback to the end user on the progress of the report.

ABC Template Implementation

Process and Report Templates

The ABC Templates automatically include all the classes necessary to
support the batch processes (Process procedures and Report procedures)
specified in your application.

The templates derive a class from the ProcessClass for each batch process
(Process Procedures and Report Procedures) in the application. The derived
classes are called ThisProcess and ThisReport. These derived ProcessClass
objects support all the functionality specified in the Process or Report
procedure template.

694 CLARION 5 APPLICATION HANDBOOK

The derived ProcessClass is local to the procedure, is specific to a single
process and relies on the global file-specific RelationManager and
FileManager objects for the processed files.

ChildFile Template

The ChildFile Extension template generates code to take advantage of the
ProcessClass’s multi-level (parent, child, grandchild, etc.) processing. See
ChildRead, AddItem, and Next.

ProcessClass Source Files

The ProcessClass source code is installed by default to the Clarion \LIBSRC.
The ProcessClass source code and their respective components are contained
in:

ABREPORT.INC ProcessClass declarations
ABREPORT.CLW ProcessClass method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a ProcessClass object and related
objects. This example processes selected records in a file, updates them, and
displays a window with a progress bar to show the progress of the process.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
INCLUDE('ABWINDOW.INC') !declare WindowManager Class
INCLUDE('ABREPORT.INC') !declare Process Class
MAP
END

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),THREAD !declare Customer file
BYNUMBER KEY(CUS:CUSTNO),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CUSTNO LONG
Name STRING(30)
State STRING(2)

END
END

CusView VIEW(Customer) !declare VIEW for process
END

Access:Customer CLASS(FileManager) !declare Access:Customer object
Init PROCEDURE

END
Relate:Customer CLASS(RelationManager) !declare Relate:Customer object
Init PROCEDURE

END
ThisWindow CLASS(ReportManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL

CHAPTER 38 PROCESSCLASS 695

Kill PROCEDURE(),BYTE,PROC,VIRTUAL
END

ThisProcess CLASS(ProcessClass) !declare ThisProcess object
TakeRecord PROCEDURE(),BYTE,PROC,VIRTUAL

END
ProgressMgr StepLongClass !declare ProgressMgr object
GlobalErrors ErrorClass !declare GlobalErrors object
VCRRequest LONG(0),THREAD
Thermometer BYTE !declare PROGRESS variable
ProgressWindow WINDOW('Progress...'),AT(,,142,59),CENTER,TIMER(1),GRAY,DOUBLE

PROGRESS,USE(Thermometer),AT(15,15,111,12),RANGE(0,100)
STRING(''),AT(0,3,141,10),USE(?UserString),CENTER
STRING(''),AT(0,30,141,10),USE(?PctText),CENTER
BUTTON('Cancel'),AT(45,42),USE(?Cancel)

END
 CODE
 ThisWindow.Run() !run the Process procedure

ThisWindow.Init PROCEDURE() !initialize things
ReturnValue BYTE,AUTO
CODE
GlobalErrors.Init !initialize GlobalErrors object
Relate:Customer.Init !initialize Relate:Customer object
ReturnValue = PARENT.Init() !call base class init
SELF.FirstField = ?Thermometer !set FirstField for ThisWindow
SELF.VCRRequest &= VCRRequest !VCRRequest not used
SELF.Errors &= GlobalErrors !set errorhandler for ThisWindow
Relate:Customer.Open !Open Customer and related files
OPEN(ProgressWindow) !open the window
SELF.Opened=True !set Opened flag for ThisWindow
ProgressMgr.Init(ScrollSort:AllowNumeric) !initialize ProgressMgr object
!init ThisProcess by naming its VIEW, RelationManager,ProgressMgr & progress variables
ThisProcess.Init(CusView,Relate:Customer,?PctText,Thermometer,ProgressMgr,CUS:CUSTNO)
ThisProcess.AddSortOrder(CUS:BYNUMBER) !set the process sort order
SELF.Init(ThisProcess) !process specific initialization
SELF.AddItem(?Cancel,RequestCancelled) !register Cancel with ThisWindow
SELF.SetAlerts() !alert keys for ThisWindow
RETURN ReturnValue

ThisWindow.Kill PROCEDURE() !shut down things
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill() !call base class shut down
Relate:Customer.Close !close Customer and related files
Relate:Customer.Kill !shut down Relate:Customer object
GlobalErrors.Kill !shut down GlobalErrors object
RETURN ReturnValue

ThisProcess.TakeRecord PROCEDURE() !action for each record processed
ReturnValue BYTE,AUTO
CODE
IF NOT CUS:State !if State is blank
CUS:State = 'FL' ! set it to ‘FL’

END
ReturnValue = PARENT.TakeRecord() !call base class for each record
PUT(CusView) !write the updated record
IF ERRORCODE() !if write failed
ThisWindow.Response = RequestCompleted ! shut down process
ReturnValue = Level:Fatal !Use IF Relate:Customer.Update()

696 CLARION 5 APPLICATION HANDBOOK

END ! to apply RI constraints to
RETURN ReturnValue ! Customer and related files.

Access:Customer.Init PROCEDURE
CODE
PARENT.Init(Customer,GlobalErrors)
SELF.FileNameValue = 'Customer'
SELF.Buffer &= CUS:Record
SELF.LazyOpen = False
SELF.AddKey(CUS:BYNUMBER,'CUS:BYNUMBER',0)

Relate:Customer.Init PROCEDURE
CODE
Access:Customer.Init
PARENT.Init(Access:Customer,1)

CHAPTER 38 PROCESSCLASS 697

ProcessClass Properties
The ProcessClass inherits all the properties of the ViewManager class from
which it is derived. See ViewManager Properties for more information.

In addition to the inherited properties, the ProcessClass contains the
following properties:

ChildRead (portion of process completed)

ChildRead BYTE, PROTECTED

The ChildRead property determines (keeps track of) the type of item
(parent, child, grandchild, etc.) the ProcessClass object reads next. A value
of zero indicates a primary view item was read; a value of one (1) indicates a
child of the primary view item was read; a value of two (2) indicates a child
of the child (grandchild of the primary view) item was read, and so on.

Implementation: The AddItem method registers the types of items to read. The Next method
tries to read the type of item specified by the ChildRead property, then sets
the ChildRead property to indicate the type of item actually read.

See Also: AddItem, Next

Percentile (portion of process completed)

Percentile &BYTE, PROTECTED

The Percentile property is a reference to a variable whose contents indicates
how much of the process is completed. The ProcessClass periodically
updates the Percentile property so it can be the USE variable for a
PROGRESS control.

The Init method initializes the Percentile property. See the Conceptual
Example.

See Also: Init

698 CLARION 5 APPLICATION HANDBOOK

PText (progress control number)

PText SIGNED

The PText property contains the control number of a text based Window
control such as a STRING or PROMPT. The ProcessClass uses this control
to provide visual feedback to the end user.

The Init method initializes the PText property. See the Conceptual Example.

This property is PROTECTED, therefore, it can only be referenced by a
ProcessClass method, or a method in a class derived from ProcessClass.

See Also: Init

RecordsProcessed (number of elements processed)

RecordsProcessed LONG

The RecordsProcessed property contains the number of elements processed
so far. The ProcessClass uses this property to calculate how much of the
process is completed.

RecordsToProcess (number of elements to process)

RecordsToProcess LONG

The RecordsToProcess property contains the total number of elements to
process. The ProcessClass uses this property to calculate how much of the
process is completed.

CHAPTER 38 PROCESSCLASS 699

ProcessClass Methods
The ProcessClass inherits all the methods of the ViewManager class from
which it is derived. See ViewManager Properties for more information.

In addition to (or instead of) the inherited methods, the ProcessClass
contains the methods listed below.

Functional Organization—Expected Use

As an aid to understanding the ProcessClass, it is useful to organize its
methods into two categories according to their expected use—the primary
interface and the virtual methods. This organization reflects what we believe
is typical use of the ProcessClass methods.

Primary Interface Methods

Housekeeping (one-time) Use:
Init initialize the ProcessClass object
AddItem add a child view to process
AddRangeI add a range limit to the active sort order
AddSortOrderI add a sort order
AppendOrderI refine the active sort order
SetProgressLimits calibrate the StepClass progress monitor
Kill V shut down the ProcessClass object

Mainstream Use:
OpenI open the view
NextV get the next result set element
PreviousIV get the previous result set element
PrimeRecordI prepare a record for adding
ValidateRecordIV validate the current result set element
SetFilterI specify a filter for the active sort order
SetSortIV set the active sort order
ApplyFilterI range limit and filter the result set
ApplyOrderI sort the result set
ApplyRangeI conditionally range limit and filter the result set
CloseI close the view

Occasional Use:
GetFreeElementNameI return the free element field name
ResetV reposition to the first result set element
SetOrderIV replace the active sort order

I These methods are inherited from the ViewManager class.
V These methods are also Virtual.

700 CLARION 5 APPLICATION HANDBOOK

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

Next get the next result set element
PreviousI get the previous result set element
Reset reposition to the first result set element
SetSortI set the active sort order
ValidateRecordI validate the current result set element
TakeRecord a virtual to process each record
Kill shut down the ProcessClass object

I These methods are inherited from the ViewManager class.

CHAPTER 38 PROCESSCLASS 701

AddItem (add a child viewmanager)

AddItem(viewmanager)

AddItem Adds a “child” ViewManager to the ProcessClass
object’s knowledge base.

viewmanager The label of the child ViewManager object.

The AddItem method adds a “child” ViewManager to the ProcessClass
object’s knowledge base, and returns the ordinal (or sequence) number of the
added ViewManager. The ProcessClass object uses the child ViewManager to
read the child records belonging to a specific primary file record.

Implementation: The Next method reads the child records for each ViewManager added by the
AddItem method.

Return Data Type: USHORT

Example:

PrintCUST:ByName PROCEDURE

ORD:View VIEW(Orders). !declare ORD:View
ORD:Level BYTE,AUTO ! (Orders is child of Customer)
ORD:ViewManager ViewManager !declare ORD:ViewManager
ThisProcess CLASS(ProcessClass)
TakeRecord PROCEDURE(),BYTE,PROC,VIRTUAL

END

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ORD:ViewManager.Init(ORD:View,Relate:Orders) !manage the ORD:View (Order file)
ORD:ViewManager.AddSortOrder(ORD:AsEntered) !range limit Orders by Customer
ORD:ViewManager.AddRange(ORD:OrdNo,Relate:Orders,Relate:Customer)
ORD:Level = ThisProcess.AddItem(ORD:ViewManager) !register ORD:ViewManager
RETURN ReturnValue ! with ThisProcess object

ThisProcess.TakeRecord PROCEDURE()
SkipDetails BYTE
CODE
IF SELF.ChildRead = ORD:Level !if this is a child record
SkipDetails = TRUE ! set a flag
PRINT(RPT:ChildDetail) ! print the child DETAIL

END
IF ~SkipDetails !if this is a parent record
PRINT(RPT:Parentdetail) ! print the parent DETAIL

END
RETURN PARENT.TakeRecord()

See Also: ChildRead, Next

702 CLARION 5 APPLICATION HANDBOOK

Init (initialize the ProcessClass object)

Init(view, relationmanager [, progress txt] [, progress pct] | [, total records] |)
 |, stepclass, free element |

Init Initializes the ProcessClass object.

view The label of the VIEW to process.

relationmanager The label of the view’s primary file RelationManager
object.

progress txt A numeric constant, variable, EQUATE, or expression
that contains the control number of a text-based Window
control. The ProcessClass uses this control to provide
textual feedback to the end user. If omitted, progress txt
defaults to zero (0) and the ProcessClass provides no
textual feedback.

progress pct The label of a BYTE variable whose contents indicates
what percent of the process is completed. The
ProcessClass periodically updates progress pct so it can
be the USE variable for a PROGRESS control. If
omitted, the ProcessClass provides no numeric feedback.

total records A numeric constant, variable, EQUATE, or expression
that contains the estimated number of records to process.
The ProcessClass uses this value to calculate how much
of the process is completed. You should use this param-
eter when you can easily estimate the number of records
to be processed, that is, when the process is not dynami-
cally filtered. If omitted, totalrecords defaults to zero.

stepclass The label of a StepClass object to monitor the progress
of the process. The ProcessClass uses this object to
determine how much of the process is completed. You
should use this parameter when you cannot easily
estimate the number of records to be processed, that is,
when the process is dynamically filtered.

free element The label of the view’s free element field. The stepclass
uses this field to determine how much of the process is
completed. See StepClass Methods—GetPercentile for
more information.

The Init method initializes the ProcessClass object. If you supply total
records to process, the ProcessClass object calculates the progress of the
process as a function of total records and the number of records processed so
far. Otherwise, the ProcessClass object relies on the stepclass to calculate the
progress of the process. See StepClass Methods—GetPercentile for more
information.

CHAPTER 38 PROCESSCLASS 703

Implementation: The Init method assigns progress txt to the PText property, reference assigns
progress pct to the Percentile property, and assigns total records to the
RecordsToProcess property. The Init method calls the ViewManager Init
method.

Example:

!initialize the ProcessClass object
Process.Init(Process:View, | !set the VIEW

Relate:Client, | !set the primary file RelationManager
?PctText, | !set the Window control for text messages
PctDone, | !set the PROGRESS USE variable
ProgressMgr, | !set StepClass object to monitor progress
CLI:Name) !set StepClass free element to monitor

See Also: Percentile, PText, RecordsToProcess, ViewManager.Init

704 CLARION 5 APPLICATION HANDBOOK

Kill (shut down the ProcessClass object)

Kill, VIRTUAL

The Kill method shuts down the ProcessClass object by freeing any memory
allocated during the life of the object and executing any other required
termination code.

Implementation: The Kill method calls the ViewManager.Kill method.

Example:

!initialize the ProcessClass object
Process.Init(Process:View, | !set the VIEW

Relate:Client, | !set the primary file RelationManager
?PctText, | !set the Window control for text messages
PctDone, | !set the PROGRESS USE variable
ProgressMgr, | !set StepClass object to monitor progress
CLI:Name) !set StepClass free element to monitor

!procedure code
Process.Kill !shut down the ProcessClass object

See Also: ViewManager.Kill

CHAPTER 38 PROCESSCLASS 705

Next (get next element)

Next([process records]), VIRTUAL

Next Gets the next result set element.

process records A boolean constant, variable, EQUATE, or expression
that tells the ProcessClass object whether to update its
progress indicators. A zero (0 or False) value does not
update the progress indicators; a value of one (1 or True)
does update the indicators. If omitted, process records
defaults to 1.

The Next method gets the next element in the result set and returns a value
indicating its success or failure. A return value of Level:Benign indicates a
successful read; any other value indicates no new item was read.

The Next method sets the ChildRead property to indicate the type of element
actually read (parent, child, grandchild, etc.)

Implementation: The Next method calls the ViewManager.Next method for the ViewManager
indicated by the ChildRead property. The ChildRead property indicates
whether the next element is a parent, child, grandchild, etc. If there are no
more items at the current level, the Next method reverts to a higher level to
get the next element.

The Next method updates both the RecordsProcessed property and the
Percentile property.

Return Data Type: BYTE

Example:
ACCEPT
CASE EVENT()
OF Event:OpenWindow
Process.Reset !position to first record
IF Process.Next() !get first record
POST(Event:CloseWindow) !if no records, shut down
CYCLE

END
OF Event:Timer !process records with timer
StartOfCycle=Process.RecordsProcessed
LOOP WHILE Process.RecordsProcessed-StartOfCycle<RecordsPerCycle
CASE Process.Next() !get next record
OF Level:Notify !if end of file
MESSAGE('Process Completed') ! tell end user
POST(EVENT:CloseWindow) ! and shut down
BREAK

OF Level:Fatal !if fatal error
POST(EVENT:CloseWindow) ! shut down
BREAK

. . . .

See Also: AddItem, ChildRead, Percentile, RecordsProcessed, ViewManager.Next

706 CLARION 5 APPLICATION HANDBOOK

Reset (position to the first element)

Reset, VIRTUAL

The Reset method postions the process to the first element in the result set
and resets the progress indicators.

Implementation: The Reset method resets the RecordsProcessed property to zero (0),
conditionally calls the SetProgressLimits method, then calls the
ViewManager.Reset method.

Example:

CASE EVENT()
OF Event:OpenWindow
Process.Reset !position to first record
IF Process.Next() !get first record
POST(Event:CloseWindow) !if no records, shut down
CYCLE

END

See Also: SetProgressLimits, ViewManager.Reset

SetProgressLimits (calibrate the progress monitor)

SetProgressLimits

The SetProgressLimits method supplies the upper and lower boundaries of
the result set—considering the active sort order, range limits, and filters—to
the StepClass object that monitors the progress of the process.

The Init method specifies the StepClass object.

Implementation: The SetProgressLimits method assumes a StepClass object is specified. The
Reset method conditionally calls the SetProgessLimits method. The
SetProgressLimits method calls the StepClass.SetLimits method.

Example:

MyProcessClass.Reset PROCEDURE !prepare to process the records
CODE
SELF.RecordsProcessed = 0 !set RecordsProcessed to 0
SELF.SetProgressLimits !set StepClass boundaries based

! on actual data processed
PARENT.Reset !call ViewManager.Reset to

!position to the first record

See Also: Init, Reset, StepClass.SetLimits

CHAPTER 38 PROCESSCLASS 707

TakeRecord (a virtual to process each record)

TakeRecord, VIRTUAL, PROC

The TakeRecord method is a virtual placeholder to process each item in the
result set. It returns a value indicating whether processing should continue or
should stop. TakeRecord returns Level:Benign to indicate processing should
continue normally; it returns Level:Notify to indicate processing is
completed and should stop.

Implementation: The ReportManager.TakeWindowEvent method calls the TakeRecord method
for each report record. For a report, the TakeRecord method typically
implements any DETAIL specific filters and PRINTs the unfiltered DETAILs
for the ReportManager. For a process, the TakeRecord method typically
implements any needed record action for the Process.

Return Data Type: BYTE

Example:

ThisWindow.TakeRecord PROCEDURE()
CODE
IF ORD:Date = TODAY()
PRINT(RPT:detail)

END
RETURN Level:Benign

See Also: ReportManager.TakeWindowEvent

708 CLARION 5 APPLICATION HANDBOOK

CHAPTER 39 QUERYCLASS 709

39 - QUERYCLASS

Overview
The QueryClass provides support for ad hoc queries against Clarion VIEWs.
The query support includes a flexible user input dialog, a broad variety of
search capabilities, and seamless integration with the BrowseClass. The
QueryClass provides the following features:

• flexible user input dialog
• runtime setup of queryable fields
• queries against calculated fields (e.g., Qty*Price>100)
• case sensitive or insensitive searches
• “begins with” searches
• “contains anywhere” searches
• exclusive searches (not equal, greater than, less than)
• inclusive searches (equal, greater than or equal, less than or equal)
• ranged searches (greater than low value AND less than high value)
• persistent queries for stepwise refinement of queries

QueryClass Concepts

Use the AddItem method to define a standard user input dialog at runtime.
Or create a custom dialog to plug into your QueryClass object. Use the Ask
method to solicit end user query input or use the SetLimit method to
programmatically set query search values. Finally, use the GetFilter method
to build the filter expression to apply to your VIEW. You can apply the
resulting filter with the ViewManager.SetFilter method, or directly with the
PROP:Filter property.

Relationship to Other Application Builder Classes

The classes derived from the QueryClass are optionally used by the
BrowseClass. Therefore, if your BrowseClass object uses a QueryClass
object, it must instantiate the QueryClass object.

The BrowseClass automatically provides a default query dialog that solicits
end user search values for each field displayed in the browse list. See the
Conceptual Example.

710 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

The ABC Templates do not instantiate the QueryClass object independently.
The templates instantiate the derived QueryFormClass instead.

Tip: Use the BrowseQBEButton control template to add a
QueryFormClass object to your template generated
BrowseBoxes.

QueryClass Source Files

The QueryClass source code is installed by default to the Clarion \LIBSRC
folder. The specific QueryClass files and their respective components are:

ABQUERY.INC QueryClass declarations
ABQUERY.CLW QueryClass method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a QueryClass object and related
objects. The example plugs a QueryClass into a BrowseClass object. The
QueryClass object simply filters on the current record.

Note that the WindowManager and BrowseClass objects internally handle
the normal events surrounding the query.

PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE('ABWINDOW.INC')
INCLUDE('ABBROWSE.INC')
INCLUDE('ABQUERY.INC')

MAP
END

GlobalErrors ErrorClass
Access:Customer CLASS(FileManager)
Init PROCEDURE

END

Relate:Customer CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END

CHAPTER 39 QUERYCLASS 711

GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),CREATE,THREAD
CustomerIDKey KEY(CUS:ID),NOCASE,OPT,PRIMARY
NameKey KEY(CUS:LastName),NOCASE,OPT
Record RECORD,PRE()
ID LONG
LastName STRING(20)
FirstName STRING(15)
City STRING(20)
State STRING(2)
ZIP STRING(10)

END
END

CustView VIEW(Customer)
END

CustQ QUEUE
CUS:LastName LIKE(CUS:LastName)
CUS:FirstName LIKE(CUS:FirstName)
CUS:ZIP LIKE(CUS:ZIP)
CUS:State LIKE(CUS:State)
ViewPosition STRING(1024)

END
CusWindow WINDOW('Browse Customers'),AT(,,210,105),IMM,SYSTEM,GRAY

LIST,AT(5,5,200,80),USE(?CusList),IMM,HVSCROLL,FROM(CustQ),|
FORMAT('80L(2)|M~Last~@s20@64L(2)|M~First~@s15@44L(2)|M~ZIP~@s10@')
BUTTON('&Zoom In'),AT(50,88),USE(?Query)
BUTTON('Close'),AT(90,88),USE(?Close)

END

ThisWindow CLASS(WindowManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

Query QueryClass !declare Query object
BRW1 CLASS(BrowseClass) !declare BRW1 object
Q &CustQ

END
CODE
GlobalErrors.Init
Relate:Customer.Init
GlobalResponse = ThisWindow.Run() !ThisWindow handles all events
Relate:Customer.Kill
GlobalErrors.Kill

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
IF ReturnValue THEN RETURN ReturnValue.
SELF.FirstField = ?CusList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
SELF.AddItem(?Close,RequestCancelled)
Relate:Customer.Open

712 CLARION 5 APPLICATION HANDBOOK

BRW1.Init(?CusList,CustQ.ViewPosition,CustView,CustQ,Relate:Customer,ThisWindow)
OPEN(CusWindow)
SELF.Opened=True
Query.Init !initialize the Query object
BRW1.Q &= CustQ
BRW1.AddSortOrder(,CUS:NameKey)
BRW1.AddField(CUS:LastName,BRW1.Q.CUS:LastName)
BRW1.AddField(CUS:FirstName,BRW1.Q.CUS:FirstName)
BRW1.AddField(CUS:ZIP,BRW1.Q.CUS:ZIP)
BRW1.QueryControl = ?Query !register Query button w/ BRW1
BRW1.UpdateQuery(Query) !make each BRW1 field queryable
Query.AddItem('CUS:State','') !make State field queryable too
SELF.SetAlerts()
RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill()
IF ReturnValue THEN RETURN ReturnValue.
Relate:Customer.Close
RETURN ReturnValue

Access:Customer.Init PROCEDURE
CODE
PARENT.Init(Customer,GlobalErrors)
SELF.FileNameValue = 'Customer'
SELF.Buffer &= CUS:Record
SELF.Create = 1
SELF.AddKey(CUS:CustomerIDKey,'CUS:CustomerIDKey',1)
SELF.AddKey(CUS:NameKey,'CUS:NameKey',0)

Relate:Customer.Init PROCEDURE
CODE
Access:Customer.Init
PARENT.Init(Access:Customer,1)

Relate:Customer.Kill PROCEDURE
CODE
Access:Customer.Kill
PARENT.Kill

CHAPTER 39 QUERYCLASS 713

QueryClass Properties
The QueryClass contains the following properies.

QKCurrentQuery (popup menu choice)

QKCurrentQuery CSTRING(100)

The QKCurrentQuery property holds the value of the popup menu item if
QuickQBE support is enabled.

QKIcon (icon for popup submenu)

QKIcon CSTRING(255)

The QKIcon property holds the fullpathname of the icon file to be used in
the QuickQBE submenu items.

QKMenuIcon (icon for popup menu)

QKMenuIcon CSTRING(255)

The QKMenuIcon property holds the fullpathname of the icon file to be in
the popup menu if QuickQBE has been enabled.

QKSupport (quickqbe flag)

QKSupport BYTE

The QKSupport property indiactes that QuickQBE support is enabled.

Window (browse window)

Window &Window

The Window property is a reference to the QBE dialog window.

714 CLARION 5 APPLICATION HANDBOOK

QueryClass Methods
The QueryClass contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the QueryClass, it is useful to organize its various
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the QueryClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the QueryClass object
AddItem add a field to query
Kill V shut down the QueryClass object

Mainstream Use:
AskV a virtual to accept query criteria
GetFilter return filter expression

Occasional Use:
Reset reset the QueryClass object
GetLimit get searchvalues
SetLimit set search values

V These methods are also Virtual.

Virtual Methods

Typically you will not call these methods directly—other ABC Library
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

Ask a virtual to accept query criteria
Kill shut down the QueryClass object

CHAPTER 39 QUERYCLASS 715

AddItem (add field to query)

AddItem(name, title [,picture])

AddItem Adds specific functionality to the QueryClass.

name A string constant, variable, EQUATE, or expression
containing the queryable item, typically the fully quali-
fied name of a field in the view being queried.

Tip: This may also be an expression such as UPPER(field1) or
field1 * field2 .

title A string constant, variable, EQUATE, or expression
containing the text to associate with the queryable item.
This text appears as the prompt or header for the item in
the query dialog presented to the end user.

picture A string constant, variable, EQUATE, or expression
containing the display picture for the queryable item. If
omitted, picture defaults to S255 (unformatted string).
See Picture Tokens in the Language Reference for more
information.

The AddItem method adds a queryable item to the QueryClass object. The
QueryClass object can then accept input for the item from the end user and
build a filter expression to apply to the view being queried.

Other QueryClass methods, such as GetLimit and SetLimit, refer to the
queryable item by its name.

Tip: You may use the BrowseClass.UpdateQuery method in
combination with the AddItem method to define a query
interface that contains the BrowseClass fields plus other
queryable items.

Example:

QueryForm QueryFormClass
QueryVis QueryFormVisual
BRW1 CLASS(BrowseClass)
Q &CusQ

END

CusWindow.Init PROCEDURE()
 CODE
!open files, views, window, etc.
BRW1.UpdateQuery(QueryForm) !add browse fields to query
QueryForm.AddItem('UPPER(CUS:NAME)','Name') !add caseless name to query
QueryForm.AddItem('CUS:ZIP_CODE','Name') !add zip code to query
QueryForm.AddItem('ITM:Qty+ITM:Price','Total') !add dynamic total to query

END
RETURN Level:Benign

See Also: BrowseClass.UpdateQuery

716 CLARION 5 APPLICATION HANDBOOK

Ask (a virtual to accept query criteria)

Ask([uselast]), VIRTUAL, PROC

Ask A virtual to accept query criteria (search values) from
the end user.

uselast An integer constant, variable, EQUATE, or expression
that determines whether the QueryClass object carries
forward previous query criteria. A value of one (1 or
True) carries forward input from the previous query; a
value of zero (0 or False) discards previous input.

The Ask method is a virtual to display a query dialog, process its events, and
return a value indicating whether to apply the query or abandon it. A return
value of Level:Notify indicates the QueryClass object should apply the query
criteria; a return value of Level:Benign indicates the end user cancelled the
query input dialog and the QueryClass object should not apply the query
criteria.

The GetFilter method generates filter expressions using the search values set
by the Ask method.

Implementation: For each queryable item (added by the AddItem method), the Ask method
collects the query values from the selected item’s file buffers rather than
from a query input dialog. This default behavior automatically gives you
query criteria (search values) for the current item without soliciting input
from the end user. This allows you to, for example, use a regular update form
as a special kind of query (QBE) form.

Return Data Type: BYTE

Example:

MyQueryForm.Ask PROCEDURE(BYTE UseLast) !derived class Ask method
W WINDOW('Example values'),CENTER,SYSTEM,GRAY !declare user input dialog

BUTTON('&OK'),USE(?Ok,1000),DEFAULT
BUTTON('Cancel'),USE(?Cancel,1001)

END
CODE
OPEN(W)
IF ~UseLast THEN SELF.Reset(). !preserve or discard prior query
IF SELF.Win.Run()=RequestCancelled !show dialog and handle events
RETURN Level:Benign !return Cancel indicator

ELSE
RETURN Level:Notify !return OK indicator

END

See Also: AddItem, GetFilter, QueryFormClass.Ask, QueryFormClass

CHAPTER 39 QUERYCLASS 717

ClearQuery (remove loaded query)

ClearQuery, PROTECTED

The ClearQuery method clears the listbox on the QueryVisual dialog that
contains the currently loaded query.

Implementation: The ClearQuery method is called by the Take, Restore, and
QueryVisual.TakeAccepted methods. This mehtod is used by the QuickQBE
functionality.

Note: The Clear Query method does not remove the ad hoc filter
from a Browse procedure. It only affects the query dialog used
for managing a Browse’s queries.

Example:

QueryClass.Take PROCEDURE(PopupClass P)
 CODE
 ASSERT(~P &= NULL)
 IF SELF.QkSupport
 SELF.QkCurrentQuery = P.GetLastSelection()
 SELF.PopupList.PopupID = SELF.QkCurrentQuery
 GET(SELF.PopupList,SELF.PopupList.PopupID)
 IF Errorcode()
 SELF.ClearQuery()
 ELSE
 SELF.Restore(SELF.PopupList.QueryName)
 END
 SELF.Save('tsMRU') ! Save Most recently used for Browse\Report query sharing.
 RETURN 1
 END
 RETURN 0

See Also: Save

Delete (remove saved query)

Delete (queryname), PROTECTED

Delete Remove a saved query.

queryname A string constant, variable, EQUATE or expression
containing the name of a saved query.

Implementation: The Delete method is the mechanism by which the QuickQBE queries are
deleted. This method is called when the user presses the Delete button on the
Query dialog.

Note: The Delete method is primarily designed for use by the
QuickQBE functionality.

See Also: Save

718 CLARION 5 APPLICATION HANDBOOK

GetFilter (return filter expression)

GetFilter

The GetFilter method returns a filter expression. The Getfilter method
builds the expression from values supplied by the AddItem, Ask, and
SetLimit methods.

Implementation: The returned filter expression is up to 5000 characters long.

The GetFilter method generates filter expressions using the search values set
by the Ask method, the SetLimit method, or both.

Tip: By default, the Ask method only sets the equal to value; it
does not set lower and upper values.

The generated filter expression searches for values greater than lower, less
than upper, and equal to equal. For string fields, the GetFilter method applies
the following special meanings to these special search characters:

Symbol Position Filter Effect
^ prefix caseless (case insensitive) search
* prefix contains search
* suffix begins with search
= prefix inclusive search
> prefix exclusive search—greater than
< prefix exclusive search—less than

For example:

lower upper equal query searches for
fred values > fred

fred values < fred
fred values = fred

=fred values >= fred
=fred values <= fred

>fred values >= fred
fred fred values >= fred
fred george george values <= george AND values > fred

d* values beginning with d (e.g., dog, david)
*d values containing d (e.g., dog, cod)
^d values d and D
^d* values beginning with d or D (e.g., dog, David)
^*d values containing d or D (e.g., dog, cod, coD)

Return Data Type: STRING

CHAPTER 39 QUERYCLASS 719

Example:

MyBrowseClass.TakeLocate PROCEDURE
CurSort USHORT,AUTO
I USHORT,AUTO
CODE
IF ~SELF.Query&=NULL AND SELF.Query.Ask() !get query input from end user
CurSort = POINTER(SELF.Sort) !save current sort order
LOOP I = 1 TO RECORDS(SELF.Sort)
PARENT.SetSort(I) !step thru each sort order
SELF.SetFilter(SELF.Query.GetFilter(),'9-QBE') !get filter expression from Query

END ! and give it to Browse object
PARENT.SetSort(CurSort) !restore current sort order
SELF.ResetSort(1) !apply the filter expression

END

See Also: AddItem, Ask, SetLimit

720 CLARION 5 APPLICATION HANDBOOK

GetLimit (get searchvalues)

GetLimit([fieldname ,] name [,lower] [,upper] [,equal]), PROTECTED

GetLimit Gets the QueryClass object’s search values.

name A string constant, variable, EQUATE, or expression
containing the queryable item to set. Queryable items
are established by the AddItem method.

lower A CSTRING variable to receive the filter’s lower
boundary.

upper A CSTRING variable to receive the filter’s upper
boundary.

equal A CSTRING variable to receive the filter’s exact match.

The GetLimit method gets the QueryClass object’s search values. The Ask
or SetLimit methods set the QueryClass object’s search values.

Implementation: The GetFilter method generates filter expressions using the search values.
The generated filter expression searches for values greater than lower, less
than upper, and equal to equal.

Example:

QueryClass.Ask PROCEDURE(BYTE UseLast=1)
I USHORT,AUTO
EV CSTRING(1000),AUTO
 CODE
 SELF.Reset
 LOOP I = 1 TO RECORDS(SELF.Fields)
 GET(SELF.Fields,I)
 EV = CLIP(EVALUATE(SELF.Fields.Name))
 IF EV
 SELF.SetLimit(SELF.Fields.Name,,,EV)
 END
 END
 RETURN Level:Notify

See Also: AddItem, Ask, SetLimit

CHAPTER 39 QUERYCLASS 721

Init (initialize the QueryClass object)

Init([queryvisual] [,inimanager, family, errormanager])

Init The Init method initializes the QueryClass object.

queryvisual The label of the query’s QueryVisual object.

inimanager The label of the query’s INIManager object.

family A string constant, variable, EQUATE, or expression that
specifies the name to use for storing queries. By default
this is the name of the procedure.

errormanager The label of the query’s ErrorManager object

Implementation: The Init method allocates a new queryable items queue.

Example:

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other initialization code

 Query.Init(QueryWindow)
 Query.AddItem('UPPER(CLI:LastName)','Name','s20')
 Query.AddItem('CLI:ZIP+1','ZIP+1','')
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other termination code

 Query.Kill
 RETURN ReturnValue

See Also: Kill

722 CLARION 5 APPLICATION HANDBOOK

Kill (shut down the QueryClass object)

Kill, VIRTUAL

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code.

Implementation: The Kill method deallocates the queryable items queue.

Example:

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other initialization code

 Query.Init(QueryWindow)
 Query.AddItem('UPPER(CLI:LastName)','Name','s20')
 Query.AddItem('CLI:ZIP+1','ZIP+1','')
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other termination code

 Query.Kill
 RETURN ReturnValue

See Also: Init

Reset (reset the QueryClass object)

Reset([name])

Reset Resets the QueryClass object.

name A string constant, variable, EQUATE, or expression
containing the queryable item to reset. Queryable items
are established by the AddItem method. If omitted, the
Reset method resets all the queryable items.

The Reset method resets the QueryClass object by clearing prior query
values.

Implementation: The Reset method calls the SetLimit method to clear the search values for
each queryable item.

Example:

MyQueryForm.Ask PROCEDURE(BYTE UseLast) !derived class Ask method
W WINDOW('Example values'),CENTER,SYSTEM,GRAY !declare user input dialog

BUTTON('&OK'),USE(?Ok,1000),DEFAULT
BUTTON('Cancel'),USE(?Cancel,1001)

END
CODE
OPEN(W)

CHAPTER 39 QUERYCLASS 723

IF ~UseLast THEN SELF.Reset(). !preserve or discard prior query
IF SELF.Win.Run()=RequestCancelled !show dialog and handle events
RETURN Level:Benign !return Cancel indicator

ELSE
RETURN Level:Notify !return OK indicator

See Also: AddItem, SetLimit

Restore (retrieve saved query)

Restore (queryname)

Restore The Restore method retrieves a saved query from the
INI file.

queryname A string constant, variable, EQUATE or expression
containing the name of a saved query.

Implementation: The Restore method is called by the Take, QueryVisual.TakeAccepted, and
QueryVisual.TakeFieldEvent methods.

Note: The Restore method is primarily designed for use by the
QuickQBE functionality.

See Also: Save

Save (save a query)

Save (queryname)

Save The Save method saves a query to the INI file.

queryname A string constant, variable, EQUATE or expression
containing the name of the query to save.

Implementation: The Kill method deallocates the queryable items queue.

Note: The save method is primarily designed for use by the
QuickQBE functionality.

See Also: Restore

724 CLARION 5 APPLICATION HANDBOOK

SetLimit (set search values)

SetLimit(name [,lower] [,upper] [,equal])

SetLimit Sets the QueryClass object’s search values.

name A string constant, variable, EQUATE, or expression
containing the queryable item to set. Queryable items
are established by the AddItem method.

lower A string constant, variable, EQUATE, or expression that
specifies the filter’s lower boundary—the query searches
for values greater than lower. If you prefix the lower
value with the equal sign (=), the query searches for
values greater than or equal to lower. If omitted,
SetLimit leaves the lower boundary intact.

upper A string constant, variable, EQUATE, or expression that
specifies the filter’s upper boundary—the query searches
for values less than upper. If you prefix the upper value
with the equal sign (=), the query searches for values
less than or equal to upper. If omitted, SetLimit leaves
the upper boundary intact.

equal A string constant, variable, EQUATE, or expression that
specifies the filter’s exact match—the query searches for
values equal to equal. If you prefix the equal value with
the greater sign (>), the query searches for values greater
than or equal to equal; if you prefix the equal value with
the less sign (<), the query searches for values less than
or equal to equal. If omitted, SetLimit leaves the exact
match intact.

The SetLimit method sets the QueryClass object’s search values. The
GetLimit method gets the QueryClass object’s search values.

Implementation: The GetFilter method generates filter expressions using the search values set
by the Ask method, the SetLimit method, or both.

Tip: By default, the Ask method only sets the equal to value; it
does not set lower and upper values.

The generated filter expression searches for values greater than lower, less
than upper, and equal to equal. For string fields, the GetFilter method applies
the following special meanings to these special search characters:

CHAPTER 39 QUERYCLASS 725

Symbol Position Filter Effect
^ prefix caseless (case insensitive) search
* prefix contains search
* suffix begins with search
= prefix inclusive search
> prefix exclusive search—greater than
< prefix exclusive search—less than

For example:

lower upper equal query searches for
fred values > fred

fred values < fred
fred values = fred

=fred values >= fred
=fred values <= fred

>fred values >= fred
fred fred values >= fred
fred george george values <= george AND values > fred

d* values beginning with d (e.g., dog, david)
*d values containing d (e.g., dog, cod)
^d values d and D
^d* values beginning with d or D (e.g., dog, David)
^*d values containing d or D (e.g., dog, cod, coD)

Example:

QueryClass.Ask PROCEDURE(BYTE UseLast=1)
I USHORT,AUTO
EV CSTRING(1000),AUTO
 CODE
 SELF.Reset
 LOOP I = 1 TO RECORDS(SELF.Fields)
 GET(SELF.Fields,I)
 EV = CLIP(EVALUATE(SELF.Fields.Name))
 IF EV
 SELF.SetLimit(SELF.Fields.Name,,,EV)
 END
 END
 RETURN Level:Notify

See Also: AddItem, Ask, GetFilter, GetLimit

726 CLARION 5 APPLICATION HANDBOOK

SetQuickPopup (add QuickQBE to browse popup)

SetQuickPopup (popup, query)

SetQuickPopup Add QuickQBE items and submenu to Browse popup.

popup A string constant, variable, EQUATE, or expression
containing the label of the browse PopupManager
object.

query A string constant, variable, EQUATE, or expression
containing the label of the QueryClass object

Implementation: The SetQuickPopup method adds a submenu to the BroweClass popup
object, and an item to clear the current query and an item for every saved
query for the current procedure.

Note: TheSetQuickPopup method is primarily designed for use by
the QuickQBE functionality.

See Also: QkIcon, QkMenuIcon, BrowseClass.Popup, Save

Take (process QuickQBE popup menu choice)

Take (popup)

Take Add QuickQBE items and submenu to Browse popup.

popup A string constant, variable, EQUATE, or expression
containing the label of the browse PopupManager
object.

Implementation: The Take method is called by the BrowseClass.TakeEvent method. It returns
one (1 or True) if QuickQBE support is enabled, and zero (0 or False) if
QuickQBE is not enabled.

Note: The take method is primarily designed for use by the
QuickQBE functionality.

Return Data Type: BYTE

See Also: QkSupport

CHAPTER 40 QUERYFORMCLASS 727

40 - QUERYFORMCLASS

Overview
The QueryFormClass is a QueryClass with a “form” user interface. The
QueryFormClass provides support for ad hoc queries against Clarion
VIEWs. The form interface includes an entry field, a prompt, and an
equivalence operator (equal, not equal, greater than, etc.) button for each
queryable item.

QueryFormClass Concepts

Use the AddItem method to define a user input dialog at runtime. Or create a
custom dialog to plug into your QueryClass object. Use the Ask method to
solicit end user query criteria (search values) or use the SetLimit method to
programmatically set query search values. Finally, use the GetFilter method
to build the filter expression to apply to your VIEW. Use the
ViewManager.SetFilter method or the PROP:Filter property to apply the
resulting filter.

Relationship to Other Application Builder Classes

The QueryFormClass is derived from the QueryClass, plus it relies on the
QueryFormVisual class to display its input dialog and handle the dialog
events.

The BrowseClass optionally uses the QueryFormClass to filter its result set.
Therefore, if your BrowseClass object uses a QueryFormClass object, it
must instantiate the QueryFormClass object and the QueryFormVisual
object.

The BrowseClass automatically provides a default query dialog that solicits
end user search values for each field displayed in the browse list. See the
Conceptual Example.

ABC Template Implementation

The ABC Templates declare a local QueryFormClass class and object for
each instance of the BrowseQBEButton template. The ABC Templates
automatically include all the code necessary to support the functionality
specified in the BrowseQBEButton template.

728 CLARION 5 APPLICATION HANDBOOK

The templates optionally derive a class from the QueryFormClass for each
BrowseQBEButton control in the application. The derived class is called
QBE# where # is the instance number of the BrowseQBEButton template.
The templates provide the derived class so you can use the
BrowseQBEButton template Classes tab to easily modify the query’s
behavior on an instance-by-instance basis.

Tip: Use the BrowseQBEButton control template to add a
QueryFormClass object to your template generated
BrowseBoxes.

QueryFormClass Source Files

The QueryFormClass source code is installed by default to the Clarion
\LIBSRC folder. The specific QueryFormClass files and their respective
components are:

ABQUERY.INC QueryFormClass declarations
ABQUERY.CLW QueryFormClass method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a QueryFormClass object and
related objects. The example plugs a QueryFormClass into a BrowseClass
object. The QueryFormClass object solicits query criteria (search values)
with a “form” dialog, then generates a filter expression based on the end user
input.

Note that the WindowManager and BrowseClass objects internally handle
the normal events surrounding the query.

PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE('ABWINDOW.INC')
INCLUDE('ABBROWSE.INC')
INCLUDE('ABQUERY.INC')

 MAP
 END

GlobalErrors ErrorClass
Access:Customer CLASS(FileManager)
Init PROCEDURE

END

CHAPTER 40 QUERYFORMCLASS 729

Relate:Customer CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END

GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),CREATE,THREAD
CustomerIDKey KEY(CUS:ID),NOCASE,OPT,PRIMARY
NameKey KEY(CUS:LastName),NOCASE,OPT
Record RECORD,PRE()
ID LONG
LastName STRING(20)
FirstName STRING(15)
City STRING(20)
State STRING(2)
ZIP STRING(10)

END
END

CustView VIEW(Customer)
END

CustQ QUEUE
CUS:LastName LIKE(CUS:LastName)
CUS:FirstName LIKE(CUS:FirstName)
CUS:ZIP LIKE(CUS:ZIP)
ViewPosition STRING(1024)
 END

CusWindow WINDOW('Browse Customers'),AT(,,210,105),IMM,SYSTEM,GRAY
LIST,AT(5,5,200,80),USE(?CusList),IMM,HVSCROLL,FROM(CustQ),|
FORMAT('80L(2)|M~Last~@s20@64L(2)|M~First~@s15@44L(2)|M~ZIP~@s10@')
BUTTON('&Query'),AT(50,88),USE(?Query)
BUTTON('Close'),AT(90,88),USE(?Close)

END

ThisWindow CLASS(WindowManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

Query QueryFormClass !declare Query object
QBEWindow QueryFormVisual !declare QBEWindow object
BRW1 CLASS(BrowseClass) !declare BRW1 object
Q &CustQ

END
CODE
GlobalErrors.Init
Relate:Customer.Init
GlobalResponse = ThisWindow.Run() !ThisWindow handles all events
Relate:Customer.Kill
GlobalErrors.Kill

730 CLARION 5 APPLICATION HANDBOOK

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
IF ReturnValue THEN RETURN ReturnValue.
SELF.FirstField = ?CusList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
SELF.AddItem(?Close,RequestCancelled)
Relate:Customer.Open
BRW1.Init(?CusList,CustQ.ViewPosition,CustView,CustQ,Relate:Customer,ThisWindow)
OPEN(CusWindow)
SELF.Opened=True
Query.Init(QBEWindow) !initialize Query object
BRW1.Q &= CustQ
BRW1.AddSortOrder(,CUS:NameKey)
BRW1.AddField(CUS:LastName,BRW1.Q.CUS:LastName)
BRW1.AddField(CUS:FirstName,BRW1.Q.CUS:FirstName)
BRW1.AddField(CUS:ZIP,BRW1.Q.CUS:ZIP)
BRW1.QueryControl = ?Query !register Query button w/ BRW1
BRW1.UpdateQuery(Query) !make each browse item Queryable
Query.AddItem('Cus:State','State') !make State field Queryable too
SELF.SetAlerts()
RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill()
IF ReturnValue THEN RETURN ReturnValue.
Relate:Customer.Close
RETURN ReturnValue

Access:Customer.Init PROCEDURE
CODE
PARENT.Init(Customer,GlobalErrors)
SELF.FileNameValue = 'Customer'
SELF.Buffer &= CUS:Record
SELF.Create = 1
SELF.AddKey(CUS:CustomerIDKey,'CUS:CustomerIDKey',1)
SELF.AddKey(CUS:NameKey,'CUS:NameKey',0)

Relate:Customer.Init PROCEDURE
CODE
Access:Customer.Init
PARENT.Init(Access:Customer,1)

Relate:Customer.Kill PROCEDURE
CODE
Access:Customer.Kill
PARENT.Kill

CHAPTER 40 QUERYFORMCLASS 731

QueryFormClass Properties
The QueryFormClass inherits all the properties of the QueryClass from
which it is derived.

732 CLARION 5 APPLICATION HANDBOOK

QueryFormClass Methods
The QueryFormClass inherits all the methods of the QueryClass from which
it is derived. See QueryClass Methods for more information.

In addition to (or instead of) the inherited methods, the QueryFormClass
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the QueryFormClass, it is useful to organize its
various methods into two large categories according to their expected use—
the primary interface and the virtual methods. This organization reflects
what we believe is typical use of the QueryFormClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the QueryFormClass object
AddItemI add a field to query
Kill V shut down the QueryFormClass object

Mainstream Use:
AskV accept query criteria
GetFilterI return filter expression

Occasional Use:
ResetI reset the QueryFormClass object
GetLimitI get searchvalues
SetLimitI set search values

V These methods are also Virtual.
I These methods are inherited from the QueryClass.

Virtual Methods

Typically you will not call these methods directly—other ABC Library
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

Ask accept query criteria
Kill shut down the QueryFormClass object

CHAPTER 40 QUERYFORMCLASS 733

Ask (solicit query criteria)

Ask([uselast]), DERIVED, PROC

Ask Accepts query criteria (search values) from the end user.

uselast An integer constant, variable, EQUATE, or expression
that determines whether the QueryFormClass object
carries forward previous query criteria. A value of one (1
or True) carries forward input from the previous query; a
value of zero (0 or False) discards previous input.

The Ask method displays a query dialog, processes its events, and returns a
value indicating whether to apply the query or abandon it. A return value of
Level:Notify indicates the QueryFormClass object should apply the query
criteria; a return value of Level:Benign indicates the end user cancelled the
query input dialog and the QueryFormClass object should not apply the
query criteria.

Implementation: The Ask method declares a generic (empty) dialog to accept query criteria.
The Ask method calls the QueryFormClass object’s WindowManager to
define the dialog and process it’s events.

The GetFilter method generates filter expressions using the search values set
by the Ask method.

The Init method sets the value of the QueryFormClass object’s
WindowManager.

Return Data Type: BYTE

Example:

MyBrowseClass.TakeLocate PROCEDURE
CurSort USHORT,AUTO
I USHORT,AUTO
CODE
IF ~SELF.Query&=NULL AND SELF.Query.Ask()
CurSort = POINTER(SELF.Sort)
LOOP I = 1 TO RECORDS(SELF.Sort)
PARENT.SetSort(I)
SELF.SetFilter(SELF.Query.GetFilter(),'9 - QBE')

END
PARENT.SetSort(CurSort)
SELF.ResetSort(1)

END

See Also: GetFilter, Init, QueryFormVisual

734 CLARION 5 APPLICATION HANDBOOK

Init (initialize the QueryFormClass object)

Init(query window manager, inimanager, family, errormanager)

Init Initializes the QueryFormClass object.

query window manager
The label of the QueryFormVisual object that displays
the query input dialog and processes it’s events.

inimanager The label of the INIManager object.

family A string constant, variable, EQUATE, or expression
containing the procedure name of the calling procedure.

errormanager The label of the Global ErrorManager object.

The Init method initializes the QueryFormClass object.

Implementation: The Init method sets the QFC property for the query window manager.

Example:

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other initialization code

 Query.Init(QueryWindow)
 Query.AddItem('UPPER(CLI:LastName)','Name','s20')
 Query.AddItem('CLI:ZIP+1','ZIP+1','')
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other termination code

 Query.Kill
 RETURN ReturnValue

See Also: Kill, QueryFormVisual, QueryFormVisual.QFC

CHAPTER 40 QUERYFORMCLASS 735

Kill (shut down the QueryFormClass object)

Kill, DERIVED

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code.

Example:

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other initialization code

 Query.Init(QueryWindow)
 Query.AddItem('UPPER(CLI:LastName)','Name','s20')
 Query.AddItem('CLI:ZIP+1','ZIP+1','')
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other termination code

 Query.Kill
 RETURN ReturnValue

See Also: Init

736 CLARION 5 APPLICATION HANDBOOK

CHAPTER 41 QUERYFORMVISUAL 737

41 - QUERYFORMVISUAL

Overview
The QueryFormVisual class is a QueryVisual that displays a query input
dialog and handles the dialog events. The query dialog includes an entry
field, a prompt, and an equivalence operator (equal, not equal, greater than,
etc.) button for each queryable item.

QueryFormVisual Concepts

The QueryFormVisual provides the query window for a QueryFormClass
object. The Init method defines and “programs” the query input dialog at
runtime. The query input dialog contains a prompt, an entry field, and a
query operator button for each queryable item. On each button press, the
operator button cycles through the available operators: equal(=), greater than
or equal(>=), less than or equal(<=), not equal(<>), and no filter().

The QueryFormClass recognizes these operators and uses them to create
valid filter expressions.

Relationship to Other Application Builder Classes

The QueryFormVisual class is derived from the QueryVicualClass.

The BrowseClass uses the QueryFormVisual to provide the user interface to
it’s query facility. Therefore, if your BrowseClass object provides a query, it
must instantiate the QueryFormVisual object (and the QueryFormClass
object). See the Conceptual Example.

ABC Template Implementation

The ABC Templates declare a local QueryFormVisual class and object for
each instance of the BrowseQBEButton template. The ABC Templates
automatically include all the code necessary to support the functionality
specified in the BrowseQBEButton template.

The templates optionally derive a class from the QueryFormVisual for each
BrowseQBEButton control in the application. The derived class is called
QBV# where # is the instance number of the BrowseQBEButton template.
The templates provide the derived class so you can use the
BrowseQBEButton template Classes tab to easily modify the query’s
behavior on an instance-by-instance basis.

738 CLARION 5 APPLICATION HANDBOOK

Tip: Use the BrowseQBEButton control template to add a
QueryFormClass object to your template generated
BrowseBoxes.

QueryFormVisual Source Files

The QueryFormVisual source code is installed by default to the Clarion
\LIBSRC folder. The specific QueryFormVisual files and their respective
components are:

ABQUERY.INC QueryFormVisual declarations
ABQUERY.CLW QueryFormVisual method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a QueryFormVisual object and
related objects. The example plugs a QueryFormClass into a BrowseClass
object. The QueryFormClass object uses the QueryFormVisual to solicit
query criteria (search values) from the end user.

Note that the WindowManager and BrowseClass objects internally handle
the normal events surrounding the query.

PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE('ABWINDOW.INC')
INCLUDE('ABBROWSE.INC')
INCLUDE('ABQUERY.INC')

 MAP
 END

GlobalErrors ErrorClass
Access:Customer CLASS(FileManager)
Init PROCEDURE

END

Relate:Customer CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END

GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD

CHAPTER 41 QUERYFORMVISUAL 739

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),CREATE,THREAD
CustomerIDKey KEY(CUS:ID),NOCASE,OPT,PRIMARY
NameKey KEY(CUS:LastName),NOCASE,OPT
Record RECORD,PRE()
ID LONG
LastName STRING(20)
FirstName STRING(15)
City STRING(20)
State STRING(2)
ZIP STRING(10)

END
END

CustView VIEW(Customer)
END

CustQ QUEUE
CUS:LastName LIKE(CUS:LastName)
CUS:FirstName LIKE(CUS:FirstName)
CUS:ZIP LIKE(CUS:ZIP)
ViewPosition STRING(1024)
 END

CusWindow WINDOW('Browse Customers'),AT(,,210,105),IMM,SYSTEM,GRAY
LIST,AT(5,5,200,80),USE(?CusList),IMM,HVSCROLL,FROM(CustQ),|
FORMAT('80L(2)|M~Last~@s20@64L(2)|M~First~@s15@44L(2)|M~ZIP~@s10@')
BUTTON('&Query'),AT(50,88),USE(?Query)
BUTTON('Close'),AT(90,88),USE(?Close)

END

ThisWindow CLASS(WindowManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

Query QueryFormClass !declare Query object
QBEWindow QueryFormVisual !declare QBEWindow object
BRW1 CLASS(BrowseClass) !declare BRW1 object
Q &CustQ

END
CODE
GlobalErrors.Init
Relate:Customer.Init
GlobalResponse = ThisWindow.Run() !ThisWindow handles all events
Relate:Customer.Kill
GlobalErrors.Kill

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
IF ReturnValue THEN RETURN ReturnValue.
SELF.FirstField = ?CusList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
SELF.AddItem(?Close,RequestCancelled)
Relate:Customer.Open
BRW1.Init(?CusList,CustQ.ViewPosition,CustView,CustQ,Relate:Customer,ThisWindow)
OPEN(CusWindow)
SELF.Opened=True

740 CLARION 5 APPLICATION HANDBOOK

Query.Init(QBEWindow) !initialize Query object
BRW1.Q &= CustQ
BRW1.AddSortOrder(,CUS:NameKey)
BRW1.AddField(CUS:LastName,BRW1.Q.CUS:LastName)
BRW1.AddField(CUS:FirstName,BRW1.Q.CUS:FirstName)
BRW1.AddField(CUS:ZIP,BRW1.Q.CUS:ZIP)
BRW1.QueryControl = ?Query !register Query button w/ BRW1
BRW1.UpdateQuery(Query) !make each browse item Queryable
Query.AddItem('Cus:State','State') !make State field Queryable too
SELF.SetAlerts()
RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill()
IF ReturnValue THEN RETURN ReturnValue.
Relate:Customer.Close
RETURN ReturnValue

Access:Customer.Init PROCEDURE
CODE
PARENT.Init(Customer,GlobalErrors)
SELF.FileNameValue = 'Customer'
SELF.Buffer &= CUS:Record
SELF.Create = 1
SELF.AddKey(CUS:CustomerIDKey,'CUS:CustomerIDKey',1)
SELF.AddKey(CUS:NameKey,'CUS:NameKey',0)

Relate:Customer.Init PROCEDURE
CODE
Access:Customer.Init
PARENT.Init(Access:Customer,1)

Relate:Customer.Kill PROCEDURE
CODE
Access:Customer.Kill
PARENT.Kill

CHAPTER 41 QUERYFORMVISUAL 741

QueryFormVisual Properties
The QueryFormVisual inherits all the properties of the WindowManager
from which it is derived. See WindowManager Properties for more
information.

In addition to the inherited properties, the QueryFormVisual contains the
following property:

QFC (reference to the QueryFormClass)

QFC &QueryFormClass

The QFC property is a reference to the QueryFormClass that uses this
QueryFormVisual object to solicit query criteria (search values) from the end
user.

Implementation: The QueryFormClass.Init method sets the QFC property.

See Also: QueryFormClass.Init

742 CLARION 5 APPLICATION HANDBOOK

QueryFormVisual Methods
The QueryFormVisual inherits all the methods of the WindowManagerClass
from which it is derived. See WindowManager Methods for more
information.

In addition to (or instead of) the inherited methods, the QueryFormVisual
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the QueryFormVisual class, it is useful to
organize its various methods into two large categories according to their
expected use—the primary interface and the virtual methods. This
organization reflects what we believe is typical use of the QueryFormVisual
methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitD program the QueryFormVisual object

MainStream Use:
none

Occasional Use:
none

D These methods are also Derivedl.

Virtual Methods

Typically you will not call these methods directly—other ABC Library
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

Init program the QueryFormVisual object
TakeCompleted wrap up the query dialog
TakeAccepted handle EVENT:Accepted events

CHAPTER 41 QUERYFORMVISUAL 743

Init (initialize the QueryFormVisual object)

Init, DERIVED PROC

The Init method initializes the QueryFormVisual object. Init returns
Level:Benign to indicate normal initialization.

The Init method “programs” the QueryFormVisual object.

Implementation: The QueryFormClass.Ask method (indirectly) calls the Init method to
configure the QueryFormClass WINDOW.

For each queryable item (defined by the QFC property), the Init method
creates a series of window controls to accept search values. By default, each
queryable item gets a prompt, an entry control, and an query operator button
(equal, not equal, greater than, etc.).

The Init method sets the coordinates for the QueryFormClass WINDOW and
for the individual controls.

Return Data Type: BYTE

Example:

MyQuery.Ask PROCEDURE(BYTE UseLast)
W WINDOW('Query values'),GRAY !declare an “empty” window
 BUTTON('&OK'),USE(?Ok,1000),DEFAULT
 BUTTON('Cancel'),USE(?Cancel,1001)
 END
 CODE
 OPEN(W)
 IF SELF.Win.Run()=RequestCancelled !configure, display & process query dialog

! Win &= QueryFormVisual
! Win.Run calls Init, Ask & Kill
! Win.Init configures the dialog
! Win.Ask displays dialog & handles events
! Win.Kill shuts down the dialog

RETURN Level:Notify
ELSE
RETURN Level:Benign

END

See Also: QFC

744 CLARION 5 APPLICATION HANDBOOK

ResetFromQuery (reset the QueryFormVisual object)

ResetFromQuery, DERIVED

The ResetFromQuery method resets the QueryFormVisual object after a
query.

Implementation: The ResetFromQuery method calls the SetText method for each field
available for query.

Example:

QueryFormVisual.ResetFromQuery PROCEDURE
I USHORT
 CODE
 LOOP I = 1 TO RECORDS(SELF.QFC.Fields)
 GET(SELF.QFC.Fields,I)
 SELF.SetText((Feq:StartControl+(I*3-1)),SELF.QFC.Fields.Middle)
 END
 Update()
 RETURN

See Also: SetText

SetText (set prompt text)

SetText (control, entrytext)

SetText Sets the prompt text for the QueryFormVisual object.

control An integer constant, variable, EQUATE, or expression
containing the control number of the control to act on.

entrytext A string constant, variable, EQUATE, or expression
containing the text to assign to the prompt.

Implementation: The ResetFromQuery method calls the SetText method for each field
available for query.

Example:

QueryFormVisual.ResetFromQuery PROCEDURE
I USHORT
 CODE
 LOOP I = 1 TO RECORDS(SELF.QFC.Fields)
 GET(SELF.QFC.Fields,I)
 SELF.SetText((Feq:StartControl+(I*3-1)),SELF.QFC.Fields.Middle)
 END
 Update()
 RETURN

See Also: ResetFromQuery

CHAPTER 41 QUERYFORMVISUAL 745

TakeAccepted (handle query dialog EVENT:Accepted events)

TakeAccepted, DERIVED, PROC

The TakeAccepted method processes EVENT:Accepted events for the query
dialog’s controls, and returns a value indicating whether ACCEPT loop
processing is complete and should stop. TakeAccepted returns Level:Benign
to indicate processing of this event should continue normally; it returns
Level:Notify to indicate processing is completed for this event and the
ACCEPT loop should CYCLE; it returns Level:Fatal to indicate the event
could not be processed and the ACCEPT loop should BREAK.

Implementation: For each queryable item (defined by the QFC property), the TakeAccepted
method implements cycling of operators for the query operator buttons. On
each button press, the button cycles through the available filter operators:
equal(=), greater than or equal(>=), less than or equal(<=), not equal(<>),
and no filter().

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: QFC

746 CLARION 5 APPLICATION HANDBOOK

TakeCompleted (complete the query dialog)

TakeCompleted, DERIVED, PROC

The TakeCompleted method processes the EVENT:Completed event for the
query dialog and returns a value indicating whether window ACCEPT loop
processing is complete and should stop.

TakeCompleted returns Level:Benign to indicate processing of this event
should continue normally; it returns Level:Notify to indicate processing is
completed for this event and the ACCEPT loop should CYCLE; it returns
Level:Fatal to indicate the event could not be processed and the ACCEPT
loop should BREAK.

Implementation: Based on the current state of the querydialog, the TakeCompleted method
sets the search values in the QFC property. The QFC property may use these
search values to create a filter expresssion.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: QFC

CHAPTER 41 QUERYFORMVISUAL 747

TakeFieldEvent (a virtual to process field events)

TakeFieldEvent, DERIVED, PROC

The TakeFieldEvent method is a virtual placeholder to process all field-
specific/control-specific events for the window. It returns a value indicating
whether window process is complete and should stop. TakeFieldEvent
returns Level:Benign to indicate processing of this event should continue
normally; it returns Level:Notify to indicate processing is completed for this
event and the ACCEPT loop should CYCLE; it returns Level:Fatal to
indicate the event could not be processed and the ACCEPT loop should
BREAK.

Implementation: Return values are declared in ABERROR.INC. The TakeEvent method calls
the TakeFieldEvent method.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
 IF ~FIELD()
 RVal = SELF.TakeWindowEvent()
 IF RVal THEN RETURN RVal.
 END
 CASE EVENT()
 OF EVENT:Accepted; RVal = SELF.TakeAccepted()
 OF EVENT:Rejected; RVal = SELF.TakeRejected()
 OF EVENT:Selected; RVal = SELF.TakeSelected()
 OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
 OF EVENT:Completed; RVal = SELF.TakeCompleted()
 OF EVENT:CloseWindow OROF EVENT:CloseDown
 RVal = SELF.TakeCloseEvent()
 END
 IF RVal THEN RETURN RVal.
 IF FIELD()
 RVal = SELF.TakeFieldEvent()
 END
 RETURN Rval

See Also: WindowManager.Ask

748 CLARION 5 APPLICATION HANDBOOK

UpdateFields (process query values)

UpdateFields, DERIVED

The UpdateFields method processes the values entereed into the query
dialog for assignment to a filter statment.

Implementation: The TakeCompleted method calls the UpdateFields method.

Example:

QueryFormVisual.TakeCompleted PROCEDURE
 CODE
 SELF.SetResponse(RequestCompleted)
 SELF.UpdateFields
 RETURN Level:Benign

See Also: TakeCompleted

CHAPTER 42 QUERYLISTCLASS 749

42 - QUERYLISTCLASS

Overview
The QueryListClass is a QueryClass with a “list” user interface. The
QueryListClass provides support for ad hoc queries against Clarion VIEWs.
The list interface includes is an edit-in-place, 3-column listbox with a field
column, an equivalence operator (contains, begins, equal, not equal, greater
than, less than) column, and a value (to query for) column.

QueryListClass Concepts

Use the AddItem method to define a user input dialog at runtime. Or create a
custom dialog to plug into your QueryClass object. Use the Ask method to
solicit end user query criteria (search values) or use the SetLimit method to
programmatically set query search values. Finally, use the GetFilter method
to build the filter expression to apply to your VIEW. Use the
ViewManager.SetFilter method or the PROP:Filter property to apply the
resulting filter.

Relationship to Other Application Builder Classes

The QueryListClass is derived from the QueryClass, plus it relies on the
QueryListVisual class to display its input dialog and handle the dialog
events.

The BrowseClass optionally uses the QueryListClass to filter its result set. If
your BrowseClass object uses a QueryListClass object, it must instantiate a
QueryListClass object and a QueryListVisual object.

The BrowseClass automatically provides a default query dialog that solicits
end user search values for each field displayed in the browse list. See the
Conceptual Example.

ABC Template Implementation

The ABC Templates declare a local QueryClass class and object for each
instance of the BrowseQBEButton template. The ABC Templates
automatically include all the code necessary to support the functionality
specified in the BrowseQBEButton template.

The templates optionally derive a QueryListClass object for each
BrowseQBEButton control in the application. The derived class is called

750 CLARION 5 APPLICATION HANDBOOK

QBE# where # is the instance number of the BrowseQBEButton template.
The templates provide the derived class so you can use the
BrowseQBEButton template Classes tab to easily modify the query’s
behavior on an instance-by-instance basis.

Tip: Use the BrowseQBEButton control template to add a
QueryListClass object to your template generated
BrowseBoxes.

QueryListClass Source Files

The QueryListClass source code is installed by default to the Clarion
\LIBSRC folder. The specific QueryListClass files and their respective
components are:

ABQUERY.INC QueryListClass declarations
ABQUERY.CLW QueryListClass method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a QueryListClass object and related
objects. The example plugs a QueryListClass into a BrowseClass object. The
QueryListClass object solicits query criteria (search values) with a “list”
dialog, then generates a filter expression based on the end user input.

PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE('ABWINDOW.INC')
INCLUDE('ABBROWSE.INC')
INCLUDE('ABQUERY.INC')

 MAP
 END

GlobalErrors ErrorClass
Access:Customer CLASS(FileManager)
Init PROCEDURE

END

Relate:Customer CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END

GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD

CHAPTER 42 QUERYLISTCLASS 751

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),CREATE,THREAD
CustomerIDKey KEY(CUS:ID),NOCASE,OPT,PRIMARY
NameKey KEY(CUS:LastName),NOCASE,OPT
Record RECORD,PRE()
ID LONG
LastName STRING(20)
FirstName STRING(15)
City STRING(20)
State STRING(2)
ZIP STRING(10)

END
END

CustView VIEW(Customer)
END

CustQ QUEUE
CUS:LastName LIKE(CUS:LastName)
CUS:FirstName LIKE(CUS:FirstName)
CUS:ZIP LIKE(CUS:ZIP)
ViewPosition STRING(1024)
 END

CusWindow WINDOW('Browse Customers'),AT(,,210,105),IMM,SYSTEM,GRAY
LIST,AT(5,5,200,80),USE(?CusList),IMM,HVSCROLL,FROM(CustQ),|
FORMAT('80L(2)|M~Last~@s20@64L(2)|M~First~@s15@44L(2)|M~ZIP~@s10@')
BUTTON('&Query'),AT(50,88),USE(?Query)
BUTTON('Close'),AT(90,88),USE(?Close)

END

ThisWindow CLASS(WindowManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

Query QueryListmClass !declare Query object
QBEWindow QueryListVisual !declare QBEWindow object
BRW1 CLASS(BrowseClass) !declare BRW1 object
Q &CustQ

END
CODE
GlobalErrors.Init
Relate:Customer.Init
GlobalResponse = ThisWindow.Run() !ThisWindow handles all events
Relate:Customer.Kill
GlobalErrors.Kill

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
IF ReturnValue THEN RETURN ReturnValue.
SELF.FirstField = ?CusList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
SELF.AddItem(?Close,RequestCancelled)
Relate:Customer.Open
BRW1.Init(?CusList,CustQ.ViewPosition,CustView,CustQ,Relate:Customer,ThisWindow)

752 CLARION 5 APPLICATION HANDBOOK

OPEN(CusWindow)
SELF.Opened=True
Query.Init(QBEWindow) !initialize Query object
BRW1.Q &= CustQ
BRW1.AddSortOrder(,CUS:NameKey)
BRW1.AddField(CUS:LastName,BRW1.Q.CUS:LastName)
BRW1.AddField(CUS:FirstName,BRW1.Q.CUS:FirstName)
BRW1.AddField(CUS:ZIP,BRW1.Q.CUS:ZIP)
BRW1.QueryControl = ?Query !register Query button w/ BRW1
BRW1.UpdateQuery(Query) !make each browse item Queryable
Query.AddItem('Cus:State','State') !make State field Queryable too
SELF.SetAlerts()
RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill()
IF ReturnValue THEN RETURN ReturnValue.
Relate:Customer.Close
RETURN ReturnValue

Access:Customer.Init PROCEDURE
CODE
PARENT.Init(Customer,GlobalErrors)
SELF.FileNameValue = 'Customer'
SELF.Buffer &= CUS:Record
SELF.Create = 1
SELF.AddKey(CUS:CustomerIDKey,'CUS:CustomerIDKey',1)
SELF.AddKey(CUS:NameKey,'CUS:NameKey',0)

Relate:Customer.Init PROCEDURE
CODE
Access:Customer.Init
PARENT.Init(Access:Customer,1)

Relate:Customer.Kill PROCEDURE
CODE
Access:Customer.Kill
PARENT.Kill

CHAPTER 42 QUERYLISTCLASS 753

QueryListClass Properties
The QueryListClass inherits all the properties of the QueryClass from which
it is derived.

754 CLARION 5 APPLICATION HANDBOOK

QueryListClass Methods
The QueryListClass inherits all the methods of the QueryClass from which it
is derived. See QueryClass Methods for more information.

In addition to (or instead of) the inherited methods, the QueryListClass
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the QueryListClass, it is useful to organize its
various methods into two large categories according to their expected use—
the primary interface and the virtual methods. This organization reflects
what we believe is typical use of the QueryListClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into two categories:

Housekeeping (one-time) Use:
Init initialize the QueryListClass object
AddItemI add a field to query
Kill V shut down the QueryListListClass object

Mainstream Use:
AskV accept query criteria
GetFilterI return filter expression

Occasional Use:
ResetI reset the QueryListClass object
GetLimitI get search values
SetLimitI set search values

V These methods are also Virtual.
I These methods are inherited from the QueryClass.

Virtual Methods

Typically you will not call these methods directly—other ABC Library
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

Ask accept query criteria
Kill shut down the QueryListClass object

CHAPTER 42 QUERYLISTCLASS 755

Ask (solicit query criteria)

Ask([uselast]), DERIVED, PROC

Ask Accepts query criteria (search values) from the end user.

uselast An integer constant, variable, EQUATE, or expression
that determines whether the QueryListClass object
carries forward previous query criteria. A value of one
(1) carries forward input from the previous query; a
value of zero (0) discards previous input.

The Ask method displays a query dialog, processes its events, and returns a
value indicating whether to apply the query or abandon it. A return value of
Level:Notify indicates the QueryListClass object should apply the query
criteria; a return value of Level:Benign indicates the end user cancelled the
query input dialog and the QueryListClass object should not apply the query
criteria.

Implementation: The Ask method declares a generic (empty) dialog to accept query criteria.
The Ask method calls the QueryListClass object’s WindowManager to define
the dialog and process it’s events.

The GetFilter method generates filter expressions using the search values set
by the Ask method.

The Init method sets the value of the QueryListClass object’s
WindowManager.

Return Data Type: BYTE

Example:

MyBrowseClass.TakeLocate PROCEDURE
CurSort USHORT,AUTO
I USHORT,AUTO
CODE
IF ~SELF.Query&=NULL AND SELF.Query.Ask()
CurSort = POINTER(SELF.Sort)
LOOP I = 1 TO RECORDS(SELF.Sort)
PARENT.SetSort(I)
SELF.SetFilter(SELF.Query.GetFilter(),'9 - QBE')

END
PARENT.SetSort(CurSort)
SELF.ResetSort(1)

END

See Also: GetFilter, Init, QueryListVisual

756 CLARION 5 APPLICATION HANDBOOK

Init (initialize the QueryListClass object)

Init(querywindowmanager, inimanager, family, errormanager)

Init Initializes the QueryListClass object.

querywindowmanager
The label of the QueryListVisual object that displays the
query input dialog list and processes it’s events.

inimanager The label of the INIManager object.

family A string constant, variable, EQUATE, or expression
containing the procedure name of the calling procedure.

errormanager The label of the Global ErrorManager object.

The Init method initializes the QueryListClass object.

Implementation: The Init method sets the QFC property for the querywindowmanager.

Example:

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other initialization code

 Query.Init(QueryWindow)
 Query.AddItem('UPPER(CLI:LastName)','Name','s20')
 Query.AddItem('CLI:ZIP+1','ZIP+1','')
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other termination code

 Query.Kill
 RETURN ReturnValue

See Also: Kill, QueryListVisual, QueryListVisual.QFC

CHAPTER 42 QUERYLISTCLASS 757

Kill (shut down the QueryListClass object)

Kill, DERIVED

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code.

Example:

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other initialization code

 Query.Init(QueryWindow)
 Query.AddItem('UPPER(CLI:LastName)','Name','s20')
 Query.AddItem('CLI:ZIP+1','ZIP+1','')
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other termination code

 Query.Kill
 RETURN ReturnValue

See Also: Init

758 CLARION 5 APPLICATION HANDBOOK

CHAPTER 43 QUERYLISTVISUAL 759

43 - QUERYLISTVISUAL

Overview
The QueryListVisual class is a WindowManager that displays a query input
dialog and handles the dialog events. The query dialog includes an edit-in-
place, 3-column listbox which allows the end user to choose the fields to
query, the equivalence operator, and the value to query for.

QueryListVisual Concepts

The QueryListVisual provides the query window for a QueryListClass
object. The Init method defines and “programs” the query input dialog at
runtime. The query interface includes an edit-in-place, 3-column listbox
with a field column, an equivalence operator (contains, begins, equal, not
equal, greater than, less than)column, and a value (to query for) column.

Relationship to Other Application Builder Classes

The QueryListVisual class is derived from the WindowManager.

The BrowseClass optionally uses the QueryListVisual class to provide the
user an edit-in-place list interface to it’s query facility.

The QueryListClass requires the QueryListVisual class as a window
manager.

ABC Template Implementation

The ABC Templates declare a local QueryListVisual class and object for
each instance of the BrowseQBEButton template. The ABC Templates
automatically include all the code necessary to support the functionality
specified in the BrowseQBEButton template.

The templates optionally derive a class from the QueryListVisual for each
BrowseQBEButton control in the application. The derived class is called
QBV# where # is the instance number of the BrowseQBEButton template.
The templates provide the derived class so you can use the
BrowseQBEButton template Classes tab to easily modify the query’s
behavior on an instance-by-instance basis.

Tip: Use the BrowseQBEButton control template to add a
QueryListClass object to your template generated
BrowseBoxes.

760 CLARION 5 APPLICATION HANDBOOK

QueryListVisual Source Files

The QueryListVisual source code is installed by default to the Clarion
\LIBSRC folder. The specific QueryListVisual files and their respective
components are:

ABQUERY.INC QueryListVisual declarations
ABQUERY.CLW QueryListVisual method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a QueryListVisual object and related
objects. The example plugs a QueryListClass into a BrowseClass object. The
QueryListClass object uses the QueryListVisual to solicit query criteria
(search values) from the end user.

Note that the WindowManager and BrowseClass objects internally handle
the normal events surrounding the query.

PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE('ABWINDOW.INC')
INCLUDE('ABBROWSE.INC')
INCLUDE('ABQUERY.INC')

 MAP
 END

GlobalErrors ErrorClass
Access:Customer CLASS(FileManager)
Init PROCEDURE

END

Relate:Customer CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END

GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),CREATE,THREAD
CustomerIDKey KEY(CUS:ID),NOCASE,OPT,PRIMARY
NameKey KEY(CUS:LastName),NOCASE,OPT
Record RECORD,PRE()
ID LONG
LastName STRING(20)
FirstName STRING(15)

CHAPTER 43 QUERYLISTVISUAL 761

City STRING(20)
State STRING(2)
ZIP STRING(10)

END
END

CustView VIEW(Customer)
END

CustQ QUEUE
CUS:LastName LIKE(CUS:LastName)
CUS:FirstName LIKE(CUS:FirstName)
CUS:ZIP LIKE(CUS:ZIP)
ViewPosition STRING(1024)
 END

CusWindow WINDOW('Browse Customers'),AT(,,210,105),IMM,SYSTEM,GRAY
LIST,AT(5,5,200,80),USE(?CusList),IMM,HVSCROLL,FROM(CustQ),|
FORMAT('80L(2)|M~Last~@s20@64L(2)|M~First~@s15@44L(2)|M~ZIP~@s10@')
BUTTON('&Query'),AT(50,88),USE(?Query)
BUTTON('Close'),AT(90,88),USE(?Close)

END

ThisWindow CLASS(WindowManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

Query QueryListClass !declare Query object
QBEWindow QueryListVisual !declare QBEWindow object
BRW1 CLASS(BrowseClass) !declare BRW1 object
Q &CustQ

END
CODE
GlobalErrors.Init
Relate:Customer.Init
GlobalResponse = ThisWindow.Run() !ThisWindow handles all events
Relate:Customer.Kill
GlobalErrors.Kill

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
IF ReturnValue THEN RETURN ReturnValue.
SELF.FirstField = ?CusList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
SELF.AddItem(?Close,RequestCancelled)
Relate:Customer.Open
BRW1.Init(?CusList,CustQ.ViewPosition,CustView,CustQ,Relate:Customer,ThisWindow)
OPEN(CusWindow)
SELF.Opened=True
Query.Init(QBEWindow) !initialize Query object
BRW1.Q &= CustQ
BRW1.AddSortOrder(,CUS:NameKey)
BRW1.AddField(CUS:LastName,BRW1.Q.CUS:LastName)
BRW1.AddField(CUS:FirstName,BRW1.Q.CUS:FirstName)
BRW1.AddField(CUS:ZIP,BRW1.Q.CUS:ZIP)
BRW1.QueryControl = ?Query !register Query button w/ BRW1

762 CLARION 5 APPLICATION HANDBOOK

BRW1.UpdateQuery(Query) !make each browse item Queryable
Query.AddItem('Cus:State','State') !make State field Queryable too
SELF.SetAlerts()
RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill()
IF ReturnValue THEN RETURN ReturnValue.
Relate:Customer.Close
RETURN ReturnValue

Access:Customer.Init PROCEDURE
CODE
PARENT.Init(Customer,GlobalErrors)
SELF.FileNameValue = 'Customer'
SELF.Buffer &= CUS:Record
SELF.Create = 1
SELF.AddKey(CUS:CustomerIDKey,'CUS:CustomerIDKey',1)
SELF.AddKey(CUS:NameKey,'CUS:NameKey',0)

Relate:Customer.Init PROCEDURE
CODE
Access:Customer.Init
PARENT.Init(Access:Customer,1)

Relate:Customer.Kill PROCEDURE
CODE
Access:Customer.Kill
PARENT.Kill

CHAPTER 43 QUERYLISTVISUAL 763

QueryListVisual Properties
The QueryListVisual inherits all the properties of the WindowManager from
which it is derived. See WindowManager Properties for more information.

In addition to the inherited properties, the QueryListVisual contains the
following property:

QFC (reference to the QueryListClass)

QFC &QueryListClass

The QFC property is a reference to the QueryListClass that uses this
QueryListVisual object to solicit query criteria (search values) from the end
user.

Implementation: The QueryListClass.Init method sets the QFC property.

See Also: QueryListClass.Init

OpsEIP (reference to the EditDropListClass)

OpsEIP &EditDropListClass,PROTECTED

The OpsEIP property is a reference to the EditDropListClass that displays
the available operators in the QueryList dialog.

FldsEIP (reference to the EditDropListClass)

FldsEIP &EditDropListClass,PROTECTED

The FldsEIP property is a reference to the EditDropListClass that displays
the available fields to query in the QueryList dialog.

764 CLARION 5 APPLICATION HANDBOOK

QueryListVisual Methods
The QueryListVisual inherits all the methods of the WindowManagerClass
from which it is derived. See WindowManager Methods for more
information.

In addition to (or instead of) the inherited methods, the QueryListVisual
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the QueryListVisual class, it is useful to organize
its various methods into two large categories according to their expected
use—the primary interface and the virtual methods. This organization
reflects what we believe is typical use of the QueryListVisual methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitD program the QueryListVisual object

MainStream Use:
none

Occasional Use:
none

D These methods are Derived.

Derived Methods

Typically you will not call these methods directly—other ABC Library
methods call them. However, we anticipate you will often want to override
these methods, and because they are derived, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

Init program the QueryListVisual object
SetAlerts prepare the query dialog for EIP
TakeEvent Handle events for the query dialog
TakeCompleted wrap up the query dialog
TakeAccepted handle EVENT:Accepted events

CHAPTER 43 QUERYLISTVISUAL 765

Init (initialize the QueryListVisual object)

Init, DERIVED PROC

The Init method initializes the QueryListVisual object. Init returns
Level:Benign to indicate normal initialization.

The Init method “programs” the QueryListVisual object.

Implementation: The QueryListClass.Ask method (indirectly) calls the Init method to
configure the QueryListClass WINDOW.

The Init method reads each queryable item (defined by the QFC property)
from a queue, then creates an edit-in-place, 3-column listbox with a field
column, an equivalence operator (equal, not equal, greater than, etc.) column,
and a value (to query for) column.

The Init method sets the coordinates for the QueryListClass WINDOW and
for the individual controls.

Return Data Type: BYTE

Example:

QueryListClass.Ask PROCEDURE(BYTE UseLast)
W WINDOW('Query'),AT(,,300,200),FONT('MS SansSerif',8,,FONT:regular),SYSTEM,GRAY,DOUBLE

LIST,AT(5,5,290,174),USE(?List,FEQ:ListBox),|
FORMAT('91L|M~Field~@s20@44C|M~Operator~L@s10@120C|M~Value~L@s30@')
BUTTON('Insert'),AT(5,183,45,14),USE(?Insert,FEQ:Insert)
BUTTON('Change'),AT(52,183,45,14),USE(?Change,FEQ:Change)
BUTTON('Delete'),AT(99,183,45,14),USE(?Delete,FEQ:Delete)
BUTTON('&OK'),AT(203,183,45,14),USE(?Ok,FEQ:OK),DEFAULT
BUTTON('Cancel'),AT(250,183,45,14),USE(?Cancel,FEQ:Cancel)

END
CODE
OPEN(W)
IF ~UseLast THEN SELF.Reset().
RETURN CHOOSE(SELF.Win.Run()=RequestCancelled,Level:Benign,Level:Notify)

See Also: QFC

766 CLARION 5 APPLICATION HANDBOOK

ResetFromQuery (reset the QueryFormVisual object)

ResetFromQuery, DERIVED

The ResetFromQuery method resets the QueryListVisual object after a
query.

Implementation: The ResetFromQuery method calls the SetText method for each field
available for query.

Example:

QueryListVisual.ResetFromQuery PROCEDURE
I USHORT
 CODE
 LOOP I = 1 TO RECORDS(SELF.QFC.Fields)
 GET(SELF.QFC.Fields,I)
 SELF.SetText((Feq:StartControl+(I*3-1)),SELF.QFC.Fields.Middle)
 END
 Update()
 RETURN

See Also: SetText

SetAlerts (alert keystrokes for the edit control)

SetAlerts, DERIVED

The SetAlerts method method alerts appropriate keystrokes for the edit-in-
place control.

Implementation: The Init method calls the CreateControl method to create the input control
and set the FEQ property. The Init method then calls the SetAlerts method to
alert specific keystrokes for the query dialog. Alerted keys are:

MouseLeft2 !edit selected record
InsertKey !add a query field
CtrlEnter !edit selected record
DeleteKey !delete query field

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: Init

CHAPTER 43 QUERYLISTVISUAL 767

TakeAccepted (handle query dialog EVENT:Accepted events)

TakeAccepted, DERIVED, PROC

The TakeAccepted method processes EVENT:Accepted events for the query
dialog’s controls, and returns a value indicating whether ACCEPT loop
processing is complete and should stop. TakeAccepted returns Level:Benign
to indicate processing of this event should continue normally; it returns
Level:Notify to indicate processing is completed for this event and the
ACCEPT loop should CYCLE; it returns Level:Fatal to indicate the event
could not be processed and the ACCEPT loop should BREAK.

Implementation: The TakeAccepted method handles the processing of the update butons
(Insert, Change, Delete) on the Query list dialog.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: QFC

768 CLARION 5 APPLICATION HANDBOOK

TakeCompleted (complete the query dialog)

TakeCompleted, DERIVED, PROC

The TakeCompleted method processes the EVENT:Completed event for the
query dialog and returns a value indicating whether window ACCEPT loop
processing is complete and should stop.

TakeCompleted returns Level:Benign to indicate processing of this event
should continue normally; it returns Level:Notify to indicate processing is
completed for this event and the ACCEPT loop should CYCLE; it returns
Level:Fatal to indicate the event could not be processed and the ACCEPT
loop should BREAK.

Implementation: Based on the current state of the querydialog, the TakeCompleted method
sets the search values in the QFC property. The QFC property may use these
search values to create a filter expresssion.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: QFC

CHAPTER 43 QUERYLISTVISUAL 769

TakeEvent (process edit-in-place events)

TakeEvent(event), VIRTUAL

TakeEvent Processes an event for the QueryListVisualClass object.

event An integer constant, variable, EQUATE, or expression
that contains the event number (see EVENT in the
Language Reference).

The TakeEvent method processes an event for the QueryListVisualClass
object and returns a value indicating the user requested action. Valid actions
are none, insert (InsertKey), change (MouseLeft2 or CtrlEnter), or delete
(DeleteKey).

Implementation: The EIPManager.TakeFieldEvent method calls the TakeEvent method. The
TakeEvent method process an EVENT:AlertKey for the edit-in-place control
and returns a value indicating the user requested action.

Return Data Type: BYTE

Example:

EIPManager.TakeFieldEvent PROCEDURE
I UNSIGNED(1)
 CODE
 IF FIELD() = SELF.ListControl THEN RETURN Level:Benign .
 LOOP I = 1 TO RECORDS(SELF.EQ)+1
 ! Optimised to pick up subsequent events from same field
 IF ~SELF.EQ.Control &= NULL AND SELF.EQ.Control.Feq = FIELD()
 SELF.TakeAction(SELF.EQ.Control.TakeEvent(EVENT()))
 RETURN Level:Benign
 END
 GET(SELF.EQ,I)
 END
 ! Not a known field
 IF ?{PROP:Type} <> CREATE:Button OR EVENT() <> EVENT:Selected ! Wait to post accepted
for button
 SELF.Repost = EVENT()
 SELF.RepostField = FIELD()
 SELF.TakeFocusLoss
 END
 RETURN Level:Benign

See Also: EIPManager.TakeFieldEvent, SetAlerts

770 CLARION 5 APPLICATION HANDBOOK

TakeFieldEvent (a virtual to process field events)

TakeFieldEvent, DERIVED, PROC

The TakeFieldEvent method is a virtual placeholder to process all field-
specific/control-specific events for the window. It returns a value indicating
whether window process is complete and should stop. TakeFieldEvent
returns Level:Benign to indicate processing of this event should continue
normally; it returns Level:Notify to indicate processing is completed for this
event and the ACCEPT loop should CYCLE; it returns Level:Fatal to
indicate the event could not be processed and the ACCEPT loop should
BREAK.

Implementation: Return values are declared in ABERROR.INC. The TakeEvent method calls
the TakeFieldEvent method.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
 IF ~FIELD()
 RVal = SELF.TakeWindowEvent()
 IF RVal THEN RETURN RVal.
 END
 CASE EVENT()
 OF EVENT:Accepted; RVal = SELF.TakeAccepted()
 OF EVENT:Rejected; RVal = SELF.TakeRejected()
 OF EVENT:Selected; RVal = SELF.TakeSelected()
 OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
 OF EVENT:Completed; RVal = SELF.TakeCompleted()
 OF EVENT:CloseWindow OROF EVENT:CloseDown
 RVal = SELF.TakeCloseEvent()
 END
 IF RVal THEN RETURN RVal.
 IF FIELD()
 RVal = SELF.TakeFieldEvent()
 END
 RETURN Rval

See Also: WindowManager.Ask

CHAPTER 43 QUERYLISTVISUAL 771

UpdateFields (process query values)

UpdateFields, DERIVED

The UpdateFields method processes the values entereed into the query
dialog for assignment to a filter statment.

Implementation: The TakeCompleted method calls the UpdateFields method.

Example:

QueryListVisual.TakeCompleted PROCEDURE
 CODE
 SELF.SetResponse(RequestCompleted)
 SELF.UpdateFields
 RETURN Level:Benign

See Also: TakeCompleted

772 CLARION 5 APPLICATION HANDBOOK

CHAPTER 44 QUERYVISUALCLASS 773

44 - QUERYVISUALCLASS

Overview
The QueryVisualClass is a WindowManager that displays a query input
dialog and handles the dialog events. The QueryVisualClass is an abstract
class that handles all of the basic Window functionality for the query dialog.

QueryVisualClass Concepts

The QueryVisualClass is the parent class for the Query dialogs. It is
designed to encapsulate the standard query requirements for the window
manager.

Relationship to Other Application Builder Classes

The QueryVisualClass is derived from the WindowManager. The classes
derived from the QueryVisualClass are optionally used by the QueryClass
object.

The QueryFormVisual and the QueryListVisual classes are derived
QueryVisualClasses.

ABC Template Implementation

The ABC Templates do not instantiate the QueryClass object independently.
The templates instantiate the derived QueryFormClass or QueryListClass
instead.

QueryVisualClass Source Files

The QueryVisualClass source code is installed by default to the Clarion
\LIBSRC folder. The specific QueryVisualClass files and their respective
components are:

ABQUERY.INC QueryVisual declarations
ABQUERY.CLW QueryVisual method definitions

774 CLARION 5 APPLICATION HANDBOOK

QueryVisualClass Properties
The QueryVisualClass inherits all the properties of the WindowManager
from which it is derived. See WindowManager Properties for more
information.

In addition to the inherited properties, the QueryVisualClass contains the
following properties:

QC (reference to the QueryClass)

QC &QueryClass
The QC property is a reference to the QueryClass that uses this
QueryVisualClass object to solicit query criteria (search values) from the end
user.

Implementation: The QueryFormVisual.Init and QueryListVisual.Init methods set the QC
property.

See Also: QueryFormVisual.Init, QueryListVisual.Init

Resizer (reference to the WindowResizeClass)

Resizer &WindowResizeClass

The Resizer property is a reference to the WindowResizeClass that is used
by this QueryVisualClass object to handle resizing of the Window controls at
runtime.

Implementation: The Init method sets the Resizer property.

See Also: Init, Kill

CHAPTER 44 QUERYVISUALCLASS 775

QueryVisualClass Methods
The QueryVisualClass inherits all the methods of the WindowManager from
which it is derived. See WindowManager Methods for more information.

In addition to the inherited methodss, the QueryVisualClass contains the
following methods:

Init (initialize the QueryVisual object)

Init, DERIVED, PROC

The Init method initializes the QueryVisual object. Init returns Level:Benign
to indicate normal initialization. The Init method “programs” the
QueryVisual object.

Implementation: The Init method is called from the Init methods of both the QueryFormVisual
and the QueryListVisual as PARENT calls. Typically, the Init method is
paired with the Kill method, performing the converse of the Kill method
tasks.

Return Data Type: BYTE

Example:

QueryFormVisual.Init PROCEDURE
 CODE
 QFC &= SELF.QFC
 CLEAR(SELF)
 SELF.QFC &= QFC
 SELF.QC &= QFC
 RVal = PARENT.Init() ! The call to the Init
 IF RVal THEN RETURN RVal.
 ! Saved query code
 RETURN RVal

See Also: Kill

776 CLARION 5 APPLICATION HANDBOOK

Kill (shut down the QueryVisual object)

Kill, DERIVED, PROC

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code. Kill returns a value to indicate
the status of the shut down.

Implementation: Kill sets the Dead property to True and returns Level:Benign to indicate a
normal shut down. If the Dead property is already set to True, Kill returns
Level:Notify to indicate it is taking no additional action.

Typically, the Kill method is paired with the Init method, performing the
converse of the Init method tasks.

Return value EQUATEs are declared in ABERROR.INC.

Return Data Type: BYTE

Example:

ThisWindow.Kill PROCEDURE()
CODE
IF PARENT.Kill() THEN RETURN Level:Notify.
IF FilesOpened
 Relate:Defaults.Close
END
IF SELF.Opened
 INIMgr.Update(‘Main’,AppFrame)
END
GlobalResponse = CHOOSE(LocalResponse=0,RequestCancelled,LocalResponse)

See Also: Init

CHAPTER 44 QUERYVISUALCLASS 777

Reset (reset the dialog for display)

Reset (forcerest), DERIVED

Reset Resets the QueryVisual object.

forcereset A numeric constant, variable, EQUATE, or expression
that indicates whether to conditionally or uncondition-
ally reset the window. A value of one (1 or True) uncon-
ditionally resets the window; a value of zero (0 or False)
only resets the window if circumstances require, such as
a new sort on browse object or a changed reset field on a
browse object. If omitted, forcereset defaults to zero (0).

Implementation: The Reset method calls the WindowMangaer.Reset and handles the logic for
enabling and disabling the Load and Save buttons. The Reset is called by the
TakeFieldEvent and TakeAccepted methods.

Example:
QueryVisual.TakeFieldEvent PROCEDURE
 CODE
 CASE FIELD()
 OF FEQ:QueryNameField
 CASE EVENT()
 OF EVENT:NewSelection
 SELF.Reset
 END
 OF FEQ:SaveListBox
 CASE Event()
 OF EVENT:AlertKey
 IF Keycode() = MouseLeft2
 GET(SELF.Queries,CHOICE(FEQ:SaveListBox))
 SELF.QC.Restore(SELF.Queries.Item)
 SELF.ResetFromQuery
 POST(EVENT:Accepted,FEQ:Ok)
 END
 OF EVENT:NewSelection
 GET(SELF.Queries,CHOICE(FEQ:SaveListBox))
 FEQ:QueryNameField{Prop:ScreenText} = SELF.Queries.Item
 Update(FEQ:QueryNameField)
 SELF.Reset
 END
 END
 RETURN PARENT.TakeFieldEvent()

See Also: TakeFieldEvent, TakeAccepted

778 CLARION 5 APPLICATION HANDBOOK

TakeAccepted (handle query dialog EVENT:Accepted events)

TakeAcepted, DERIVED, PROC

The TakeAccepted method processes EVENT:Accepted events for the query
dialog’s controls, and returns a value indicating whether ACCEPT loop
processing is complete and should stop. TakeAccepted returns Level:Benign
to indicate processing of this event should continue normally; it returns
Level:Notify to indicate processing is completed for this event and the
ACCEPT loop should CYCLE; it returns Level:Fatal to indicate the event
could not be processed and the ACCEPT loop should BREAK.

Implementation: For each queryable item (defined by the QC property), the TakeAccepted
method implements cycling of operators for the query operator buttons. On
each button press, the button cycles through the available filter operators:
equal(=), greater than or equal(>=), less than or equal(<=), not equal(<>),
and no filter().

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
 IF ~FIELD()
 RVal = SELF.TakeWindowEvent()
 IF RVal THEN RETURN RVal.
 END
 CASE EVENT()
 OF EVENT:Accepted; RVal = SELF.TakeAccepted()
 OF EVENT:Rejected; RVal = SELF.TakeRejected()
 OF EVENT:Selected; RVal = SELF.TakeSelected()
 OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
 OF EVENT:Completed; RVal = SELF.TakeCompleted()
 OF EVENT:CloseWindow OROF EVENT:CloseDown
 RVal = SELF.TakeCloseEvent()
 END
 IF RVal THEN RETURN RVal.
 IF FIELD()
 RVal = SELF.TakeFieldEvent()
 END
 RETURN Rval

See Also: QC

CHAPTER 44 QUERYVISUALCLASS 779

TakeFieldEvent (a virtual to process field events)

TakeFieldEvent, DERIVED, PROC

The TakeFieldEvent method is a virtual placeholder to process all field-
specific/control-specific events for the window. It returns a value indicating
whether window process is complete and should stop. TakeFieldEvent
returns Level:Benign to indicate processing of this event should continue
normally; it returns Level:Notify to indicate processing is completed for this
event and the ACCEPT loop should CYCLE; it returns Level:Fatal to
indicate the event could not be processed and the ACCEPT loop should
BREAK.

Implementation: Return values are declared in ABERROR.INC. The TakeEvent method calls
the TakeFieldEvent method.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
 IF ~FIELD()
 RVal = SELF.TakeWindowEvent()
 IF RVal THEN RETURN RVal.
 END
 CASE EVENT()
 OF EVENT:Accepted; RVal = SELF.TakeAccepted()
 OF EVENT:Rejected; RVal = SELF.TakeRejected()
 OF EVENT:Selected; RVal = SELF.TakeSelected()
 OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
 OF EVENT:Completed; RVal = SELF.TakeCompleted()
 OF EVENT:CloseWindow OROF EVENT:CloseDown
 RVal = SELF.TakeCloseEvent()
 END
 IF RVal THEN RETURN RVal.
 IF FIELD()
 RVal = SELF.TakeFieldEvent()
 END
 RETURN Rval

See Also: WindowManager.Ask

780 CLARION 5 APPLICATION HANDBOOK

TakeWindowEvent (a virtual to process non-field events)

TakeWindowEvent, DERIVED, PROC

The TakeWindowEvent method processes all non-field events for the
window and returns a value indicating whether window ACCEPT loop
processing is complete and should stop. TakeWindowEvent returns
Level:Benign to indicate processing of this event should continue normally;
it returns Level:Notify to indicate processing is completed for this event and
the ACCEPT loop should CYCLE; it returns Level:Fatal to indicate the event
could not be processed and the ACCEPT loop should BREAK.

Implementation: TakeWindowEvent implements standard handling of EVENT:OpenWindow
Open method), EVENT:LoseFocus, EVENT:GainFocus (Reset method), and
EVENT:Sized (WindowResizeClass.Resize method). Return values are
declared in ABERROR.INC.

The TakeEvent method calls the TakeWindowEvent method.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN Rval

See Also: WindowManager.TakeEvent

CHAPTER 45 RELATIONMANAGER 781

45 - RELATIONMANAGER

Overview
The RelationManager class declares a relation manager object that does the
following:

• Consistently and flexibly defines relationships between files—the
relationships need not be defined in a data dictionary; they may be
defined directly (dynamically) to the relation manager object.

• Reliably enforces discrete specified levels of referential integrity (RI)
constraints between the related files—the RI constraints need not be
defined in a data dictionary; they may be defined directly (dynamically)
to the relation manager object.

• Conveniently forwards appropriate file commands to related files—for
example, when a relation manager object opens its primary file, it also
opens any related files.

The RelationManager class provides “setup” methods that let you describe
the file relationships, their linking fields, and their associated RI constraints;
plus other methods to perform the cascadable or constrainable database
operations such as open, change, delete, and close.

Relation Manager Concepts and Conventions

Cascading Commands and Referential Constraints

You can fully describe a set of file relationships with a series of
RelationManager objects—one RelationManager object for each file. Each
RelationManager object defines the relationships between its primary file
and any files directly related to the primary file. However, each
RelationManager object also knows about its related files’ RelationManager
objects, so indirectly, it knows about those secondary relationships too.

For example, consider three related files: Customer <->> Order <->> Item,
where <->> indicates a one:many relationship. The RelationManager object
for the Customer file knows about the relationship between Customer and
Order, but it also knows about the Order file’s RelationManager object, so
indirectly, it knows about the relationship between Order and Item too.

The benefit of this chain of RelationManager awareness, is that you can issue
a file command such as open or close to any one of the RelationManager
objects and it forwards the command up and down the chain of related files;
and for deletes or changes, it enforces any relational integrity constraints up
and down the chain of related files.

782 CLARION 5 APPLICATION HANDBOOK

Me and Him

Some of the RelationManager methods refer to its primary file as “MyFile”
or “Me” and its related files as “HisFile” or “Him.” See Relation Manager
Properties for more information.

Left and Right (and Buffer)

Some of the RelationManager methods refer to its primary file record buffer
as “Left,” the associated queue buffer as “Right” and the associated save area
for the record as “Buffer.” See BufferedPairsClass and FieldPairsClass for
more information.

ABC Template Implementation

The ABC Templates derive a class from the RelationManager class for each
file the application processes. The derived classes are called
Hide:Relate:filename, but may be referenced as Relate:filename. These
derived classes and their methods are declared and implemented in the
generated appnaBC0.CLW through appnaBC9.CLW files (depending on
how many files your application uses). The derived class methods are
specific to the file being managed, and they enforce the file relationships and
referential integrity constraints specified in the data dictionary.

The ABC Templates generate housekeeping procedures to initialize and shut
down the RelationManager objects. The procedures are DctInit and DctKill.
They are generated into the appnaBC.CLW file.

The derived RelationManager classes are configurable with the Global
Properties dialog. See Template Overview—File Control Options and
Classes Options for more information.

Relationship to Other Application Builder Classes

FileManager and BufferedPairsClass

The RelationManager relies on both the FileManager and the
BufferedPairsClass to do much of its work. Therefore, if your program
instantiates the RelationManager it must also instantiate the FileManager and
the BufferedPairsClass. Much of this is automatic when you INCLUDE the
RelationManager header (ABFILE.INC) in your program’s data section. See
the Conceptual Example and see File Manager Class and Field Pairs Classes
for more information.

CHAPTER 45 RELATIONMANAGER 783

ViewManager

Perhaps more significantly, the RelationManager serves as the foundation or
“errand boy” of the ViewManager. If your program instantiates the
ViewManager it must also instantiate the RelationManager. See View
Manager Class for more information.

RelationManager Source Files

The RelationManager source code is installed by default to the Clarion
\LIBSRC folder. The RelationManager source code and its respective
components are contained in:

ABFILE.INC RelationManager declarations
ABFILE.CLW RelationManager method definitions

784 CLARION 5 APPLICATION HANDBOOK

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate some RelationManager objects.

This example uses the RelationManager class to cascade new key values
from parent file records to the corresponding child file records.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
INCLUDE('ABFILE.INC')
INCLUDE('ABREPORT.INC')
MAP
END

CUSTOMER FILE,DRIVER('TOPSPEED'),NAME('CUSTOMER'),PRE(CUS),BINDABLE,CREATE,THREAD
BYNUMBER KEY(CUS:CUSTNO),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CUSTNO LONG
NAME STRING(30)
ZIP DECIMAL(5)

END
END

PHONES FILE,DRIVER('TOPSPEED'),NAME('PHONES'),PRE(PHO),BINDABLE,CREATE,THREAD
BYCUSTOMER KEY(PHO:CUSTNO,PHO:PHONE),DUP,NOCASE,OPT
Record RECORD,PRE()
CUSTNO LONG
PHONE STRING(20)
TYPE STRING(8)

END
END

GlobalErrors ErrorClass

Access:CUSTOMER CLASS(FileManager)
Init PROCEDURE

END
Relate:CUSTOMER CLASS(RelationManager)
Init PROCEDURE

END

Access:PHONES CLASS(FileManager)
Init PROCEDURE

END
Relate:PHONES CLASS(RelationManager)
Init PROCEDURE

END

RecordsPerCycle LONG(25)
StartOfCycle LONG,AUTO
PercentProgress BYTE
ProgressMgr StepLongClass
CustView VIEW(CUSTOMER)

END
Process ProcessClass
Progress:Bar BYTE

CHAPTER 45 RELATIONMANAGER 785

ProgressWindow WINDOW('Processing...'),AT(,,142,59),CENTER,TIMER(1),GRAY,DOUBLE
PROGRESS,USE(Progress:Bar),AT(15,15,111,12),RANGE(0,100)
STRING(''),AT(0,3,141,10),USE(?Progress:UserString),CENTER
STRING(''),AT(0,30,141,10),USE(?Progress:Text),CENTER
BUTTON('Cancel'),AT(45,42,50,15),USE(?Progress:Cancel)

END
CODE
GlobalErrors.Init
Relate:CUSTOMER.Init
Relate:PHONES.Init
ProgressMgr.Init(ScrollSort:AllowNumeric)
Process.Init(CustView,Relate:CUSTOMER,|

?Progress:Text,Progress:Bar,|
ProgressMgr,CUS:CUSTNO)

Process.AddSortOrder(CUS:BYNUMBER)
Relate:CUSTOMER.Open
OPEN(ProgressWindow)
?Progress:Text{Prop:Text} = '0% Completed'
ACCEPT
CASE EVENT()
OF Event:OpenWindow
Process.Reset
IF Process.Next()
POST(Event:CloseWindow)
CYCLE

END
OF Event:Timer
StartOfCycle=Process.RecordsProcessed
LOOP WHILE Process.RecordsProcessed-StartOfCycle<RecordsPerCycle
CUS:CUSTNO+=100 !change parent key value
IF Relate:CUSTOMER.Update() !cascade change to children
BREAK

END
CASE Process.Next()
OF Level:Notify
?Progress:Text{Prop:Text} = 'Process Completed'
DISPLAY(?Progress:Text)
POST(EVENT:CloseWindow)
BREAK

OF Level:Fatal
POST(EVENT:CloseWindow)
BREAK

END
END

END
CASE FIELD()
OF ?Progress:Cancel
CASE Event()
OF Event:Accepted
POST(Event:CloseWindow)

END
END

END
ProgressMgr.Kill
Relate:CUSTOMER.Close
Relate:CUSTOMER.Kill
Relate:PHONES.Kill
GlobalErrors.Kill

786 CLARION 5 APPLICATION HANDBOOK

Access:CUSTOMER.Init PROCEDURE
CODE
PARENT.Init(Customer, GlobalErrors)
SELF.FileNameValue = 'CUSTOMER'
SELF.Buffer &= CUS:Record
SELF.AddKey(CUS:BYNUMBER,'CUS:BYNUMBER',1)

Relate:CUSTOMER.Init PROCEDURE
CODE
Access:CUSTOMER.Init
PARENT.Init(Access:CUSTOMER,1)
SELF.AddRelation(Relate:PHONES,RI:Cascade,RI:Restrict,PHO:BYCUSTOMER)
SELF.AddRelationLink(CUS:CUSTNO,PHO:CUSTNO)

Access:PHONES.Init PROCEDURE
CODE
PARENT.Init(Phones, GlobalErrors)
SELF.FileNameValue = 'PHONES'
SELF.Buffer &= PHO:Record
SELF.AddKey(PHO:BYCUSTOMER,'PHO:BYCUSTOMER')

Relate:PHONES.Init PROCEDURE
CODE
Access:PHONES.Init
PARENT.Init(Access:PHONES,1)
SELF.AddRelation(Relate:CUSTOMER)

CHAPTER 45 RELATIONMANAGER 787

RelationManager Properties
The Relation Manager contains the following properties.

Me (the primary file’s FileManager object)

Me &FileManager

The Me property is a reference to the FileManager object for the
RelationManager’s primary file. By definition, the file referenced by this
FileManager object is the RelationManager’s primary file. The Me property
identifies the primary file’s FileManager object for the various
RelationManager methods.

Implementation: The Init method sets the value of the Me property.

See Also: Init

UseLogout (transaction framing flag)

UseLogout BYTE

The UseLogout property determines whether cascaded updates or deletes are
done within a transaction frame (LOGOUT/COMMIT). A value of zero (0)
indicates no transaction framing; a value of one (1) indicates transaction
framing.

Implementation: The Init method sets the value of the UseLogout property.

The ABC Templates set the UseLogout property based on the Enclose RI
code in transaction frame check box in the Global Properties dialog.

See Also: Init

788 CLARION 5 APPLICATION HANDBOOK

RelationManager Methods
The Relation Manager contains the following methods.

Functional Organization—Expected Use

As an aid to understanding the RelationManager, it is useful to organize its
methods into two categories according to their expected use—the primary
interface and the virtual methods. This organization reflects what we believe
is typical use of the RelationManager methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the RelationManager object
AddRelation set a file relationship
AddRelationLink set linking fields for a relationship
SetAlias add/set a file alias
Kill shut down the RelationManager object

Mainstream Use:
OpenV open a file and any related files
SaveV copy current and designated related records
UpdateV update current record subject to RI constraints
DeleteV delete current record subject to RI constraints
CloseV close a file and any related files

V These methods are also Virtual.

Occasional Use:
ListLinkingFields map pairs of linked fields
SetQuickScan enable QuickScan across related files

Virtual Methods

We anticipate you will often want to override these methods, and because
they are virtual, they are very easy to override. These methods do provide
reasonable default behavior in case you do not want to override them.

Open open a file and any related files
CancelAutoInc undo PrimeAutoInc actions
Save copy current and designated related records
Update update current record subject to RI constraints
Delete delete current record subject to RI constraints
Close close a file and any related files

CHAPTER 45 RELATIONMANAGER 789

AddRelation (set a file relationship)

AddRelation(relationmanager [,updatemode ,deletemode ,relatedkey]), PROTECTED

AddRelation Describes a relationship between this object’s primary
file (see Me) and another file.

relationmanager The label of the related file’s RelationManager object.

updatemode A numeric constant, variable, EQUATE, or expression
that indicates the referential integrity constraint to apply
upon updates to the primary file’s linking field. Valid
constraints are none, clear, restrict, and cascade. If
omitted, then deletemode and relatedkey must also be
omitted, and the relationship is unconstrained.

deletemode A numeric constant, variable, EQUATE, or expression
that indicates the referential integrity constraint to apply
upon deletes of the primary file’s linking field. Valid
constraints are none, clear, restrict, and cascade. If
omitted, then updatemode and relatedkey must also be
omitted, and the relationship is unconstrained.

relatedkey The label of the related file’s linking KEY. If included,
the call to AddRelation must be followed by a call to
AddRelationLink for each linking component field of
the key. If omitted, then updatemode and deletemode
must also be omitted, and the relationship is uncon-
strained.

The AddRelation method, in conjunction with the AddRelationLink method,
describes a relationship between this object’s primary file (see Me) and
another file so that other RelationManager methods can cascade or constrain
file operations across the related files when appropriate.

Implementation: You should typically call AddRelation after the Init method is called (or
within your derived Init method).

The EQUATEs for updatemode and deletemode are declared in FILE.INC as
follows:

ITEMIZE(0),PRE(RI)
None EQUATE !no action on related files
Clear EQUATE !clear the linking fields in related files
Restrict EQUATE !disallow the operation if linked records exist
Cascade EQUATE !update the linking fields in related files, or

END !delete the linked records in related files

790 CLARION 5 APPLICATION HANDBOOK

Example:

Orders FILE,DRIVER('TOPSPEED'),PRE(ORD),CREATE
ByCustomer KEY(ORD:CustNo,ORD:OrderNo),DUP,NOCASE,OPT
Record RECORD,PRE()
CustNo LONG
OrderNo LONG
OrderDate LONG
Reference STRING(24)
ShipTo STRING(32)
Shipped BYTE
Carrier STRING(1)
 END
 END

Items FILE,DRIVER('TOPSPEED'),PRE(ITEM),CREATE
AsEntered KEY(ITEM:CustNo,ITEM:OrderNo,ITEM:LineNo),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CustNo LONG
OrderNo LONG
LineNo SHORT
ProdCode SHORT
Quantity SHORT
 END
 END
CODE
!program code

Relate:Orders.Init PROCEDURE
 CODE
 SELF.AddRelation(Relate:Items,0,0, ITEM:AsEntered)
 SELF.AddRelationLink(ORD:CustNo, ITEM:CustNo)
 SELF.AddRelationLink(ORD:OrderNo, ITEM:OrderNo)
 SELF.AddRelation(Relate:Customer)

See Also: AddRelationLink, Init

CHAPTER 45 RELATIONMANAGER 791

AddRelationLink (set linking fields for a relationship)

AddRelationLink(parentkey, childkey), PROTECTED

AddRelationLink Identifies the linking fields for a relationship between
this object’s primary file (see Me) and another file.

parentkey The label of the primary file’s linking field.

childkey The label of the related file’s linking field.

The AddRelationLink method, in conjunction with the AddRelation
method, describes a relationship between this object’s primary file (see Me)
and another file so that other RelationManager methods can cascade or
constrain file operations across the related files when appropriate.

You must call AddRelationLink for each pair of linking fields, and the calls
must be in sequence of high order linking fields to low order linking fields.

Implementation: You should typically call AddRelationLink after the Init method is called (or
within your derived Init method).

Example:

Orders FILE,DRIVER('TOPSPEED'),PRE(ORD),CREATE
ByCustomer KEY(ORD:CustNo,ORD:OrderNo),DUP,NOCASE,OPT
Record RECORD,PRE()
CustNo LONG
OrderNo LONG
OrderDate LONG
ShipTo STRING(32)
Shipped BYTE

. .
Items FILE,DRIVER('TOPSPEED'),PRE(ITEM),CREATE
AsEntered KEY(ITEM:CustNo,ITEM:OrderNo,ITEM:LineNo),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CustNo LONG
OrderNo LONG
LineNo SHORT
ProdCode SHORT
Quantity SHORT

. .
CODE
!program code

Relate:Orders.Init PROCEDURE
 CODE
 SELF.AddRelation(Relate:Items,0,0, ITEM:AsEntered)
 SELF.AddRelationLink(ORD:CustNo, ITEM:CustNo)
 SELF.AddRelationLink(ORD:OrderNo, ITEM:OrderNo)
 SELF.AddRelation(Relate:Customer)

See Also: AddRelation, Init

792 CLARION 5 APPLICATION HANDBOOK

CancelAutoInc (undo autoincrement)

CancelAutoInc, VIRTUAL, PROC

The CancelAutoInc method restores the managed file to its pre-
PrimeAutoInc state, typically when an insert operation is cancelled.
CancelAutoInc returns a value indicating its success or failure. A return
value of zero (0 or Level:Benign) indicates success; any other return value
indicates a problem.

Implementation: The CancelAutoInc method calls the FileManager.CancelAutoInc method for
its primary file, passing SELF as the relation manager parameter.

Return value EQUATEs are declared in ABERROR.INC as follows:

! Severity of error
Level:Benign EQUATE(0)
Level:User EQUATE(1)
Level:Program EQUATE(2)
Level:Fatal EQUATE(3)
Level:Cancel EQUATE(4)
Level:Notify EQUATE(5)

Return Data Type: BYTE

Example:

WindowManager.TakeCloseEvent PROCEDURE
 CODE
 IF SELF.Response <> RequestCompleted

!procedure code
 IF SELF.OriginalRequest=InsertRecord AND SELF.Response=RequestCancelled
 IF SELF.Primary.CancelAutoInc() !undo PrimeAutoInc - cascade
 SELECT(SELF.FirstField)
 RETURN Level:Notify
 END
 END

!procedure code
 END
 RETURN Level:Benign

See Also: FileManager.CancelAutoInc, FileManager.PrimeAutoInc

CHAPTER 45 RELATIONMANAGER 793

Close (close a file and any related files)

Close(cascading), VIRTUAL, PROC

Close Closes this object’s primary file (see Me) and any related
files.

cascading A numeric constant, variable, EQUATE, or expression
that indicates whether this method was called by itself
(recursive). A value of zero (0) indicates a non-recursive
call; a value of one (1) indicates a recursive call. This
allows the method to stop when it has processed all the
related files in a circular relationship. If omitted, cascad-
ing defaults to zero (0). You should always omit this
parameter when calling the Close method from your
program.

The Close method closes this object’s primary file (see Me) if no other
procedure needs it, and any related files, and returns a value indicating its
success or failure.

Implementation: The Close method uses the FileManager.Close method to close each file. The
Close method returns the FileManager.Close method’s return value. See File
Manager Class for more information.

Return Data Type: BYTE

Example:

Relate:Customer.Open !open Customer and related files
!program code !process the files
Relate:Customer.Close !close Customer and related files

See Also: FileManager.Close

794 CLARION 5 APPLICATION HANDBOOK

Delete (delete record subject to referential constraints)

Delete([confirm]), VIRTUAL

Delete Deletes the record from the primary file subject to any
specified referential integrity constraints.

confirm An integer constant, variable, EQUATE, or expression
that indicates whether to confirm the delete with the end
user. A value of one (1 or True) deletes only on confir-
mation from the end user; a value of zero (0 or false)
deletes without confirmation. If omitted, confirm de-
faults to one (1).

The Delete method deletes the current record from the primary file (see Me)
applying any specified referential integrity constraints, then returns a value
indicating its success or failure. The deletes are done within a transaction
frame if the Init method’s uselogout parameter is set to one (1).

Implementation: Delete constraints are specified by the AddRelation method. If the constraint
is RI:Restrict, the method deletes the current record only if there are no
related child records. If the constraint is RI:Cascade, the method also deletes
any related child records. If the constraint is RI:None, the method
unconditionally deletes only the primary file record. If the constraint is
RI:Clear, the method unconditionally deletes the primary file record, and
clears the linking field values in any related child records.

The Delete method calls the primary file FileManager.Throw method to
confirm the delete with the end user.

Return Data Type: BYTE

Example:

DeleteCustomer PROCEDURE
CODE
Relate:Customer.Open !Open Customer & related files
IF NOT GlobalErrors.Throw(Msg:ConfirmDelete) !have user confirm delete
LOOP !allow retry if delete fails
IF Relate:Customer.Delete() !delete subject to constraints
IF NOT GlobalErrors.Throw(Msg:RetryDelete)!if del fails, offer to try again
CYCLE !if user accepts, try again

END ! otherwise, fall thru
END !if del succeeds or user declines

UNTIL 1 ! fall out of loop
END

See Also: AddRelation, Init

CHAPTER 45 RELATIONMANAGER 795

Init (initialize the RelationManager object)

Init(filemanager [,uselogout])

Init Initializes the RelationManager object.

filemanager The label of the FileManager object for the
RelationManager’s primary file. By definition, the file
referenced by this FileManager object is the
RelationManager’s primary file.

uselogout A numeric constant, variable, EQUATE, or expression
that determines whether cascaded updates or deletes are
done within a transaction frame (LOGOUT/COMMIT).
A value of zero (0) indicates no transaction framing; a
value of one (1) indicates transaction framing. If omit-
ted, logout defaults to zero (0).

The Init method initializes the RelationManager object. To implement the
RelationManager’s transaction framing, all the files within a transaction must
use the same file driver and that file driver must support LOGOUT.

Implementation: The Init method sets the value of the Me and UseLogout properties.

The ABC Templates set the uselogout parameter based on the Enclose RI
code in transaction frame check box in the Global Properties dialog.

Example:

PROGRAM
INCLUDE('FILE.INC') !declare RelationManager class

Access:Client CLASS(FileManager) !declare Access:Client class
Init PROCEDURE

END

Client FILE,DRIVER('TOPSPEED'),PRE(CLI),THREAD !declare Client file
IDKey KEY(CLI:ID),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
ID LONG
Name STRING(20)
StateCode STRING(2)

END
END

 CODE
Access:Client.Init !initialize Access:Client obj

 Relate:Client.Init(Access:Client,1) !init Relate:Client--use logout
 Relate:Client.AddRelation(Relate:States) !relate Client to States file
 !program code
 Relate:Client.Kill !shut down Relate:Client object
 Access:Client.Kill !shut down Access:Client object

See Also: Me

796 CLARION 5 APPLICATION HANDBOOK

Kill (shut down the RelationManager object)

Kill, VIRTUAL

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code.

Example:

PROGRAM
INCLUDE('FILE.INC') !declare RelationManager class

Access:Client CLASS(FileManager) !declare Access:Client class
Init PROCEDURE

END

Client FILE,DRIVER('TOPSPEED'),PRE(CLI),THREAD !declare Client file
IDKey KEY(CLI:ID),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
ID LONG
Name STRING(20)
StateCode STRING(2)

END
END

 CODE
Access:Client.Init !initialize Access:Client obj

 Relate:Client.Init(Access:Client,1) !init Relate:Client--use logout
 Relate:Client.AddRelation(Relate:States) !relate Client to States file
 !program code
 Relate:Client.Kill !shut down Relate:Client object
 Access:Client.Kill !shut down Access:Client object

CHAPTER 45 RELATIONMANAGER 797

ListLinkingFields (map pairs of linked fields)

ListLinkingFields(relationmanager, fieldpairs [, recursed])

ListLinkingFields Maps pairs of linking fields between the primary file and
a related file.

relationmanager The label of the related file’s RelationManager object.

fieldpairs The label of the FieldPairsClass object to receive the
linking field references.

recursed A numeric constant, variable, EQUATE, or expression
that indicates whether this method was called by itself
(recursive). A value of zero (0) indicates a non-recursive
call; a value of one (1) indicates a recursive call. This
allows the method to get the list of linking fields from
the relationmanager if necessary—since only one side of
the relationship maintains the list of linking fields. If
omitted, recursed defaults to zero (0). You should always
omit this parameter when calling the ListLinkingFields
method from your program.

The ListLinkingFields method maps pairs of linking fields between the
primary file and a related file.

Implementation: The RelationManager object does not use the resulting mapped fields, but
provides this mapping service for the ViewManager class, etc.

Example:

ViewManager.AddRange PROCEDURE(*? Field,RelationManager MyFile,RelationManager HisFile)
CODE !add range limit to view
SELF.Order.LimitType = Limit:File !set limit type: relationship
MyFile.ListLinkingFields(HisFile,SELF.Order.RangeList) !get linking fields
ASSERT(RECORDS(SELF.Order.RangeList.List)) !confirm Range limits exist
SELF.SetFreeElement !set free key element

See Also:

798 CLARION 5 APPLICATION HANDBOOK

Open (open a file and any related files)

Open(cascading), VIRTUAL, PROC

Open Opens this object’s primary file (see Me) and any related
files.

cascading A numeric constant, variable, EQUATE, or expression
that indicates whether this method was called by itself
(recursive). A value of zero (0) indicates a non-recursive
call; value of one (1) indicates a recursive call. This
allows the method to stop when it has processed all the
related files in a circular relationship. If omitted, cascad-
ing defaults to zero (0). You should always omit this
parameter when calling the Open method from your
program.

The Open method Opens this object’s primary file (see Me) and any related
files, and returns a value indicating its success or failure.

Implementation: The Open method uses the FileManager.Open method to Open each file. The
Open method returns the FileManager.Open method’s return value. See File
Manager Class for more information.

Return Data Type: BYTE

Example:

Relate:Customer.Open !open Customer and related files
!program code !process the files
Relate:Customer.Close !Close Customer and related files

See Also: FileManager.Open

Save (copy the current record and any related records)

Save, VIRTUAL

The Save method copies the current record in the primary file and any
related files. The copies may be used to detect subsequent changes to the
current record or restore the current record to its previous state.

Implementation: The Save method uses the BufferedPairsClass.AssignLeftToBuffer method
to Save each record. See Field Pairs Classes for more information.

CHAPTER 45 RELATIONMANAGER 799

SetAlias (set a file alias)

SetAlias(relationmanager)

SetAlias Identifies an alias of this object’s primary file.

relationmanager The label of the alias file’s RelationManager object.

The SetAlias method identifies an alias of this RelationManager object’s
primary file so that, when appropriate, the RelationManager only processes
the file one time. For example, if both the primary file and its alias are part of
a framed transaction (LOGOUT/COMMIT), the RelationManager
recognizes the alias and appropriately applies the LOGOUT only to the
primary file.

Example:

Customer FILE,DRIVER('TOPSPEED'),PRE(CLI),NAME(‘Customer’) !declare Customer file
IDKey KEY(CLI:ID),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
ID LONG
Name STRING(20)

END
END

Client FILE,DRIVER('TOPSPEED'),PRE(CUS),NAME(‘Customer’) !declare Client ‘alias’
IDKey KEY(CUS:ID),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
ID LONG
Name STRING(20)

END
END

Relate:Customer.SetAlias(Relate:Client) !Client = alias of Customer

800 CLARION 5 APPLICATION HANDBOOK

SetQuickScan (enable QuickScan on a file and any related files)

SetQuickScan(on [,propagate]), VIRTUAL

SetQuickScan Enables or disables quick scanning on this object’s
primary file and on the propagated related files.

on A numeric constant, variable, EQUATE, or expression
that enables or disables quick scanning. A value of zero
(0) disables quick scanning; a value of one (1) enables
quick scanning.

propagate A numeric constant, variable, EQUATE, or expression
that indicates which related files to include. Valid
propogation options are none, one:many, many:one, and
all. If omitted, propagate defaults to none.

The SetQuickScan method enables or disables quick scanning on this
object’s primary file and on the propagated related files.

Implementation: The SetQuickScan method SENDs the QUICKSCAN driver string to the file
driver for each specified file. The QUICKSCAN driver string is supported by
the ASCII, BASIC, and DOS drivers. See Database Drivers for more
information.

Corresponding EQUATEs for the valid propagate options are declared in
FILE.INC as follows:

ITEMIZE(0),PRE(Propagate)
None EQUATE !do primary file only, no related files
OneMany EQUATE !do 1-Many relations only
ManyOne EQUATE !do Many-1 relations only
All EQUATE !do all related files

END

Example:

Relate:Customer.SetQuickScan(1,Propagate:OneMany) !enable quickscan for 1:Many
Relate:Orders.SetQuickScan(1) !enable quickscan for primary
Relate:Orders.SetQuickScan(0) !disable quickscan for primary

CHAPTER 45 RELATIONMANAGER 801

Update (update record subject to referential constraints)

Update(fromform), VIRTUAL

Update Updates this object’s primary file (see Me) subject to the
specified referential integrity constraints.

fromform A numeric constant, variable, EQUATE, or expression
that indicates whether this method was called from a
(form) procedure with field history (restore) capability.
A value of zero (0) indicates no restore capability; a
value of one (1) indicates restore capability. This allows
the method to issue an appropriate message when the
update fails.

The Update method updates the current record in the primary file (see Me)
applying any specified referential integrity constraints, then returns a value
indicating its success or failure.

Implementation: Update constraints are specified by the AddRelation method and they apply
to the values in the linking fields. If the constraint is RI:Restrict, the method
does not update the current record if the change would result in orphaned
child records. If the constraint is RI:Cascade, the method updates the primary
file record as well as the linking field values in any related child records. If
the constraint is RI:None, the method unconditionally updates only the
primary file record. If the constraint is RI:Clear, the method unconditionally
updates the primary file record, and clears the linking field values in any
related child records.

Return Data Type: BYTE

Example:

ChangeOrder ROUTINE
IF Relate:Orders.Update(0) !update subject to constraints
MESSAGE(‘Update Failed’) ! if fails, acknowledge

ELSE ! otherwise
POST(Event:CloseWindow) ! shut down

END

See Also: AddRelation

802 CLARION 5 APPLICATION HANDBOOK

CHAPTER 46 REPORTMANAGER 803

46 - REPORTMANAGER

Overview
The ReportManager is a WindowManager that uses a ProcessClass object to
process report records in the background, and optionally uses a
PrintPreviewClass object to provide a full-featured print preview facility.

ReportManager Concepts

The ReportManager supports a batch report procedure, complete with
progress window, print preview, DETAIL specific record filtering, and
optimized sharing of machine resources.

Relationship to Other Application Builder Classes

The ReportManager is derived from the WindowManager because it supports
a progress window to provide appropriate visual feedback to the end user
(see WindowManager for more information).

The ReportManager uses the ProcessClass to manage the batch processing of
the REPORT’s underlying VIEW. The ReportManager optionally uses the
PrintPreviewClass to provide a full-featured print preview for the report.

If your program instantiates the ReportManager, it should also instantiate the
ProcessClass and may need the PrintPreviewClass as well. Much of this is
automatic when you INCLUDE the ReportManager header
(ABREPORT.INC) in your program’s data section. See the Conceptual
Example.

ABC Template Implementation

Report Templates

The Report Procedure template and the Report Wizard Utility template
automatically generate all the code and include all the classes necessary to
support your application’s template generated reports.

These Report templates generate code to instantiate a ReportManager object
called ThisWindow for each report procedure. The Report templates also
instantiate a ProcessClass object and optionally a PrintPreviewClass object
for the ThisWindow object to use.

804 CLARION 5 APPLICATION HANDBOOK

The ThisWindow object supports all the functionality specified in the Report
template’s Report Properties dialog. See Procedure Templates—Report for
more information.

Other Templates

The ChildFile extension template generates code so your reports can
efficiently process related child file items for each primary file item. See
Code and Extension Templates—ChildFile for more information.

The ExtendProgressWindow extension template generates code to help you
control the visual feedback for your report (progress window and wait
cursor), and to allow your report to alternatively process all items or a single
item. See Code and Extension Templates—ExtendProgressWindow for more
information.

The PauseButton control template generates code to let the end user suspend,
resume, and rerun the report without restarting the report procedure. See
Control Templates—PauseButton for more information.

ReportManager Source Files

The ReportManager source code is installed by default to the Clarion
\LIBSRC folder. The ReportManager source code and their respective
components are contained in:

ABREPORT.INC ReportManager declarations
ABREPORT.CLW ReportManager method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use and terminate a ReportManager and related objects.

This example uses the ReportManager object to preview a very simple report
before printing it. The program specifies a maximized print preview window.

 PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABREPORT.INC') !declare ReportManager &
! and PrintPreviewClass

 MAP
 END

GlobalErrors ErrorClass

CHAPTER 46 REPORTMANAGER 805

VCRRequest LONG(0),THREAD

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),THREAD
BYNUMBER KEY(CUS:CUSTNO),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CUSTNO LONG
Name STRING(30)
State STRING(2)

END
END

Access:Customer CLASS(FileManager) !declare Access:Customer object
Init PROCEDURE

END
Relate:Customer CLASS(RelationManager) !declare Relate:Customer object
Init PROCEDURE

END
CusView VIEW(Customer) !declare CusView VIEW

END
PctDone BYTE !track progress variable

report REPORT,AT(1000,1542,6000,7458),PRE(RPT),FONT('Arial',10,,),THOUS
HEADER,AT(1000,1000,6000,542),FONT(,,,FONT:bold)
STRING('Customers'),AT(2000,20),FONT(,14,,)
STRING('Id'),AT(52,313),TRN
STRING('Name'),AT(2052,313),TRN
STRING('State'),AT(4052,313),TRN

END
detail DETAIL,AT(,,6000,281),USE(?detail)

STRING(@n-14),AT(52,52),USE(CUS:CUSTNO)
STRING(@s30),AT(2052,52),USE(CUS:NAME)
STRING(@s2),AT(4052,52),USE(CUS:State)

END
FOOTER,AT(1000,9000,6000,219)
STRING(@pPage <<<#p),AT(5250,31),PAGENO,USE(?PageCount)

END
END

ProgressWindow WINDOW('Progress...'),AT(,,142,59),CENTER,TIMER(1),GRAY,DOUBLE
PROGRESS,USE(PctDone),AT(15,15,111,12),RANGE(0,100)
STRING(''),AT(0,3,141,10),USE(?UserString),CENTER
STRING(''),AT(0,30,141,10),USE(?TxtDone),CENTER
BUTTON('Cancel'),AT(45,42),USE(?Cancel)

END

ThisProcedure CLASS(ReportManager) !declare ThisProcedure object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

CusReport CLASS(ProcessClass) !declare CusReport object
TakeRecord PROCEDURE(),BYTE,PROC,VIRTUAL

END

Previewer PrintPreviewClass !declare Previewer object
! for use with ThisProcedure

 CODE
 ThisProcedure.Run() !run the report procedure

806 CLARION 5 APPLICATION HANDBOOK

ThisProcedure.Init PROCEDURE() !initialize ThisProcedure
ReturnValue BYTE,AUTO
 CODE
 GlobalErrors.Init
 Relate:Customer.Init
 ReturnValue = PARENT.Init()
 SELF.FirstField = ?PctDone
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors !set error handler for ThisProcedure
 Relate:Customer.Open !open Customer & related files
 OPEN(ProgressWindow)
 SELF.Opened=True

!do report specific initialization
 CusReport.Init(CusView,Relate:Customer,?TxtDone,PctDone,RECORDS(Customer))
 CusReport.AddSortOrder(CUS:BYNUMBER) !set report sort order
 SELF.AddItem(?Cancel,RequestCancelled) !set action on cancel
 SELF.Init(CusReport,report,Previewer) !register Previewer & CusReport with

! ThisProcedure
 SELF.Zoom = PageWidth
 Previewer.AllowUserZoom=True !allow custom zoom factors
 Previewer.Maximize=True !initially maximize preview window
 SELF.SetAlerts() !alert keys for ThisProcedure
 RETURN ReturnValue

ThisProcedure.Kill PROCEDURE() !shut down ThisProcedure
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill() !call base class shut down
 Relate:Customer.Close !close Customer & related files
 Relate:Customer.Kill !shut down Relate:Customer object
 GlobalErrors.Kill !shut down GlobalErrors object
 RETURN ReturnValue

CusReport.TakeRecord PROCEDURE() !do any per record process
ReturnValue BYTE,AUTO
SkipDetails BYTE
 CODE
 ReturnValue = PARENT.TakeRecord() !standard process for each record
 PRINT(RPT:detail) !print detail for each record
 RETURN ReturnValue

Access:Customer.Init PROCEDURE
 CODE
 PARENT.Init(Customer,GlobalErrors)
 SELF.FileNameValue = 'Customer'
 SELF.Buffer &= CUS:Record
 SELF.Create = 0
 SELF.LazyOpen = False
 SELF.AddKey(CUS:BYNUMBER,'CUS:BYNUMBER',0)

Relate:Customer.Init PROCEDURE
 CODE
 Access:Customer.Init
 PARENT.Init(Access:Customer,1)

CHAPTER 46 REPORTMANAGER 807

ReportManager Properties
The ReportManager inherits all the properties of the WindowManager class
from which it is derived. See WindowManager Properties for more
information.

In addition to the inherited properties, the ReportManager contains the
following properties:

DeferOpenReport (defer open)

DeferOpenReport BYTE, PROTECTED

The DeferOpenReport property controls whether the ReportManager opens
the report with the Open method or delays opening the report until the first
timer cycle. A value of one (1 or True) delays the open until the first timer
cycle; a value of zero (0 or False) opens the report immediately.

The DeferOpenReport property gives you an opportunity to query the end
user about items such as filters and sort orders before the report starts
printing.

Implementation: The Open and TakeWindowEvent methods implement the behavior specified
by the DeferOpenReport property.

See Also: Open, TakeWindowEvent

DeferWindow (defer progress window display)

DeferWindow USHORT, PROTECTED

The DeferWindow property controls when the ReportManager displays the
progress window. A value of zero (0 or False) displays the progress window
at the first opportunity (immediately); any other value delays the display for
value seconds. For example, a value of 5 delays the progress window for 5
seconds.

The DeferWindow property lets you delay or completely suppress the
progress window for your reports.

Tip: Use the ExtendProgressWindow extension template to
generate references to the DeferWindow property.

Implementation: The Ask and TakeWindowEvent methods implement the behavior specified
by the DeferWindow property.

See Also: Ask, TakeWindowEvent

808 CLARION 5 APPLICATION HANDBOOK

KeepVisible (persistent progress window)

KeepVisible BYTE, PROTECTED

The KeepVisible property controls whether the ReportManager hides or
displays the progress window prior to invoking the print preview. A value of
one (1 or True) displays the progress window; a value of zero (0 or False)
hides the progress window.

The KeepVisible property lets you present a persistent progress window for
reports with suspend-resume and multi-start capabilities.

Tip: Use the PauseButton control template to generate references
to the KeepVisible property.

Implementation: The TakeCloseEvent method implements the behavior specified by the
KeepVisible property.

See Also: TakeCloseEvent

Preview (PrintPreviewClass object)

Preview &PrintPreviewClass, PROTECTED

The Preview property is a reference to the PrintPreviewClass object the
ReportManager uses to provide an online preview of the report.

Implementation: The Init method sets the Preview property.

See Also: Init

CHAPTER 46 REPORTMANAGER 809

PreviewQueue (report metafile pathnames)

PreviewQueue &PreviewQueue, PROTECTED

The PreviewQueue property is a reference to a structure containing the full
pathnames of the report’s Windows metafiles (*.WMF)—one metafile for
each report page. The ReportManager object uses this property to provide an
online preview of the report, and to print the report after previewing. See
PREVIEW in the Language Reference for more information on report
metafiles.

Implementation: The ReportManager only uses the PreviewQueue property if the Preview
property is set.

The PreviewQueue structure is declared in ABREPORT.INC as follows:

PreviewQueue QUEUE,TYPE
Filename STRING(128)

END

See Also: Preview

Process (ProcessClass object)

Process &ProcessClass, PROTECTED

The Process property is a reference to the ProcessClass object the
ReportManager uses to manage the “batch” processing of the report’s data.
The Process property applies sort orders, range limits, and filters as needed,
and supplies appropriate visual feedback to the end user on the progress of
the batch process.

Implementation: The Init method sets the Process property.

See Also: Init

Report (the managed REPORT)

Report &WINDOW

The Report property is a reference to the managed REPORT structure. The
ReportManager uses this property to open, print, and close the REPORT.

Implementation: The Init method sets the Report property.

See Also: Init

810 CLARION 5 APPLICATION HANDBOOK

SkipPreview (print rather than preview)

SkipPreview BYTE

The SkipPreview property controls whether the ReportManager provides an
on-line preview when requested, or prints the report instead. A value of one
(1 or True) prints rather than previews the report; a value of zero (0 or False)
previews the report. The SkipPreview property is only effective if the
Preview property is set.

The SkipPreview property lets you suppress the on-line print preview
anytime before the AskPreview method executes.

Implementation: The AskPreview method implements the behavior specified by the
SkipPreview property.

See Also: AskPreview, Preview

TimeSlice (report resource usage)

TimeSlice USHORT

The TimeSlice property contains the amount of time in hundredths of a
second the ReportManager tries to "fill up" for each processing “cycle.” A
cycle begins with an EVENT:Timer (see TIMER in the Language Reference),
and ends about TimeSlice later. For example, for a TimeSlice of 100, the
ReportManager processes as many records as it can within about 100/100
(one) second before yielding control back to the operating system. To
provide efficient sharing of machine resources, we recommend setting the
TIMER to something less than or equal to TimeSlice.

Implementation: The Init method sets TimeSlice to one (100). The TakeWindowEvent method
continuously adjusts adjusts the number of records processed per cycle to fill
the specified TimeSlice—that is, to process as many records as possible
within the TimeSlice. This provides both efficient report processing and
reasonable sharing of machine resources, provided the TIMER value is less
than or equal to the TimeSlice value. This leaves the user in control in a
multi-tasking environment, especially when processing a large data set.

See Also: Init, TakeWindowEvent

CHAPTER 46 REPORTMANAGER 811

WaitCursor (defer progress window display)

WaitCursor BYTE, PROTECTED

The WaitCursor property controls whether the ReportManager displays the
standard Windows wait cursor while the report is processing. A value of one
(1 or True) displays the wait cursor; a value of zero (0 or False) does not.

The WaitCursor property is useful especially when you use the
DeferWindow property to delay or suppress the progress window display.

Tip: Use the ExtendProgressWindow extension template to
generate references to the WaitCursor property.

Implementation: The Ask and TakeCloseEvent methods implement the behavior specified by
the WaitCursor property.

See Also: Ask, TakeCloseEvent

Zoom (initial report preview magnification)

Zoom SHORT

The Zoom property controls the initial zoom or magnification factor for the
on-line report preview. A value of zero (0) uses the PrintPreviewClass
object’s default zoom setting. Any other value specifies the initial preview
zoom factor.

The Zoom property lets you override the PrintPreviewClass object’s default
zoom setting. The PrintPreviewClass object determines the actual zoom
factor applied.

The Zoom property is only effective if the Preview property is set.

Implementation: The AskPreview method implements the behavior specified by the Zoom
property by passing the Zoom value to the PrintPreviewClass.Display
method.

If the PrintPreviewClass object allows custom zoom factors, then the initial
magnification equals the Zoom value (81 gives 81%, 104 gives 104%, etc.).
If the PrintPreviewClass object only supports a limited set of discrete
magnifications, the initial magnification is the one closest to the Zoom value
(81 gives 75%, 104 gives 100%, etc.).

See Also: AskPreview, Preview, PrintPreviewClass.ZoomIndex

812 CLARION 5 APPLICATION HANDBOOK

ReportManager Methods
The ReportManager inherits all the methods of the WindowManager class
from which it is derived. See WindowManager Methods for more
information.

In addition to (or instead of) the inherited methods, the ReportManager
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the ReportManager, it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the ReportManager methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the ReportManager object
AskV display window and process its events
Kill V shut down the ReportManager object

V These methods are also Virtual.

Virtual Methods

Typically you will not call these methods directly—the primary interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

Ask display window and process its events
AskPreview preview or print the report
Next get next report record
Open prepare progress window
OpenReport prepare report for execution
TakeNoRecords handle empty report
TakeCloseEvent process EVENT:CloseWindow events
TakeWindowEvent process non-field events
Kill shut down the ReportManager object

CHAPTER 46 REPORTMANAGER 813

Ask (display window and process its events)

Ask, VIRTUAL

The Ask method initiates the event processing (ACCEPT loop) for the report
procedure. This virtual method handles any special processing immediately
before or after the report procedure’s event processing.

Implementation: The Run method calls the Ask method. The Ask method calls the
PARENT.Ask method to manage the ACCEPT loop for the report procedure.

Example:

MyReporter.Ask PROCEDURE
CODE
SETCURSOR(CURSOR:Wait) !special pre event handling code
PARENT.Ask !process events (ACCEPT)
SETCURSOR() !special post event handling code

See Also: WindowManager.Ask, WindowManager.Run

AskPreview (preview or print the report)

AskPreview, VIRTUAL

The AskPreview method previews or prints the report, only if the Preview
property references an operative PrintPreviewClass object.

If the SkipPreview property is true, AskPreview does not preview the report,
but prints it instead.

Implementation: The TakeCloseEvent method calls the AskPreview method to print or
preview the report. The AskPreview method calls the
PrintPreviewClass.Display method to preview the report.

Typically, the Init method sets the Preview reference.

Example:

MyReporter.TakeCloseEvent PROCEDURE
CODE
IF EVENT() = EVENT:CloseWindow
SELF.AskPreview()
IF ~SELF.Report&=NULL
CLOSE(SELF.Report)

END
END
RETURN Level:Benign

See Also: Ask, PrintPreviewClass.Display, Init, Preview, SkipPreview

814 CLARION 5 APPLICATION HANDBOOK

Init (initialize the ReportManager object)

Init(process object [, report] [, preview object])

Init Initializes the ReportManager object.

process object The label of the ProcessClass object the ReportManager
uses to batch process the report VIEW and provide
appropriate visual feedback to the end user on the
progress of the report.

report The label of the managed REPORT structure. If omitted,
the ReportManager becomes a batch VIEW processor
with automatic resource management.

preview object The label of the PrintPreviewClass object the
ReportManager uses to preview or print the report. If
omitted, the ReportManager prints the report without
generating preview image files.

The Init method does the report-specific initialization of the ReportManager
object. This Init method is in addition to the Init method inherited from the
WindowManager class which does general window procedure initialization.

Implementation: Typically, the Init method calls the Init(process, report, preview) method to
do report-specific intialization. The Init method sets the Preview, Process,
Report, and TimeSlice properties.

Example:

PrintPhones PROCEDURE
report REPORT,AT(1000,1540,6000,7460),PRE(RPT)
detail DETAIL,AT(,,6000,280)

STRING(@s20),AT(50,50,5900,170),USE(PHO:Number)
END

END

Previewer PrintPreviewClass !declare Previewer object
Process ProcessClass !declare Process object
ThisWindow CLASS(ReportManager) !declare derived ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END
!procedure data
CODE

 ThisWindow.Run !run the procedure (init,ask,kill)

ThisWindow.Init PROCEDURE()
 CODE
!procedure code

 ThisWindow.Init(Process,report,Previewer) !call the report-specific Init
!procedure code

See Also: WindowManager.Init

CHAPTER 46 REPORTMANAGER 815

Kill (shut down the ReportManager object)

Kill, VIRTUAL, PROC

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code. Kill returns a value to indicate
the status of the shut down. Valid return values are:

Level:Benign normal shut down
Level:Notify no action taken

Implementation: The Run method calls the Kill method. If the Dead property is True, Kill
returns Level:Notify and takes no other action. Otherwise, the Kill method,
among other things, calls the WindowManager.Kill method.

Return value EQUATEs are declared in ABERROR.INC.

Return Data Type: BYTE

Example:

ThisWindow.Kill PROCEDURE()
CODE
IF PARENT.Kill() THEN RETURN Level:Notify.
IF FilesOpened
Relate:Defaults.Close

END
IF SELF.Opened
INIMgr.Update('Main',AppFrame)

END
GlobalResponse = CHOOSE(LocalResponse=0,RequestCancelled,LocalResponse)

See Also: WindowManager.Dead, WindowManager.Run

816 CLARION 5 APPLICATION HANDBOOK

Next (get next report record)

Next, VIRTUAL, PROC

The Next method gets the next report record and returns a value indicating
whether the the report is completed, cancelled, or in progress. Valid return
values are:

Level:Benign proceeding normally
Level:Notify completed normally
Level:Fatal cancelled or ended abnormally

Implementation: The Next method calls the ProcessClass.Next method to get the next report
record. When the report is completed or canceled, the Next method sets the
Response property and POSTs an EVENT:CloseWindow to end the progress
window procedure.

Return Data Type: BYTE

Example:

ReportManager.Open PROCEDURE
 CODE
 PARENT.Open
 SELF.Process.Reset
 IF ~SELF.Next()
 IF ~SELF.Report&=NULL
 OPEN(SELF.Report)
 IF ~SELF.Preview &= NULL
 SELF.Report{PROP:Preview} = SELF.PreviewQueue.Filename
 END
 END
 END

See Also: ProcessClass.Next, WindowManager.Response

CHAPTER 46 REPORTMANAGER 817

Open (a virtual to execute on EVENT:OpenWindow)

Open, VIRTUAL

The Open method prepares the progress window for display. It is designed to
execute on window opening events such as EVENT:OpenWindow.

Implementation: The TakeWindowEvent method calls the Open method. The Open method
calls the WindowManager.Open method, then conditionally (based on the
DeferOpenReport property) calls the OpenReport method to reset the
ProcessClass object and get the first report record.

Example:

WindowManager.TakeWindowEvent PROCEDURE
RVal BYTE(Level:Benign)
 CODE
 CASE EVENT()
 OF EVENT:OpenWindow
 IF ~BAND(SELF.Inited,1)
 SELF.Open !handle EVENT:OpenWindow
 END
 IF SELF.FirstField
 SELECT(SELF.FirstField)
 END
 OF EVENT:LoseFocus
 IF SELF.ResetOnGainFocus
 SELF.ForcedReset = 1
 END
 OF EVENT:GainFocus
 IF BAND(SELF.Inited,1)
 SELF.Reset
 ELSE
 SELF.Open !handle EVENT:GainFocus
 END
 OF EVENT:Sized
 IF BAND(SELF.Inited,2)
 SELF.Reset
 ELSE
 SELF.Inited = BOR(SELF.Inited,2)
 END
 OF EVENT:Completed
 RVal = SELF.TakeCompleted()
 OF EVENT:CloseWindow OROF EVENT:CloseDown
 RVal = SELF.TakeCloseEvent()
 END
 RETURN RVal

See Also: DeferOpenReport, OpenReport, WindowManager.Open,
WindowManager.TakeWindowEvent

818 CLARION 5 APPLICATION HANDBOOK

OpenReport (prepare report for execution)

OpenReport, PROC, PROTECTED, VIRTUAL

The OpenReport method prepares the report to execute and returns a value
indicating success or failure. This is a good place to add any filters or keys
specified at runtime. Valid return values are:

Level:Benign report opened successfully
Level:Notify no records found
Level:Fatal failed, cause unknown

Implementation: The TakeWindowEvent method or the Open method calls the OpenReport
method depending on the value of the DeferOpenReport property. The
OpenReport method calls the Process.Reset method to reset the ProcessClass
object, calls the Next method to get the first report record, then opens the
REPORT structure.

The OpenReport method resets the DeferOpenReport property to zero so that
if deferred, the OpenReport only happens with the first timer event.

Return Data Type: BYTE

Example:

ReportManager.Open PROCEDURE
 CODE
PARENT.Open
IF ~SELF.DeferOpenReport
SELF.OpenReport !call OpenReport if not deferred

END

MyReportManager.TakeWindowEvent PROCEDURE
!procedure data
 CODE
IF EVENT() = EVENT:Timer
IF SELF.DeferOpenReport
SELF.OpenReport !if deferred, call OpenReport on timer

ELSE
!procedure code

MyReportManager.OpenReport PROCEDURE
 CODE
SELF.Process.SetFilter(UserFilter) !set dynamic filter
SELF.DeferOpenReport = 0
SELF.Process.Reset
IF ~SELF.Next()
IF ~SELF.Report&=NULL
OPEN(SELF.Report)
IF ~SELF.Preview &= NULL
SELF.Report{PROP:Preview} = SELF.PreviewQueue.Filename

. . .

See Also: DeferOpenReport, Next, Open, TakeWindowEvent, Process.Reset

CHAPTER 46 REPORTMANAGER 819

TakeCloseEvent (a virtual to process EVENT:CloseWindow)

TakeCloseEvent, VIRTUAL, PROC

The TakeCloseEvent method handles EVENT:CloseWindow for the
ReportManager and returns a value indicating whether window ACCEPT
loop processing is complete and should stop.

TakeCloseEvent returns returns Level:Benign to indicate processing of this
event should continue normally; it returns Level:Notify to indicate
processing is completed for this event and the ACCEPT loop should
CYCLE; it returns Level:Fatal to indicate the event could not be processed
and the ACCEPT loop should BREAK.

Implementation: The TakeEvent method calls the TakeCloseEvent method. The
TakeCloseEvent method calls the AskPreview method to preview or print the
report, then closes the report.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: AskPreview, WindowManager.TakeEvent

820 CLARION 5 APPLICATION HANDBOOK

TakeNoRecords (process empty report)

TakeNoRecords, VIRTUAL

The TakeNoRecords method implements any special processing required
for a report with no records.

Implementation: The OpenReport method calls the TakeNoRecords method. The
TakeNoRecords method issues a message indicating there are no records, and
therefore no report.

You can use the TakeNoRecords method to print a page indicating an empty
report. The default action is to issue the message and print nothing.

Example:

MyReportr.TakeNoRecords PROCEDURE
CODE
PARENT.TakeNoRecords
CLI:CustomerName = ‘No Customers’
PRINT(CustomerDetail)

See Also: OpenReport

CHAPTER 46 REPORTMANAGER 821

TakeWindowEvent (a virtual to process non-field events)

TakeWindowEvent, VIRTUAL, PROC

The TakeWindowEvent method processes all non-field events for the
progress window and returns a value indicating whether window ACCEPT
loop processing is complete and should stop. TakeWindowEvent returns
Level:Benign to indicate processing of this event should continue normally;
it returns Level:Notify to indicate processing is completed for this event and
the ACCEPT loop should CYCLE; it returns Level:Fatal to indicate the event
could not be processed and the ACCEPT loop should BREAK.

Implementation: The TakeEvent method calls the TakeWindowEvent method. The
TakeWindowEvent method processes EVENT:Timer events for the report.
The TakeWindowEvent method either calls OpenReport (if DeferOpenReport
is True) or begins processing a “cycle” of report records. Each timer event
begins a “cycle” of report record processing which ends about TimeSlice
later.

TakeWindowEvent calls the TakeRecord method and the Next method for
each record within a processing cycle. TakeWindowEvent adjusts the number
of records processed per cycle to fill the TimeSlice and optimize sharing of
machine resources. Finally, TakeWindowEvent calls the
WindowManager.TakeWindowEvent method to handle any other non-field
events.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: DeferOpenReport, Next, TimeSlice, TakeRecord,
WindowManager.TakeEvent, WindowManager.TakeWindowEvent

822 CLARION 5 APPLICATION HANDBOOK

CHAPTER 47 SELECTFILECLASS 823

47 - SELECTFILECLASS

Overview

SelectFileClass Concepts

The SelectFileClass object manages the Windows File Dialog—both 16-bit
(short filenames) and 32-bit versions (long filenames)—to select a single file
or multiple files.

Relationship to Other Application Builder Classes

The ASCIIViewerClass uses the the SelectFileClass to let the end user
choose the file to view. Otherwise, the SelectFileClass is completely
independent of other Application Builder Classes.

ABC Template Implementation

The ABC DOSFileLookup control template generates code to declare a local
SelectFileClass class and object for each instance of the SelectFile Control
Template.

The class is named SelectFile# where # is the instance number of the
DOSFileLookup control template. The template provides the derived class so
you can use the Classes tab to easily modify the select file behavior on an
instance-by-instance basis.

SelectFileClass Source Files

The SelectFileClass source code is installed by default to the Clarion
\LIBSRC folder. The SelectFileClass source code and its respective
components are contained in:

ABUTIL.INC SelectFileClass declarations
ABUTIL.CLW SelectFileClass method definitions
ABUTIL.TRN SelectFileClass default text, mask, flags

824 CLARION 5 APPLICATION HANDBOOK

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a SelectFileClass object. This
example displays a dialog that alternatively allows single file or multi-file
selection.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE('ABUTIL.INC') !declare SelectFileClass
MAP
END

SelectFile SelectFileClass !declare SelectFile object
FileQ SelectFileQueue !declare FileName QUEUE
FileQCount USHORT,AUTO !declare Q counter
FileNames CSTRING(255) !variable to hold file names
FileMask CSTRING('Text *.txt|*.txt|All *.*|*.*') !File dialog file masks
MultiFiles BYTE !single/multiple file switch
GetFile WINDOW('Select File'),AT(,,173,40),SYSTEM,GRAY,RESIZE

ENTRY(@s254),AT(6,6,144,12),USE(FileNames)
BUTTON('...'),AT(156,6,12,12),USE(?SelectFiles)
OPTION,AT(6,20,),USE(MultiFiles)
RADIO('One File'),AT(5,25),USE(?1File),VALUE('0')
RADIO('Multiple Files'),AT(45,25),USE(?MultiFile),VALUE('1')

END
BUTTON('Close'),AT(119,24),USE(?Close)

END
CODE
OPEN(GetFile)
ACCEPT

 IF EVENT() = EVENT:OpenWindow !on open window
SelectFile.Init !initialize SelectFile object
SelectFile.AddMask('Clarion source|*.clw;*.inc’) !set default file mask
SelectFile.AddMask(FileMask) !set additional file masks

END
CASE FIELD()
OF ?SelectFiles !on get file button
IF EVENT() = EVENT:Accepted !if user clicked it
IF MultiFiles !if multiple files requested
SelectFile.WindowTitle='Select multiple files'!set file dialog titlebar
SelectFile.Ask(FileQ,0) !display file dialog
LOOP FileQCount=1 TO RECORDS(FileQ) !for each selected file
GET(FileQ,FileQCount) !get the file information
MESSAGE(FileQ.Name) !process the file

END
ELSE !if single file requested
SelectFile.WindowTitle = 'Select one file' !set file dialog titlebar
FileNames = SelectFile.Ask(1) !display file dialog
DISPLAY(?FileNames) !redraw Filenames field

END
END

OF ?Close !on close button
 IF EVENT() = EVENT:Accepted !if user clicked it
 POST(Event:CloseWindow) !shut down

END
END

END

CHAPTER 47 SELECTFILECLASS 825

SelectFileClass Properties
The SelectFileClass contains the following properties.

DefaultDirectory (initial path)

DefaultDirectory CSTRING(File:MaxFilePath)

The DefaultDirectory property contains the directory the Windows file
dialog initially opens to. If DefaultDirectory is null, the file dialog opens to
the current directory.

DefaultFile (initial filename/filemask)

DefaultFile CSTRING(File:MaxFilePath)

The DefaultFile property contains the filename that initially appears in the
Windows file dialog filename field. The filename may contain wildcard
characters such as * to filter the file dialog’s file list.

Flags (file dialog behavior)

Flags BYTE

The Flags property is a bitmap that indicates the type of file action the
Windows file dialog performs (select, multi-select, save directory, lock
directory, suppress errors). The Flags property operates identically to the
FILEDIALOG flag parameter. See FILEDIALOG in the Language Reference
for more information.

Implementation: The Init method sets the Flags property to its default value declared in
ABUTIL.TRN—select a file from any directory.

See Also: Init

WindowTitle (file dialog title text)

WindowTitle CSTRING(80)

The WindowTitle property contains a string that sets the title bar text in the
Windows file dialog.

Implementation: The Init method sets the WindowTitle property to its default value declared
in ABUTIL.TRN. The SelectFileClass uses the WindowTitle property as the
title parameter to the FILEDIALOG function. See FILEDIALOG in the
Language Reference for more information.

See Also: Init

826 CLARION 5 APPLICATION HANDBOOK

SelectFileClass Methods
The SelectFileClass contains the following methods.

AddMask (add file dialog file masks)

AddMask(| description, masks |)
 | mask string |

AddMask Adds file masks to the file dialog’s List Files of Type
drop-down list.

description A string constant, variable, EQUATE, or expression that
contains a file mask description such as ‘all files-*.*’ or
‘source files-*.inc;*.clw’. The mask value may be
included in the description for information only.

masks A string constant, variable, EQUATE, or expression that
defines the file mask or masks corresponding to the
description, such as ‘*.*’ or ‘*.inc;*.clw’. Multiple
masks are separated by a semi-colon (;).

mask string A string constant, variable, EQUATE, or expression that
defines both the file masks and their descriptions.

The AddMask method adds file masks and their descriptions to the file
dialog’s List Files of Type drop-down list. The first mask is the default
selection in the file dialog.

The SetMask method replaces file masks and their descriptions.

The mask string parameter must contain one or more descriptions followed
by their corresponding file masks in the form
description|masks|description|masks. All elements in the string must be
delimited by the vertical bar (|). For example, ‘all files *.*|*.*|Clarion
source *.clw;*.inc|*.clw;*.inc’ defines two selections for the File Dialog’s
List Files of Type drop-down list.See the extensions parameter to the
FILEDIALOG function in the Language Reference for more information.

Example:

FileMask CSTRING('Text *.txt|*.txt|All *.*|*.*') a!File dialog file masks
CODE
!program code

 IF EVENT() = EVENT:OpenWindow !on open window
SelectFile.Init !initialize SelectFile object
SelectFile.SetMask('Clarion source’,’*.clw;*.inc’)!set default file mask
SelectFile.AddMask(FileMask) !set additional file masks

END

See Also: SetMask

CHAPTER 47 SELECTFILECLASS 827

Ask (display Windows file dialog)

Ask([file queue] [, restore path])

Ask Displays the Windows file dialog.

file queue The label of a QUEUE structure that receives informa-
tion for the selected files. The structure must be the same
as the SelectFileQueue structure declared in
ABUTIL.INC. If omitted, the end user may select only
one file, for which the Ask method returns the full
pathname.

restore path An integer constant, variable, EQUATE, or expression
that indicates whether to restore the current path to its
pre-file dialog state. A restore path value of one (1)
restores the current path; a value of zero (0) does not
restore the current path. If omitted, restore path defaults
to zero (0).

The Ask method displays the Windows file dialog and returns information,
primarily the full pathname, for the selected file or files.

Implementation: The file queue parameter must name a QUEUE that begins the same as the
SelectFileQueue structure declared in ABUTIL.INC:

SelectFileQueue QUEUE,TYPE
Name STRING(File:MaxFilePath)
ShortName STRING(File:MaxFilePath)

END

Return Data Type: STRING

Example:

FileQ SelectFileQueue !declare FileName QUEUE
FileQCount BYTE
CODE
!program code
SelectFile.Ask(FileQ,0) !multi file dialog, don’t restore directory
LOOP FileQCount=1 TO RECORDS(FileQ) !for each selected file
GET(FileQ,FileQCount) !get the file information
MESSAGE(FileQ.Name) !process the file

END

FileNames = SelectFile.Ask(1) !single file dialog, restore directory

828 CLARION 5 APPLICATION HANDBOOK

Init (initialize the SelectFileClass object)

Init

The Init method initializes the SelectFileClass object.

Implementation: The Init method WindowTitle and Flags properties to their default values
declared in ABUTIL.TRN.

Example:

 IF EVENT() = EVENT:OpenWindow !on open window
SelectFile.Init !initialize SelectFile object
SelectFile.AddMask('Clarion source|*.clw;*.inc’) !set default file mask
SelectFile.AddMask(FileMask) !set additional file masks

END

See Also: Flags, WindowTitle

CHAPTER 47 SELECTFILECLASS 829

SetMask (set file dialog file masks)

SetMask(| description, masks |)
 | mask string |

SetMask Sets the file masks available in the file dialog’s List
Files of Type drop-down list.

description A string constant, variable, EQUATE, or expression that
contains a file mask description such as ‘all files-*.*’ or
‘source files-*.inc;*.clw’. The mask value may be
included in the description for information only.

masks A string constant, variable, EQUATE, or expression that
defines the file mask or masks corresponding to the
description, such as ‘*.*’ or ‘*.inc;*.clw’. Multiple
masks are separated by a semi-colon (;).

mask string A string constant, variable, EQUATE, or expression that
defines both the file masks and their descriptions.

The SetMask method sets the file masks and their descriptions available in
the file dialog’s List Files of Type drop-down list. The first mask is the
default selection in the file dialog.

The AddMask method appends file masks and their descriptions.

The mask string parameter must contain one or more descriptions followed
by their corresponding file masks in the form
description|masks|description|masks. All elements in the string must be
delimited by the vertical bar (|). For example, ‘all files *.*|*.*|Clarion
source *.clw;*.inc|*.clw;*.inc’ defines two selections for the File Dialog’s
List Files of Type drop-down list.See the extensions parameter to the
FILEDIALOG function in the Language Reference for more information.

Example:

FileMask CSTRING('Text *.txt|*.txt|All *.*|*.*') a!File dialog file masks
CODE
!program code

 IF EVENT() = EVENT:OpenWindow !on open window
SelectFile.Init !initialize SelectFile object
SelectFile.SetMask('Clarion source’,’*.clw;*.inc’)!set default file mask
SelectFile.AddMask(FileMask) !set additional file masks

END

See Also: AddMask

830 CLARION 5 APPLICATION HANDBOOK

CHAPTER 48 STEPCLASS 831

48 - STEPCLASS

Overview
The StepClass estimates the relative position of a given record within a
keyed dataset. The StepClass is an abstract class—it is not useful by itself.
However, other useful classes are derived from it and other structures (such
as the BrowseClass and ProcessClass) use it to reference any of its derived
classes.

StepClass Concepts

The classes derived from the StepClass let you define an upper and a lower
boundary as well as a series of steps between the boundaries. Then the
classes help you traverse or navigate the defined steps with a scrollbar
thumb, a progress bar, or any control that shows a relative linear position
within a finite range.

The classes derived from the StepClass implement some of the common
variations in boundaries (alphanumeric or numeric) and steps (alphabetic
distribution, surname distribution, normal distribution) that occur in the
context of a browse or batch process.

The StepClass requires that the data be traversed with a key. If you are
traversing data without a key, you can track your progress simply by
counting records, and no StepClass is needed.

Relationship to Other Application Builder Classes

The BrowseClass and ProcessClass optionally use the classes derived from
the StepClass. Therefore, if your BrowseClass or ProcessClass objects use a
StepClass, then your program must instantiate a StepClass for each use.

The StepCustomClass, StepStringClass, StepLongClass, and StepRealClass
are all derived from the StepClass. Each of these derived classes provides
slightly different behaviors and characteristics.

StepCustomClass
Use the StepCustomClass when the data you are processing has
an alphanumeric key with a skewed distribution.

StepStringClass
Use the StepStringClass when the data you are processing has an
alphanumeric key with a normal distribution.

832 CLARION 5 APPLICATION HANDBOOK

StepLongClass
Use the StepLongClass when the data you are processing has an
integer key with a normal distribution.

StepRealClass
Use the StepRealClass when the data you are processing has a
non-integer numeric key with a normal distribution.

ABC Template Implementation

Because the StepClass is abstract, the ABC Template generated code does
not directly reference the StepClass—rather, it references classes derived
from the StepClass.

StepClass Source Files

The StepClass source code is installed by default to the Clarion \LIBSRC
folder. The StepClass source code and its respective components are
contained in:

ABBROWSE.INC StepClass declarations
ABBROWSE.CLW StepClass method definitions

CHAPTER 48 STEPCLASS 833

StepClass Properties
The StepClass has a single property—Controls. This property is inherited by
classes derived from StepClass. The Controls property is described below.

Controls (the StepClass sort sequence)

Controls BYTE

The Controls property contains a value that identifies for the StepClass
object:

• the characters included in the sort sequence
• the direction of the sort (ascending or descending)

The Init method sets the value of the Controls property.

A StepClass object may be associated with a BrowseClass object sort order.
The BrowseClass.AddSortOrder method sets the sort orders for a
BrowseClass object.

Implementation: The Controls property is a single byte bitmap that contains several important
pieces of information for the StepClass object. Set the value of the Controls
property with the Init method.

See Also: Init, BrowseClass.AddSortOrder

834 CLARION 5 APPLICATION HANDBOOK

StepClass Methods
The StepClass contains the following methods.

GetPercentile (return a value’s percentile)

GetPercentile(value), VIRTUAL

GetPercentile Returns the specified value’s percentile relative to the
StepClass object’s boundaries.

value A constant, variable, EQUATE, or expression that
specifies the value for which to calculate the percentile.

The GetPercentile method returns the specified value’s percentile relative to
the StepClass object’s upper and lower boundaries.

The GetPercentile method is a placeholder method for classes derived from
StepClass—StepLongClass, StepRealClass, StepStringClass,
StepCustomClass, etc.

Return Data Type: BYTE

See Also: StepLongClass.GetPercentile, StepRealClass.GetPercentile,
StepStringClass.GetPercentile, StepCustomClass.GetPercentile

GetValue (return a percentile’s value)

GetValue(percentile), VIRTUAL

GetValue Returns the specified percentile’s value relative to the
StepClass object’s boundaries.

percentile An integer constant, variable, EQUATE, or expression
that specifies the percentile for which to retrieve the
value.

The GetValue method returns the specified percentile’s value relative to the
StepClass object’s upper and lower boundaries.

The GetValue method is a placeholder method for classes derived from
StepClass—StepLongClass, StepRealClass, StepStringClass,
StepCustomClass, etc.

Return Data Type: STRING

See Also: StepLongClass.GetValue, StepRealClass.GetValue,
StepStringClass.GetValue, StepCustomClass.GetValue

CHAPTER 48 STEPCLASS 835

Init (initialize the StepClass object)

Init(controls)

Init Initializes the StepClass object.

controls An integer constant, variable, EQUATE, or expression
that contains several important pieces of information for
the StepClass object.

The Init method initializes the StepClass object.

The controls parameter identifies for the StepClass object:

• the characters included in the sort sequence
• whether the key is case sensitive
• the direction of the sort (ascending or descending)

Implementation: The Init method sets the value of the Controls property. Set the value of the
Controls property by adding together the applicable EQUATEs declared in
ABBROWSE.INC as follows:

ITEMIZE,PRE(ScrollSort)
AllowAlpha EQUATE(1) !include characters ABCDEFGHIJKLMNOPQRSTUVWXYZ
AllowAlt EQUATE(2) !include characters `!"£$%%^&*()''-=_+][#;~@:/.,?\|
AllowNumeric EQUATE(4) !include characters 0123456789
CaseSensitive EQUATE(8) !include characters abcdefghijklmnopqrstuvwxyz
Descending EQUATE(16) !the sort is descending
END

Example:

MyStepClass.Init(ScrollSort:AllowAlpha+ScrollSort:AllowNumeric)

See Also: Controls

Kill (shut down the StepClass object)

Kill, VIRTUAL

The Kill method is a virtual method to shut down the StepClass object.

The Kill method is a placeholder method for classes derived from
StepClass—StepStringClass, StepCustomClass, etc.

See Also: StepStringClass.Kill, StepCustomClass.Kill

836 CLARION 5 APPLICATION HANDBOOK

SetLimit (set smooth data distribution)

SetLimit(lower, upper), VIRTUAL

SetLimit Sets the StepClass object’s upper and lower boundaries.

lower A constant, variable, EQUATE, or expression that
specifies the StepClass object’s lower boundary. The
value may be numeric or alphanumeric.

upper A constant, variable, EQUATE, or expression that
specifies the StepClass object’s upper boundary. The
value may be numeric or alphanumeric.

The SetLimit method sets the StepClass object’s upper and lower
boundaries.

The SetLimit method is a placeholder method for classes derived from
StepClass—StepLongClass, StepRealClass, StepStringClass etc.

See Also: StepLongClass.SetLimit, StepRealClass.SetLimit, StepStringClass.SetLimit

SetLimitNeeded (return static/dynamic boundary flag)

SetLimitNeeded, VIRTUAL

The SetLimitNeeded method returns a value indicating whether the
StepClass object’s boundaries are static (set at compile time) or dynamic (set
at runtime). A return value of one (1) indicates dynamic boundaties that may
need to be reset when the monitored result set changes (records are added,
deleted, or filtered). A return value of zero (0) indicates the boundaries are
fixed at compile time (name or alpha distribution) and are not adjusted when
the monitored result set changes.

The SetLimitNeeded method is a placeholder method for classes derived
from StepClass, such as StepStringClass.

Return Data Type: BYTE

See Also: StepStringClass.SetLimitNeeded, BrowseClass.ResetThumbLimits

CHAPTER 49 STEPCUSTOMCLASS 837

49 - STEPCUSTOMCLASS

Overview
The StepCustomClass is a StepClass that handles a numeric or alphanumeric
key with a skewed distribution (data is not evenly distributed between the
lowest and highest key values). You can provide information about the data
distribution so that the StepCustomClass object returns accurate feedback
about the data being processed.

StepCustomClass Concepts

You can specify a custom data distribution for a StepCustomClass object that
fits a specific data set (the other StepClass objects apply one of several
predefined data distributions). Use the AddItem method to set the steps or
distribution points for the StepCustomClass object.

For example, your CustomerKey may contain values ranging from 1 to
10,000, but 90 percent of the values fall between 9,000 and 10,000. If your
StepClass object assumes the values are evenly distributed between 1 and
10,000 (StepLongClass with Runtime distribution), then your progress bars
and vertical scroll bar thumbs will give a misleading visual representation of
the data. However, if your StepClass object knows the actual data
distribution (StepCustomClass object with 90 percent of the steps between
9,000 and 10,000), then your progress bars and vertical scroll bar thumbs
will give an accurate visual representation of the data.

Tip: Use the StepLongClass for integer keys with normal
distribution. Use the StepStringClass for alphanumeric keys
with smooth or skewed distribution. Use the StepRealClass for
fractional keys with normal distribution.

Use the StepCustomClass when the data (key) is skewed (data is not evenly
distributed between the lowest and highest key values), and the skew does
not match any of the standard StepStringClass distribution options (see
StepStringClass for more information).

Relationship to Other Application Builder Classes

The BrowseClass and the ProcessClass optionally use the StepCustomClass.
Therefore, if your BrowseClass or ProcessClass uses the StepCustomClass,
your program must instantiate the StepCustomClass for each use. See the
Conceptual Example.

838 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

The ABC Templates (BrowseBox, Process, and Report) automatically
include all the classes and generate all the code necessary to use the
StepCustomClass with your BrowseBoxes, Reports, and Processes.

Process and Report Procedure Templates

By default, the Process and Report templates declare a StepStringClass,
StepLongClass, or StepRealClass called ProgressMgr. However, you can use
the Report Properties Classes tab (the Progress Class button) to declare a
StepCustomClass (or derive from the StepCustomClass) instead. Similarly,
you can use the Process Properties General tab (the Progress Manager
button) to declare a StepCustomClass (or derive from the StepCustomClass).
The templates provide the derived class so you can modify the ProgressMgr
behavior on an instance-by-instance basis.

If you specify a StepCustomClass object for a Process or Report procedure,
you must embed calls to the AddItem method (ProgressMgr.AddItem) to set
the custom “steps” or distribution points.

Browse Procedure and BrowseBox Control Templates

By default, the BrowseBox template declares a StepStringClass,
StepLongClass, or StepRealClass called BRWn::Sort#:StepClass, where n is
the BrowseBox template instance number, and # is the sort order sequence
(identifies the key). You can use the BrowseBox’s Scroll Bar Behavior
dialog to specify a StepCustomClass and to set the custom “steps” or
distribution points. You can use the Step Class button to derive from the
StepCustomClass so you can modify the StepCustomClass behavior on an
instance-by-instance basis.

StepCustomClass Source Files

The StepCustomClass source code is installed by default to the Clarion
\LIBSRC folder. The StepCustomClass source code and its respective
components are contained in:

ABBROWSE.INC StepCustomClass declarations
ABBROWSE.CLW StepCustomClass method definitions

CHAPTER 49 STEPCUSTOMCLASS 839

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a BrowseClass object and related
objects. The example initializes and page-loads a LIST, then handles a
number of associated events, including searching, scrolling, and updating.
When they are initialized properly, the BrowseClass and WindowManager
objects do most of the work (default event handling) internally.

 PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABBROWSE.INC')
 INCLUDE('ABREPORT.INC')

MAP
CustomerProcess PROCEDURE
END

CustomerProcess PROCEDURE

FilesOpened BYTE
Thermometer BYTE
Process:View VIEW(Customer)

END
ProgressWindow WINDOW('Progress...'),AT(,,142,59),CENTER,TIMER(1),GRAY,DOUBLE

PROGRESS,USE(Thermometer),AT(15,15,111,12),RANGE(0,100)
STRING(''),AT(0,3,141,10),USE(?UserString),CENTER
STRING(''),AT(0,30,141,10),USE(?PctText),CENTER
BUTTON('Cancel'),AT(45,42,50,15),USE(?Cancel)

END

ThisWindow CLASS(ReportManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END
ThisProcess ProcessClass !declare ThisProcess object
ProgressMgr StepCustomClass !declare ProgressMgr object
 CODE
 GlobalResponse = ThisWindow.Run()

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 SELF.Request = GlobalRequest
 ReturnValue = PARENT.Init()
 IF ReturnValue THEN RETURN ReturnValue.
 SELF.FirstField = ?Thermometer
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 CLEAR(GlobalRequest)
 CLEAR(GlobalResponse)
 Relate:Customer.Open
 FilesOpened = True
 OPEN(ProgressWindow)

840 CLARION 5 APPLICATION HANDBOOK

 SELF.Opened=True

 ProgressMgr.Init(ScrollSort:AllowNumeric) !initialize ProgressMgr object
! ignores inapplicable parameters

LOOP i# = 1 TO 9000 BY 1000 !build skewed distribution steps
Step"=i# !10% of customerids fall between 1 & 9000
ProgressMgr.AddItem(Step")

END
LOOP i# = 9010 TO 10000 BY 11 !90% of customerids between 9000 & 10000
Step"=i#
ProgressMgr.AddItem(Step")

END

ThisProcess.Init(Process:View,Relate:Customer,?PctText,Thermometer,ProgressMgr,CUS:ID)
ThisProcess.AddSortOrder(CUS:CustomerIDKey)
SELF.Init(ThisProcess)
SELF.AddItem(?Progress:Cancel,RequestCancelled)
SELF.SetAlerts()
RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 IF ReturnValue THEN RETURN ReturnValue.
 IF FilesOpened
 Relate:Customer.Close
 END
 RETURN ReturnValue

CHAPTER 49 STEPCUSTOMCLASS 841

StepCustomClass Properties
The StepCustomClass inherits all the properties of the StepClass from which
it is derived. See StepClass Properties and StepClass Concepts for more
information.

In addition to its inherited properties, the StepCustomClass also contains the
following properties:

Entries (expected data distribution)

Entries &CStringList, PROTECTED

The Entries property is a reference to a structure containing the markers or
boundaries that define the expected data distribution for the
StepCustomClass object. This property defines the expected data distribution
points (or steps), as well as the upper and lower boundaries the
StepCustomClass object implements. This, plus the actual data distribution,
ultimately determines how “far” the indicator (thumb or progress bar)
actually moves as records are processed.

The AddItem method sets the value of the Entries property.

Implementation: The Entries property is a reference to a QUEUE declared in BROWSE.INC
as follows:

CStringList QUEUE,TYPE
Item &CSTRING

END

See Also: AddItem

842 CLARION 5 APPLICATION HANDBOOK

StepCustomClass Methods
The StepCustomClass inherits all the methods of the StepClass from which it
is derived. See StepClass Concepts and StepClass Methods for more
information.

In addition to (or instead of) the inherited methods, the StepCustomClass
contains the following methods:

AddItem (add a step marker)

AddItem(stepmarker)

AddItem Adds a step marker to the expected data distribution for
the StepCustomClass object.

stepmarker A string constant, variable, EQUATE, or expression that
specifies the next step boundary for each step of the
StepCustomClass object’s expected data distribution.

The AddItem method adds a step marker to the expected data distribution
for the StepCustomClass object.

Implementation: The AddItem method sets the value of the Entries property.

Example:

GradeStepClass.AddItem(‘0’) !Failing: 0-65
GradeStepClass.AddItem(‘65’) !Below Average: 65-75
GradeStepClass.AddItem(‘75’) !Average: 75-85
GradeStepClass.AddItem(‘85’) !Better Than Average: 85-95
GradeStepClass.AddItem(‘95’) !Outstanding: 95-
GradeStepClass.AddItem(‘1000’) !Catchall upper boundary

See Also: Markers

CHAPTER 49 STEPCUSTOMCLASS 843

GetPercentile (return a value’s percentile)

GetPercentile(value), VIRTUAL

GetPercentile Returns the specified value’s percentile relative to the
StepCustomClass object’s boundaries.

value A string constant, variable, EQUATE, or expression that
specifies the value for which to calculate the percentile.

The GetPercentile method returns the specified value’s percentile relative to
the StepCustomClass object’s “steps.”

Implementation: The AddItem method sets the StepCustomClass object’s steps.

Return Data Type: BYTE

Example:

IF FIELD() = ?Locator !focus on locator field
IF EVENT() = EVENT:Accepted !if accepted
MyBrowse.TakeAcceptedLocator !BrowseClass handles it
?MyList{PROP:VScrollPos}=MyStep.GetPercentile(Locator) !position thumb to match

END
END

See Also: AddItem

844 CLARION 5 APPLICATION HANDBOOK

GetValue (return a percentile’s value)

GetValue(percentile), VIRTUAL

GetValue Returns the specified percentile’s value relative to the
StepCustomClass object’s boundaries.

percentile An integer constant, variable, EQUATE, or expression
that specifies the percentile for which to retrieve the
value.

The GetValue method returns the specified percentile’s value relative to the
StepCustomClass object’s “steps.”

Implementation: The AddItem method sets the StepCustomClass object’s steps.

Return Data Type: STRING

Example:

IF FIELD() = ?MyList !focus on browse list
IF EVENT() = EVENT:ScrollDrag !if thumb moved
Locator=MyStep.GetValue(?MyList{PROP:VScrollPos}) !update locator to match

END
END

See Also: AddItem

CHAPTER 49 STEPCUSTOMCLASS 845

Init (initialize the StepCustomClass object)

Init(controls)

Init Initializes the StepCustomClass object.

controls An integer constant, variable, EQUATE, or expression
that contains several important pieces of information for
the StepCustomClass object.

The Init method initializes the StepCustomClass object.

The controls identifies for the StepCustomClass object:

• the case sensitivity
• the direction of the sort (ascending or descending)

Implementation: The Init method sets the value of the Controls property. Set the value of the
Controls property by adding together the applicable EQUATEs declared in
BROWSE.INC as follows:

ITEMIZE,PRE(ScrollSort)
CaseSensitive EQUATE(8) !include abcdefghijklmnopqrstuvwxyz
Descending EQUATE(16) !the sort is descending
END

Example:

MyStepCustomClass.Init(ScrollSort:CaseSensitive)
!program code
MyStepCustomClass.Kill

See Also: StepClass.Controls

Kill (shut down the StepCustomClass object)

Kill, VIRTUAL

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code.

Implementation: The Kill method frees memory allocated for the Custom property.

Example:

MyStepCustomClass.Init(ScrollSort:AllowAlpha+ScrollSort:AllowNumeric)
!program code
MyStepCustomClass.Kill

846 CLARION 5 APPLICATION HANDBOOK

CHAPTER 50 STEPLOCATORCLASS 847

50 - STEPLOCATORCLASS

Overview
The StepLocatorClass is a LocatorClass that accepts a single character
search value, and does a continuous (wrap around) search starting from the
current item so you can, for example, find the next item that begins with the
search value (say, ‘T’), then continue to the next item that begins with the
same search value, etc. If there are no matching values, the step locator
proceeds the the next highest item.

Use a Step Locator when the search field is a STRING, CSTRING, or
PSTRING, a single character search is sufficient (a step locator is not
appropriate when there are many key values that begin with the same
character), and you want the search to take place immediately upon the end
user’s keystroke. Step Locators are not appropriate for numeric keys.

StepLocatorClass Concepts

A Step Locator is a single-character locator with no locator control required.

The StepLocatorClass lets you specify a locator control and a sort field on
which to search (the free key element) for a BrowseClass object. The
BrowseClass object uses the StepLocatorClass to locate and scroll to the
nearest matching item.

 When the BrowseClass LIST has focus and the user types a character, the
BrowseClass object advances the list to the next matching item (or the
subsequent item if there is no match).

Relationship to Other Application Builder Classes

The BrowseClass uses the StepLocatorClass to locate and scroll to the
nearest matching item. Therefore, if your program’s BrowseClass objects use
a Step Locator, your program must instantiate the StepLocatorClass for each
use. Once you register the StepLocatorClass object with the BrowseClass
object (see BrowseClass.AddLocator), the BrowseClass object uses the
StepLocatorClass object as needed, with no other code required. See the
Conceptual Example.

848 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

The ABC BrowseBox template generates code to instantiate the
StepLocatorClass for your BrowseBoxes. The StepLocatorClass objects are
called BRWn::Sort#:Locator, where n is the template instance number and #
is the sort sequence (id) number. As this implies, you can have a different
locator for each BrowseClass object sort order.

You can use the BrowseBox’s Locator Behavior dialog (the Locator Class
button) to derive from the EntryLocatorClass. The templates provide the
derived class so you can modify the locator’s behavior on an instance-by-
instance basis.

StepLocatorClass Source Files

The StepLocatorClass source code is installed by default to the Clarion
\LIBSRC folder. The StepLocatorClass source code and its respective
components are contained in:

ABBROWSE.INC StepLocatorClass declarations
ABBROWSE.CLW StepLocatorClass method definitions

CHAPTER 50 STEPLOCATORCLASS 849

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a BrowseClass object and related
objects, including a StepLocatorClass object. The example initializes and
page-loads a LIST, then handles a number of associated events, including
scrolling, updating, and locating records.

Note that the WindowManager and BrowseClass objects internally handle
the normal events surrounding the locator.

 PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABWINDOW.INC') !declare WindowManager class
 INCLUDE('ABBROWSE.INC') !declare BrowseClass and Locator
 MAP .
State FILE,DRIVER('TOPSPEED'),PRE(ST),THREAD
StateCodeKey KEY(ST:STATECODE),NOCASE,OPT
Record RECORD,PRE()
STATECODE STRING(2)
STATENAME STRING(20)

END
END

StView VIEW(State) !declare VIEW to process
END

StateQ QUEUE !declare Q for LIST
ST:STATECODE LIKE(ST:STATECODE)
ST:STATENAME LIKE(ST:STATENAME)
ViewPosition STRING(512)

END

Access:State CLASS(FileManager) !declare Access:State object
Init PROCEDURE

END
Relate:State CLASS(RelationManager) !declare Relate:State object
Init PROCEDURE

END
VCRRequest LONG(0),THREAD

StWindow WINDOW('Browse States'),AT(,,123,152),IMM,SYSTEM,GRAY
LIST,AT(8,5,108,124),USE(?StList),IMM,HVSCROLL,FROM(StateQ),|
FORMAT('27L(2)|M~CODE~@s2@80L(2)|M~STATENAME~@s20@')

END

ThisWindow CLASS(WindowManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END
BrowseSt CLASS(BrowseClass) !declare BrowseSt object
Q &StateQ

END
StLocator StepLocatorClass !declare StLocator object
StStep StepStringClass !declare StStep object

850 CLARION 5 APPLICATION HANDBOOK

CODE
ThisWindow.Run() !run the window procedure

ThisWindow.Init PROCEDURE() !initialize things
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init() !call base class init
IF ReturnValue THEN RETURN ReturnValue.
Relate:State.Init !initialize Relate:State object
SELF.FirstField = ?StList !set FirstField for ThisWindow
SELF.VCRRequest &= VCRRequest !VCRRequest not used
Relate:State.Open !open State and related files
!Init BrowseSt object by naming its LIST,VIEW,Q,RelationManager & WindowManager
BrowseSt.Init(?StList,StateQ.ViewPosition,StView,StateQ,Relate:State,SELF)
OPEN(StWindow)
SELF.Opened=True
BrowseSt.Q &= StateQ !reference the browse QUEUE
StStep.Init(+ScrollSort:AllowAlpha,ScrollBy:Runtime)!initialize the StStep object
BrowseSt.AddSortOrder(StStep,ST:StateCodeKey) !set the browse sort order
BrowseSt.AddLocator(StLocator) !plug in the browse locator
StLocator.Init(,ST:STATECODE,1,BrowseSt) !initialize the locator object
BrowseSt.AddField(ST:STATECODE,BrowseSt.Q.ST:STATECODE) !set a column to browse
BrowseSt.AddField(ST:STATENAME,BrowseSt.Q.ST:STATENAME) !set a column to browse
SELF.SetAlerts() !alert any keys for ThisWindow
RETURN ReturnValue

ThisWindow.Kill PROCEDURE() !shut down things
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill() !call base class shut down
IF ReturnValue THEN RETURN ReturnValue.
Relate:State.Close !close State and related files
Relate:State.Kill !shut down Relate:State object
GlobalErrors.Kill !shut down GlobalErrors object
RETURN ReturnValue

CHAPTER 50 STEPLOCATORCLASS 851

StepLocatorClass Properties
The StepLocatorClass inherits all the properties of the LocatorClass from
which it is derived. See LocatorClass Properties for more information.

852 CLARION 5 APPLICATION HANDBOOK

StepLocatorClass Methods
The StepLocatorClass inherits all the methods of the LocatorClass from
which it is derived. See LocatorClass Methods for more information.

In addition to (or instead of) the inherited methods, the StepLocatorClass
contains the following methods:

Set (restart the locator)

Set, VIRTUAL

The Set method prepares the locator for a new search.

Implementation: The Set method does nothing because each new step locator search reprimes
the locator’s FreeElement—since the step locator is a single character search.

Example:

BrowseClass.SetSort PROCEDURE(BYTE B,BYTE Force)
CODE
IF SELF.SetSort(B)
IF ~SELF.Sort.Locator &= NULL
SELF.Sort.Locator.Set

END
END

TakeKey (process an alerted keystroke)

TakeKey, VIRTUAL

The TakeKey method processes an alerted keystroke for the LIST control
and returns a value indicating whether the browse list display must change.

Tip: By default, all alphanumeric keys are alerted for LIST controls.

Implementation: The TakeKey method primes the FreeElement property with the appropriate
search value, then returns one (1) if a new search is required or returns zero
(0) if no new search is required. A search is required only if the keystroke is
a valid search character.

Return Data Type: BYTE

Example:

 IF SELF.Sort.Locator.TakeKey() !process the search key
 SELF.Reset(1) ! if valid, reset the view
 SELF.ResetQueue(Reset:Done) ! and the browse queue
 END

See Also: FreeElement

CHAPTER 51 STEPLONGCLASS 853

51 - STEPLONGCLASS

Overview
The StepLongClass is a StepClass that handles integer keys with a normal
distribution (data is evenly distributed between the lowest and highest key
values).

StepLongClass Concepts

The StepLongClass object applies a normal data distribution between its
upper and lower boundaries. Use the SetLimit method to set the expected
data distribution for the StepLongClass object.

Use the StepLongClass with integer keys that have a normal distribution
(data is evenly distributed between the lowest and highest key values).

Tip: Use the StepCustomClass for integer keys with other skews.
Use the StepRealClass for non-integer numeric keys. Use the
StepStringClass for alphanumeric keys.

Relationship to Other Application Builder Classes

The BrowseClass and the ProcessClass optionally use the StepLongClass.
Therefore, if your BrowseClass or ProcessClass uses the StepLongClass,
your program must instantiate the StepLongClass for each use. See the
Conceptual Example.

ABC Template Implementation

The ABC Templates (BrowseBox, Process, and Report) automatically
include all the classes and generate all the code necessary to use the
StepLongClass with your BrowseBoxes, Reports, and Processes.

Process and Report Procedure Templates

By default, the Process and Report templates declare a StepLongClass for
integer keys called ProgressMgr. You can use the Report Properties Classes
tab (the Progress Class button) or the Process Properties General tab (the
Progress Manager button) to derive from the StepLongClass instead. The
templates provide the derived class so you can modify the ProgressMgr
behavior on an instance-by-instance basis.

854 CLARION 5 APPLICATION HANDBOOK

Browse Procedure and BrowseBox Control Templates

By default, the BrowseBox template declares a StepLongClass for integer
keys called BRWn::Sort#:StepClass, where n is the BrowseBox template
instance number, and # is the sort order sequence (identifies the key). You
can use the BrowseBox’s Scroll Bar Behavior dialog—Step Class button to
derive from the StepLongClass so you can modify the StepLongClass
behavior on an instance-by-instance basis.

StepLongClass Source Files

The StepLongClass source code is installed by default to the Clarion
\LIBSRC folder. The StepLongClass source code and its respective
components are contained in:

ABBROWSE.INC StepLongClass declarations
ABBROWSE.CLW StepLongClass method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a StepLongClass object and related
objects. The example batch processes a Customer file on an integer key—
CustomerID.

 INCLUDE('ABBROWSE.INC')
 INCLUDE('ABREPORT.INC')

MAP
CustomerProcess PROCEDURE
END

CustomerProcess PROCEDURE

FilesOpened BYTE
Thermometer BYTE
Process:View VIEW(Customer)

END
ProgressWindow WINDOW('Progress...'),AT(,,142,59),CENTER,TIMER(1),GRAY,DOUBLE

PROGRESS,USE(Thermometer),AT(15,15,111,12),RANGE(0,100)
STRING(''),AT(0,3,141,10),USE(?UserString),CENTER
STRING(''),AT(0,30,141,10),USE(?PctText),CENTER
BUTTON('Cancel'),AT(45,42,50,15),USE(?Cancel)

END

ThisWindow CLASS(ReportManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

ThisProcess ProcessClass !declare ThisProcess object
ProgressMgr StepLongClass !declare ProgressMgr object

CHAPTER 51 STEPLONGCLASS 855

 CODE
 GlobalResponse = ThisWindow.Run()

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 SELF.Request = GlobalRequest
 ReturnValue = PARENT.Init()
 IF ReturnValue THEN RETURN ReturnValue.
 SELF.FirstField = ?Thermometer
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 CLEAR(GlobalRequest)
 CLEAR(GlobalResponse)
 Relate:Customer.Open
 FilesOpened = True
 OPEN(ProgressWindow)
 SELF.Opened=True
ProgressMgr.Init(ScrollSort:AllowNumeric) !initialize ProgressMgr object

! ignores inapplicable parameters
ThisProcess.Init(Process:View,Relate:Customer,?PctText,Thermometer,ProgressMgr,CUS:ID)

 ThisProcess.AddSortOrder(CUS:CustomerIDKey)
 SELF.Init(ThisProcess)
 SELF.AddItem(?Progress:Cancel,RequestCancelled)
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 IF ReturnValue THEN RETURN ReturnValue.
 IF FilesOpened
 Relate:Customer.Close
 END
 RETURN ReturnValue

856 CLARION 5 APPLICATION HANDBOOK

StepLongClass Properties
The StepLongClass inherits all the properties of the StepClass from which it
is derived. See StepClass Properties for more information.

In addition to its inherited properties, the StepLongClass also contains the
following properties:

 Low (lower boundary)

Low LONG

The Low property contains the value of the StepLongClass object’s lower
boundary.

The SetLimit method sets the value of the Low property.

See Also: SetLimit

High (upper boundary)

High LONG

The High property contains the value of the StepLongClass object’s upper
boundary.

The SetLimit method sets the value of the High property.

See Also: SetLimit

CHAPTER 51 STEPLONGCLASS 857

StepLongClass Methods
The StepLongClass inherits all the methods of the StepClass from which it is
derived. See StepClass Methods for more information.

In addition to (or instead of) the inherited methods, the StepLongClass
contains the following methods:

GetPercentile (return a value’s percentile)

GetPercentile(value), VIRTUAL

GetPercentile Returns the specified value’s percentile relative to the
StepLongClass object’s boundaries.

value A constant, variable, EQUATE, or expression that
specifies the value for which to calculate the percentile.

The GetPercentile method returns the specified value’s percentile relative to
the StepLongClass object’s upper and lower boundaries. For example, if the
bounds are 0 and 1000 then GetPercentile(750) returns 75.

Implementation: The SetLimit method sets the StepLongClass object’s upper and lower
boundaries.

Return Data Type: BYTE

Example:

IF FIELD() = ?Locator !focus on locator field
IF EVENT() = EVENT:Accepted !if accepted
MyBrowse.TakeAcceptedLocator !BrowseClass handles it
?MyList{PROP:VScrollPos}=MyStep.GetPercentile(Locator) !position thumb to match

END
END

See Also: SetLimit

858 CLARION 5 APPLICATION HANDBOOK

GetValue (return a percentile’s value)

GetValue(percentile), VIRTUAL

GetValue Returns the specified percentile’s value relative to the
StepLongClass object’s boundaries.

percentile An integer constant, variable, EQUATE, or expression
that specifies the percentile for which to retrieve the
value.

The GetValue method returns the specified percentile’s value relative to the
StepLongClass object’s upper and lower boundaries. For example, if the
bounds are 0 and 1000 then GetValue(25) returns ‘250’.

Implementation: The SetLimit method sets the StepLongClass object’s upper and lower
boundaries.

Return Data Type: STRING

Example:

IF FIELD() = ?MyList !focus on browse list
IF EVENT() = EVENT:ScrollDrag !if thumb moved
Locator=MyStep.GetValue(?MyList{PROP:VScrollPos}) !update locator to match

END
END

See Also: SetLimit

CHAPTER 51 STEPLONGCLASS 859

SetLimit (set smooth data distribution)

SetLimit(lower, upper), VIRTUAL

SetLimit Sets the StepLongClass object’s evenly distributed steps
between upper and lower.

lower An integer constant, variable, EQUATE, or expression
that specifies the StepLongClass object’s lower bound-
ary.

upper An integer constant, variable, EQUATE, or expression
that specifies the StepLongClass object’s upper bound-
ary.

The SetLimit method sets the StepLongClass object’s evenly distributed
steps between upper and lower. The StepLongClass object (GetPercentile
and GetValue methods) uses these steps to estimate key values and
percentiles for the processed data.

Implementation: The BrowseClass.ResetThumbLimits and the
ProcessClass.SetProgressLimits methods call the SetLimit method to
calculate the expected data distribution for the data. The SetLimit method
sets 100 evenly distributed “steps” or markers between lower and upper.

Example:

MyStep.SetLimit(1,9700) !establish scrollbar steps and boundaries

See Also: GetPercentile, GetValue, BrowseClass.ResetThumbLimits,
ProcessClass.SetProgressLimits

860 CLARION 5 APPLICATION HANDBOOK

CHAPTER 52 STEPREALCLASS

52 - STEPREALCLASS

Overview
The StepRealClass is a StepClass that handles fractional (non-integer) keys
with a normal distribution (data is evenly distributed between the lowest and
highest key values).

StepRealClass Concepts

The StepRealClass object applies a normal data distribution between its
upper and lower boundaries. Use the SetLimit method to set the expected
data distribution for the StepRealClass object.

Use the StepRealClass with non-integer numeric keys that have a normal
distribution (data is evenly distributed between the lowest and highest key
values).

Tip: Use the StepLongClass for integer numeric keys. Use the
StepStringClass for alphanumeric keys. Use the
StepCustomClass for keys with skewed distributions.

Relationship to Other Application Builder Classes

The BrowseClass and the ProcessClass optionally use the StepRealClass.
Therefore, if your BrowseClass or ProcessClass uses the StepRealClass,
your program must instantiate the StepRealClass for each use. See the
Conceptual Example.

ABC Template Implementation

The ABC Templates (BrowseBox, Process, and Report) automatically
include all the classes and generate all the code necessary to use the
StepRealClass with your BrowseBoxes, Reports, and Processes.

Process and Report Procedure Templates

By default, the Process and Report templates declare a StepRealClass for
fractional keys called ProgressMgr. You can use the Report Properties
Classes tab (the Progress Class button) or the Process Properties General
tab (the Progress Manager button) to derive from the StepRealClass

862 CLARION 5 APPLICATION HANDBOOK

instead. The templates provide the derived class so you can modify the
ProgressMgr behavior on an instance-by-instance basis.

Browse Procedure and BrowseBox Control Templates

By default, the BrowseBox template declares a StepRealClass for non-
integer numeric keys called BRWn::Sort#:StepClass, where n is the
BrowseBox template instance number, and # is the sort order sequence
(identifies the key). You can use the BrowseBox’s Scroll Bar Behavior
dialog—Step Class button to derive from the StepRealClass so you can
modify the StepRealClass behavior on an instance-by-instance basis.

StepRealClass Source Files

The StepRealClass source code is installed by default to the Clarion
\LIBSRC folder. The StepRealClass source code and its respective
components are contained in:

ABBROWSE.INC StepRealClass declarations
ABBROWSE.CLW StepRealClass method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a StepRealClass object and related
objects. The example batch-processes a Customer file on a fractional (non-
integer) key—CustomerID.

 INCLUDE('ABBROWSE.INC')
 INCLUDE('ABREPORT.INC')

MAP
CustomerProcess PROCEDURE
END

CustomerProcess PROCEDURE

FilesOpened BYTE
Thermometer BYTE
Process:View VIEW(Customer)

END
ProgressWindow WINDOW('Progress...'),AT(,,142,59),CENTER,TIMER(1),GRAY,DOUBLE

PROGRESS,USE(Thermometer),AT(15,15,111,12),RANGE(0,100)
STRING(''),AT(0,3,141,10),USE(?UserString),CENTER
STRING(''),AT(0,30,141,10),USE(?PctText),CENTER
BUTTON('Cancel'),AT(45,42,50,15),USE(?Cancel)

END

CHAPTER 52 STEPREALCLASS

ThisWindow CLASS(ReportManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

ThisProcess ProcessClass !declare ThisProcess object
ProgressMgr StepRealClass !declare ProgressMgr object

 CODE
 GlobalResponse = ThisWindow.Run()

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 SELF.Request = GlobalRequest
 ReturnValue = PARENT.Init()
 IF ReturnValue THEN RETURN ReturnValue.
 SELF.FirstField = ?Thermometer
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 CLEAR(GlobalRequest)
 CLEAR(GlobalResponse)
 Relate:Customer.Open
 FilesOpened = True
 OPEN(ProgressWindow)
 SELF.Opened=True
ProgressMgr.Init(ScrollSort:AllowNumeric) !initialize ProgressMgr object

! ignores inapplicable parameters
ThisProcess.Init(Process:View,Relate:Customer,?PctText,Thermometer,ProgressMgr,CUS:ID)

 ThisProcess.AddSortOrder(CUS:CustomerIDKey)
 SELF.Init(ThisProcess)
 SELF.AddItem(?Progress:Cancel,RequestCancelled)
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 IF ReturnValue THEN RETURN ReturnValue.
 IF FilesOpened
 Relate:Customer.Close
 END
 RETURN ReturnValue

864 CLARION 5 APPLICATION HANDBOOK

StepRealClass Properties
The StepRealClass inherits all the properties of the StepClass from which it
is derived. See StepClass Properties for more information.

In addition to its inherited properties, the StepRealClass also contains the
following properties:

 Low (lower boundary)

Low REAL

The Low property contains the value of the StepRealClass object’s lower
boundary.

The SetLimit method sets the value of the Low property.

See Also: SetLimit

High (upper boundary)

High REAL

The High property contains the value of the StepRealClass object’s upper
boundary.

The SetLimit method sets the value of the High property.

See Also: SetLimit

CHAPTER 52 STEPREALCLASS

StepRealClass Methods
The StepRealClass inherits all the methods of the StepClass from which it is
derived. See StepClass Methods for more information.

In addition to (or instead of) the inherited methods, the StepRealClass
contains the following methods:

GetPercentile (return a value’s percentile)

GetPercentile(value), VIRTUAL

GetPercentile Returns the specified value’s percentile relative to the
StepRealClass object’s boundaries.

value A constant, variable, EQUATE, or expression that
specifies the value for which to calculate the percentile.

The GetPercentile method returns the specified value’s percentile relative to
the StepRealClass object’s upper and lower boundaries. For example, if the
bounds are 0 and 1000 then GetPercentile(750) returns 75.

Implementation: The SetLimit method sets the StepRealClass object’s upper and lower
boundaries.

Return Data Type: BYTE

Example:

IF FIELD() = ?Locator !focus on locator field
IF EVENT() = EVENT:Accepted !if accepted
MyBrowse.TakeAcceptedLocator !BrowseClass handles it
?MyList{PROP:VScrollPos}=MyStep.GetPercentile(Locator) !position thumb to match

END
END

See Also: SetLimit

866 CLARION 5 APPLICATION HANDBOOK

GetValue (return a percentile’s value)

GetValue(percentile), VIRTUAL

GetValue Returns the specified percentile’s value relative to the
StepRealClass object’s boundaries.

percentile An integer constant, variable, EQUATE, or expression
that specifies the percentile for which to retrieve the
value.

The GetValue method returns the specified percentile’s value relative to the
StepRealClass object’s upper and lower boundaries. For example, if the
bounds are 0 and 1000 then GetValue(25) returns ‘250’.

Implementation: The SetLimit method sets the StepRealClass object’s upper and lower
boundaries.

Return Data Type: STRING

Example:

IF FIELD() = ?MyList !focus on browse list
IF EVENT() = EVENT:ScrollDrag !if thumb moved
Locator=MyStep.GetValue(?MyList{PROP:VScrollPos}) !update locator to match

END
END

See Also: SetLimit

CHAPTER 52 STEPREALCLASS

SetLimit (set smooth data distribution)

SetLimit(lower, upper), VIRTUAL

SetLimit Sets the StepRealClass object’s evenly distributed
steps between upper and lower.

lower An integer constant, variable, EQUATE, or expression
that specifies the StepRealClass object’s lower bound-
ary.

upper An integer constant, variable, EQUATE, or expression
that specifies the StepRealClass object’s upper bound-
ary.

The SetLimit method sets the StepRealClass object’s evenly distributed
steps between upper and lower. The StepRealClass object (GetPercentile
and GetValue methods) uses these steps to estimate key values and
percentiles for the processed data.

Implementation: The BrowseClass.ResetThumbLimits and the
ProcessClass.SetProgressLimits methods call the SetLimit method to
calculate the expected data distribution for the data. The SetLimit method
sets 100 evenly distributed “steps” or markers between lower and upper.

Example:

MyStep.SetLimit(1,9700) !establish scrollbar steps and boundaries

See Also: GetPercentile, GetValue, BrowseClass.ResetThumbLimits,
ProcessClass.SetProgressLimits

868 CLARION 5 APPLICATION HANDBOOK

CHAPTER 53 STEPSTRINGCLASS 869

53 - STEPSTRINGCLASS

Overview
The StepStringClass is a StepClass that handles alphanumeric keys with a
normal distribution (data is evenly distributed between the lowest and
highest key values) or with English Alphabet or US Surname distribution.
You can provide information about the data distribution so that the
StepStringClass object returns accurate feedback about the data being
processed.

StepStringClass Concepts

You can set the expected data distribution for a StepStringClass object—the
StepStringClass object applies one of several predefined data distributions.
Use the Init and SetLimit methods to set the expected data distribution for
the StepStringClass object.

For example, your NameKey may contain US Surname values ranging from
‘Aabel’ to ‘Zuger.’ If your StepClass assumes the values are evenly
distributed between these values, then your progress bars and vertical scroll
bar thumbs will give an inaccurate visual representation of the data.
However, if your StepClass assumes a typical US Surname distribution, then
your progress bars and vertical scroll bar thumbs will give an accurate visual
representation of the data.

Use the StepStringClass with alphanumeric keys that have a normal
distribution (data is evenly distributed between the lowest and highest key
values) or with English Alphabet or US Surname distribution.

Tip: Use the StepLongClass for integer keys with normal
distribution. Use the StepRealClass for fractional keys with
normal distribution. Use the StepCustomClass for numeric or
alphanumeric keys with skewed distribution.

Relationship to Other Application Builder Classes

The BrowseClass and the ProcessClass optionally use the StepStringClass.
Therefore, if your BrowseClass or ProcessClass uses the StepStringClass,
your program must instantiate the StepStringClass for each use. See the
Conceptual Example.

870 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

The ABC Templates (BrowseBox, Process, and Report) automatically
include all the classes and generate all the code necessary to use the
StepStringClass with your BrowseBoxes, Reports, and Processes.

Process and Report Procedure Templates

By default, the Process and Report templates declare a StepStringClass for
alphanumeric keys called ProgressMgr. You can use the Report Properties
Classes tab (the Progress Class button) or the Process Properties General
tab (the Progress Manager buttonto derive from the StepStringClass
instead. The templates provide the derived class so you can modify the
ProgressMgr behavior on an instance-by-instance basis.

Browse Procedure and BrowseBox Control Templates

By default, the BrowseBox template declares a StepStringClass for
alphanumeric keys called BRWn::Sort#:StepClass, where n is the
BrowseBox template instance number, and # is the sort order sequence
(identifies the key). You can use the BrowseBox’s Scroll Bar Behavior
dialog to specify the expected data distribution (normal distribution, English
alphabet, or US surname). You can use the Step Class button to derive from
the StepStringClass so you can modify the StepStringClass behavior on an
instance-by-instance basis.

StepStringClass Source Files

The StepStringClass source code is installed by default to the Clarion
\LIBSRC folder. The StepStringClass source code and its respective
components are contained in:

ABBROWSE.INC StepStringClass declarations
ABBROWSE.CLW StepStringClass method definitions

CHAPTER 53 STEPSTRINGCLASS 871

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a StepStringClass object and related
objects. The example initializes and page-loads a LIST, then handles a
number of associated events, including scrolling.

The StepStringClass object’s steps are calculated based on the poles of the
actual browsed data—a list of State abbreviations.

 PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABWINDOW.INC') !declare WindowManager class
 INCLUDE('ABBROWSE.INC') !declare BrowseClass & StepClasses
 MAP
 END

State FILE,DRIVER('TOPSPEED'),PRE(ST),THREAD
StateCodeKey KEY(ST:STATECODE),NOCASE,OPT
Record RECORD,PRE()
STATECODE STRING(2)
STATENAME STRING(20)

END
END

StView VIEW(State) !declare VIEW to process
END

StateQ QUEUE !declare Q for LIST
ST:STATECODE LIKE(ST:STATECODE)
ST:STATENAME LIKE(ST:STATENAME)
ViewPosition STRING(512)

END

GlobalErrors ErrorClass
Access:State CLASS(FileManager)
Init PROCEDURE

END
Relate:State CLASS(RelationManager)
Init PROCEDURE

END
VCRRequest LONG(0),THREAD

StWindow WINDOW('Browse States'),AT(,,123,152),IMM,SYSTEM,GRAY
LIST,AT(8,5,108,124),USE(?StList),IMM,HVSCROLL,FROM(StateQ),|
FORMAT('27L(2)|M~CODE~@s2@80L(2)|M~STATENAME~@s20@')
BUTTON('&Insert'),AT(8,133),USE(?Insert)
BUTTON('&Change'),AT(43,133),USE(?Change),DEFAULT
BUTTON('&Delete'),AT(83,133),USE(?Delete)

END

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

872 CLARION 5 APPLICATION HANDBOOK

BrowseSt CLASS(BrowseClass) !declare BrowseSt object
Q &StateQ

END

StStep StepStringClass !declare StStep object

CODE
ThisWindow.Run() !run the window procedure

ThisWindow.Init PROCEDURE() !initialize things
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
IF ReturnValue THEN RETURN ReturnValue.
GlobalErrors.Init
Relate:State.Init
SELF.FirstField = ?StList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
Relate:State.Open
BrowseSt.Init(?StList,StateQ.ViewPosition,StView,StateQ,Relate:State,SELF)
OPEN(StWindow)
SELF.Opened=True
BrowseSt.Q &= StateQ
StStep.Init(+ScrollSort:AllowAlpha,ScrollBy:Runtime) !initialize the StStep object
BrowseSt.AddSortOrder(StStep,ST:StateCodeKey) ! & plug in to the BrowseSt

! BrowseSt calls SetLimit to
! calculate data distribution
! from the poles of the data

BrowseSt.AddField(ST:STATECODE,BrowseSt.Q.ST:STATECODE)
BrowseSt.AddField(ST:STATENAME,BrowseSt.Q.ST:STATENAME)
SELF.SetAlerts()
RETURN ReturnValue

ThisWindow.Kill PROCEDURE() !shut down things
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill()
IF ReturnValue THEN RETURN ReturnValue.
Relate:State.Close
Relate:State.Kill
GlobalErrors.Kill
RETURN ReturnValue

Access:State.Init PROCEDURE
CODE
PARENT.Init(State,GlobalErrors)
SELF.FileNameValue = 'State'
SELF.Buffer &= ST:Record
SELF.AddKey(ST:StateCodeKey,'ST:StateCodeKey',0)

Relate:State.Init PROCEDURE
CODE
Access:State.Init
PARENT.Init(Access:State,1)

CHAPTER 53 STEPSTRINGCLASS 873

StepStringClass Properties
The StepStringClass inherits all the properties of the StepClass from which it
is derived. See StepClass Properties for more information.

In addition to its inherited properties, the StepStringClass also contains the
following properties:

LookupMode (expected data distribution)

LookupMode BYTE

The LookupMode property sets the expected data distribution the
StepStringClass object implements. This, plus the actual data distribution,
ultimately determines how “far” the indicator (scrollbar thumb or progress
bar) actually moves as records are processed.

The Init method sets the value of the LookupMode property.

Implementation: Valid data distribution options are U.S. surnames, English alphabet, and
runtime data distribution calculated from the poles of the actual data.
Corresponding LookupMode EQUATEs are declared in ABBROWSE.INC as
follows:

ITEMIZE,PRE(ScrollBy)
Name EQUATE !U.S. surnames distribution
Alpha EQUATE !English alphabet distribution
Runtime EQUATE !calculate distribution from runtime poles
END

The U.S. surnames and English alphabet data distributions are defined in
ABBROWSE.CLW as follows:

Scroll:Alpha STRING(' AFANATB BFBNBTC CFCNCT'|
&'D DFDNDTE EFENETF FFFNFT'|
&'G GFGNGTH HFHNHTI IFINIT'|
&'J JFJNJTK KFKNKTL LFLNLT'|
&'M MFMNMTN NFNNNTO OFONOT'|
&'P PFPNPTQ QNR RFRNRTS SF'|
&'SNSTT TFTNTTU UFUNUTV VF'|
&'VNVTW WFWNWTX XFXNXTY YF'|
&'YNYTZ ZN')

Scroll:Name STRING(' ALBAMEARNBAKBATBENBIABOBBRA'|
&'BROBUACACCARCENCHRCOECONCORCRU'|
&'DASDELDIADONDURELDEVEFELFISFLO'|
&'FREFUTGARGIBGOLGOSGREGUTHAMHEM'|
&'HOBHOTINGJASJONKAGKEAKIRKORKYO'|
&'LATLEOLIGLOUMACMAQMARMAUMCKMER'|
&'MILMONMORNATNOLOKEPAGPAUPETPIN'|
&'PORPULRAUREYROBROSRUBSALSCASCH'|
&'SCRSHASIGSKISNASOUSTESTISUNTAY'|
&'TIRTUCVANWACWASWEIWIEWIMWOLYOR')

See Also: Init

874 CLARION 5 APPLICATION HANDBOOK

Root (the static portion of the step)

Root &CSTRING, PROTECTED

The Root property is a reference to a structure containing the static or non-
determinitive characters of a step. For example, if the step bounds are
‘abbey’ and ‘abracadabra’ then Root contains ‘ab’. The related property
TestLen is equal to the length of Root, that is, 2.

Implementation: The GetPercentile and GetValue methods use the Root and TestLen
properties to efficiently traverse the defined steps.

See Also: GetPercentile, GetValue, TestLen

SortChars (valid sort characters)

SortChars &CSTRING

The SortChars property is a reference to a structure containing the valid sort
characters for the StepStringClass object. The StepStringClass object uses
the SortChars property to compute steps. For example if SortChars contains
only ‘ABYZ’ then that is the information the StepStringClass uses to
compute your steps.

The Init method sets the value of the SortChars property.

Implementation: The SortChars property only affects StepStringClass objects with a
LookupMode specifying runtime data distribution. The SetLimit method
computes the runtime data distribution.

See Also: Init, LookupMode, SetLimit

CHAPTER 53 STEPSTRINGCLASS 875

TestLen (length of the static step portion)

TestLen BYTE, PROTECTED

The TestLen property contains the length of the Root property. For example,
if the step bounds are ‘abbey’ and ‘abracadabra’ then Root contains ‘ab’. The
related property TestLen is equal to the length of Root, that is, 2.

The Init method sets the value of the TestLen property.

Implementation: The GetPercentile and GetValue methods use the Root and TestLen
properties to efficiently traverse the defined steps.

The value of the TestLen property depends on the value of the LookupMode
property. LookupMode of U.S. surnames uses TestLen of 3, English alphabet
uses TestLen of 2, and runtime data distribution uses TestLen of 4.

See Also: Init, LookupMode, Root

876 CLARION 5 APPLICATION HANDBOOK

StepStringClass Methods
The StepStringClass inherits all the methods of the StepClass from which it
is derived. See StepClass Methods for more information.

In addition to (or instead of) the inherited methods, the StepStringClass
contains the following methods:

GetPercentile (return a value’s percentile)

GetPercentile(value), VIRTUAL

GetPercentile Returns the specified value’s percentile relative to the
StepStringClass object’s boundaries.

value A string constant, variable, EQUATE, or expression that
specifies the value for which to calculate the percentile.

The GetPercentile method returns the specified value’s percentile relative to
the StepStringClass object’s upper and lower boundaries. For example, if the
bounds are ‘A’ and ‘Z’ then GetPercentile(‘M’) returns 50.

Implementation: The SetLimit method sets the StepStringClass object’s upper and lower
boundaries.

Return Data Type: BYTE

Example:

IF FIELD() = ?Locator !focus on locator field
IF EVENT() = EVENT:Accepted !if accepted
MyBrowse.TakeAcceptedLocator !BrowseClass handles it
?MyList{PROP:VScrollPos}=MyStep.GetPercentile(Locator) !position thumb to match

END
END

See Also: SetLimit

CHAPTER 53 STEPSTRINGCLASS 877

GetValue (return a percentile’s value)

GetValue(percentile), VIRTUAL

GetValue Returns the specified percentile’s value relative to the
StepStringClass object’s boundaries.

percentile An integer constant, variable, EQUATE, or expression
that specifies the percentile for which to retrieve the
value.

The GetValue method returns the specified percentile’s value relative to the
StepStringClass object’s upper and lower boundaries. For example, if the
bounds are ‘A’ and ‘Z’ then GetValue(50) returns ‘M’.

Implementation: The SetLimit method sets the StepStringClass object’s upper and lower
boundaries.

Return Data Type: STRING

Example:

IF FIELD() = ?MyList !focus on browse list
IF EVENT() = EVENT:ScrollDrag !if thumb moved
Locator=MyStep.GetValue(?MyList{PROP:VScrollPos}) !update locator to match

END
END

See Also: SetLimit

878 CLARION 5 APPLICATION HANDBOOK

Init (initialize the StepStringClass object)

Init(controls, mode)

Init Initializes the StepStringClass object.

controls An integer constant, variable, EQUATE, or expression
that contains several important pieces of information for
the StepClass object.

mode An integer constant, variable, EQUATE, or expression
that determines the data distribution points (or steps) the
StepStringClass object implements.

The Init method initializes the StepStringClass object.

The controls parameter identifies for the StepClass object:

• the characters included in the calculated runtime distribution
• whether the key is case sensitive
• the direction of the sort (ascending or descending)

A mode parameter value of ScrollBy:Name gives U.S. surname distribution,
ScrollBy:Alpha gives English alphabet distribution, and ScrollBy:Runtime
gives a smooth data distribution from the poles of the actual data, as
calculated by the SetLimit method.

Implementation: The Init method sets the value of the Controls and LookupMode properties.
Set the value of the Controls property by adding together the applicable
EQUATEs declared in ABBROWSE.INC as follows:

ITEMIZE,PRE(ScrollSort)
AllowAlpha EQUATE(1) !include ABCDEFGHIJKLMNOPQRSTUVWXYZ
AllowAlt EQUATE(2) !include `!"£$%%^&*()''-=_+][#;~@:/.,?\|
AllowNumeric EQUATE(4) !include 0123456789
CaseSensitive EQUATE(8) !include abcdefghijklmnopqrstuvwxyz
Descending EQUATE(16) !the sort is descending

EQUATEs for the mode parameter ared declared in ABBROWSE.INC as
follows:

ITEMIZE,PRE(ScrollBy)
Name EQUATE !US Surname distribution
Alpha EQUATE !English alphabet distribution
Runtime EQUATE !calculate normal distribution from data poles

END

Example:

MyStepStringClass.Init(ScrollSort:AllowAlpha+ScrollSort:AllowNumeric)
!program code
MyStepStringClass.Kill

See Also: StepClass.Controls, LookupMode, SetLimit

CHAPTER 53 STEPSTRINGCLASS 879

Kill (shut down the StepStringClass object)

Kill, VIRTUAL

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code.

Implementation: The Kill method frees memory allocated for the Ref, Root, and SortChars
properties.

Example:

MyStepStringClass.Init(ScrollSort:AllowAlpha+ScrollSort:AllowNumeric)
!program code
MyStepStringClass.Kill

SetLimit (set smooth data distribution)

SetLimit(lower, upper), VIRTUAL

SetLimit Sets the StepStringClass object’s evenly distributed steps
between upper and lower.

lower A string constant, variable, EQUATE, or expression that
specifies the StepStringClass object’s lower boundary.
The value may be numeric or alphanumeric.

upper A string constant, variable, EQUATE, or expression that
specifies the StepStringClass object’s upper boundary.
The value may be numeric or alphanumeric.

The SetLimit method sets the StepStringClass object’s evenly distributed
steps between upper and lower. The StepStringClass object (GetPercentile
and GetValue methods) uses these steps to estimate key values and
percentiles for the processed data.

Implementation: The BrowseClass.ResetThumbLimits and the
ProcessClass.SetProgressLimits methods call the SetLimit method to
calculate the expected data distribution for the data. The SetLimit method
sets 100 evenly distributed “steps” or markers between lower and upper.
SetLimit considers the Controls property (as set by the Init method) when
calculating the expected data distribution.

Example:

MyStep.SetLimit(‘A’,’Z’) !establish uppercase alphabetic scrollbar limits

See Also: GetPercentile, GetValue, Init, BrowseClass.ResetThumbLimits,
ProcessClass.SetProgressLimits, StepClass.Controls

880 CLARION 5 APPLICATION HANDBOOK

SetLimitNeeded (return static/dynamic boundary flag)

SetLimitNeeded, VIRTUAL

The SetLimitNeeded method returns a value indicating whether the
StepClass object’s steps and boundaries are static (set at compile time) or
dynamic (set at runtime). A return value of one (1) indicates dynamic
boundaries that may need to be reset when the monitored result set changes
(records are added, deleted, or filtered). A return value of zero (0) indicates
the boundaries are fixed at compile time (name or alpha distribution) and are
not adjusted when the monitored result set changes.

Implementation: The SetLimitNeeded method returns one (1 or True) if the LookupMode
property equals ScrollBy:RunTime; otherwise it returns zero (0 or False).

Return Data Type: BYTE

Example:

BrowseClass.ResetThumbLimits PROCEDURE
HighValue ANY
 CODE
 IF SELF.Sort.Thumb &= NULL OR ~SELF.Sort.Thumb.SetLimitNeeded()
 RETURN
 END
 SELF.Reset
 IF SELF.Previous()
 RETURN
 END
 HighValue = SELF.Sort.FreeElement
 SELF.Reset
 IF SELF.Next()
 RETURN
 END
 SELF.Sort.Thumb.SetLimit(SELF.Sort.FreeElement,HighValue)

See Also: StepClass.SetLimitNeeded, BrowseClass.ResetThumbLimits

CHAPTER 54 TOOLBAR CLASS

54 -TOOLBARCLASS

Overview
ToolbarClass and ToolbarTarget objects work together to reliably “convert”
an event associated with a toolbar button into an appropriate event associated
with a specific control or window.

ToolbarClass objects communicate with zero or more ToolbarTarget objects.
Each ToolbarTarget object is associated with a specific entity, such as a
browse list, relation tree,or update form. The ToolbarClass object forwards
events and method calls to the active ToolbarTarget object. Only one target is
active at a time.

This lets you use a single toolbar to drive a variety of targets, such as update
forms, browse lists, relation tree lists, etc. A single toolbar can even drive
multiple targets (two or more BrowseBoxes) in a single procedure.

ToolbarClass Concepts

Within an MDI application, the ToolbarClass and ToolbarTarget work
together to reliably interpret and pass an event (EVENT:Accepted)
associated with a toolbar button into an event associated with a specific
control or window. For example, the end user CLICKS on a toolbar button (say
the “Insert” button) on the MDI application frame. The frame procedure
forwards the event to the active thread
(POST(EVENT:Accepted,ACCEPTED(),SYSTEM{Prop:Active})). The active thread
(procedure) manages a window that displays two LIST controls, and one of
the LISTs has focus. This procedure has a ToolbarClass object plus a
ToolbarTarget object for each LIST control. The ToolbarClass object takes
the event (ToolbarClass.TakeEvent)1 and forwards the event to the active
ToolbarTarget object (the target that represents the LIST with focus). The
ToolbarTarget object takes the event (ToolbarListBoxClass.TakeEvent) and
handles it by posting an appropriate event to a specific control or to the
window, for example:

POST(EVENT:ACCEPTED,SELF.InsertButton) !insert a record
POST(EVENT:PageDown,SELF.Control) !scroll a LIST
POST(EVENT:Completed) !complete an update form
POST(EVENT:CloseWindow) !select a record
etc.

1If the procedure has a WindowManager object, the WindowManager object
takes the event (WindowManager.TakeEvent) and forwards it to the
ToolbarClass object (WindowManager.TakeAccepted).

882 CLARION 5 APPLICATION HANDBOOK

Relationship to Other Application Builder Classes

ToolbarTarget

The ToolbarClass object keeps a list of ToolbarTarget objects so it can
forward events and method calls to a particular target. Each ToolbarTarget
object is associated with a specific entity, such as a browse list, relation
tree,or update form. At present, the ABC Library has three classes derived
from the ToolbarTarget:

ToolbarListboxClass BrowseClass toolbar target
ToolbarReltreeClass Reltree control toolbar target
ToolbarUpdateClass Form procedure toolbar target

These ToolbarTarget objects implement the event handling specific to the
associated entity. There may be zero or more ToolbarTarget objects within a
procedure; however, only one is active at a time. The SetTarget method sets
the active ToolbarTarget object.

BrowseClass and WindowManager

The WindowManager optionally uses the ToolbarClass, as does the
BrowseClass. Therefore, if your program uses a WindowManager or
BrowseClass object, it may also need the ToolbarClass. Much of this is
automatic when you INCLUDE the WindowManager or BrowseClass
headers (ABWINDOW.INC and ABBROWSE.INC) in your program’s data
section. See the Conceptual Example.

ABC Template Implementation

The ABC procedure templates instantiate a ToolbarClass object called
Toolbar within each procedure containing a template that asks for global
toolbar control—that is, the BrowseBox template, the FormVCRControls
template, and the RelationTree template.

The templates generate code to instantiate the ToolbarClass object and to
register the ToolbarClass object with the WindowManager object. You may
see code such as the following in your template generated procedures.

Toolbar ToolbarClass !declare Toolbar object
CODE
!

ThisWindow.Init PROCEDURE
SELF.AddItem(Toolbar) !register Toolbar with WindowManager
BRW1.AddToolbarTarget(Toolbar) !register BrowseClass as target
Toolbar.AddTarget(REL1::Toolbar,?RelTree) !register RelTree as target
SELF.AddItem(ToolbarForm) !register update form as target

CHAPTER 54 TOOLBAR CLASS

The WindowManager and BrowseClass are both programmed to use
ToolbarClass objects. Therefore most of the interaction between these
objects is encapsulated within the Application Builder Class code, and is
only minimally reflected in the ABC Template generated code.

Toolbar Class Source Files

The ToolbarClass source code is installed by default to the Clarion \LIBSRC
folder. The ToolbarClass source code and its respective components are
contained in:

ABTOOLBA.INC ToolbarClass declarations
ABTOOLBA.CLW ToolbarClass method definitions

884 CLARION 5 APPLICATION HANDBOOK

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a ToolbarClass object and related
ToolbarTarget objects.

This example uses the ToolbarClass to allow a global toolbar to drive two
separate but related LISTs within a single MDI procedure. The primary LIST
shows client information and the related LIST shows phone numbers for the
selected client. The toolbar drives whichever list has focus.

The program POSTs toolbar events to the active MDI window using the
SYSTEM{Prop:Active} property. Then the local ToolbarClass object calls
on the active ToolbarTarget object to handle the event.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
INCLUDE('ABBROWSE.INC') !declare BrowseClass
INCLUDE('ABTOOLBA.INC') !declare Toolbar classes
INCLUDE('ABWINDOW.INC') !declare WindowManager
CODE
!program code

Main PROCEDURE !contains global toolbar
AppFrame APPLICATION('Toolbars'),AT(,,275,175),SYSTEM,MAX,RESIZE,IMM

MENUBAR
ITEM('Browse Customers'),USE(?BrowseCustomer)

END
TOOLBAR,AT(0,0,400,22) !must use ABTOOLBA.INC EQUATES:

BUTTON,AT(4,2),USE(?Top,Toolbar:Top),DISABLE,ICON('VCRFIRST.ICO'),FLAT
BUTTON,AT(16,2),USE(?PageUp,Toolbar:PageUp),DISABLE,ICON('VCRPRIOR.ICO'),FLAT
BUTTON,AT(28,2),USE(?Up,Toolbar:Up),DISABLE,ICON('VCRUP.ICO'),FLAT
BUTTON,AT(40,2),USE(?Down,Toolbar:Down),DISABLE,ICON('VCRDOWN.ICO'),FLAT
BUTTON,AT(52,2),USE(?PageDown,Toolbar:PageDown),DISABLE,ICON('VCRNEXT.ICO'),FLAT
BUTTON,AT(64,2),USE(?Bottom,Toolbar:Bottom),DISABLE,ICON('VCRLAST.ICO'),FLAT

END
END

Frame CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
TakeAccepted PROCEDURE(),BYTE,PROC,VIRTUAL

END
Toolbar ToolbarClass !declare Toolbar object
CODE
Frame.Run()

Frame.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
SELF.AddItem(Toolbar) !register Toolbar with WindowManager
OPEN(AppFrame)
SELF.Opened=True
SELF.SetAlerts()

CHAPTER 54 TOOLBAR CLASS

RETURN ReturnValue
Frame.TakeAccepted PROCEDURE()
ReturnValue BYTE,AUTO
Looped BYTE
CODE
LOOP
IF Looped THEN RETURN Level:Notify ELSE Looped=1.
CASE ACCEPTED()
OF Toolbar:First TO Toolbar:Last !for EVENT:Accepted on toolbar
POST(EVENT:Accepted,ACCEPTED(),SYSTEM{Prop:Active}) !transfer it to active thread
CYCLE ! and stop

END
ReturnValue = PARENT.TakeAccepted()
IF ACCEPTED() = ?BrowseCustomer
START(BrowseCustomer,050000)

END
RETURN ReturnValue

END

BrowseCustomer PROCEDURE !contains local Toolbar and targets
CusView VIEW(Customer)

END
CusQ QUEUE
CUS:CUSTNO LIKE(CUS:CUSTNO)
CUS:NAME LIKE(CUS:NAME)
ViewPosition STRING(512)

END
PhView VIEW(Phones)

END
PhQ QUEUE
PH:NUMBER LIKE(PH:NUMBER)
PH:ID LIKE(PH:ID)
ViewPosition STRING(512)

END
CusWindow WINDOW('Browse Customers'),AT(,,246,131),IMM,SYSTEM,GRAY,MDI

LIST,AT(8,7,160,100),USE(?CusList),IMM,HVSCROLL,FROM(CusQ),|
FORMAT('51R(2)|M~CUSTNO~C(0)@n-14@80L(2)|M~NAME~@s30@')

BUTTON('&Insert'),AT(17,111,45,14),USE(?InsertCus),SKIP
BUTTON('&Change'),AT(66,111,45,14),USE(?ChangeCus),SKIP,DEFAULT
BUTTON('&Delete'),AT(115,111,45,14),USE(?DeleteCus),SKIP
LIST,AT(176,7,65,100),USE(?PhList),IMM,FROM(PhQ),FORMAT('80L~Phones~L(1)')
BUTTON('&Insert'),AT(187,41,42,12),USE(?InsertPh),HIDE
BUTTON('&Change'),AT(187,54,42,12),USE(?ChangePh),HIDE
BUTTON('&Delete'),AT(187,67,42,12),USE(?DeletePh),HIDE

END
ThisWindow CLASS(WindowManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL
TakeSelected PROCEDURE(),BYTE,PROC,VIRTUAL

END
Toolbar ToolbarClass !declare Toolbar object to receive

! and process toolbar events from Main
CusBrowse CLASS(BrowseClass) !declare CusBrowse object
Q &CusQ

END
PhBrowse CLASS(BrowseClass) !declare PhBrowse object
Q &PhQ

END
CODE

886 CLARION 5 APPLICATION HANDBOOK

ThisWindow.Run()

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
SELF.FirstField = ?CusList !CusList gets initial focus

 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 SELF.AddItem(Toolbar) !register Toolbar with WindowManager
 Relate:Customer.Open
 CusBrowse.Init(?CusList,CusQ.ViewPosition,CusView,CusQ,Relate:Customer,SELF)
 PhBrowse.Init(?PhList,PhQ.ViewPosition,PhView,PhQ,Relate:Phones,SELF)
 OPEN(CusWindow)
 SELF.Opened=True
 CusBrowse.Q &= CusQ
 CusBrowse.AddSortOrder(,CUS:BYNUMBER)
 CusBrowse.AddField(CUS:CUSTNO,CusBrowse.Q.CUS:CUSTNO)
 CusBrowse.AddField(CUS:NAME,CusBrowse.Q.CUS:NAME)
 PhBrowse.Q &= PhQ
 PhBrowse.AddSortOrder(,PH:IDKEY)
 PhBrowse.AddRange(PH:ID,Relate:Phones,Relate:Customer)
 PhBrowse.AddField(PH:NUMBER,PhBrowse.Q.PH:NUMBER)
 PhBrowse.AddField(PH:ID,PhBrowse.Q.PH:ID)
 CusBrowse.InsertControl=?InsertCus
 CusBrowse.ChangeControl=?ChangeCus
 CusBrowse.DeleteControl=?DeleteCus
 CusBrowse.AddToolbarTarget(Toolbar) !Make CusBrowse a toolbar target
 PhBrowse.InsertControl=?InsertPh
 PhBrowse.ChangeControl=?ChangePh
 PhBrowse.DeleteControl=?DeletePh
 PhBrowse.AddToolbarTarget(Toolbar) !Make PhBrowse a toolbar target
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 Relate:Customer.Close
 RETURN ReturnValue

ThisWindow.TakeSelected PROCEDURE()
ReturnValue BYTE,AUTO
Looped BYTE
 CODE
 LOOP
 IF Looped THEN RETURN Level:Notify ELSE Looped=1.
 ReturnValue = PARENT.TakeSelected()
 CASE FIELD()
 OF ?CusList !if selected,
 Toolbar.SetTarget(?CusList) ! make ?CusList the active target
 OF ?PhList !if selected
 IF RECORDS(PhBrowse.Q) > 1 !and contains more than one record,
 Toolbar.SetTarget(?PhList) ! make ?PhList the active target
 END
 END
 RETURN ReturnValue
 END

CHAPTER 54 TOOLBAR CLASS

ToolbarClass Properties
The ToolbarClass contains no public properties

888 CLARION 5 APPLICATION HANDBOOK

ToolbarClass Methods
The ToolbarClass contains the methods listed below.

Functional Organization—Expected Use

As an aid to understanding the ToolbarClass, it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the ToolbarClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into two categories:

Housekeeping (one-time) Use:
Init initialize the ToolbarClass object
AddTarget register toolbar driven entity
Kill V shut down the ToolbarClass object

Mainstream Use:
SetTarget set active target & appropriate toolbar state
TakeEventV process toolbar event for active target

Occasional Use:
DisplayButtonsV enable appropriate toolbar buttons

V These methods are also Virtual.

Virtual Methods

Typically you will not call these methods directly—other base class methods
call them. However, we anticipate you will often want to override these
methods, and because they are virtual, they are very easy to override. These
methods do provide reasonable default behavior in case you do not want to
override them.

DisplayButtons enable appropriate toolbar buttons
TakeEvent process toolbar event for active target
Kill shut down the ToolbarClass object

CHAPTER 54 TOOLBAR CLASS

AddTarget (register toolbar driven entity)

AddTarget(target, control)

AddTarget Adds a toolbar target to the ToolbarClass object’s list of
potential toolbar targets.

target The label of a ToolbarTarget object.

control An integer constant, variable, EQUATE, or expression
containing the target’s ID number. For targets associated
with a control, this is the control number (usually
represented by the control’s Field Equate Label).

The AddTarget method adds a toolbar target (ToolbarTarget object) to the
ToolbarClass object’s list of potential toolbar targets.

The last added target is the active target until supplanted by a subsequent call
to AddTarget or SetTarget.

Example:

CODE
Toolbar.Init !initialize Toolbar object
ToolBar.AddTarget(ToolBarForm, -1) !register an Update Form target
Toolbar.AddTarget(REL1::Toolbar, ?RelTree) !register a RelTree target
BRW1.AddToolbarTarget(Toolbar) !register a BrowseBox target...

!BrowseClass method calls AddTarget

See Also: SetTarget

DisplayButtons (enable appropriate toolbar buttons)

DisplayButtons, VIRTUAL

The DisplayButtons method enables and disables the appropriate toolbar
buttons for the active toolbar target.

The SetTarget method sets the active toolbar target.

Implementation: The DisplayButtons method calls the ToolbarTarget.DisplayButtons method
for the active toolbar target.

Example:

CODE
Toolbar.Init !initialize Toolbar object

 ToolBar.AddTarget(ToolBarForm, -1) !register an Update Form target
 Toolbar.DisplayButtons !and enable appropriate toolbar buttons

!for that target

See Also: SetTarget

890 CLARION 5 APPLICATION HANDBOOK

Init (initialize the ToolbarClass object)

Init

The Init method initializes the ToolbarClass object.

Implementation: The Init method allocates a new list of potential toolbar targets.

Example:

CODE
Toolbar.Init !initialize Toolbar object
!program code
ACCEPT
!program code
END
Toolbar.Kill !shut down Toolbar object

Kill (shut down the ToolbarClass object)

Kill, VIRTUAL

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code.

Implementation: The Kill method disposes of the list of potential toolbar targets.

Example:

CODE
Toolbar.Init !initialize Toolbar object
!program code
ACCEPT
!program code
END
Toolbar.Kill !shut down Toolbar object

CHAPTER 54 TOOLBAR CLASS

SetTarget (sets the active target)

SetTarget([ID])

SetTarget Sets the ToolbarClass object’s active toolbar target.

ID An integer constant, variable, EQUATE, or expression
containing the target’s ID number. For targets associated
with a control, this is the control number (usually
represented by the control’s Field Equate Label). If
omitted or zero (0), SetTarget sets the most likely target.

The SetTarget method sets the ToolbarClass object’s active toolbar target
(ToolbarTarget object), and adjusts the TOOLBAR state appropriate to that
target.

Implementation: The SetTarget method calls the ToolbarTarget.TakeToolbar or
ToolbarTarget.TryTakeToolbar method to set the toolbar buttons’ TIP
attributes and enabled/disabled status appropriate to the active toolbar target.

Example:

ACCEPT
CASE EVENT()
OF EVENT:OpenWindow !on open window
DO RefreshWindow !load the browse QUEUEs

OF EVENT:Accepted !for Accepted events (which may
CASE FOCUS() ! come from the global toolbar)
OF ?ClientList ! make the list with FOCUS
Toolbar.SetTarget(?ClientList) ! the active toolbar target

OF ?PhoneList ! and enable appropriate toolbar
Toolbar.SetTarget(?PhoneList) ! buttons and TIP attributes

END
Toolbar.TakeEvent(VCRRequest, WM) !the Toolbar object calls the

END ! active target’s event handler
END ! which in turn scrolls, inserts,

! deletes, helps, etc. The event
! handler often simply POSTs
! another event to the correct
! control, e.g.
! Event:Accepted to ?Insert or
! Event:PageUp to ?ClientList

See Also: ToolbarTarget.TakeToolbar, ToolbarTarget.TryTakeToolbar

892 CLARION 5 APPLICATION HANDBOOK

TakeEvent (process toolbar event)

TakeEvent([vcr], windowmanager), VIRTUAL

TakeEvent Processes toolbar events for the active toolbar target.

vcr An integer variable to receive the control number of the
accepted VCR navigation button. This lets the TakeEvent
method specify an appropriate subsequent action. If
omitted, the ToolbarTarget object does no “post process-
ing” navigation.

windowmanager The label of the ToolbarTarget object’s WindowManager
object. See WindowManager for more information.

The TakeEvent method processes toolbar events for the active toolbar target
(ToolbarTarget object).

The vcr parameter lets the TakeEvent method specify an appropriate
subsequent or secondary action. For example, the
ToolbarUpdateClass.TakeEvent method (for a FORM), may interpret a vcr
scroll down as “save and then scroll.” The method takes the necessary action
to save the item and accomplishes the secondary scroll action by setting the
vcr parameter.

The SetTarget method sets the active toolbar target.

Implementation: The WindowManager.TakeEvent method calls the TakeEvent method. The
TakeEvent method calls the ToolbarTarget.TakeEvent method for the active
toolbar target.

Example:

MyWindowManager.TakeAccepted PROCEDURE
 CODE
 IF ~SELF.Toolbar &= NULL
 SELF.Toolbar.TakeEvent(SELF.VCRRequest,SELF)
 END
!procedure code

See Also: SetTarget, WindowManager.TakeEvent

CHAPTER 55 TOOLBAR LISTBOXCLASS 893

55 - TOOLBARLISTBOXCLASS

Overview
The ToolbarListBoxClass is a ToolbarTarget that handles events for a
BrowseClass LIST. See BrowseClass and Control Templates—BrowseBox for
more information.

ToolbarListboxClass Concepts

ToolbarListBoxClass objects implement the event handling specific to a
BrowseClass LIST. The LIST specific events are primarily scrolling events,
but also include the event to select a single list item (EVENT:Accepted for a
Select button). There may be zero or several ToolbarTarget objects within a
procedure; however, only one is active at a time.

Relationship to Other Application Builder Classes

The ToolbarListboxClass is derived from the ToolbarTarget class.

The ToolbarClass keeps a list of ToolbarTarget objects (including
ToolbarListboxClass objects) so it can forward events and method calls to a
particular target.

ABC Template Implementation

The ToolbarListboxClass is completely encapsulated within the BrowseClass
and is not referenced in the template generated code.

ToolbarListboxClass Source Files

The ToolbarListboxClass source code is installed by default to the Clarion
\LIBSRC folder. The ToolbarListboxClass source code and its respective
components are contained in:

ABTOOLBA.INC ToolbarListboxClass declarations
ABTOOLBA.CLW ToolbarListboxClass method definitions

894 CLARION 5 APPLICATION HANDBOOK

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a ToolbarClass object and related
ToolbarListboxClass objects.

This example uses a global toolbar to drive two separate but related LISTs
within a single MDI procedure. The primary LIST shows client information
and the related LIST shows phone numbers for the selected client. The
toolbar drives whichever list has focus. See also ToolbarUpdateClass—
Conceptual Example.

The program POSTs toolbar events to the active MDI window using the
SYSTEM{Prop:Active} property. Then the local ToolbarClass object calls
on the active ToolbarTarget object to handle the event.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
INCLUDE('ABBROWSE.INC') !declare BrowseClass
INCLUDE('ABTOOLBA.INC') !declare Toolbar classes
INCLUDE('ABWINDOW.INC') !declare WindowManager
CODE
!program code

Main PROCEDURE !contains global toolbar
AppFrame APPLICATION('Toolbars'),AT(,,275,175),SYSTEM,MAX,RESIZE,IMM

MENUBAR
ITEM('Browse Customers'),USE(?BrowseCustomer)

END
TOOLBAR,AT(0,0,400,22) !must use ABTOOLBA.INC EQUATES:

BUTTON,AT(4,2),USE(?Top,Toolbar:Top),DISABLE,ICON('VCRFIRST.ICO'),FLAT
BUTTON,AT(16,2),USE(?PageUp,Toolbar:PageUp),DISABLE,ICON('VCRPRIOR.ICO'),FLAT
BUTTON,AT(28,2),USE(?Up,Toolbar:Up),DISABLE,ICON('VCRUP.ICO'),FLAT
BUTTON,AT(40,2),USE(?Down,Toolbar:Down),DISABLE,ICON('VCRDOWN.ICO'),FLAT
BUTTON,AT(52,2),USE(?PageDown,Toolbar:PageDown),DISABLE,ICON('VCRNEXT.ICO'),FLAT
BUTTON,AT(64,2),USE(?Bottom,Toolbar:Bottom),DISABLE,ICON('VCRLAST.ICO'),FLAT

END
END

Frame CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
TakeAccepted PROCEDURE(),BYTE,PROC,VIRTUAL

END
Toolbar ToolbarClass !declare Toolbar object
CODE
Frame.Run()

Frame.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
SELF.AddItem(Toolbar) !register Toolbar with WindowManager
OPEN(AppFrame)

CHAPTER 55 TOOLBAR LISTBOXCLASS 895

SELF.Opened=True
SELF.SetAlerts()
RETURN ReturnValue

Frame.TakeAccepted PROCEDURE()
ReturnValue BYTE,AUTO
Looped BYTE
CODE
CASE ACCEPTED()
OF Toolbar:First TO Toolbar:Last !for EVENT:Accepted on toolbar
POST(EVENT:Accepted,ACCEPTED(),SYSTEM{Prop:Active}) !transfer it to active thread
RETURN Level:Notify

OF ?BrowseCustomer
START(BrowseCustomer,050000)

END
RETURN PARENT.TakeAccepted()

BrowseCustomer PROCEDURE !contains local Toolbar and targets
CusView VIEW(Customer)

END
CusQ QUEUE
CUS:CUSTNO LIKE(CUS:CUSTNO)
CUS:NAME LIKE(CUS:NAME)
ViewPosition STRING(512)

END
PhView VIEW(Phones)

END
PhQ QUEUE
PH:NUMBER LIKE(PH:NUMBER)
PH:ID LIKE(PH:ID)
ViewPosition STRING(512)

END
CusWindow WINDOW('Browse Customers'),AT(,,246,131),IMM,SYSTEM,GRAY,MDI

LIST,AT(8,7,160,100),USE(?CusList),IMM,HVSCROLL,FROM(CusQ),|
FORMAT('51R(2)|M~CUSTNO~C(0)@n-14@80L(2)|M~NAME~@s30@')

BUTTON('&Insert'),AT(17,111,45,14),USE(?InsertCus),SKIP
BUTTON('&Change'),AT(66,111,45,14),USE(?ChangeCus),SKIP,DEFAULT
BUTTON('&Delete'),AT(115,111,45,14),USE(?DeleteCus),SKIP
LIST,AT(176,7,65,100),USE(?PhList),IMM,FROM(PhQ),|
FORMAT('80L~Phones~L(1)@s20@')

BUTTON('&Insert'),AT(187,41,42,12),USE(?InsertPh),HIDE
BUTTON('&Change'),AT(187,54,42,12),USE(?ChangePh),HIDE
BUTTON('&Delete'),AT(187,67,42,12),USE(?DeletePh),HIDE

END

ThisWindow CLASS(WindowManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL
TakeSelected PROCEDURE(),BYTE,PROC,VIRTUAL

END
Toolbar ToolbarClass !declare Toolbar object to receive

! and process toolbar events from Main
CusBrowse CLASS(BrowseClass) !declare CusBrowse object
Q &CusQ

END
PhBrowse CLASS(BrowseClass) !declare PhBrowse object
Q &PhQ

END

896 CLARION 5 APPLICATION HANDBOOK

CODE
ThisWindow.Run()

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
SELF.FirstField = ?CusList !CusList gets initial focus

 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 SELF.AddItem(Toolbar) !register Toolbar with WindowManager
 Relate:Customer.Open
 CusBrowse.Init(?CusList,CusQ.ViewPosition,CusView,CusQ,Relate:Customer,SELF)
 PhBrowse.Init(?PhList,PhQ.ViewPosition,PhView,PhQ,Relate:Phones,SELF)
 OPEN(CusWindow)
 SELF.Opened=True
 CusBrowse.Q &= CusQ
 CusBrowse.AddSortOrder(,CUS:BYNUMBER)
 CusBrowse.AddField(CUS:CUSTNO,CusBrowse.Q.CUS:CUSTNO)
 CusBrowse.AddField(CUS:NAME,CusBrowse.Q.CUS:NAME)
 PhBrowse.Q &= PhQ
 PhBrowse.AddSortOrder(,PH:IDKEY)
 PhBrowse.AddRange(PH:ID,Relate:Phones,Relate:Customer)
 PhBrowse.AddField(PH:NUMBER,PhBrowse.Q.PH:NUMBER)
 PhBrowse.AddField(PH:ID,PhBrowse.Q.PH:ID)
 CusBrowse.InsertControl=?InsertCus
 CusBrowse.ChangeControl=?ChangeCus
 CusBrowse.DeleteControl=?DeleteCus
 CusBrowse.AddToolbarTarget(Toolbar) !Make CusBrowse a toolbar target
 PhBrowse.InsertControl=?InsertPh
 PhBrowse.ChangeControl=?ChangePh
 PhBrowse.DeleteControl=?DeletePh
 PhBrowse.AddToolbarTarget(Toolbar) !Make PhBrowse a toolbar target
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 Relate:Customer.Close
 RETURN ReturnValue

ThisWindow.TakeSelected PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.TakeSelected()
CASE FIELD()
OF ?CusList !if selected,
Toolbar.SetTarget(?CusList) ! make ?CusList the active target

OF ?PhList !if selected
IF RECORDS(PhBrowse.Q) > 1 !and contains more than one record,
Toolbar.SetTarget(?PhList) ! make ?PhList the active target

END
END
RETURN ReturnValue

CHAPTER 55 TOOLBAR LISTBOXCLASS 897

ToolbarListboxClass Properties
The ToolbarListboxClass inherits all the properties of the ToolbarTarget from
which it is derived. See ToolbarTarget Properties for more information.

In addition to its inherited properties, the ToolbarListboxClass contains the
following properties.

Browse (BrowseClass object)

Browse &BrowseClass

The Browse property is a reference to the ToolbarListboxClass object’s
BrowseClass object. The ToolbarListboxClass object uses this property to
access the BrowseClass object’s properties and methods.

Implementation: The BrowseClass.AddToolbarTarget method sets the value of the Browse
property.

The TryTakeToolbar method uses the Browse property to determine whether
the associated LIST control is visible.

See Also: BrowseClass.AddToolbarTarget

898 CLARION 5 APPLICATION HANDBOOK

ToolbarListboxClass Methods
The ToolbarListboxClass inherits all the methods of the ToolbarTarget from
which it is derived. See ToolbarTarget Methods for more information.

In addition to (or instead of) the inherited methods, the ToolbarListboxClass
contains the following methods:

DisplayButtons (enable appropriate toolbar buttons)

DisplayButtons, VIRTUAL

The DisplayButtons method enables and disables the appropriate toolbar
buttons for the ToolbarListboxClass object based on the values of the
HelpButton, InsertButton, ChangeButton, DeleteButton, and SelectButton
properties.

Implementation: The TakeToolbar method calls the DisplayButtons method. The
DisplayButtons method calls the PARENT.DisplayButtons method
(ToolbarTarget.DisplayButtons) to handle buttons common to all
ToolbarTargets.

Example:

CODE
Toolbar.Init !initialize Toolbar object

 BRW1.AddToolbarTarget(Toolbar) !register a BrowseBox target
 ToolBar.SetTarget(?Browse:1) !calls DisplayButtons via TakeToolbar

MyToolbarListboxClass.DisplayButtons PROCEDURE!a derived class virtual
CODE
DISABLE(Toolbar:History) !disable toolbar ditto button
ENABLE(Toolbar:Locate) !enable locator button
PARENT.DisplayButtons !call base class DisplayButtons
!your custom code here

See Also: HelpButton, InsertButton, ChangeButton, DeleteButton, SelectButton,
TakeToolbar, ToolbarTarget.DisplayButtons

CHAPTER 55 TOOLBAR LISTBOXCLASS 899

TakeEvent (convert toolbar events)

TakeEvent([vcr], window manager), VIRTUAL

TakeEvent Handles toolbar events for the ToolbarListboxClass
object.

vcr An integer variable to receive the control number of the
accepted vcr button. This lets the TakeEvent method
specify an appropriate subsequent action. If omitted, the
ToolbarListboxClass object does no “post processing”
navigation.

windowmanager The label of the ToolbarListboxClass object’s
WindowManager object. See Window Manager for more
information.

The TakeEvent method handles toolbar events for the ToolbarListboxClass
object.

The vcr parameter lets the TakeEvent method specify an appropriate
subsequent or secondary action. For example, the
ToolbarListboxClass.TakeEvent method, may interpret a scroll down as
“save and then scroll.” The method takes the necessary action to save the
item and accomplishes the secondary scroll action by setting the vcr
parameter.

Implementation: The ToolbarClass.TakeEvent method calls the TakeEvent method for the
active ToolbarTarget object. The ToolbarClass.SetTarget method sets the
active ToolbarTarget object.

Example:

ToolbarClass.TakeEvent PROCEDURE(<*LONG VCR>,WindowManager WM)
 CODE
ASSERT(~SELF.List &= NULL)
IF RECORDS(SELF.List)
SELF.List.Item.TakeEvent(VCR,WM)

END

See Also: ToolbarClass.SetTarget, ToolbarClass.TakeEvent

900 CLARION 5 APPLICATION HANDBOOK

TakeToolbar (assume contol of the toolbar)

TakeToolbar, VIRTUAL

The TakeToolbar method sets the toolbar state appropriate to the
ToolbarListboxClass object.

Implementation: The TakeToolbar method sets appropriate TIP attributes for the toolbar
buttons and enables and disables toolbar buttons appropriate for the
ToolbarListboxClass object. The ToolbarClass.SetTarget method and the
TryTakeToolbar method call the TakeToolbar method.

Example:

MyToolbarClass.SetTarget PROCEDURE(SIGNED Id)
I USHORT,AUTO
Hit USHORT
 CODE
 ASSERT(~ (SELF.List &= NULL))
 IF Id !set explicitly requested target
 SELF.List.Id = Id
 GET(SELF.List,SELF.List.Id)
 ASSERT (~ERRORCODE())
 SELF.List.Item.TakeToolbar
 ELSE !set any (last) valid target
 LOOP I = 1 TO RECORDS(SELF.List)
 GET(SELF.List,I)
 IF SELF.List.Item.TryTakeToolbar() THEN Hit = I.
 END
 IF Hit THEN GET(SELF.List,Hit).
 END

See Also: TryTakeToolbar, ToolbarClass.SetTarget

CHAPTER 55 TOOLBAR LISTBOXCLASS 901

TryTakeToolbar (return toolbar control indicator)

TryTakeToolbar, VIRTUAL

The TryTakeToolbar method returns a value indicating whether the
ToolbarTarget object successfully assumed control of the toolbar. A return
value of one (1 or True) indicates success; a value of zero (0 or False)
indicates failure to take control of the toolbar.

Implementation: The ToolbarClass.SetTarget method calls the TryTakeToolbar method. The
TryTakeToolbar method calls the TakeToolbar method if the
ToolbarListboxClass object’s LIST is visible.

Return Data Type: BYTE

Example:

ToolbarClass.SetTarget PROCEDURE(SIGNED Id)
I USHORT,AUTO
Hit USHORT
 CODE
 ASSERT(~ (SELF.List &= NULL))
 IF Id !set explicitly requested target
 SELF.List.Id = Id
 GET(SELF.List,SELF.List.Id)
 ASSERT (~ERRORCODE())
 SELF.List.Item.TakeToolbar
 ELSE !set a valid target
 LOOP I = 1 TO RECORDS(SELF.List)
 GET(SELF.List,I)
 IF SELF.List.Item.TryTakeToolbar() THEN Hit = I.
 END
 IF Hit THEN GET(SELF.List,Hit).
 END

See Also: TakeToolbar, ToolbarClass.SetTarget

902 CLARION 5 APPLICATION HANDBOOK

CHAPTER 56 TOOLBAR RELTREECLASS 903

56 - TOOLBARRELTREECLASS

Overview
The ToolbarReltreeClass is a ToolbarTarget that handles events for a
RelationTree control LIST. See Control Templates—RelationTree for more
information.

ToolbarReltreeClass Concepts

ToolbarReltreeClass objects implement the event handling specific to a
RelationTree control LIST. The LIST specific events are primarily scrolling
events, but may include other events. There may be zero or several
ToolbarTarget objects within a procedure; however, only one is active at a
time.

Relationship to Other Application Builder Classes

The ToolbarReltreeClass is derived from the ToolbarTarget class.

The ToolbarClass keeps a list of ToolbarTarget objects (including
ToolbarReltreeClass objects) so it can forward events and method calls to a
particular target.

ABC Template Implementation

The RelationTree control template derives a ToolbarReltreeClass object
called REL#::Toolbar, where # is the RelationTree template’s instance
number. The template generates code to register the REL#::Toolbar object
with the Toolbar object for the procedure that contains the RelationTree
control template. Finally, the template generates the REL#::Toolbar.TakeEvent
method to convert toolbar events into actions specific to the RelationTree
LIST control.

Toolbar ToolbarReltreeClass Source Files

The ToolbarReltreeClass source code is installed by default to the Clarion
\LIBSRC folder. The source code and its respective components are in:

ABTOOLBA.INC ToolbarReltreeClass declarations
ABTOOLBA.CLW ToolbarReltreeClass method definitions

904 CLARION 5 APPLICATION HANDBOOK

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a ToolbarClass object and a related
ToolbarReltreeClass (ToolbarTarget) object.

This example uses a global toolbar to drive a template generated RelTree
control. The program POSTs toolbar events to the active MDI window using
the SYSTEM{Prop:Active} property. Then the ToolbarClass object calls on
the active ToolbarReltreeClass object to handle the (scrolling) events.

 PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
 INCLUDE('ABERROR.INC')
 INCLUDE('ABFILE.INC')
 INCLUDE('ABWINDOW.INC')
 INCLUDE('ABTOOLBA.INC')
 INCLUDE('KEYCODES.CLW')

MAP
Main PROCEDURE
OrderTree PROCEDURE
END

GlobalErrors ErrorClass
Access:Customer CLASS(FileManager)
Init PROCEDURE

END

Relate:Customer CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END

Access:Orders CLASS(FileManager)
Init PROCEDURE

END

Relate:Orders CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END
GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),CREATE,BINDABLE,THREAD
KeyCustNumber KEY(CUS:CustNumber),NOCASE,OPT
KeyCompany KEY(CUS:Company),DUP,NOCASE
Record RECORD,PRE()
CustNumber LONG
Company STRING(20)
ZipCode LONG

END
END

CHAPTER 56 TOOLBAR RELTREECLASS 905

Orders FILE,DRIVER('TOPSPEED'),PRE(ORD),CREATE,BINDABLE,THREAD
KeyOrderNumber KEY(ORD:OrderNumber),NOCASE,OPT,PRIMARY
KeyCustNumber KEY(ORD:CustNumber),DUP,NOCASE,OPT
Record RECORD,PRE()
CustNumber LONG
OrderNumber SHORT
InvoiceAmount DECIMAL(7,2)

END
END

CODE
GlobalErrors.Init
Relate:Customer.Init
Relate:Orders.Init
Main !run Application Frame w/ toolbar
Relate:Customer.Kill
Relate:Orders.Kill
GlobalErrors.Kill

Main PROCEDURE !Application Frame w/ toolbar
Frame APPLICATION('Application'),AT(,,310,210),SYSTEM,MAX,RESIZE,IMM

MENUBAR
ITEM('Orders'),USE(?OrderTree)

END
TOOLBAR,AT(0,0,,20) !must use toolbar EQUATEs

BUTTON,AT(4,4),USE(?Toolbar:Top,Toolbar:Top),DISABLE,ICON('VCRFIRST.ICO')
BUTTON,AT(16,4),USE(?Toolbar:PageUp,Toolbar:PageUp),DISABLE,ICON('VCRPRIOR.ICO')
BUTTON,AT(28,4),USE(?Toolbar:Up,Toolbar:Up),DISABLE,ICON('VCRUP.ICO')
BUTTON,AT(40,4),USE(?Toolbar:Down,Toolbar:Down),DISABLE,ICON('VCRDOWN.ICO')
BUTTON,AT(52,4),USE(?Toolbar:PageDown,Toolbar:PageDown),DISABLE,ICON('VCRNEXT.ICO')
BUTTON,AT(64,4),USE(?Toolbar:Bottom,Toolbar:Bottom),DISABLE,ICON('VCRLAST.ICO')
END

END

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
TakeAccepted PROCEDURE(),BYTE,PROC,VIRTUAL

END
CODE
ThisWindow.Run()

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
SELF.FirstField = 1
OPEN(Frame)
SELF.Opened=True
RETURN ReturnValue

ThisWindow.TakeAccepted PROCEDURE()
CODE
CASE ACCEPTED()
OF Toolbar:First TO Toolbar:Last !post toolbar event to active thread
POST(EVENT:Accepted,ACCEPTED(),SYSTEM{Prop:Active})
RETURN Level:Notify

OF ?OrderTree
START(OrderTree,25000) !start OrderTree procedure/thread

END
RETURN PARENT.TakeAccepted()

906 CLARION 5 APPLICATION HANDBOOK

OrderTree PROCEDURE !template generated Window procedure
! with RelTree control template

DisplayString STRING(255)
Toolbar ToolbarClass !declare Toolbar object
REL1::Toolbar CLASS(ToolbarReltreeClass) !derive REL1::Toolbar object (target)
TakeEvent PROCEDURE(<*LONG VCR>,WindowManager WM),VIRTUAL

END
!template generated RelTree QUEUEs and vaiables

window WINDOW('Browse Orders'),AT(,,115,110),SYSTEM,GRAY,DOUBLE,MDI
LIST,AT(5,4,106,100),USE(?RelTree),FORMAT('800LT@s200@'),FROM(Queue:RelTree)

END

ThisWindow CLASS(WindowManager) !derive ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL
TakeFieldEvent PROCEDURE(),BYTE,PROC,VIRTUAL

END
 CODE
 GlobalResponse = ThisWindow.Run()
!template generated RelTree ROUTINEs

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Init()
 SELF.FirstField = ?RelTree
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 SELF.AddItem(Toolbar) !register Toolbar with ThisWindow
 Relate:Customer.Open
 DO REL1::ContractAll
 OPEN(window)
 SELF.Opened=True
 Toolbar.AddTarget(REL1::Toolbar,?RelTree) !make REL1::Toolbar a toolbar target
 Toolbar.SetTarget(?RelTree) !make REL1::Toolbar the active target
?RelTree{Prop:Selected} = 1
SELF.SetAlerts()
RETURN ReturnValue

REL1::Toolbar.TakeEvent PROCEDURE(<*LONG VCR>,WindowManager WM)
CODE !convert toolbar events to

 CASE ACCEPTED() ! Reltree-specific actions
 OF Toolbar:Bottom TO Toolbar:Up
 SELF.Control{PROPLIST:MouseDownRow} = CHOICE(SELF.Control)
 EXECUTE(ACCEPTED()-Toolbar:Bottom+1)
 DO REL1::NextParent !on Toolbar:Bottom
 DO REL1::PreviousParent !on Toolbar:Top
 DO REL1::NextLevel !on Toolbar:PageDown
 DO REL1::PreviousLevel !on Toolbar:PageUp
 DO REL1::NextRecord !on Toolbar:Down
 DO REL1::PreviousRecord !on Toolbar:Up
 END
 END

CHAPTER 56 TOOLBAR RELTREECLASS 907

ToolbarReltreeClass Properties
The ToolbarReltreeClass inherits all the properties of the ToolbarTarget from
which it is derived. See ToolbarTarget Properties for more information.

ToolbarReltreeClass Methods
The ToolbarReltreeClass inherits all the methods of the ToolbarTarget from
which it is derived. See ToolbarTarget Methods for more information.

In addition to (or instead of) the inherited methods, the ToolbarReltreeClass
contains the following methods:

DisplayButtons (enable appropriate toolbar buttons)

DisplayButtons, VIRTUAL

The DisplayButtons method enables and disables the appropriate toolbar
buttons for the ToolbarReltreeClass object based on the values of the
HelpButton, InsertButton, ChangeButton, DeleteButton, and SelectButton
properties.

Implementation: The TakeToolbar method calls the DisplayButtons method.

Example:

CODE
Toolbar.Init !initialize Toolbar object

 ToolBar.AddTarget(ToolBarForm, -1) !register an Update Form target
 Toolbar.AddTarget(REL1::Toolbar, ?RelTree) !register a RelTree target
 ToolBar.SetTarget(?RelTree) !calls DisplayButtons via TakeToolbar
!program code

MyToolbarReltreeClass.DisplayButtons PROCEDURE!a derived class virtual
CODE
DISABLE(Toolbar:History) !disable toolbar ditto button
ENABLE(Toolbar:Locate) !enable locator button
PARENT.DisplayButtons !call base class DisplayButtons
!your custom code here

See Also: HelpButton, InsertButton, ChangeButton, DeleteButton, SelectButton,
TakeToolbar

908 CLARION 5 APPLICATION HANDBOOK

TakeToolbar (assume control of the toolbar)

TakeToolbar, VIRTUAL

The TakeToolbar method sets the toolbar state appropriate to the
ToolbarReltreeClass object.

Implementation: The TakeToolbar method sets appropriate TIP attributes for the toolbar
buttons and enables and disables toolbar buttons appropriate for the
ToolbarReltreeClass object. The ToolbarClass.SetTarget method calls the
TakeToolbar method.

Example:

CODE
Toolbar.Init !initialize Toolbar object

 ToolBar.AddTarget(ToolBarForm, -1) !register an Update Form target
 Toolbar.AddTarget(REL1::Toolbar, ?RelTree) !register a RelTree target
 ToolBar.SetTarget(?RelTree) !calls TakeToolbar
!program code

MyToolbarReltreeClass.TakeToolbar PROCEDURE !a derived class virtual
CODE
!your custom code here
SELF.DisplayButtons !enable appropriate buttons

See Also: ToolbarClass.SetTarget

CHAPTER 57 TOOLBAR TARGET 909

57 - TOOLBARTARGETCLASS

Overview
ToolbarClass and ToolbarTarget objects work together to reliably “convert”
an event associated with a toolbar button into an appropriate event associated
with a specific control or window. This lets you use a single toolbar to drive
a variety of targets, such as update forms, browse lists, relation tree lists, etc.
A single toolbar can even drive multiple targets (two or more BrowseBoxes)
in a single procedure.

Although the ToolbarTarget is useful by itself, other more useful classes are
derived from it (ToolbarListboxClass, the ToolbarRelTreeClass, and the
ToolbarUpdateClass), and other structures, such as the ToolbarClass, use it to
reference any of these derived classes. The classes derived from
ToolbarTarget let you set the state of the toolbar appropriate to the toolbar
driven entity (set tooltips, enable/disable buttons, etc.), then process toolbar
events for the entity by converting the generic toolbar events into appropriate
entity-specific events.

ToolbarTarget Concepts

Within an MDI application, the ToolbarClass and ToolbarTarget work
together to reliably interpret and pass an event (EVENT:Accepted)
associated with a toolbar button into an event associated with a specific
control or window. For example, the end user CLICKS on a toolbar button (say
the “Insert” button) on the MDI application frame. The frame procedure
forwards the event to the active thread
(POST(EVENT:Accepted,ACCEPTED(),SYSTEM{Prop:Active})). The active thread
(procedure) manages a window that displays two LIST controls, and one of
the LISTs has focus. This procedure has a ToolbarClass object plus a
ToolbarTarget object for each LIST control. The ToolbarClass object takes
the event (ToolbarClass.TakeEvent)1 and forwards the event to the active
ToolbarTarget object (the target that represents the LIST with focus). The
ToolbarTarget object takes the event (ToolbarListBoxClass.TakeEvent) and
handles it by posting an appropriate event to a specific control or to the
window, for example:

POST(EVENT:ACCEPTED,SELF.InsertButton) !insert a record
POST(EVENT:PageDown,SELF.Control) !scroll a LIST
POST(EVENT:Completed) !complete an update form
POST(EVENT:CloseWindow) !select a record
etc.

1If the procedure has a WindowManager object, the WindowManager object
takes the event (WindowManager.TakeEvent) and forwards it to the
ToolbarClass object (WindowManager.TakeAccepted).

910 CLARION 5 APPLICATION HANDBOOK

Relationship to Other Application Builder Classes

At present, the ABC Library has three classes derived from the ToolbarTarget
class:

ToolbarListboxClass BrowseClass toolbar target
ToolbarReltreeClass Reltree control toolbar target
ToolbarUpdateClass Form procedure toolbar target

These ToolbarTarget objects convert generic toolbar events into appropriate
entity-specific events. There may be zero or more ToolbarTarget objects
within a procedure; however, only one is active at a time.

The ToolbarClass keeps a list of ToolbarTarget objects so it can forward
events and method calls to a particular target.

ABC Template Implementation

Each template that requests global toolbar control instantiates a
ToolbarTarget object. The FormVCRControls template’s ToolbarTarget
object is called ToolBarForm; the RelationTree template’s ToolbarTarget
object is called REL#::Toolbar, where # is the RelationTree template’s
instance number; and the BrowseBox’s ToolbarTarget object is completely
encapsulated within the BrowseClass object and is not referenced in the
template generated code. You may see code such as the following in your
template generated procedures.

Toolbar ToolbarClass !declare Toolbar object
CODE
!

ThisWindow.Init PROCEDURE
SELF.AddItem(Toolbar) !register Toolbar with WindowManager
BRW1.AddToolbarTarget(Toolbar) !register BrowseClass as target
Toolbar.AddTarget(REL1::Toolbar,?RelTree) !register RelTree as target
SELF.AddItem(ToolbarForm) !register update form as target

ToolbarTarget Source Files

The ToolbarTarget source code is installed by default to the Clarion
\LIBSRC folder. The ToolbarTarget source code and its respective
components are contained in:

ABTOOLBA.INC ToolbarTarget declarations
ABTOOLBA.CLW ToolbarTarget method definitions

CHAPTER 57 TOOLBAR TARGET 911

ToolbarTarget Properties
The ToolbarTarget contains the following properties:

ChangeButton (change control number)

ChangeButton SIGNED

The ChangeButton property contains the control number (usually
represented by the control’s Field Equate Label) of the window control that
invokes the change record action for this ToolbarTarget object.

A value of zero (0) disables the toolbar change button.

Implementation: The ToolbarTarget object uses this property to enable or disable the toolbar
change button, and as the target control when POSTing certain events. See
POST in the Language Reference for more information. The ToolbarTarget
object POSTs an EVENT:Accepted to the ChangeButton control when the
end user CLICKS the toolbar change button.

Control (window control)

Control SIGNED

The Control property contains the control number (usually represented by
the control’s Field Equate Label) of the window control associated with this
ToolbarTarget object. For ToolbarTarget objects that do not have an
associated control (update forms), the Control property may contain any
identifying number.

The ToolbarTarget object uses this property as the target control when
POSTing certain events. See POST in the Language Reference.

The ToolbarClass.AddTarget method sets the value of this property.

Implementation: By convention, update forms have a Control value of negative one (-1).

See Also: ToolbarClass.AddTarget

912 CLARION 5 APPLICATION HANDBOOK

DeleteButton (delete control number)

DeleteButton SIGNED

The DeleteButton property contains the control number (usually represented
by the control’s Field Equate Label) of the window control that invokes the
delete record action for this ToolbarTarget object.

A value of zero (0) disables the toolbar delete button.

Implementation: The ToolbarTarget object uses this property to enable or disable the toolbar
delete button, and as the target control when POSTing certain events. See
POST in the Language Reference for more information. The ToolbarTarget
object POSTs an EVENT:Accepted to the DeleteButton control when the end
user CLICKS the toolbar delete button.

HelpButton (help control number)

HelpButton SIGNED

The HelpButton property contains the control number (usually represented
by the control’s Field Equate Label) of the window control that invokes
Windows help for this ToolbarTarget object.

A value of zero (0) disables the toolbar help button.

Implementation: The ToolbarTarget object uses this property to enable or disable the toolbar
help button. The ToolbarTarget object “presses” the help (F1) key when the
end user CLICKS the toolbar help button.

InsertButton (insert control number)

InsertButton SIGNED

The InsertButton property contains the control number (usually represented
by the control’s Field Equate Label) of the window control that invokes the
insert record action for this ToolbarTarget object.

A value of zero (0) disables the toolbar insert button.

Implementation: The ToolbarTarget object uses this property to enable or disable the toolbar
insert button, and as the target control when POSTing certain events. See
POST in the Language Reference for more information. The ToolbarTarget
object POSTs an EVENT:Accepted to the InsertButton control when the end
user CLICKS the toolbar insert button.

CHAPTER 57 TOOLBAR TARGET 913

SelectButton (select control number)

SelectButton SIGNED

The SelectButton property contains the control number (usually represented
by the control’s Field Equate Label) of the window control that invokes the
select record action for this ToolbarTarget object.

A value of zero (0) disables the toolbar select button.

Implementation: The ToolbarTarget object uses this property to enable or disable the toolbar
select button, and as the target control when POSTing certain events. See
POST in the Language Reference for more information. The ToolbarTarget
object POSTs an EVENT:Accepted to the SelectButton control when the end
user CLICKS the toolbar select button.

914 CLARION 5 APPLICATION HANDBOOK

ToolbarTarget Methods
The ToolbarTarget class contains the methods listed below.

Functional Organization—Expected Use

As an aid to understanding the ToolbarTarget class, it is useful to recognize
that all its methods are virtual. Typically you will not call these methods
directly from your program—the ToolbarClass methods call them. However,
we anticipate you will often want to override these methods, and because
they are virtual, they are very easy to override. These methods do provide
reasonable default behavior in case you do not want to override them.

Virtual Methods

DisplayButtons enable appropriate toolbar buttons
TryTakeToolbar return toolbar control indicator
TakeToolbar assume control of the toolbar
TakeEvent convert toolbar events

DisplayButtons (enable appropriate toolbar buttons)

DisplayButtons, VIRTUAL

The DisplayButtons method enables and disables the appropriate toolbar
buttons for the ToolbarTarget object based on the values of the HelpButton,
InsertButton, ChangeButton, DeleteButton, and SelectButton properties.

Implementation: The ToolbarListboxClass.TakeToolbar, ToolbarRelTreeClass.TakeToolbar,
and ToolbarUpdateClass.TakeToolbar methods call the DisplayButtons
method. The DisplayButtons method appropriately enables and disables
toolbar buttons common to all ToolbarTarget objects.

Example:

MyToolbarListboxClass.DisplayButtons PROCEDURE
CODE
PARENT.DisplayButtons !Call base class DisplayButtons
!your custom code here

See Also: HelpButton, InsertButton, ChangeButton, DeleteButton, SelectButton,
ToolbarListboxClass.TakeToolbar, ToolbarRelTreeClass.TakeToolbar,
ToolbarUpdateClass.TakeToolbar

CHAPTER 57 TOOLBAR TARGET 915

TakeEvent (convert toolbar events)

TakeEvent([vcr], window manager), VIRTUAL

TakeEvent Process toolbar events for this toolbar target.

vcr An integer variable to receive the control number of the
accepted VCR navigation button. If omitted, the
ToolbarTarget object does no “post processing” naviga-
tion.

windowmanager The label of the ToolbarTarget object’s WindowManager
object. See Window Manager for more information.

The TakeEvent method handles toolbar events for this toolbar target.

The vcr parameter lets the TakeEvent method specify an appropriate
subsequent or secondary action. For example, the
ToolbarUpdateClass.TakeEvent method (for a FORM), may interpret a vcr
scroll down as “save and then scroll.” The method takes the necessary action
to save the item and accomplishes the secondary scroll action by setting the
vcr parameter.

Implementation: The ToolbarClass.TakeEvent method calls the TakeEvent method for the active
ToolbarTarget object. The ToolbarClass.SetTarget method sets the active
ToolbarTarget object. The TakeEvent method POSTs an EVENT:Accepted to
the appropriate local control (insert, change, delete, help) common to all
ToolbarTarget objects.

Example:

REL1::Toolbar.TakeEvent PROCEDURE(<*LONG VCR>,WindowManager WM)
 CODE
 CASE ACCEPTED()
 OF Toolbar:Bottom TO Toolbar:Up
 SELF.Control{PROPLIST:MouseDownRow} = CHOICE(SELF.Control)
 EXECUTE(ACCEPTED()-Toolbar:Bottom+1)
 DO REL1::NextParent
 DO REL1::PreviousParent
 DO REL1::NextLevel
 DO REL1::PreviousLevel
 DO REL1::NextRecord
 DO REL1::PreviousRecord
 END
 OF Toolbar:Insert TO Toolbar:Delete
 SELF.Control{PROPLIST:MouseDownRow} = CHOICE(SELF.Control)
 EXECUTE(ACCEPTED()-Toolbar:Insert+1)
 DO REL1::AddEntry
 DO REL1::EditEntry
 DO REL1::RemoveEntry
 END
 ELSE
 PARENT.TakeEvent(VCR,ThisWindow)
 END

See Also: ToolbarClass.SetTarget, ToolbarClass.TakeEvent

916 CLARION 5 APPLICATION HANDBOOK

TakeToolbar (assume control of the toolbar)

TakeToolbar, VIRTUAL

The TakeToolbar method is a placeholder method to set the toolbar state
appropriate to the ToolbarTarget object. This includes setting MSG and TIP
attributes, enabling and disabling appropriate buttons, etc.

The TakeToolbar method is a placeholder method for derived classes.

See Also: ToolbarListboxClass.TakeToolbar, ToolbarRelTreeClass.TakeToolbar,
ToolbarUpdateClass.TakeToolbar

TryTakeToolbar (return toolbar control indicator)

TryTakeToolbar, VIRTUAL

The TryTakeToolbar method is a virtual placeholder method to return a
value indicating whether the ToolbarTarget object successfully assumed
control of the toolbar. A return value of one (1 or True) indicates success; a
value of zero (0 or False) indicates failure to take control of the toolbar.

The TryTakeToolbar method is a placeholder method for derived classes.

Return Data Type: BYTE

See Also: ToolbarListboxClass.TryTakeToolbar, ToolbarUpdateClass.TryTakeToolbar

CHAPTER 58 TOOLBAR UPDATECLASS 917

58 - TOOLBARUPDATECLASS

Overview
The ToolbarUpdateClass is a ToolbarTarget that handles events for a
template generated Form Procedure that is called from a template generated
Browse Procedure. See Procedure Templates—Browse and Form for more
information.

ToolbarUpdateClass Concepts

ToolbarUpdateClass objects implement the event handling specific to a
template generated Form Procedure. The Form specific events are primarily
the event to complete the Form and save the record (EVENT:Accepted for an
OK button). There may be zero or several ToolbarTarget objects within a
procedure; however, only one is active at a time.

Relationship to Other Application Builder Classes

The ToolbarUpdateClass is derived from the ToolbarTarget class.

The ToolbarClass keeps a list of ToolbarTarget objects (including
ToolbarUpdateClass objects) so it can forward events and method calls to a
particular target.

ABC Template Implementation

The FormVCRControls extension template generates code to declare a
ToolbarUpdateClass object called ToolbarForm, and to register the
ToolbarForm object with the procedure’s WindowManager.

Once the ToolbarForm is registered with the WindowManager, the
WindowManager handles the interaction between the ToolbarClass object
and the ToolbarUpdateClass object with no other references in the template
generated code.

You can use the FormVCRControl template’s prompts to derive from the
ToolbarUpdateClass. The templates provide the derived class so you can
modify the ToolBarForm’s behavior on an instance-by-instance basis.

918 CLARION 5 APPLICATION HANDBOOK

ToolbarUpdateClass Source Files

The ToolbarUpdateClass source code is installed by default to the Clarion
\LIBSRC folder. The ToolbarUpdateClass source code and its respective
components are:

ABTOOLBA.INC ToolbarUpdateClass declarations
ABTOOLBA.CLW ToolbarUpdateClass method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a ToolbarClass object and related
ToolbarTarget (ToolbarUpdateClass and ToolbarListboxClass) objects.

This example uses a global toolbar to drive a BrowseClass LIST, its child
Form procedure, and the Form procedure’s secondary BrowseClass LIST.

The program POSTs toolbar events to the active MDI window using the
SYSTEM{Prop:Active} property. Then the local ToolbarClass object calls
on the active ToolbarTarget object to handle the event.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE('ABERROR.INC')
INCLUDE('ABFILE.INC')
INCLUDE('ABWINDOW.INC')
INCLUDE('ABBROWSE.INC')
INCLUDE('ABTOOLBA.INC')
INCLUDE('KEYCODES.CLW')

MAP
Main PROCEDURE !contains global toolbar
BrowseCustomers PROCEDURE !template generated Browse
UpdateCustomer PROCEDURE !template generated Form
END

GlobalErrors ErrorClass
Access:Customer CLASS(FileManager)
Init PROCEDURE

END

Relate:Customer CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END

Access:Orders CLASS(FileManager)
Init PROCEDURE

END

CHAPTER 58 TOOLBAR UPDATECLASS 919

Relate:Orders CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END
GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),CREATE,BINDABLE,THREAD
KeyCustNumber KEY(CUS:CustNumber),NOCASE,OPT
KeyCompany KEY(CUS:Company),DUP,NOCASE
Record RECORD,PRE()
CustNumber LONG
Company STRING(20)
ZipCode LONG

END
END

Orders FILE,DRIVER('TOPSPEED'),PRE(ORD),CREATE,BINDABLE,THREAD
KeyOrderNumber KEY(ORD:OrderNumber),NOCASE,OPT,PRIMARY
KeyCustNumber KEY(ORD:CustNumber),DUP,NOCASE,OPT
Record RECORD,PRE()
CustNumber LONG
OrderNumber SHORT
InvoiceAmount DECIMAL(7,2)

END
END

CODE
GlobalErrors.Init
Relate:Customer.Init
Relate:Orders.Init
Main !run Application Frame w/ toolbar
Relate:Customer.Kill
Relate:Orders.Kill
GlobalErrors.Kill

Main PROCEDURE !Application Frame w/ toolbar
Frame APPLICATION('Application'),AT(,,310,210),SYSTEM,MAX,RESIZE,IMM

MENUBAR
ITEM('Browse Customers'),USE(?BrowseCustomers)

END
TOOLBAR,AT(0,0,,20) !must use toolbar EQUATEs

BUTTON,AT(4,4),USE(?Toolbar:Top,Toolbar:Top),DISABLE,ICON('VCRFIRST.ICO')
BUTTON,AT(16,4),USE(?Toolbar:PageUp,Toolbar:PageUp),DISABLE,ICON('VCRPRIOR.ICO')
BUTTON,AT(28,4),USE(?Toolbar:Up,Toolbar:Up),DISABLE,ICON('VCRUP.ICO')
BUTTON,AT(40,4),USE(?Toolbar:Down,Toolbar:Down),DISABLE,ICON('VCRDOWN.ICO')
BUTTON,AT(52,4),USE(?Toolbar:PageDown,Toolbar:PageDown),DISABLE,ICON('VCRNEXT.ICO')
BUTTON,AT(64,4),USE(?Toolbar:Bottom,Toolbar:Bottom),DISABLE,ICON('VCRLAST.ICO')
BUTTON,AT(96,4),USE(?Toolbar:Insert,Toolbar:Insert),DISABLE,ICON('INSERT.ICO')
BUTTON,AT(108,4),USE(?Toolbar:Change,Toolbar:Change),DISABLE,ICON('EDIT.ICO')
BUTTON,AT(121,4),USE(?Toolbar:Delete,Toolbar:Delete),DISABLE,ICON('DELETE.ICO')
END

END

FrameWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,VIRTUAL
TakeAccepted PROCEDURE(),BYTE,PROC,VIRTUAL

END
CODE
FrameWindow.Run()

920 CLARION 5 APPLICATION HANDBOOK

FrameWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
SELF.FirstField = 1
OPEN(Frame)
SELF.Opened=True
RETURN ReturnValue

FrameWindow.TakeAccepted PROCEDURE()
CODE
CASE ACCEPTED()
OF Toolbar:First TO Toolbar:Last !post toolbar event to active thread
POST(EVENT:Accepted,ACCEPTED(),SYSTEM{Prop:Active})
RETURN Level:Notify

OF ?BrowseCustomers
START(BrowseCustomers,25000) !start BrowseCustomers procedure/thread

END
RETURN PARENT.TakeAccepted()

BrowseCustomers PROCEDURE !template generated Browse
CustView VIEW(Customer)

END
CustQ QUEUE
CUS:CustNumber LIKE(CUS:CustNumber)
CUS:Company LIKE(CUS:Company)
CUS:ZipCode LIKE(CUS:ZipCode)
ViewPosition STRING(1024)

END
QuickWindow WINDOW('Browse Customers'),AT(,,211,155),IMM,SYSTEM,GRAY,DOUBLE,MDI

LIST,AT(8,6,198,142),USE(?CustList),IMM,HVSCROLL,FROM(CustQ),|
FORMAT('28R(2)|M~ID~C(0)@n4@80L(2)|M~Company~36L(2)|M~Zip~@P#####P@')
BUTTON('&Insert'),AT(49,62),USE(?Insert),HIDE
BUTTON('&Change'),AT(98,62),USE(?Change),HIDE,DEFAULT
BUTTON('&Delete'),AT(147,62),USE(?Delete),HIDE

END

BrowseWindow CLASS(WindowManager) !derive BrowseWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL
Run PROCEDURE(USHORT Number,BYTE Request),BYTE,PROC,VIRTUAL

END

Toolbar ToolbarClass !declare Toolbar object
BRW1 CLASS(BrowseClass) !derive BRW1 object from BrowseClass
Q &CustQ

END
CODE
GlobalResponse = BrowseWindow.Run()

BrowseWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
SELF.FirstField = ?CustList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
SELF.AddItem(Toolbar) !register Toolbar with BrowseWindow
Relate:Customer.Open

CHAPTER 58 TOOLBAR UPDATECLASS 921

BRW1.Init(?CustList,CustQ.ViewPosition,CustView,CustQ,Relate:Customer,SELF)
OPEN(QuickWindow)
SELF.Opened=True
BRW1.Q &= CustQ
BRW1.AddSortOrder(,CUS:KeyCompany) !set scroll order for Browse AND child Form
BRW1.AddField(CUS:CustNumber,BRW1.Q.CUS:CustNumber)
BRW1.AddField(CUS:Company,BRW1.Q.CUS:Company)
BRW1.AddField(CUS:ZipCode,BRW1.Q.CUS:ZipCode)
BRW1.AskProcedure = 1
BRW1.InsertControl=?Insert
BRW1.ChangeControl=?Change
BRW1.DeleteControl=?Delete
BRW1.AddToolbarTarget(Toolbar) !BRW1 instantiates a ToolbarListboxClass
SELF.SetAlerts() ! object, and makes it a target
RETURN ReturnValue

BrowseWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill()
Relate:Customer.Close
RETURN ReturnValue

BrowseWindow.Run PROCEDURE(USHORT Number,BYTE Request)
CODE
GlobalRequest = Request
UpdateCustomer !Browse Procedure calls Form Procedure
RETURN GlobalResponse

UpdateCustomer PROCEDURE !template generated Form Procedure

OrderView VIEW(Orders)
END

OrderQ QUEUE
ORD:OrderNumber LIKE(ORD:OrderNumber)
ORD:InvoiceAmount LIKE(ORD:InvoiceAmount)
ViewPosition STRING(1024)

END

QuickWindow WINDOW('Update Customer'),AT(,,172,132),IMM,GRAY,DOUBLE,MDI
SHEET,AT(4,4,164,106),USE(?CurrentTab)
TAB('Customer'),USE(?CustomerTab)
PROMPT('&Cust Number:'),AT(8,23),USE(?CustNumber:Prompt)
STRING(@n4),AT(64,23),USE(CUS:CustNumber),RIGHT(1)
PROMPT('&Company:'),AT(8,36),USE(?Company:Prompt)
ENTRY(@s20),AT(64,36),USE(CUS:Company)
PROMPT('&Zip Code:'),AT(8,52),USE(?Zip:Prompt)
ENTRY(@P#####P),AT(64,52),USE(CUS:ZipCode),RIGHT(1)

END
TAB('Orders'),USE(?OrderTab)
LIST,AT(8,22,156,81),USE(?OrdList),IMM,HVSCROLL,FROM(OrderQ),|
FORMAT('52R(2)|M~Order ID~C(0)@n-7@60D(12)|M~Amount~C(0)@n-10.2@')

END
END
BUTTON('OK'),AT(97,114),USE(?OK),DEFAULT
BUTTON('Cancel'),AT(133,114),USE(?Cancel)

END

922 CLARION 5 APPLICATION HANDBOOK

FormWindow CLASS(WindowManager) !derive FormWindow from WindowManager
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL
TakeSelected PROCEDURE(),BYTE,PROC,VIRTUAL

END

Toolbar ToolbarClass !declare Toolbar object
ToolbarForm ToolbarUpdateClass !declare ToolbarForm object
OrderBrowse CLASS(BrowseClass) !derive OrderBrowse from BrowseClass
Q &OrderQ

END
CODE
GlobalResponse = FormWindow.Run()

FormWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
SELF.Request = GlobalRequest
ReturnValue = PARENT.Init()
SELF.FirstField = ?CustNumber:Prompt
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
CLEAR(GlobalRequest)
CLEAR(GlobalResponse)
SELF.AddItem(?Cancel,RequestCancelled)
Relate:Customer.Open
SELF.Primary &= Relate:Customer
SELF.OkControl = ?OK
IF SELF.PrimeUpdate() THEN RETURN Level:Notify.
OrderBrowse.Init(?OrdList,OrderQ.ViewPosition,OrderView,OrderQ,Relate:Orders,SELF)
OPEN(QuickWindow)
SELF.Opened=True
OrderBrowse.Q &= OrderQ
OrderBrowse.AddSortOrder(,ORD:KeyCustNumber)
OrderBrowse.AddRange(ORD:CustNumber,Relate:Orders,Relate:Customer)
OrderBrowse.AddField(ORD:OrderNumber,OrderBrowse.Q.ORD:OrderNumber)
OrderBrowse.AddField(ORD:InvoiceAmount,OrderBrowse.Q.ORD:InvoiceAmount)
SELF.AddItem(Toolbar) !Register Toolbar with FormWindow
SELF.AddItem(ToolbarForm) !Register ToolbarForm with FormWindow

! (and with FormWindow’s Toolbar)
OrderBrowse.AddToolbarTarget(Toolbar) !Instantiate a ToolbarListboxClass object,
SELF.SetAlerts() ! and register with FormWindow’s Toolbar
RETURN ReturnValue

FormWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill()
Relate:Customer.Close
RETURN ReturnValue

FormWindow.TakeSelected PROCEDURE
CODE
IF FIELD(){PROP:Type}=Create:List
Toolbar.SetTarget(FIELD()) !make selected list the active Target

END ! (FormWindow also auto selects the Target)
RETURN PARENT.TakeSelected()

CHAPTER 58 TOOLBAR UPDATECLASS 923

Access:Customer.Init PROCEDURE
 CODE
 PARENT.Init(Customer,GlobalErrors)
 SELF.FileNameValue = 'Customer'
 SELF.Buffer &= CUS:Record
 SELF.Create = 1
 SELF.AddKey(CUS:KeyCustNumber,'CUS:KeyCustNumber',1)
 SELF.AddKey(CUS:KeyCompany,'CUS:KeyCompany',0)
 SELF.AddKey(CUS:KeyZipCode,'CUS:KeyZipCode',0)

Access:Orders.Init PROCEDURE
 CODE
 PARENT.Init(Orders,GlobalErrors)
 SELF.FileNameValue = 'Orders'
 SELF.Buffer &= ORD:Record
 SELF.Create = 1
 SELF.AddKey(ORD:KeyOrderNumber,'ORD:KeyOrderNumber',1)
 SELF.AddKey(ORD:KeyCustNumber,'ORD:KeyCustNumber',0)

Relate:Customer.Init PROCEDURE
 CODE
 Access:Customer.Init
 PARENT.Init(Access:Customer,1)
 SELF.AddRelation(Relate:Orders,RI:CASCADE,RI:RESTRICT,ORD:KeyCustNumber)
 SELF.AddRelationLink(CUS:CustNumber,ORD:CustNumber)

Relate:Customer.Kill PROCEDURE
 CODE
 Access:Customer.Kill
 PARENT.Kill

Relate:Orders.Init PROCEDURE
 CODE
 Access:Orders.Init
 PARENT.Init(Access:Orders,1)
 SELF.AddRelation(Relate:Customer)

Relate:Orders.Kill PROCEDURE
 CODE
 Access:Orders.Kill
 PARENT.Kill

924 CLARION 5 APPLICATION HANDBOOK

ToolbarUpdateClass Properties
The ToolbarUpdateClass inherits all the properties of the ToolbarTarget from
which it is derived. See ToolbarTarget Properties for more information.

In addition to the inherited properties, the ToolbarUpdateClass contains the
following properties.

Request (requested database operation)

Request BYTE

The Request property indicates for what purpose the ToolbarUpdateClass
object’s entity is used. The ToolbarUpdateClass uses this value to set
appropriate toolbar button TIP attributes and enable and disable the
appropriate toolbar buttons.

Implementation: The TakeToolbar and DisplayButtons methods set the toolbar state based on
the value of the Request property. EQUATEs for the Request values are
declared in TPLEQU.CLW as follows:

InsertRecord EQUATE (1) !Add a record
ChangeRecord EQUATE (2) !Change the current record
DeleteRecord EQUATE (3) !Delete the current record
SelectRecord EQUATE (4) !Select the current record

See Also: DisplayButtons, TakeToolbar

History (enable toolbar history button)

History BYTE

The History property indicates whether or not to enable the toolbar history
(ditto) button for this ToolbarUpdateClass object. The ToolbarUpdateClass
uses this value to set the appropriate toolbar button TIP attribute and enable
or disable the appropriate toolbar button.

By convention the history button restores the previous value for a field or
record. See Control Templates—SaveButton for more information.

Implementation: The TakeToolbar and DisplayButtons methods set the toolbar state based on
the value of the History property. A History value of one (1) enables the
toolbar history button; a value of zero (0) disables the history button

See Also: DisplayButtons, TakeToolbar

CHAPTER 58 TOOLBAR UPDATECLASS 925

ToolbarUpdateClass Methods
The ToolbarUpdateClass inherits all the methods of the ToolbarTarget from
which it is derived. See ToolbarTarget Methods for more information.

In addition to (or instead of) the inherited methods, the ToolbarUpdateClass
contains the following methods:

DisplayButtons (enable appropriate toolbar buttons)

DisplayButtons, VIRTUAL

The DisplayButtons method enables and disables the appropriate toolbar
buttons for the ToolbarUpdateClass object based on the values of the
HelpButton, InsertButton, ChangeButton, DeleteButton, and SelectButton
properties.

Implementation: The TakeToolbar method calls the DisplayButtons method.

Example:

CODE
Toolbar.Init !initialize Toolbar object

 ToolBar.AddTarget(ToolbarForm, -1) !register an Update Form target
 Toolbar.AddTarget(REL1::Toolbar, ?RelTree) !register a RelTree target
 ToolBar.SetTarget(-1) !calls DisplayButtons via TakeToolbar
!program code

MyToolbarUpdateClass.DisplayButtons PROCEDURE !a derived class virtual
CODE
ENABLE(Toolbar:History) !enable toolbar ditto button
DISABLE(Toolbar:Locate) !disable locator button
PARENT.DisplayButtons !call base class DisplayButtons
!your custom code here

See Also: HelpButton, InsertButton, ChangeButton, DeleteButton, SelectButton,
TakeToolbar

926 CLARION 5 APPLICATION HANDBOOK

TakeEvent (convert toolbar events)

TakeEvent([vcr], window manager), VIRTUAL

TakeEvent Handles toolbar events for the ToolbarUpdateClass
object.

vcr An integer variable to receive the control number of the
accepted VCR navigation button. This lets the TakeEvent
method specify an appropriate subsequent action. If
omitted, the ToolbarUpdateClass object does no “post
processing” navigation.

windowmanager The label of the ToolbarUpdateClass object’s
WindowManager object. See Window Manager for more
information.

The TakeEvent method handles toolbar events for the ToolbarUpdateClass
object.

The vcr parameter lets the TakeEvent method specify an appropriate
subsequent or secondary action. For example, the
ToolbarUpdateClass.TakeEvent method (for a FORM), may interpret a vcr
scroll down as “save and then scroll.” The method takes the necessary action
to save the item and accomplishes the secondary scroll action by setting the
vcr parameter.

Implementation: The ToolbarClass.TakeEvent method calls the TakeEvent method for the
active ToolbarTarget object. The ToolbarClass.SetTarget method sets the
active ToolbarTarget object.

Example:

ToolbarClass.TakeEvent PROCEDURE(<*LONG VCR>,WindowManager WM)
 CODE
ASSERT(~SELF.List &= NULL)
IF RECORDS(SELF.List)
SELF.List.Item.TakeEvent(VCR,WM)

END

See Also: ToolbarClass.SetTarget, ToolbarClass.TakeEvent

CHAPTER 58 TOOLBAR UPDATECLASS 927

TakeToolbar (assume control of the toolbar)

TakeToolbar, VIRTUAL

The TakeToolbar method sets the toolbar state appropriate to the
ToolbarUpdateClass object.

Implementation: The TakeToolbar method sets appropriate TIP attributes for the toolbar
buttons and enables and disables toolbar buttons appropriate for the
ToolbarUpdateClass object. The ToolbarClass.SetTarget method and the
TryTakeToolbar method call the TakeToolbar method.

Example:

CODE
Toolbar.Init !initialize Toolbar object

 ToolBar.AddTarget(ToolbarForm, -1) !register an Update Form target
 Toolbar.AddTarget(REL1::Toolbar, ?RelTree) !register a RelTree target
 ToolBar.SetTarget(-1) !calls TakeToolbar
!program code

MyToolbarUpdateClass.TakeToolbar PROCEDURE !a derived class virtual
CODE
!your custom code here
SELF.DisplayButtons !enable appropriate buttons

See Also: ToolbarClass.SetTarget, TryTakeToolbar

928 CLARION 5 APPLICATION HANDBOOK

TryTakeToolbar (return toolbar control indicator)

TryTakeToolbar, VIRTUAL

The TryTakeToolbar method returns a value indicating whether the
ToolbarTarget object successfully assumed control of the toolbar. A return
value of one (1 or True) indicates success; a value of zero (0 or False)
indicates failure to take control of the toolbar.

Implementation: The ToolbarClass.SetTarget method calls the TryTakeToolbar method. The
TryTakeToolbar method calls the TakeToolbar and returns True because, by
default, a ToolbarUpdateClass object may always assume toolbar control.

Return Data Type: BYTE

Example:

ToolbarClass.SetTarget PROCEDURE(SIGNED Id)
I USHORT,AUTO
Hit USHORT
 CODE
 ASSERT(~ (SELF.List &= NULL))
 IF Id !set explicitly requested target
 SELF.List.Id = Id
 GET(SELF.List,SELF.List.Id)
 ASSERT (~ERRORCODE())
 SELF.List.Item.TakeToolbar
 ELSE !set a valid target
 LOOP I = 1 TO RECORDS(SELF.List)
 GET(SELF.List,I)
 IF SELF.List.Item.TryTakeToolbar() THEN Hit = I.
 END
 IF Hit THEN GET(SELF.List,Hit).
 END

See Also: TakeToolbar, ToolbarClass.SetTarget

CHAPTER 59 TRANSLATOR CLASS 929

59 - TRANSLATORCLASS

Overview
By default, the ABC Templates, the ABC Library, and the
Clarion visual source code formatters generate American English user
interfaces. However, Clarion makes it very easy to efficiently produce non-
English user interfaces for your application programs.

The TranslatorClass provides very fast runtime translation of user interface
text. The TranslatorClass lets you deploy a single application that serves all
your customers, regardless of their language preference. That is, you can use
the TranslatorClass to display several different user interface languages
based on end user input or some other runtime criteria, such as INI file or
control file contents.

Alternatively, you can use the Clarion translation files (*.TRN) to implement
a single non-English user inteface at compile time.

TranslatorClass Concepts

The TranslatorClass and the ABUTIL.TRN file provide a way to perform
language translation at runtime. That is, you can make your program display
one or more non-English user interfaces based on end user input or some
other runtime criteria such as INI file or control file contents. You can also
use the TranslatorClass to customize a single application for multiple
customers. The TranslatorClass operates on all user interface elements
including window controls, window titlebars, tooltips, list box headers, and
static report controls.

The ABUTIL.TRN File

The ABUTIL.TRN file contains translation pairs for all the user interface
text generated by the ABC Templates and the ABC Library. A translation
pair is simply two text strings: one text string for which to search and another
text string to replace the searched-for text. At runtime, the TranslatorClass
applies the translation pairs to each user interface element.

You can directly edit the ABUTIL.TRN file to add additional translation
items. We recommend this method for translated text common to several
applications. The translation pairs you add to the Translator GROUP
declared in ABUTIL.TRN are automatically shared by any application
relying on the ABC Library and the ABC Templates.

930 CLARION 5 APPLICATION HANDBOOK

Translating Custom Text

The default ABUTIL.TRN translation pairs do not include any custom text
that you apply to your windows and menus. To translate custom text, you
simply add translation pairs to the translation process, either at a global level
or at a local level according to your requirements. To help identify custom
text, the TranslatorClass automatically identifies any untranslated text for
you; you need only supply the translation. See ExtractText for more
information.

Macro Substitution

The TranslatorClass defines and translates macro strings. A TranslatorClass
macro is simply text delimited by percent signs (%), such as %mymacro%.
You may use a macro within the text on an APPLICATION, WINDOW, or
REPORT control or titlebar, or you may use a macro within TranslatorClass
translation pairs text.

You define the macro with surrounding percent signs (%), and you define its
substitution value with a TranslatorClass translation pair (without percent
signs).

This macro substitution capability lets you

• translate a small portion (the macro) of a larger text string

• do multiple levels of translation (a macro substitution value may also
contain a macro)

 See the Conceptual Example for more information.

Relationship to Other Application Builder Classes

The WindowManager, PopupClass, and PrintPreviewClass optionally use the
TranslatorClass to translate text at runtime. These classes do not require the
TranslatorClass; however, if you want them to do runtime translation, you
must include the TranslatorClass in your program. See the Conceptual
Example.

ABC Template Implementation

The ABC Templates instantiate a global TranslatorClass object for each
application that checks the Enable Run-Time Translation box on the Global
Properties dialog. See Template Overview—Application Properties for more
information.

CHAPTER 59 TRANSLATOR CLASS 931

The TranslatorClass object is called Translator, and each template-generated
procedure calls on the Translator object to translate all text for its
APPLICATION, WINDOW or REPORT. Additionally, the template-
generated PopupClass objects (ASCIIViewer and BrowseBox templates) and
PrintPreviewClass objects (Report template) use the Translator to translate
menu text.

Note: The ABC Templates use the TranslatorClass to apply user
interface text defined at compile time. The templates do not
provide a runtime switch between user interface languages.

TranslatorClass Source Files

The TranslatorClass source code is installed by default to the Clarion
\LIBSRC folder. The TranslatorClass source code and its respective
components are contained in:

ABUTIL.INC TranslatorClass declarations
ABUTIL.CLW TranslatorClass method definitions
ABUTIL.TRN TranslatorClass default translation pairs

932 CLARION 5 APPLICATION HANDBOOK

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a TranslatorClass object.

This example applies both default and custom translations to a “preferences”
window. It also collects and stores untranslated text in a file so you don’t
have to manually collect the text to translate.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE('ABUTIL.INC') !declare TranslatorClass
MAP
END

MyTranslations GROUP !declare local translations
Items USHORT(4) !4 translations pairs

PSTRING('Company') ! item 1 text (macro)
PSTRING('Widget %CoType%') ! item 1 replacement text
PSTRING('&Sound') ! item 2 text
PSTRING('&xSoundx') ! item 2 replacement text
PSTRING('&Volume') ! item 3 text
PSTRING('&xVolumex') ! item 3 replacement text
PSTRING('OK') ! item 4 text
PSTRING('xOKx') ! item 4 replacement text

END
INIMgr INIClass !declare INIMgr object
Translator TranslatorClass !declare Translator object
CoType STRING(‘Inc.’) !default company type
Sound STRING('ON ') !default preference value
Volume BYTE(3) !default preference value

PWindow WINDOW('%Company% Preferences'),AT(,,100,35),IMM,SYSTEM,GRAY
CHECK('&Sound'),AT(8,6),USE(Sound),VALUE('ON','OFF')
PROMPT('&Volume'),AT(31,19),USE(?VolumePrompt)
SPIN(@s20),AT(8,20,21,7),USE(Volume),HVSCROLL,RANGE(0,9),STEP(1)
BUTTON('OK'),AT(57,3,30,10),USE(?OK)

END
CODE
INIMgr.Init('.\MyApp.INI') !initialize INIMgr object
INIMgr.Fetch('Preferences','CoType',CoType) !get company type, default Inc.
Translator.Init !initialize Translator object:

! add default translation pairs
Translator.AddTranslation(MyTranslations) !add local translation pairs
Translator.AddTranslation(‘CoType’,CoType) !add translation pair from INI
Translator.ExtractText='.\MyApp.trn' !collect user interface text
OPEN(PWindow)
Translator.TranslateWindow !translate controls & titlebar
ACCEPT
IF EVENT() = EVENT:Accepted
IF FIELD() = ?OK
INIMgr.Update('Preferences','Sound',Sound)
INIMgr.Update('Preferences','Volume',Volume)
POST(EVENT:CloseWindow)

. . .
Translator.Kill !write user inteface text

CHAPTER 59 TRANSLATOR CLASS 933

TranslatorClass Properties
The TranslatorClass contains the following properties:

ExtractText (identify text to translate)

ExtractText CSTRING(File:MaxFilePath)

The ExtractText property contains the pathname of a file to receive a list of
runtime user interface text to translate. If ExtractText contains a pathname,
the TranslatorClass identifies, extracts, and writes the user interface text it
encounters at runtime to the named file.

To generate a complete list of text to translate, assign a filename to the
ExtractText property, compile and run your application, then open each
procedure, menu, and option in the application. When you close the
application, the TranslatorClass generates a sorted list of all the untranslated
text items. You can then use this information to provide appropriate
translations for the untranslated text. See AddTranslation for more
information.

For applications that do dynamic text assignments based on data, you may
even want to set the ExtractText property when you deploy your application,
so you can collect the text that actually appears on end user screens based on
the specific ways the end users work and the data they access.

Implementation: The ExtractText property defaults to blank. A value of blank does not extract
untranslated text. A non-blank value extracts the text, and a valid pathname
writes the untranslated text to the specified file.

See Also: AddTranslation

934 CLARION 5 APPLICATION HANDBOOK

TranslatorClass Methods
The TranslatorClass contains the following methods:

AddTranslation (add translation pairs)

AddTranslation(| group |)
| text, translation |

AddTranslation Adds translation pairs.

group The label of a structure that contains one or more text/
translation pairs.

text A string constant, variable, EQUATE, or expression
containing user interface text to search for. The
TranslatorClass replaces each found text with its corre-
sponding translation.

translation A string constant, variable, EQUATE, or expression
containing the replacement text for the corresponding
text.

The AddTranslation method adds translation pairs to the runtime translation
process.

The text is not limited to a single word; it may contain a phrase, or any text
string, including TranslatorClass macros (see TranslatorClass Concepts—
Runtime Translation).

Implementation: The group parameter must name a GROUP that begins the same as the
TranslatorGroup structure declared in ABUTIL.INC:

TranslatorGroup GROUP,TYPE
Number USHORT

END

When you declare a translation group, be sure to set the correct number of
translation pairs in the GROUP. For example:

MyAppTranslator GROUP
Pairs USHORT(2) !2 translation pairs

PSTRING('&Insert') !begin 1st pair
PSTRING('&Agregar') ! end 1st pair
PSTRING('Insert a new Record') !begin 2nd pair
PSTRING('Agregar un nuevo Registro')! end 2nd pair

END

The TranslatorClass uses whole word, case sensitive matching to search for
text. For example, ‘Insert’ does not match ‘&Insert’ or ‘INSERT’ or ‘Insert a
new Record.’

CHAPTER 59 TRANSLATOR CLASS 935

The Init method uses the AddTranslation method to add the translation pairs
declared in ABUTIL.TRN to the translation process.

The various “Translate” methods apply the translation pairs.

Example:

MyTranslations GROUP !declare local translations
Pairs USHORT(4) !4 translations pairs
 PSTRING('&Sound') ! item 1 text
 PSTRING('&xSoundx') ! item 1 replacement text
 PSTRING('&Volume') ! item 2 text
 PSTRING('&xVolumex') ! item 2 replacement text
 PSTRING('Preferences') ! item 3 text
 PSTRING('xPreferencesx') ! item 3 replacement text
 PSTRING('OK') ! item 4 text
 PSTRING('xOKx') ! item 4 replacement text
 END
Translator TranslatorClass !declare Translator object
 CODE
 Translator.Init !initialize Translator object

!add default translation pairs
 Translator.AddTranslation(MyTranslations) !add local translation pairs
 OPEN(MyWindow)
 Translator.TranslateWindow !translate all window controls

! and window titlebar

See Also: Init, TranslateControl, TranslatedControls, TranslateString, TranslateWindow

936 CLARION 5 APPLICATION HANDBOOK

Init (initialize the TranslatorClass object)

Init

The Init method initializes the TranslatorClass object.

Implementation: The Init method uses the TranslatorClass.AddTranslation method to add the
translation pairs declared in ABUTIL.TRN to the translation process.

Example:

Translator TranslatorClass !declare Translator object
CODE
Translator.Init !initialize Translator object:

! with default translation pairs
!program code
Translator.Kill !shut down Translator object

Kill (shut down the TranslatorClass object)

Kill

The Kill method frees any memory allocated during the life of the object and
does any other required termination code.

Implementation: The Kill method writes out a list of untranslated text strings if the
ExtractText property contains a valid INI file pathname.

Example:

Translator TranslatorClass !declare Translator object
CODE
Translator.Init !initialize Translator object:

! with default translation pairs
!program code
Translator.Kill !shut down Translator object

CHAPTER 59 TRANSLATOR CLASS 937

TranslateControl (translate text for a control)

TranslateControl(control [,window]), VIRTUAL

TranslateControl Translates text for a control.

control An integer constant, variable, EQUATE, or expression
containing the control number of the control to translate.

window The label of the APPLICATION, WINDOW, or RE-
PORT to translate. If omitted, TranslateControl operates
on the active target.

The TranslateControl method translates the text for the specified control.
The AddTranslation method sets the translation values for the control text.

Implementation: The TranslateControl method calls the TranslateString method for the
specified control. Where applicable, the TranslateControl method calls the
TranslateProperty method to translate MSG attribute text, TIP attribute text,
and FORMAT attribute text.

The TranslateControl method does not translate USE variable contents;
therefore it does not translate STRING controls that display a variable, nor
the contents of ENTRY, SPIN, TEXT, or COMBO controls. You can use the
TranslateString method to translate these elements if necessary.

Example:

PWindow WINDOW('Preferences'),AT(,,89,34),IMM,SYSTEM,GRAY
 CHECK('&Sound'),AT(8,6),USE(Sound),VALUE('ON','OFF')
 PROMPT('&Volume'),AT(31,19),USE(?VolumePrompt)
 SPIN(@s20),AT(8,20,21,7),USE(Volume),HVSCROLL,RANGE(0,9),STEP(1)
 BUTTON('OK'),AT(57,3,30,10),USE(?OK)
 END
 CODE
 OPEN(PWindow)
 Translator.TranslateControl(?Sound) !translate Sound check box
 Translator.TranslateControl(?VolumePrompt) !translate Volume prompt
ACCEPT !leave OK button
END ! and window title bar alone

See Also: AddTranslation, TranslateProperty, TranslateString

938 CLARION 5 APPLICATION HANDBOOK

TranslateControls (translate text for range of controls)

TranslateControls(first control, last control [,window]), VIRTUAL

TranslateControls Translates text for a range of controls.

first control An integer constant, variable, EQUATE, or expression
containing the control number of the first control to
translate.

last control An integer constant, variable, EQUATE, or expression
containing the control number of the last control to
translate.

window The label of the APPLICATION, WINDOW, or RE-
PORT to translate. If omitted, TranslateControl operates
on the active target.

The TranslateControls method translates the text for each control between
the first control and the last control, inclusive. The AddTranslation method
sets the translation values for the control text.

Implementation: The TranslateControls method calls the TranslateControl method for each
control with a USE attribute in the specified range. The TranslateControls
method ignores controls with no USE attribute.

Example:

PWindow WINDOW('Preferences'),AT(,,89,34),IMM,SYSTEM,GRAY
 CHECK('&Sound'),AT(8,6),USE(Sound),VALUE('ON','OFF')
 PROMPT('&Volume'),AT(31,19),USE(?VolumePrompt)
 SPIN(@s20),AT(8,20,21,7),USE(Volume),HVSCROLL,RANGE(0,9),STEP(1)
 BUTTON('OK'),AT(57,3,30,10),USE(?OK)
 END
 CODE
 OPEN(PWindow)
 Translator.TranslateControls(?Sound,?VolumePrompt) !translate ?Sound thru ?Volume
ACCEPT !leave OK button untranslated
END

See Also: AddTranslation, TranslateControl

CHAPTER 59 TRANSLATOR CLASS 939

TranslateProperty (translate textual control property)

TranslateProperty(property, control [,window]), VIRTUAL

TranslateProperty Translates textual property for a control.

property An integer constant, variable, EQUATE, or expression
containing the property EQUATE of the property to
translate.

control An integer constant, variable, EQUATE, or expression
containing the control number of the control to translate.

window The label of the APPLICATION, WINDOW, or RE-
PORT to translate. If omitted, TranslateControl operates
on the active target.

The TranslateProperty method translates the text for the specified control
property, such as PROP:TIP or PROP:MSG. The AddTranslation method sets
the translation values for the text.

Implementation: The TranslateControl method calls the TranslateProperty method for the
specified control property. The TranslateProperty method calls the
TranslateString method to translate MSG attribute text, TIP attribute text,
and FORMAT attribute text.

Example:

MyTranslator.TranslateControl PROCEDURE(SHORT CtlID,<WINDOW Win>)

CtrlType USHORT,AUTO
CODE
CtrlType=Win$CtlId{PROP:Type}
SELF.TypeMapping.ControlType=CtrlType
GET(SELF.TypeMapping,SELF.TypeMapping.ControlType)
LOOP WHILE ~ERRORCODE() AND SELF.TypeMapping.ControlType=CtrlType
SELF.TranslateProperty(SELF.TypeMapping.Property,CtlId,Win)
GET(SELF.TypeMapping,POINTER(SELF.TypeMapping)+1)

END

See Also: AddTranslation, TranslateControl, TranslateString

940 CLARION 5 APPLICATION HANDBOOK

TranslateString (translate text)

TranslateString(text), VIRTUAL

TranslateString Translates a text string.

text A string constant, variable, EQUATE, or expression
containing text to search for.

The TranslateString method returns the translation value for the specified
text. The translation values and macro substitution values are set by the
AddTranslation method.

Implementation: The TranslateString method uses whole word, case sensitive matching to
search for text. For example, ‘Insert’ does not match ‘&Insert’ or ‘INSERT’
or ‘Insert a new Record.’ If there is no translation value for the specified text,
TranslateString returns text.

The TranslateString method implements the TranslatorClass macro
substitution by translating any percent sign (%) delimited text it detects
within its own return value.

Return Data Type: STRING

Example:

MyVar STRING(‘Sound’)
PWindow WINDOW('Preferences'),AT(,,89,34),IMM,SYSTEM,GRAY

STRING(@s12),AT(8,30),USE(MyVar)
BUTTON('OK'),AT(57,3,30,10),USE(?OK)

 END
 CODE
 OPEN(PWindow)
 MyVar=Translator.TranslateString(MyVar) !translate USE variable contents
ACCEPT
END

See Also: AddTranslation

CHAPTER 59 TRANSLATOR CLASS 941

TranslateWindow (translate text for a window)

TranslateWindow([,window]), VIRTUAL

TranslateControls Translates text for each control on the WINDOW.

window The label of the APPLICATION, WINDOW, or RE-
PORT to translate. If omitted, TranslateControl operates
on the active target.

The TranslateWindow method translates the text for each control on the
active target (APPLICATION, WINDOW, or REPORT). The AddTranslation
method sets the translation values for the controls.

Implementation: The TranslateWindow method calls the TranslateControls method, specifying
the entire range of controls on the window, except for menus and toolbars.

Example:

PWindow WINDOW('Preferences'),AT(,,89,34),IMM,SYSTEM,GRAY
 CHECK('&Sound'),AT(8,6),USE(Sound),VALUE('ON','OFF')
 PROMPT('&Volume'),AT(31,19),USE(?VolumePrompt)
 SPIN(@s20),AT(8,20,21,7),USE(Volume),HVSCROLL,RANGE(0,9),STEP(1)
 BUTTON('OK'),AT(57,3,30,10),USE(?OK)
 END
 CODE
 OPEN(PWindow)
 Translator.TranslateWindow !translate all controls
ACCEPT ! plus window titlebar
END

See Also: AddTranslation, TranslateControls

942 CLARION 5 APPLICATION HANDBOOK

CHAPTER 60 VIEWMANAGER 943

60 - VIEWMANAGER

Overview
The ViewManager class manages a VIEW. The ViewManager gives you easy,
reliable access to all the sophisticated power and speed of VIEWs, through
its proven objects. So you get this speed and power without reinventing any
wheels.

ViewManager Concepts

The management provided by the ViewManager includes defining and
applying multiple sort orders, range limits (key based filters), and filters
(non-key based) to the VIEW result set. It also includes opening, buffering,
reading, and closing the VIEW. Finally, it includes priming and validating
the view’s primary file record buffer in anticipation of adding or updating
records.

All these services provided by the ViewManager are applied to a VIEW—not
a FILE. A VIEW may encompass some or all of the fields in one or more
related FILEs. The VIEW concept is extremely powerful and perhaps
essential in a client-server environment with normalized data. The VIEW lets
you access data from several different FILEs as though from a single file,
and it does so very efficiently. See VIEW in the Language Reference for
more information.

In addition, the ViewManager supports buffering (some file drivers do not
support buffering) which allows the performance of “browse” type
procedures to be virtually instantaneous when displaying pages of records
already read. Buffering (see BUFFER in the Language Reference) can also
optimize performance when the file driver is a Client/Server back-end
database engine (usually SQL-based), since the file driver can then optimize
the calls made to the back-end database for minimum network traffic.

Relationship to Other Application Builder Classes

The ViewManager relies on the FieldPairsClass and the RelationManager to
do much of its work. Therefore, if your program instantiates the
ViewManager it must also instantiate these other classes. Much of this is
automatic when you INCLUDE the ViewManager header (ABFILE.INC) in
your program’s data section. See Field Pairs Classes and Relation Manager
Class for more information. Also, see the Conceptual Example.

944 CLARION 5 APPLICATION HANDBOOK

Perhaps more significantly, the ViewManager serves as the foundation of the
BrowseClass and the ProcessClass. That is, both the BrowseClass and the
ProcessClass are derived from the ViewManager.

BrowseClass—An Interactive VIEW

The BrowseClass implements an interactive VIEW that includes a visual
display of records with scrolling, sorting, searching, and updating
capabilities. See Browse Classes for more information.

ProcessClass—A Non-Interactive VIEW

The ProcessClass implements a batch (non-interactive) VIEW with sorting
and updating capability, but no visual display and therefore no scrolling or
searching capability. See Process Class for more information.

ABC Template Implementation

The ViewManager serves as the foundation to the Browse procedure
template, the Report procedure template, and the Process procedure
template, because all these templates rely on VIEWs.

The BrowseClass, the FileDropClass and the ProcessClass are derived from
the ViewManager, and the ABC Templates instantiate these derived classes;
that is, the templates do not instantiate the ViewManager independently of
these other classes. The BrowseBox control template instantiates the
BrowseClass, the FileDrop control template instantiates the FileDropClass,
and the Process and Report procedure templates instantiate the ProcessClass.

ViewManager Source Files

The ViewManager source code is installed by default to the Clarion
\LIBSRC folder. The ViewManager source code and their respective
components are contained in:

ABFILE.INC ViewManager declarations
ABFILE.CLW ViewManager method definitions

CHAPTER 60 VIEWMANAGER 945

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a ViewManager object. This
example simply establishes a VIEW with a particular sort order, range limit
and filter, then processes the result set that fits the range and filter criteria.

PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE('ABFILE.INC') !declare ViewManager class
MAP !program map
END

GlobalErrors ErrorClass !declare GlobalErrors object
View:Customer ViewManager !declare View:Customer object

Access:CUSTOMER CLASS(FileManager) !declare Access:Customer object
Init PROCEDURE

END

Relate:CUSTOMER CLASS(RelationManager) !declare Relate:Customer object
Init PROCEDURE

END

CUSTOMER FILE,DRIVER('TOPSPEED'),PRE(CUS),THREAD,BINDABLE
BYNUMBER KEY(CUS:CUSTNO),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CUSTNO LONG
NAME STRING(30)
ZIP DECIMAL(5)

END
END

Customer:View VIEW(CUSTOMER) !declare Customer VIEW
END

Low LONG !low end of range limit
High LONG(1000) !high end of range limit
ProgressMsg STRING(60)

ProgressWindow WINDOW('Processing...'),AT(,,215,60),GRAY,TIMER(100)
STRING(@S60),AT(1,21,210,10),USE(ProgressMsg),CENTER
BUTTON('Cancel'),AT(87,37,45,14),USE(?Cancel)

END
CODE
GlobalErrors.Init !initialize GlobalErrors object
Relate:CUSTOMER.Init !initialize Relate:Customer object
View:Customer.Init(Customer:View,Relate:CUSTOMER) !initialize View:Customer object
View:Customer.AddSortOrder(CUS:BYNUMBER) !add sort BYNUMBER
View:Customer.AppendOrder('CUS:Name,CUS:ZIP') !add secondary sorts
View:Customer.AddRange(CUS:CUSTNO,Low,High) !add a range limit
View:Customer.SetFilter('CUS:ZIP=33066','1') !add filter #1
Relate:CUSTOMER.Open !open customer & related files

946 CLARION 5 APPLICATION HANDBOOK

OPEN(ProgressWindow) !open the window
ProgressMsg='Processing...'

ACCEPT
CASE EVENT()
OF Event:OpenWindow
View:Customer.Reset(1) !open view, apply range & filter

OF Event:Timer
CASE View:Customer.Next() !get next view record
OF Level:Notify !if end of file, stop
POST(EVENT:CloseWindow)
BREAK

OF Level:Fatal !if fatal error, stop
POST(EVENT:CloseWindow)
BREAK

END
CUS:ZIP=33065 !process the record
IF Relate:CUSTOMER.Update() !update customer & related files
BREAK

ELSE
ProgressMsg = CLIP(CUS:Name)&' zip changed to '&CUS:ZIP
DISPLAY(ProgressMsg)

END
END
IF FIELD() = ?Cancel !if user cancelled, stop
IF EVENT() = Event:Accepted
POST(Event:CloseWindow)

END
END

END
Relate:CUSTOMER.Close !close customer & related files
View:CUSTOMER.Kill !shut down View:Customer object
Relate:CUSTOMER.Kill !shut down Relate:Customer object
GlobalErrors.Kill !shut down GlobalErrors object

Access:CUSTOMER.Init PROCEDURE
CODE
PARENT.Init(Customer,GlobalErrors)
SELF.FileNameValue = 'CUSTOMER.TPS'
SELF.Buffer &= CUS:Record
SELF.AddKey(CUS:BYNUMBER,'CUS:BYNUMBER',1)
SELF.LazyOpen = False

Relate:CUSTOMER.Init PROCEDURE
CODE
Access:CUSTOMER.Init
PARENT.Init(Access:CUSTOMER,1)

CHAPTER 60 VIEWMANAGER 947

ViewManager Properties
The ViewManager properties include references to the specific view being
managed, as well as several flags or switches that tell the ViewManager how
to manage the referenced view.

The references are to the VIEW, the primary FILE’s RelationManager object,
and the VIEW’s sort information. These references allow the otherwise
generic ViewManager object to process a specific view.

The processing switches include buffering parameters that allow
asynchronous read-ahead buffering of pages and saving pages of already
read records. This buffering provides instant response for procedures
displaying pages of records already read, and can also minimize network
traffic for Client/Server programs by reducing packets.

Each of these properties is fully described below.

Order (sort, range-limit, and filter information)

Order &SortOrder, PROTECTED

The Order property is a reference to a structure that contains the sort, range,
and filter information for the managed VIEW. The ViewManager methods
use this information to sort, range limit, and filter the VIEW result set.

Several ViewManager methods affect the contents of the Order property,
including AddSortOrder, AddRange, AppendOrder, and SetFilter. The
SetOrder method overrides a particular sort order, and the SetSort method
determines which sort order is current for the underlying VIEW.

Implementation: The Order property is a reference to QUEUE declared in ABFILE.INC:

FilterQueue QUEUE,TYPE
ID STRING(30) !sorted to indicate priority
Filter &STRING !filter expression

END

SortOrder QUEUE,TYPE !sort & filter information
Filter &FilterQueue !ANDed list of filter expressions
FreeElement ANY !the Free key element
LimitType BYTE !range limit type flag
MainKey &KEY !the main KEY
Order &STRING !ORDER expression list
RangeList &BufferedPairsClass !list of fields in range limit

END

See Also: AddSortOrder, AddRange, AppendOrder, SetFilter, SetOrder, SetSort

948 CLARION 5 APPLICATION HANDBOOK

PagesAhead (buffered pages)

PagesAhead USHORT

The PagesAhead property controls automatic record set buffering for the
managed view (see BUFFER in the Language Reference). Some file drivers
do not support buffering. PagesAhead specifies the number of additional
“pages” of records to read ahead of the currently displayed page.

Implementation: The Init method sets the PagesAhead property to zero (0). The Open method
implements the buffering specified by the PagesAhead, PagesBehind,
PageSize, and TimeOut properties.

See Also: Init, Open, PagesBehind, PageSize, TimeOut

PagesBehind (buffered pages)

PagesBehind USHORT

The PagesBehind property controls automatic record set buffering for the
managed view (see BUFFER in the Language Reference). Some file drivers
do not support buffering. PagesBehind specifies the number of “pages” of
already read records to save.

Implementation: The Init method sets the PagesBehind property to two (2). The Open method
implements the buffering specified by the PagesAhead, PagesBehind,
PageSize, and TimeOut properties.

See Also: Init, Open, PagesAhead, PageSize, TimeOut

PageSize (buffer page size)

PageSize USHORT

The PageSize property controls automatic record set buffering for the
managed view (see BUFFER in the Language Reference). Some file drivers
do not support buffering. PageSize specifies the number of records in a
buffer “page.”

Implementation: The Init method sets the PageSize property to twenty(20). The Open method
implements the buffering specified by the PagesAhead, PagesBehind,
PageSize, and TimeOut properties.

See Also: Init, Open, PagesAhead, PagesBehind, TimeOut

CHAPTER 60 VIEWMANAGER 949

Primary (the primary file RelationManager)

Primary &RelationManager

The Primary property is a reference to the RelationManager object for the
managed VIEW’s primary file. The ViewManager methods use this property
to enforce relational integrity constraints among related files within the
managed VIEW.

The ViewManager.Init method sets the value of the Primary property.

See Also: Init

TimeOut (buffered pages freshness)

TimeOut USHORT

The TimeOut property controls automatic record set buffering for the
managed view (see BUFFER in the Language Reference). Some file drivers
do not support buffering.

TimeOut specifies the number of seconds the buffered records are considered
“trustworthy” in a network environment. If the TimeOut period has expired,
the VIEW fills a request for records from the backend database rather than
from the buffer.

Implementation: The Init method sets the TimeOut property to sixty (60). The Open method
implements the buffering specified by the PagesAhead, PagesBehind,
PageSize, and TimeOut properties.

See Also: Init, Open, PagesAhead, PagesBehind, PageSize

View (the managed VIEW)

View &VIEW

The View property is a reference to the managed VIEW. The View property
simply identifies the managed VIEW for the various ViewManager methods.

The ViewManager.Init method sets the value of the View property.

See Also: Init

950 CLARION 5 APPLICATION HANDBOOK

ViewManager Methods
The ViewManager contains the following methods.

Functional Organization—Expected Use

As an aid to understanding the ViewManager, it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the ViewManager methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the ViewManager object
AddRange add a range limit to the active sort order
AddSortOrder add a sort order
AppendOrder refine the active sort order
Kill V shut down the ViewManager object

Mainstream Use:
OpenV open the VIEW
NextV get the next element
PreviousV get the previous element
PrimeRecord prepare a record for adding
ValidateRecordV validate the current element
SetFilterV specify a filter for the active sort order
SetSortV set the active sort order
CloseV close the VIEW

Occasional Use:
SetOrderV replace the active sort order
UseView use LazyOpen files

V These methods are also Virtual.

CHAPTER 60 VIEWMANAGER 951

Virtual Methods

Typically, you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

Open open the VIEW
Next get the next element
Previous get the previous element
Reset reset the VIEW position
SetSort set the active sort order
SetFilter specify a filter for the active sort order
SetOrder replace the active sort order
ApplyFilter range limit and filter the result set
ApplyOrder sort the result set
ApplyRange range limit & filter the result set
ValidateRecord validate the current element
GetFreeElementName return the free element field name
GetFreeElementPosition return the free element field position
Close close the VIEW
Kill shut down the ViewManager object

952 CLARION 5 APPLICATION HANDBOOK

AddRange (add a range limit)

AddRange(field |[,min limit [,max limit]] |)
 | ,primaryrelation, parentrelation |

AddRange Specifies a sort-specific range limit.

field The label of the field to limit. This need not be a
component of a KEY or INDEX, but VIEW perfor-
mance is substantially faster if it is.

min limit A constant, variable, EQUATE, or expression that
specifies the value, or the lower end of a range of values,
to which the field is limited. If omitted, the field is
limited to its current value.

max limit A constant, variable, EQUATE, or expression that
specifies the upper end of an inclusive range of values to
which the field is limited. The lower end of the inclusive
range is specified by min limit. If max limit is omitted,
the field is limited to the value of min limit.

primaryrelation The label of the RelationManager object for the man-
aged VIEW’s primary file. This limits all available
linking fields to their current values in the corresponding
parent file fields.

parentrelation The label of the RelationManager object for the primary
file’s parent file. The ViewManager uses this object to
get the limiting values from the parent file for a file-
relationship range limit.

The AddRange method specifies a sort-specific range limit that may be
applied to the VIEW when the range limit’s sort order is active. When the
range limit is applied, only those records whose field contains the specified
value(s) are included in the result set. You may specify only one range limit
per sort order.

Implementation: The AddSortOrder method adds a sort order. The ApplyRange method
applies the active sort order’s range limit. The SetSort method sets the active
sort order.

AddRange ignores the field parameter when the primaryrelation parameter is
present.

Example:

MyView.AddSortOrder(ORD:ByCustomer) !sort by customer no
MyView.AddRange(ORD:CustNo,Relate:Orders,Relate:Customer) !range limit by parent file
MyView.AddSortOrder(ORD:ByOrder) !sort by order no
MyView.AddRange(ORD:OrderNo) !range limit by current

!value of ORD:OrderNo

See Also: AddSortOrder, ApplyRange, SetSort

CHAPTER 60 VIEWMANAGER 953

AddSortOrder (add a sort order)

AddSortOrder([key]), PROC

AddSortOrder Specifies a sort order for the ViewManager object.

key The label of the primary file KEY on which to sort. If
omitted, the ViewManager processes in record order.

The AddSortOrder method specifies a sort order for the ViewManager
object and returns a number identifying the sequence in which the sort order
was added.

Only one sort order is active at a time. The SetSort method sets the active
sort order based on the sequence numbers returned by AddSortOrder.

Implementation: You may specify multiple sort orders by calling AddSortOrder multiple
times. The first call to AddSortOrder returns one (1), the second call returns
two (2), etc.

Return Data Type: BYTE

Example:

CustSort = MyView.AddSortOrder(ORD:ByCustomer) !sort by customer no
MyView.AddRange(ORD:CustNo,Relate:Orders,Relate:Customer) !range limit by parent file
OrderSort = MyView.AddSortOrder(ORD:ByOrder) !sort by order no
MyView.AddRange(ORD:OrderNo) !range limit by current

!value of ORD:OrderNo
!program code
IF MyView.SetSort(CustSort) !set active sort order
DISPLAY !if changed, refresh

END

See Also: SetSort

954 CLARION 5 APPLICATION HANDBOOK

AppendOrder (refine a sort order)

AppendOrder(expression list)

AppendOrder Refines the active sort order for the ViewManager
object.

expression list A string constant, variable, EQUATE, or expression that
contains an ORDER expression list. See the Language
Reference—ORDER for more information.

The AppendOrder method refines or extends the active sort order for the
ViewManager object.

The SetSort method sets the active sort order.

Implementation: The ViewManager implements sort orders with the VIEW’s ORDER
attribute. The AppendOrder method appends the expression list to the active
sort order’s expression list. You do not need to prepend a comma or other
separator to the expression list.

Example:

MyView.AddSortOrder(ORD:ByCustomer) !sort by customer no
MyView.AppendOrder(‘CUST:CustName’) !and customer name

See Also: AddSortOrder, SetSort

ApplyFilter (range limit and filter the result set)

ApplyFilter, VIRTUAL

The ApplyFilter method applies the range limits and filter for the active sort
order to the managed VIEW. The filter applies starting with the next read.

The AddSortOrder and SetSort methods set the active sort order. The
SetFilter method sets filter expression.

Implementation: The ViewManager implements range limits and filters with the VIEW’s
FILTER attribute. See the Language Reference—FILTER for more
information.

Example:

MyView.AddSortOrder(ORD:ByCustomer) !sort by customer no
MyView.AddRange(ORD:CustNo,Relate:Orders,Relate:Customer) !range limit by parent file
MyView.SetFilter('(CUST:Name>''T'')') !set customer name filter
!program code
MyView.ApplyFilter !apply the filter
MyView.Next() !get next subject to filter

See Also: SetFilter, SetSort

CHAPTER 60 VIEWMANAGER 955

ApplyOrder (sort the result set)

ApplyOrder, VIRTUAL

The ApplyOrder method applies the active sort order to the managed VIEW.
The order applies starting with the next read from the VIEW.

The AddSortOrder method sets the available sort orders.The SetSort method
sets the active sort order.

Implementation: The ViewManager implements sort orders with the VIEW’s ORDER
attribute. See the Language Reference—ORDER for more information.

Example:

MyView.AddSortOrder(ORD:ByCustomer) !sort by customer no
!program code
MyView.ApplyOrder !apply the order
MyView.Next() !get next in specified order

See Also: AddSortOrder, SetSort

ApplyRange (conditionally range limit and filter the result set)

ApplyRange, VIRTUAL, PROC

The ApplyRange method applies the range limits and calls the ApplyFilter
method if the range limits have changed. The ApplyRange method returns a
value indicating whether or not a change occurred. A return value of one (1
or True) indicates a change; a return value of zero (0 or False) indicates no
change.

The AddRange method specifies the range limits for the ViewManager
object. The SetSort method sets the active sort order.

Implementation: The ApplyRange method applies range limits and filters with the ApplyFilter
method.

Return Data Type: BYTE

Example:

MyView.AddSortOrder(ORD:ByCustomer) !sort by customer no
MyView.AddRange(ORD:CustNo,Relate:Orders,Relate:Customer) !range limit by parent file
!program code
MyView.ApplyRange !apply the range limit
MyView.Next() !get next, subject to range

See Also: AddRange, ApplyFilter, SetSort

956 CLARION 5 APPLICATION HANDBOOK

Close (close the view)

Close, VIRTUAL

The Close method closes the managed VIEW.

Example:

MyView.AddSortOrder(ORD:ByCustomer) !sort by customer no
MyView.AddRange(ORD:CustNo,Relate:Orders,Relate:Customer) !range limit by parent file
MyView.Open !open the view
!program code
MyView.Close !close the view

GetFreeElementName (return free key element name)

GetFreeElementName

The GetFreeElementName method returns the fully qualified field name of
the first sort field in the active sort order that is not limited to a single value
by the applied range limit. For example, consider a VIEW sorted by
Customer, Order, and Item, with the Customer field range limited to its
current value. The free element is the Order field. But remove the range
limit, and the free element is the Customer field.

The AddSortOrder method sets the key/sort order for the VIEW. The SetSort
method sets the active sort order. The AddRange method adds range limits.

Implementation: The FilterLocatorClass uses the GetFreeElementName method to refresh the
window.

Return Data Type: STRING

Example:

BuildFilter PROCEDURE(STRING filter)
FieldName CSTRING(100)
CODE
FieldName = MyView.GetFreeElementName() !get filterable field name
MyView.SetFilter(FieldName&’[1] = ‘’’&filter[1]&’’’’) !set a filter expression
MyView.ApplyFilter() !apply the filter expression

See Also: AddRange, AddSortOrder, SetSort

CHAPTER 60 VIEWMANAGER 957

GetFreeElementPosition (return free key element position)

GetFreeElementPosition, PROTECTED, VIRTUAL

The GetFreeElementPosition method returns the position of the first sort
field in the active sort order that is not limited to a single value by the applied
range limit. For example, consider a VIEW sorted by Customer, Order, and
Item, with the Customer field range limited to its current value. The free
element is the Order field. But remove the range limit, and the free element
is the Customer field.

The AddSortOrder method sets the key/sort order for the VIEW. The SetSort
method sets the active sort order. The AddRange method adds range limits.

Implementation: The BrowseClass.TakeKey method uses the GetFreeElementPosition method
to reposition the VIEW based on the fixed key elements. The
GetFreeElementName method uses the GetFreeElementPosition method to
find the free element name.

Return Data Type: BYTE

Example:

BrowseClass.TakeKey PROCEDURE

!method code
IF SELF.Sort.Locator.TakeKey()
Handled = 1
SELF.Reset(SELF.GetFreeElementPosition())
SELF.ResetQueue(Reset:Done)

ELSE
SELF.ListControl{PROP:SelStart} = SELF.CurrentChoice

END

See Also: GetFreeElementName, BrowseClass.TakeKey

958 CLARION 5 APPLICATION HANDBOOK

Init (initialize the ViewManager object)

Init(view, primaryrelation [, order])

Init Initializes the ViewManager object.

view The label of the managed VIEW.

primaryrelation The label of the RelationManager object for the view’s
primary file.

order A structure containing the sort, range limit, and filter
information for the managed VIEW. If omitted, the Init
method supplies an empty SortOrder structure that may
be set up with AddSortOrder, AppendOrder, SetOrder,
AddRange, and SetFilter methods.

The Init method initializes the ViewManager object.

Implementation: The Init method sets the values of the Order, PagesAhead, PagesBehind,
PageSize, Primary, and View properties.

The order parameter allows derived classes, such as the BrowseClass, to add
additional sort information to their underlying views.

By passing the Order property from another ViewManager object or the Sort
property from a BrowseClass object as the order parameter, you can
implement several objects with similar sorts, filters, and range limits.

Example:

MyView.Init(OrderView,Relate:Order) !initialize the ViewManager
MyView.Open !open the view
!program code
MyView.Close !close the view
MyView.Kill !shut down the ViewManager

See Also: Order, Primary, View, PagesAhead, PagesBehind, PageSize

CHAPTER 60 VIEWMANAGER 959

Kill (shut down the ViewManager object)

Kill, VIRTUAL

The Kill method shuts down the ViewManager object by freeing any
memory allocated during the life of the object and executing any other
required termination code.

Example:

MyView.Init(OrderView,Relate:Order) !initialize the ViewManager
MyView.AddSortOrder(ORD:ByCustomer) !sort by customer no
MyView.AddRange(ORD:CustNo,Relate:Orders,Relate:Customer) !range limit by parent file
MyView.Open !open the view
!program code
MyView.Close !close the view
MyView.Kill !shut down the ViewManager

Next (get the next element)

Next, VIRTUAL

The Next method gets the next VIEW element, subject to the applied sort
order, range limit, and filter, and returns a value indicating its success or
failure.

If Next succeeds, it returns Level:Benign (declared in ABERROR.INC). If it
fails, it returns Level:Notify or Level:Fatal depending on the error
encountered. See Error Class for more information on severity levels.

Implementation: The Next method uses the ValidateRecord method to validate records that are
not filtered out.

Return Data Type: BYTE

Example:

CASE MyView.Next() !try to get the next record
OF Level:Benign !& check for success
!process the record

OF Level:Notify !& check for failure
!write error log

OF Level:Fatal !& check for fatality
POST(Event:CloseWindow)
BREAK

END

See Also: ValidateRecord

960 CLARION 5 APPLICATION HANDBOOK

Open (open the view)

Open, VIRTUAL

The Open method opens the managed VIEW.

Implementation: The Open method opens the view and applies the active sort order and filter
with the ApplyOrder and ApplyFilter methods. The Open method applies the
buffering specified by the PagesAhead, PagesBehind, PageSize, and
TimeOut properties.

Example:

MyView.AddSortOrder(ORD:ByCustomer) !sort by customer no
MyView.AddRange(ORD:CustNo,Relate:Orders,Relate:Customer) !range limit by parent file
MyView.Open !open the view
!program code
MyView.Close !close the view

See Also: ApplyFilter, ApplyOrder, PagesAhead, PagesBehind, PageSize, TimeOut

Previous (get the previous element)

Previous, VIRTUAL

The Previous method gets the previous VIEW element, subject to the
applied sort order, range limit, and filter, and returns a value indicating its
success or failure.

Implementation: If Previous succeeds, it returns Level:Benign (declared in ABERROR.INC).
If it fails, it returns Level:Notify or Level:Fatal depending on the error
encountered. See Error Class for more information on severity levels.

The Previous method uses the ValidateRecord method to validate records that
are not filtered out.

Return Data Type: BYTE

Example:

CASE MyView.Previous() !try to get the previous record
OF Level:Benign !& check for success
!process the record

OF Level:Notify !& check for failure
!write error log

OF Level:Fatal !& check for fatality
POST(Event:CloseWindow)
BREAK

END

See Also: ValidateRecord

CHAPTER 60 VIEWMANAGER 961

PrimeRecord (prepare a record for adding)

PrimeRecord([suppress clear]), VIRTUAL

PrimeRecord Prepares the VIEW’s primary file record buffer to add a
new record.

suppress clear An integer constant, variable, EQUATE, or expression
that indicates whether or not to clear the record buffer. A
value of zero (0 or False) clears the buffer; a valueof one
(1 or True) does not clear the buffer. If omitted, suppress
clear defaults to zero (0).

The PrimeRecord method prepares the VIEW’s primary file record buffer
with initial values to add a new record.

Implementation: The PrimeRecord method uses the primary file’s FileManager.PrimeRecord
method to prime the record. Then it uses any applicable range limit
information to prime other fields. The suppress clear parameter lets you clear
or retain any other values in the record buffer.

Example:

CASE FIELD()
OF ?InsertButton !on insert button
CASE EVENT()
OF EVENT:Accepted !if insert clicked
MyView.PrimeRecord !prime the record for adding
!insert the new record

END
END

See Also: FileManager.PrimeRecord

962 CLARION 5 APPLICATION HANDBOOK

Reset (reset the view position)

Reset([number]), VIRTUAL

Reset Resets the VIEW position.

number An integer constant, variable, EQUATE, or expression
that specifies the start position based on the contents of
the first number components of the applicable ORDER
attribute. If omitted, Reset positions the VIEW to the
first element in theVIEW’s result set.

The Reset method resets the VIEW position to the beginning of the result set
specified by the VIEW’s applied sort order, range limit and filter. The
number parameter further refines the position by considering the contents of
the first number expressions in the active sort order.

For example, consider a VIEW sorted by Customer where Customer’s value
is ten(10). If number is omitted, Reset positions to the element with the
lowest Customer value, regardless of Customer’s value. However, if number
is one (1), Reset positions to the first element with a Customer value of ten
(10).

Implementation: The Reset method calls the Open method and SETs the managed VIEW. See
the Language Reference—SET for more information.

Example:

View:Customer.Init(Customer:View,Relate:CUSTOMER) !initialize View:Customer object
View:Customer.AddSortOrder(CUS:BYNUMBER) !add sort BYNUMBER
View:Customer.AddRange(CUS:CUSTNO,Low,High) !add a range limit
View:Customer.SetFilter('CUS:ZIP=33064',’1’) !add filter #1
Relate:CUSTOMER.Open !open customer & related files
View:Customer.Reset !open view, apply range & filter
IF View:Customer.Next() !get first view record
HALT !if no records, stop

END

See Also: Open

CHAPTER 60 VIEWMANAGER 963

SetFilter (add, change, or remove active filter)

SetFilter(expression [, id]), VIRTUAL

SetFilter Specifies a filter for the active sort order.

expression A string constant, variable, EQUATE, or expression that
contains a FILTER expression. See FILTER in the
Language Reference for more information. If expression
is null (‘’), SetFilter deletes any existing filter with same
id.

id A string constant, variable, EQUATE, or expression that
uniquely identifies (and prioritizes) the filter so you can
apply multiple filter conditions, and so you can replace
or remove filter conditions with with subsequent calls to
SetFilter. If omitted, the filter gets a default id so that
subsequent calls to SetFilter with no id replace the filter
expression set by prior calls to SetFilter with no id.

The SetFilter method specifies a filter for the active sort order. When the
filter is applied, the view only includes those elements whose expression
evaluates to true.

The id parameter lets you specify multiple filter expressions or replace a
specific expression by its id. If you set several expressions, each with a
unique id, then all those expressions must evaluate to true to include an item
in the result set.

The ViewManager evaluates the expressions in id order, so it is efficient to
prioritize expressions most likely to fail; for example:

MyView.SetFilter(‘TaxPayer=True’,’9Tax’) !low priority expression
MyView.SetFilter(‘LotteryWinner=True’,’1Lot’) !high priority expression
!evaluates as: (LotteryWinner=True) AND (TaxPayer=True)

The ApplyFilter and ApplyRange methods apply the active sort order’s filter.
The SetSort method sets the active sort order.

Implementation: The ViewManager uses the id to indicate the priority of the expression. The
priority is implemented by sorting the list of filter expressions by the id. The
id is truncated after 30 characters. If omitted, id defaults to ‘5 Standard’
which specifies a medium priority filter that is replaced by any subsequent
calls to SetFilter with id omitted (or ‘5 Standard’) and with the same active
sort order.

Each call to SetFilter with a unique id parameter adds to the filter expression
for the active sort order. Multiple expressions added in this fashion are joined
with the boolean AND operator.

The SetFilter method adds the filter id and expression to the Order property.

964 CLARION 5 APPLICATION HANDBOOK

Example:

MyView.AddSortOrder(ORD:ByOrder) !order no. sort (1)
MyView.SetFilter('(ORD:OrdNo=CUST:OrdNo)',’1OrderNo’) !filter on OrderNo
MyView.SetFilter('(ORD:Date=’&TODAY()&’)',’1Date’) !AND on date. Date test applied

!first because it sorts first

MyView.AddSortOrder(ORD:ByName) !customer name sort (2)
MyView.SetFilter('CUST:Name[1]=''A''') !filter on cust name

!program code
MyView.SetSort(2) !sort by customer name
MyView.SetFilter('CUST:Name[1]=''J''') !new filter on cust name

!replaces prior name filter

See Also: AddSortOrder, Order

CHAPTER 60 VIEWMANAGER 965

SetOrder (replace a sort order)

SetOrder(expression list), VIRTUAL

SetOrder Replaces the active sort order.

expression list A string constant, variable, EQUATE, or expression that
contains an ORDER attribute expression list. See the
Language Reference—ORDER for more information.

The SetOrder method replaces the active sort order for the ViewManager
object.

The SetSort method sets the active sort order.

Implementation: The ViewManager implements sort orders with the VIEW’s ORDER
attribute. The SetOrder method replaces the active sort order’s expression list
with the expression list.

Example:

MyView.AddSortOrder(ORD:ByCustomer) !sort by customer no
!program code
MyView.SetOrder(CUST:CustName) !sort by customer name

See Also: SetSort

966 CLARION 5 APPLICATION HANDBOOK

SetSort (set the active sort order)

SetSort(sortnumber), VIRTUAL

SetSort Set the view’s active sort order.

sortnumber An integer constant, variable, EQUATE, or expression
that specifies the sort order to use. Sort orders are
numbered in the sequence they are added by the
AddSortOrder method.

The SetSort method sets the view’s active sort order and returns a value
indicating whether the active sort (sortnumber) changed.

Implementation: SetSort returns one (1) if the sortnumber changed; otherwise it returns zero
(0).

Return Data Type: BYTE

Example:

CustSort = MyView.AddSortOrder(ORD:ByCustomer) !sort by customer no
MyView.AddRange(ORD:CustNo,Relate:Orders,Relate:Customer) !range limit by parent file
OrderSort = MyView.AddSortOrder(ORD:ByOrder) !sort by order no
MyView.AddRange(ORD:OrderNo) !range limit by current

!value of ORD:OrderNo
!program code
IF MyView.SetSort(CustSort) !set active sort order
MESSAGE(‘New Sort Order’) !acknowledge new order

END

See Also: AddSortOrder

CHAPTER 60 VIEWMANAGER 967

UseView (use LazyOpen files)

UseView, PROTECTED

The UseView method notifies ABC Library objects that the files in the
managed view whose opening was delayed by the LazyOpen property are
about to be used.

Implementation: The Init and Open methods call the UseView method. The UseView method
calls FileManager.UseFile for each file in the managed view.

Example:

ViewManager.Open PROCEDURE
CODE
IF ~SELF.Opened
ASSERT(RECORDS(SELF.Order))
SELF.UseView() !really open files
OPEN(SELF.View)
IF ERRORCODE()
SELF.Primary.Me.Throw(Msg:ViewOpenFailed)

END
BUFFER(SELF.View,SELF.PageSize,SELF.PagesBehind,SELF.PagesAhead,SELF.TimeOut)
SELF.Opened = 1
SELF.ApplyOrder
SELF.ApplyFilter

END

See Also: Init, Open, FileManager.LazyOpen, FileManager.UseFile

968 CLARION 5 APPLICATION HANDBOOK

ValidateRecord (validate an element)

ValidateRecord, VIRTUAL

The ValidateRecord method validates the current VIEW element and returns
a value indicating whether or not the data is valid. A return value of zero (0)
indicates the item is valid (and is included in the result set); any other value
indicates the item is invalid (and is filtered out of the result set).

Implementation: The ValidateRecord is a virtual placeholder for derived class methods.

The Next and Previous methods call the ValidateRecord method.

Return values are declared in ABFILE.INC as follows:

 ITEMIZE(0),PRE(Record)
OK EQUATE ! Record passes range and filter
OutOfRange EQUATE ! Record fails range test
Filtered EQUATE ! Record fails filter tests
 END

Return Data Type: BYTE

Example:

ViewManager.Next PROCEDURE
 CODE
LOOP
NEXT(SELF.View)
IF ERRORCODE()
IF ERRORCODE() = BadRecErr
RETURN Level:Notify

ELSE
SELF.Primary.Me.Throw(Msg:AbortReading)
RETURN Level:Fatal

END
ELSE
CASE SELF.ValidateRecord()
OF Record:OK
RETURN Level:Benign

OF Record:OutOfRange
RETURN Level:Notify

END
END

END

See Also: Next, Previous

CHAPTER 61 WINDOWMANAGER

61 - WINDOWMANAGER

Overview
The WindowManager class declares a Window Manager that provides highly
structured, consistent, flexible, and convenient processing for Clarion
window procedures. The WindowManager class is actually a window
procedure manager. This includes almost every template generated
procedure, including Process and Report procedures.

WindowManager Concepts

A Structured Window Procedure Manager

The WindowManager object initializes the procedure, runs the procedure by
handling all ACCEPT loop events for the WINDOW, then shuts down the
procedure. The WindowManager handles events primarily by forwarding the
events to other ABC Library objects for processing.

The WindowManager is a fairly generic base class and therefore handles
events and processes that are common across most Windows applications.
For an example of a process-specific WindowManager implementation, see
Print Preview Class and Report Manager Class.

Implements Update Procedure Policy

In addition to its function as a general purpose window procedure manager,
the WindowManager may be configured to implement a variety of options
for update procedures—procedures that support record inserts, changes, and
deletes. The WindowManager carries out the specified options for these
update procedures (forms). For example see the CancelAction,
ChangeAction, and DeleteAction properties.

Integrated with other ABC Library Objects

The WindowManager is closely integrated with several other ABC Library
objects; in particular, the BrowseClass, ToolbarClass, FileDropClass, and
FileDropComboClass objects. These objects register their presence with
each other, set each other’s properties, and call each other’s methods to
accomplish their goals.

These integrated objects could override the WindowManager’s methods
(such as TakeAccepted) to perform their jobs; however, because the
WindowManager is programmed to understand these ABC objects, once they

970 CLARION 5 APPLICATION HANDBOOK

are registered (AddItem), the WindowManager drives them directly
according to their documented interfaces.

Encapsulated Event Processing

The WindowManager provides separate virtual methods to group the
handling of all ACCEPT loop events into logical, convenient containers
(virtual methods), so that, should you need to implement custom (non-
default) event handling, you can implement your changes within the
relatively small scope of the specific virtual method that implements the
default event handling you wish to change. This logical grouping of window
event handling is as follows:

TakeEvent (handle all events)
TakeWindowEvent (handle all non-field events)
TakeAccepted (handle all EVENT:Accepted events)
TakeRejected (handle all EVENT:Rejected events)
TakeSelected (handle all EVENT:Selected events)
TakeNewSelection (handle all EVENT:NewSelection events)
TakeCompleted (handle all EVENT:Completed events)
TakeCloseEvent (handle all EVENT:Close events)
TakeFieldEvent (handle all field specific events)

For example, if you want to intercept and process an event before any other
ABC Library objects, then do so at the beginning of the TakeEvent method.
If you want to process a field-specific event after the ABC Library is done
with the event, then do so at the end of the TakeFieldEvent method.

Each “Take” method returns a value indicating how the ACCEPT loop
processing should continue. A return value of Level:Benign indicates
processing of this event should continue normally; a return value of
Level:Notify indicates processing is completed for this event and the
ACCEPT loop should CYCLE; a return value of Level:Fatal indicates the
event could not be processed and the ACCEPT loop should BREAK. This
concept is readily visible in this implementation of the WindowManager.Ask
and the WindowManager.TakeEvent methods:

WindowManager.Ask PROCEDURE
CODE
ACCEPT
CASE SELF.TakeEvent()
OF Level:Fatal
BREAK

OF Level:Notify
CYCLE

END
END

CHAPTER 61 WINDOWMANAGER

WindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
 CODE
 IF ~FIELD()
 RVal = SELF.TakeWindowEvent()
 IF RVal THEN RETURN RVal.
 END
 CASE EVENT()
 OF EVENT:Accepted
 RVal = SELF.TakeAccepted()
 OF EVENT:Rejected
 RVal = SELF.TakeRejected()
 OF EVENT:Selected
 RVal = SELF.TakeSelected()
 OF EVENT:NewSelection
 RVal = SELF.TakeNewSelection()
 END
 IF RVal THEN RETURN RVal.
 IF FIELD()
 RVal = SELF.TakeFieldEvent()
 END
 RETURN RVal

ABC Template Implementation

The ABC Templates derive a class from the WindowManager class for each
procedure that drives an interactive window, including Report and Process
procedures. The derived class is called ThisWindow, and its methods and
behavior can be modified on the Window Behavior Classes tab.

The ABC Templates generate virtual methods as needed to provide
procedure specific initialization, event handling, and shut down.

Relationship to Other Application Builder Classes

The WindowManager is closely integrated with several other ABC Library
objects—in particular, the BrowseClass, FileDropClass,
FileDropComboClass, and ToolbarClass objects. These objects register their
presence with the WindowManager, set each other’s properties, and call each
other’s methods as needed to accomplish their respective goals.

The BrowseClass uses the WindowManager to refresh the window as
needed. Therefore, if your program instantiates the BrowseClass, it must also
instantiate the WindowManager. Much of this is automatic when you
INCLUDE the BrowseClass header (ABBROWSE.INC) in your program’s
data section. See the Conceptual Example and see Browse Class for more
information.

972 CLARION 5 APPLICATION HANDBOOK

The WindowManager serves as the foundation of the PrintPreviewClass and
the ReportManager. That is, both the PrintPreviewClass and the
ReportManager are derived from the WindowManager, because both derived
classes manage a window procedure.

PrintPreviewClass—Print Preview Window Manager

The PrintPreviewClass implements a full featured print preview window. See
Print Preview Class for more information.

ReportManager—Progress Window Manager

The ReportManager implements a progress window that monitors and
displays the status of a report. See Report Manager Class for more
information.

WindowManager Source Files

The WindowManager source code is installed by default to the Clarion
\LIBSRC folder. The WindowManager source code and its respective
components are contained in:

ABWINDOW.INC WindowManager declarations
ABWINDOW.CLWWindowManager method definitions

CHAPTER 61 WINDOWMANAGER

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a WindowManager and related
objects. This example performs repetitive inserts to a Customer file and also
adds phone numbers for each customer to a related Phones file. It uses the
WindowManager to call a procedure to validate the customer’s state code
against a States file.

Note that the WindowManager is aware of other ABC objects, such as
BrowseClass objects, Toolbar objects, FileDrop objects, etc. This example
shows the interaction between the WindowManager object and a
FileManager object and a BrowseClass object.

 PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABWINDOW.INC') !declare WindowManager
 INCLUDE('ABFILE.INC') !declare File,View&Relation Mgrs
 INCLUDE('ABBROWSE.INC') !declare BrowseClass

 MAP
SelectState PROCEDURE !procedure to validate State
 END

GlobalErrors ErrorClass !declare GlobalErrors object
GlobalRequest BYTE(0),THREAD !inter procedure communication
GlobalResponse BYTE(0),THREAD !inter procedure communication
VCRRequest LONG(0),THREAD !inter procedure communication

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),CREATE,THREAD
BYNUMBER KEY(CUS:CUSTNO),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CUSTNO LONG
Name STRING(30)
State STRING(2)

END
END

Phones FILE,DRIVER('TOPSPEED'),PRE(PH),CREATE,THREAD
IDKEY KEY(PH:ID),DUP,NOCASE
Record RECORD,PRE()
ID LONG
NUMBER STRING(20)

END
END

State FILE,DRIVER('TOPSPEED'),PRE(ST),CREATE,THREAD
StateCodeKey KEY(ST:STATECODE),NOCASE,OPT
Record RECORD,PRE()
STATECODE STRING(2)
STATENAME STRING(20)

END
END

974 CLARION 5 APPLICATION HANDBOOK

Access:State CLASS(FileManager) !declare Access:State object
Init PROCEDURE

END
Relate:State CLASS(RelationManager) !declare Relate:State object
Init PROCEDURE

END
Access:Customer CLASS(FileManager) !declare Access:Customer object
Init PROCEDURE

END
Relate:Customer CLASS(RelationManager) !declare Relate:Customer object
Init PROCEDURE

END
Access:Phones CLASS(FileManager) !declare Access:Phones object
Init PROCEDURE

END
Relate:Phones CLASS(RelationManager) !declare Relate:Phones object
Init PROCEDURE

END

PhoneView VIEW(Phones) !declare Phones VIEW
END

PhoneQ QUEUE !declare PhoneQ for browse list
PH:ID LIKE(PH:ID)
PH:NUMBER LIKE(PH:NUMBER)
ViewPos STRING(512)

END

CUS:Save LIKE(CUS:RECORD),STATIC !declare save area for Cus ditto key

CUSWindow WINDOW('Add Customer'),AT(,,146,128),IMM,SYSTEM,GRAY
SHEET,AT(4,4,136,102),USE(?CurrentTab)
TAB('General'),USE(?GeneralTab) !General tab
PROMPT('ID:'),AT(8,35),USE(?CUSTNO:Prompt)
ENTRY(@n-14),AT(42,35,41,10),USE(CUS:CUSTNO),RIGHT(1) ! Customer ID
PROMPT('Name:'),AT(8,49),USE(?NAME:Prompt)
ENTRY(@s30),AT(42,49,90,10),USE(CUS:NAME) ! Customer Name
PROMPT('State:'),AT(8,63),USE(?State:Prompt)
ENTRY(@s2),AT(42,63,40,10),USE(CUS:State) ! Customer State

END
TAB('Phones'),USE(?PhoneTab) !Phones tab
LIST,AT(8,20,128,63),USE(?PhoneList),IMM,HVSCROLL,FROM(PhoneQ),|
FORMAT('38R(2)|M~ID~C(0)@n-14@80L(2)|M~NUMBER~@s20@')

BUTTON('&Insert'),AT(8,87),USE(?Insert)
BUTTON('&Change'),AT(53,87),USE(?Change)
BUTTON('&Delete'),AT(103,87),USE(?Delete)

END
END
BUTTON('OK'),AT(68,110),USE(?OK),DEFAULT
BUTTON('Cancel'),AT(105,110),USE(?Cancel)

END

ThisWindow CLASS(WindowManager) !declare derived ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL !procedure specific initialization
Kill PROCEDURE(),BYTE,PROC,VIRTUAL !procedure specific shut down
Run PROCEDURE(USHORT Number,BYTE Request),BYTE,PROC,VIRTUAL !run a procedure
TakeAccepted PROCEDURE(),BYTE,PROC,VIRTUAL !non-default EVENT:Accepted handling

END

CHAPTER 61 WINDOWMANAGER

PhBrowse CLASS(BrowseClass) !declare PhBrowse object
Q &PhoneQ !which works with ThisWindow object

END
 CODE
 ThisWindow.Run() !run the program / procedure

!(Init, Ask, Kill)
ThisWindow.Init PROCEDURE() !setup and “program” ThisWindow
ReturnValue BYTE,AUTO
 CODE
 GlobalErrors.Init !initialize GlobalErrors object
 Relate:Customer.Init !initialize Relate:Customer object
 Relate:State.Init !initialize Relate:State object
 Relate:Phones.Init !initialize Relate:Phones object
 ReturnValue = PARENT.Init() !call base class WindowManager.Init
 Relate:Customer.Open !open Customer & related files
 Relate:State.Open !open State & related files

!Program ThisWindow object:
 SELF.Request = InsertRecord ! insert records only
 SELF.FirstField = ?CUSTNO:Prompt ! CustNo is firstfield for ThisWindow
 SELF.VCRRequest &= VCRRequest ! set VCRRequest for ThisWindow
 SELF.Errors &= GlobalErrors ! set error handler for ThisWindow
 SELF.HistoryKey = 734 ! set ditto key (CTRL’)
 SELF.AddHistoryFile(CUS:Record,CUS:Save) ! set ditto file
 SELF.AddHistoryField(?CUS:CUSTNO,1) ! set ditto (restorable) field
 SELF.AddHistoryField(?CUS:NAME,2) ! set ditto (restorable) field
SELF.AddHistoryField(?CUS:State,3) ! set ditto (restorable) field

 SELF.AddUpdateFile(Access:Customer) ! register FileManager with ThisWindow
 SELF.Primary &= Relate:Customer ! register RelationMgr with ThisWindow
 SELF.AddItem(?Cancel,RequestCancelled) ! set action for Cancel button
 SELF.InsertAction = Insert:Batch ! set insert action (repetitive)
 SELF.OkControl = ?OK ! set OK button
 IF SELF.PrimeUpdate() THEN RETURN Level:Notify. !prepare record for add
 OPEN(CUSWindow) !open the window
 SELF.Opened=True ! flag it as open

!Program PhBrowse object, including
! registering ThisWindow (SELF)

 PhBrowse.Init(?PhoneList,PhoneQ.ViewPos,PhoneView,PhoneQ,Relate:Phones,SELF)
 PhBrowse.Q &= PhoneQ
 PhBrowse.AddSortOrder(,PH:IDKEY)
 PhBrowse.AddRange(PH:ID,Relate:Phones,Relate:Customer)
 PhBrowse.AddField(PH:ID,PhBrowse.Q.PH:ID)
 PhBrowse.AddField(PH:NUMBER,PhBrowse.Q.PH:NUMBER)
 PhBrowse.InsertControl=?Insert
 PhBrowse.ChangeControl=?Change
 PhBrowse.DeleteControl=?Delete
 SELF.SetAlerts() !alert keys for ThisWindow
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE() !shut down ThisWindow
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill() !call base class WindowManager.Kill
 Relate:Customer.Close !close Customer & related files
 Relate:State.Close !close State & related files
 Relate:Customer.Kill !shut down Relate:Customer object
 Relate:State.Kill !shut down Relate:State object
 Relate:Phones.Kill !shut down Relate:Phones object
 GlobalErrors.Kill !shut down GlobalErrors object
 RETURN ReturnValue

976 CLARION 5 APPLICATION HANDBOOK

ThisWindow.Run PROCEDURE(USHORT Number,BYTE Request) !call other procedures
ReturnValue BYTE,AUTO
 CODE
 GlobalRequest = Request !set inter procedure request
 EXECUTE Number !run specified procedure
 SelectState
 END
 ReturnValue = GlobalResponse !set inter procedure response
 RETURN ReturnValue

ThisWindow.TakeAccepted PROCEDURE() !EVENT:Accepted handling
ReturnValue BYTE,AUTO
Looped BYTE
CODE
LOOP
IF Looped THEN RETURN Level:Notify ELSE Looped = 1. !allow CYCLE to work
ReturnValue = PARENT.TakeAccepted() !do standard EVENT:Accepted
CASE ACCEPTED() !do special EVENT:Accepted
OF ?CUS:State ! on State field
ST:STATECODE = CUS:State ! lookup State code
IF Access:State.Fetch(ST:StateCodeKey) ! if not found
IF SELF.Run(1,SelectRecord) = RequestCompleted ! let user select one
CUS:State = ST:STATECODE ! set selected state

ELSE ! if user didn’t select one
SELECT(?CUS:State) ! focus on State field
CYCLE ! start over

END
END
ThisWindow.Reset() !reset ThisWindow if needed

END
RETURN ReturnValue

END

CHAPTER 61 WINDOWMANAGER

WindowManager Properties
The WindowManager contains the following properties.

AutoRefresh (reset window as needed flag)

AutoRefresh BYTE

The AutoRefresh property determines whether the WindowManager
automatically resets the window and its associated objects whenever it
detects a change. The WindowManager checks for changes after it processes
each event. A value of one (1 or True) automatically resets the window; a
value of zero (0 or False) does not automatically reset the window.

AutoRefresh is particularly useful when resetting a BrowseClass object
changes a field which is a range-limit of another BrowseClass object.

Implementation: The Init method sets the AutoRefresh property to one. The TakeEvent
method implements the action specified by AutoRefresh by calling the Reset
method only if any registered BrowseClass objects have changed.

The AddItem method registers BrowseClass objects with the
WindowManager.

See Also: AddItem, Init, Reset

AutoToolbar (set toolbar target on new tab selection)

AutoToolbar BYTE

The AutoToolbar property determines how the WindowManager sets the
ToolbarTarget. A value of one (1 or True) uses the ToolbarClass object to set
the appropriate ToolbarTarget whenever a new TAB is selected; a value of
zero (0 or False) uses the current ToolbarTarget.

Implementation: The Init method sets the AutoToolbar property to True. The
TakeNewSelection method implements the action specified by AutoToolbar
by calling ToolbarClass.SetTarget if the control selected is a SHEET.

See Also: Init, ToolbarClass.SetTarget, ToolbarTargetClass

978 CLARION 5 APPLICATION HANDBOOK

CancelAction (response to cancel request)

CancelAction BYTE

The CancelAction property indicates the WindowManager action to take
when the end user “Cancels” the window with changes pending. Valid
actions are:

Cancel:Cancel immediate abandon (no confirmation)
Cancel:Save immediate save (no confirmation)
Cancel:Save+Cancel:Query offer to save or abandon
Cancel:Cancel+Cancel:Query offer to resume editing or abandon

Implementation: The Init method sets the CancelAction property to Cancel:Save +
Cancel:Query. The TakeCloseEvent method carries out the action specified
by the CancelAction property.

CancelAction EQUATEs are declared in ABWINDOW.INC as follows:

ITEMIZE,PRE(Cancel)
Cancel EQUATE(0)
Save EQUATE(1)
Query EQUATE(2)

END

See Also: Init, TakeCloseEvent, Request, Response

ChangeAction (response to change request)

ChangeAction BYTE

The ChangeAction property whether change is a valid action for an update
procedure. A value of one (1 or True) indicates the procedure may change
(write) records; a value of zero (0 or False) indicates the procedure may not
change records.

Implementation: The Init method sets the ChangeAction property to one (1).

See Also: Init

CHAPTER 61 WINDOWMANAGER

Dead (shut down flag)

Dead BYTE, PROTECTED

The Dead property indicates whether the WindowManager should shut
down. The WindowManager uses this property to undertake a normal shut
down at the earliest opportunity. A value of one (1 or True) indicates the
WindowManager should shut down; a value of zero (0 or False) indicates the
WindowManager should continue.

Implementation: The Kill method sets the Dead property to True.

See Also: Kill

DeleteAction (response to delete request)

DeleteAction BYTE

The DeleteAction property indicates the WindowManager action to take
when the end user requests to delete a record. Valid actions are:

Delete:None delete not allowed
Delete:Warn confirm delete with message
Delete:Form confirm delete with update form
Delete:Auto immediate delete (no confirmation)

Implementation: The Init method sets the DeleteAction property to Delete:Warn. The
PrimeUpdate method carries out the action specified by the DeleteAction
property.

DeleteAction EQUATEs are declared in ABWINDOW.INC as follows:

ITEMIZE,PRE(Delete)
None EQUATE
Warn EQUATE
Form EQUATE
Auto EQUATE

END

See Also: Init, TakeCloseEvent, Request, Response

980 CLARION 5 APPLICATION HANDBOOK

Errors (ErrorClass object)

Errors &ErrorClass

The Errors property is a reference to the ErrorClass object that handles
unexpected conditions for the WindowManager. In an ABC Template
generated program, the ErrorClass object is called GlobalErrors.

Implementation: The WindowManagerClass does not initialize the Errors property. Your
derived Init method should initialize the Errors property. See the Conceptual
Example.

FirstField (first window control)

FirstField SIGNED

The FirstField property contains the control number (field equate) of the
window control that initially receives focus when the window displays.

Implementation: The WindowManagerClass does not initialize the FirstField property. Your
derived Init method should initialize the FirstField property. See the
Conceptual Example.

ForcedReset (force reset flag)

ForcedReset BYTE

The ForcedReset property indicates whether the WindowManager should
unconditionally reset itself. A value of zero (0 or False) allows a conditional
reset (reset only if circumstances demand, for example, when the end user
invokes a new BrowseBox sort order or invokes a BrowseBox locator); a
value of one (1 or True) forces an unconditional reset.

Implementation: The Reset method carries out the action specified by the ForcedReset
property.

See Also: Reset

CHAPTER 61 WINDOWMANAGER

HistoryKey (restore field key)

HistoryKey SIGNED

The HistoryKey property enables “save/restore field history” and sets the
keystroke which restores a form field’s prior saved value. When the end user
presses the specified key, the WindowManager retores the field with focus
from the previously processed record.

Implementation: The WindowManagerClass does not initialize the HistoryKey property. Your
derived Init method should initialize the HistoryKey property if your window
uses a history key. See the Conceptual Example.

The AddHistoryFile method names the file and record buffers from which
fields are saved and restored. AddHistoryField associates specific fields from
the history file with their corresponding WINDOW controls. The
SaveHistory method saves a copy of the history fields. The RestoreField
method restores the contents of a specific control.

Keystroke EQUATEs are declared in \LIBSRC\KEYCODES.CLW.

See Also: AddHistoryField, AddHistoryFile, RestoreField, SaveHistory

InsertAction (response to insert request)

InsertAction BYTE

The InsertAction property indicates the WindowManager action to take
when the end user “Inserts” a record. Valid actions are:

Insert:None use the default insert action (Insert:Caller)
Insert:Caller return to calling procedure
Insert:Batch immediately allow another insert
Insert:Query offer to return or do another insert

Implementation: The Init method sets the InsertAction property to Insert:Caller. The
TakeCompleted method carries out the action specified by the InsertAction
property.

The AddUpdateFile method registers files involved in batch adds.

InsertAction EQUATEs are declared in ABWINDOW.INC as follows:

ITEMIZE,PRE(Insert)
None EQUATE
Caller EQUATE
Batch EQUATE
Query EQUATE

END

See Also: AddUpdateFile, Init, TakeCompleted, Request, Response

982 CLARION 5 APPLICATION HANDBOOK

OKControl (window acceptance control—OK button)

OKControl SIGNED

The OKControl property contains the control number (field equate) of the
window control that indicates end user acceptance of the window—typically
the OK button. The WindowManager uses this property to close the window,
or to initiate control and record validation if changes are pending.

Implementation: The WindowManagerClass does not initialize the OKControl property. Your
derived Init method should initialize the OKControl property. See the
Conceptual Example.

Opened (window opened flag)

Opened BYTE

The Opened property indicates whether the WindowManager’s WINDOW
has been opened. A value of one (1 or True) indicates the WINDOW is open;
a value of zero (0 or False) indicates the WINDOW is not opened. You can
use this property to control tasks (such as resizing, or saving and restoring
window coordinates) that require the WINDOW to be opened or closed.

Implementation: The WindowManagerClass does not set the Opened property. Your derived
Init method should set it. See the Conceptual Example.

See Also: Init

CHAPTER 61 WINDOWMANAGER

OriginalRequest (original database request)

OriginalRequest BYTE

The OriginalRequest property indicates the database action for which the
procedure was originally called. The WindowManager uses this property to
make appropriate processing decisions with regard to priming records,
saving or abandoning changes, etc. Valid requests are:

InsertRecord
ChangeRecord
DeleteRecord
ProcessRecord
SelectRecord

Implementation: The Init method sets the OriginalRequest property to equal the Request
property. EQUATEs for the OriginalRequest and Request properties are
declared in \LIBSRC\TPLEQU.CLW as follows:

InsertRecord EQUATE (1) ! Add a record
ChangeRecord EQUATE (2) ! Change the current record
DeleteRecord EQUATE (3) ! Delete the current record
SelectRecord EQUATE (4) ! Select the current record
ProcessRecord EQUATE (5) ! Process the current record

See Also: Init, Request

Primary (RelationManager object)

Primary &RelationManager

The Primary property is a reference to the RelationManager object for the
WindowManager’s primary file. The WindowManager uses this property to
carry out inserts, changes and deletes.

Implementation: The WindowManagerClass does not initialize the Primary property. Your
derived Init method should initialize the Primary property if the procedure
does database updates. See the Conceptual Example.

984 CLARION 5 APPLICATION HANDBOOK

Request (database request)

Request BYTE

The Request property indicates the database acion the procedure is handling.
The WindowManager uses this property to make appropriate processing
decisions with regard to priming records, saving or abandoning changes, etc.
Valid requests are:

InsertRecord
ChangeRecord
DeleteRecord
ProcessRecord
SelectRecord

Implementation: The WindowManagerClass does not set the Request property. Your derived
Init method should immediately set the Request property. The
WindowManagerClass.Init method sets the OriginalRequest property equal
to the Request property to preserve its initial value. See the Conceptual
Example.

EQUATEs for the OriginalRequest and Request properties are declared in
\LIBSRC\TPLEQU.CLW as follows:

InsertRecord EQUATE (1) ! Add a record to table
ChangeRecord EQUATE (2) ! Change the current record
DeleteRecord EQUATE (3) ! Delete the current record
SelectRecord EQUATE (4) ! Select the current record
ProcessRecord EQUATE (5) ! Process the current record

See Also: Init, OriginalRequest

ResetOnGainFocus (gain focus reset flag)

ResetOnGainFocus BYTE

The ResetOnGainFocus property indicates whether the WindowManager
should unconditionally reset itself when the window receives focus. A value
of zero (0 or False) allows a conditional reset (reset only if changes demand,
for example, when the end user invokes a new BrowseBox sort order or
invokes a BrowseBox locator); a value of one (1 or True) forces an
unconditional reset (reset regardless of circumstances).

Implementation: The ResetOnGainFocus property defaults to zero (0). The TakeWindowEvent
method carries out the action specified by the ResetOnGainFocus property
by optionally setting the ForcedReset property to True when the window
loses focus.

See Also: ForcedReset

CHAPTER 61 WINDOWMANAGER

Response (response to database request)

Response BYTE

The Response property indicates the WindowManager’s response to the
original database request (indicated by the OriginalRequest property). The
WindowManager uses this property to make appropriate processing
decisions with regard to priming records, saving or abandoning changes, etc.

The SetResponse method sets the value of the Response property and exits
the procedure.

Implementation: EQUATEs for the Response property are declared in
\LIBSRC\TPLEQU.CLW as follows:

RequestCompleted EQUATE (1) ! Update Completed
RequestCancelled EQUATE (2) ! Update Aborted

See Also: OriginalRequest, SetResponse

Saved (copy of primary file record buffer)

Saved USHORT, PROTECTED

The Saved property locates a copy of the WindowManager’s primary file
record buffer. The WindowManager uses this property to detect pending
changes to the record, and to restore the record if necessary.

The SetSaved method sets the value of the Saved property.

Implementation: The WindowManager uses the FileManager.SaveBuffer,
FileManager.RestoreBuffer, and FileManager.EqualBuffer methods (through
its Primary property) to manipulate the Saved property.

See Also: FileManager.SaveBuffer, FileManager.RestoreBuffer,
FileManager.EqualBuffer

986 CLARION 5 APPLICATION HANDBOOK

Translator (TranslatorClass object)

Translator &TranslatorClass

The Translator property is a reference to the TranslatorClass object for the
WindowManager. The WindowManager uses this property to translate
window text to the appropriate language.

The AddItem method sets the value of the Translator property.

Implementation: The WindowManagerClass does not initialize the Translator property. The
WindowManager only invokes the Translator if the Translator property is not
null. Your derived Init method should initialize the Translator property if
translation is needed. See the Conceptual Example.

See Also: AddItem

VCRRequest (delayed scroll request)

VCRRequest &LONG

The VCRRequest property is a reference to a variable identifying a scroll
request made simultaneously with a database operation request. The
WindowManager uses this property to carry out the scroll request after it
complets the database operation.

For example, when the end user changes fields on a form then presses the
Insert button, he simultaneously requests to save the changes and to scroll to
the next record. The WindowManager completes the change request , and
only then does it handle the scroll request.

Implementation: EQUATEs for the VCRRequest property are declared in
\LIBSRC\ABTOOLBA.INC as follows:

ITEMIZE,PRE(VCR)
Forward EQUATE(Toolbar:Down)
Backward EQUATE(Toolbar:Up)
PageForward EQUATE(Toolbar:PageDown)
PageBackward EQUATE(Toolbar:PageUp)
First EQUATE(Toolbar:Top)
Last EQUATE(Toolbar:Bottom)
Insert EQUATE(Toolbar:Insert)
None EQUATE(0)

END

CHAPTER 61 WINDOWMANAGER

WindowManager Methods
The WindowManager contains the following methods.

Functional Organization—Expected Use

As an aid to understanding the WindowManager, it is useful to organize its
various methods into two large categories according to their expected use—
the primary interface and the virtual methods. This organization reflects
what we believe is typical use of the WindowManager methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
RunV run this procedure
Init V initialize the WindowManager object
AddHistoryField add restorable control and field
AddHistoryFile add restorable history file
AddItem program the WindowManager object
AddUpdateFile register batch add files
Kill V shut down the WindowManager object

Mainstream Use:

Occasional Use:
RunV run another procedure
SaveHistory save history fields for later restoration
PostCompleted a virtual to prime fields

V These methods are also Virtual.

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

Init initialize the WindowManager object
Ask display window and process its events
Kill shut down the WindowManager object
Open a virtual to execute on EVENT:OpenWindow
PrimeFields a virtual to prime fields

988 CLARION 5 APPLICATION HANDBOOK

PrimeUpdate update or prepare for update
Reset reset the window and registered items
RestoreField restore field to last saved value
Run run this procedure or another procedure
SetAlerts alert window control keystrokes
SetResponse OK or Cancel the window
TakeAccepted a virtual to process EVENT:Accepted
TakeCompleted a virtual to complete an update form
TakeCloseEvent a virtual to Cancel the window
TakeEvent a virtual to process all events
TakeFieldEvent a virtual to process field events
TakeNewSelection a virtual to process EVENT:NewSelection
TakeRejected a virtual to process EVENT:Rejected
TakeSelected a virtual to process EVENT:Selected
TakeWindowEvent a virtual to process non-field events
Update prepare records for writing to disk

CHAPTER 61 WINDOWMANAGER

AddHistoryField (add restorable control and field)

AddHistoryField(control, field)

AddHistoryField Adds a history field to the WindowManager object.

control An integer constant, variable, EQUATE, or expression
containing the control number of the control whose
contents to restore from the field. This is the field equate
number of the control.

field An integer constant, variable, EQUATE, or expression
containing the position of the field within the history
file’s record layout. The field is identified by its position
in the FILE declaration. A value of one (1) indicates the
first field, two (2) indicates the second field, etc. See
WHAT and WHERE in the Language Reference for more
information.

The AddHistoryField method adds a history field to the WindowManager
object. AddHistoryField associates a window control with its corresponding
database field or column, so the WindowManager can restore the control’s
contents when the end user invokes the history key (or FrameBrowseControl
ditto button).

Implementation: The AddHistoryFile method names the file and record buffers from which
fields are saved and restored. The AddHistoryField method associates
specific fields from the history file with their corresponding WINDOW
controls. The SaveHistory method saves a copy of the history fields. The
RestoreField method restores the contents of a specific control.

Example:

ThisWindow.Init PROCEDURE()
 CODE
!procedure code

 SELF.HistoryKey = CtrlR
 SELF.AddHistoryFile(CLI:Record,History::CLI:Record)
 SELF.AddHistoryField(?CLI:Name,2)
 SELF.AddHistoryField(?CLI:StateCode,3)

See Also: AddHistoryFile, HistoryKey, RestoreField, SaveHistory

990 CLARION 5 APPLICATION HANDBOOK

AddHistoryFile (add restorable history file)

AddHistoryFile(record buffer, save buffer)

AddHistoryFile Adds a history file to the WindowManager object.

record buffer The label of the history file’s RECORD.

save buffer The label of a STATIC variable declared LIKE(record
buffer). The WindowManager saves to and restores from
this variable.

The AddHistoryFile method adds a history file to the WindowManager
object. AddHistoryFile sets the file’s record buffer and a corresponding save
buffer so the WindowManager can restore from the save buffer when the end
user invokes the history key (or FrameBrowseControl ditto button).

Implementation: The AddHistoryFile method names the file and record buffers from which
fields are saved and restored. The AddHistoryField method associates
specific fields from the history file with their corresponding WINDOW
controls. The SaveHistory method saves a copy of the history fields. The
RestoreField method restores the contents of a specific control.

Example:

ThisWindow.Init PROCEDURE()
 CODE
!procedure code

 SELF.HistoryKey = CtrlR
 SELF.AddHistoryFile(CLI:Record,History::CLI:Record)
 SELF.AddHistoryField(?CLI:Name,2)
 SELF.AddHistoryField(?CLI:StateCode,3)

See Also: AddHistoryField, HistoryKey, RestoreField, SaveHistory

CHAPTER 61 WINDOWMANAGER

AddItem (program the WindowManager object)

AddItem(| BrowseClass |)
| FileDropClass |
| ToolbarClass |
| ToolbarUpdateClass |
| TranslatorClass |
| WindowResizeClass |
| control, response |

AddItem Adds specific functionality to the WindowManager.

BrowseClass The label of a BrowseClass object.

FileDropClass The label of a DropListClass object.

ToolbarClass The label of a ToolbarClass object.

ToolbarUpdateClass
The label of a ToolbarUpdateClass object.

TranslatorClass The label of a TranslatorClass object.

WindowResizeClassThe label of a WindowResizeClass object.

control An integer constant, variable, EQUATE, or expression
containing the control number of the control whose
acceptance invokes the response—typically OK and
Cancel buttons.

response An integer constant, variable, EQUATE, or expression
indicating the action to register when the control is
accepted.

The AddItem method registers another ABC Library object with the
WindowManager object to add the object’s specific functionality to the
WindowManager.

Implementation: The TakeAccepted method assigns the response value to the Response
property when the control is accepted. EQUATEs for the response parameter
are declared in \LIBSRC\TPLEQU.CLW as follows:

RequestCompleted EQUATE (1) !Update Completed
RequestCancelled EQUATE (2) !Update Aborted

992 CLARION 5 APPLICATION HANDBOOK

Example:

ThisWindow.Init PROCEDURE() !program the WindowManager
 CODE
!procedure code

 SELF.AddItem(Toolbar) !add toolbar functionality
 SELF.AddItem(ToolbarForm) !must follow AddItem(Toolbar)
 SELF.AddItem(?Cancel,RequestCancelled) !add cancel button functionality
 SELF.AddItem(Resizer) !add window resize functionality
 SELF.AddItem(Translator) !add language translation functionality
MyBrowse.Init(?CusList,Cus:Q.Position,Cus:View,Cus:Q,Relate:Cus,ThisWindow)
!procedure code

MyBrowse.Init PROCEDURE|
(SIGNED ListBox,*STRING Posit,VIEW V,QUEUE Q,RelationManager F,WindowManager WM)

 CODE
!procedurecode
WM.AddItem(SELF) !add Browse functionality

See Also: Response, TakeAccepted

CHAPTER 61 WINDOWMANAGER

AddUpdateFile (register batch add files)

AddUpdateFile(file manager)

AddUpdateFile Registers FileManager objects with the WindowManager
object.

file manager The label of the FileManager object for the file.

The AddUpdateFile method registers FileManager objects with the
WindowManager object, for files whose record buffers must be saved and
restored to support batch (repetitive) adds.

Implementation: The WindowManager uses the update file’s FileManager to save and restore
the file’s buffer.

The InsertAction property specifies batch adds.

Example:

ThisWindow.Init PROCEDURE()
 CODE
!procedure code

 SELF.AddUpdateFile(Access:Client)
!procedure code

See Also: InsertAction

994 CLARION 5 APPLICATION HANDBOOK

Ask (display window and process its events)

Ask, VIRTUAL

The Ask method displays the window and processes its events.

Implementation: The Run method calls the Ask method only if the Init method returns
Level:Benign. Ask RETURNs immediately if the Dead property is True. The
Kill method sets the Dead property to True, so calling the Kill method before
the Ask method has the effect of shutting down the window procedure before
Ask displays the WINDOW.

The Ask method implements the ACCEPT loop for the window and calls the
TakeEvent method to handle all events. The ACCEPT loop continues until
TakeEvent RETURNs Level:Fatal, or until an EVENT:CloseWindow occurs.

Tip: To shut down the window procedure while the Ask method is
running, RETURN Level:Fatal from any of the “Take” methods.

The ACCEPT loop CYCLEs when TakeEvent returns Level:Notify.

Tip: To immediately stop processing for an event (including
stopping resizing and alerted keys), RETURN Level:Notify
from any of the “Take” methods.

Example:

WindowManager.Run PROCEDURE
 CODE
 IF ~SELF.Init()
 SELF.Ask
 END
 SELF.Kill

WindowManager.Ask PROCEDURE
 CODE
 IF SELF.Dead THEN RETURN .
 CLEAR(SELF.LastInsertedPosition)
 ACCEPT
 CASE SELF.TakeEvent()
 OF Level:Fatal
 BREAK
 OF Level:Notify
 CYCLE
 END
 END

See Also: Dead, Init, Kill, Run, TakeEvent

CHAPTER 61 WINDOWMANAGER

Init (initialize the WindowManager object)

Init, VIRTUAL, PROC

The Init method initializes the WindowManager object. Init returns
Level:Benign to indicate normal initialization.

The Init method both “programs” the WindowManager object and initializes
the overall procedure.

The WindowManager may be configured to implement a variety of options
regarding update windows (forms). You can use the Init method to configure
form behavior by setting the Request, InsertAction, ChangeAction, and
DeleteAction properties.

The WindowManager is closely integrated with several other ABC Library
objects. You can use the Init method to register these other objects with the
WindowManager by calling the AddItem method. The objects can then set
each other’s properties and call each other’s methods as needed to
accomplish their respective goals.

Implementation: Typically, the Init method is paired with the Kill method, performing the
converse of the Kill method tasks.

The Run method calls the Init method.

Return value EQUATEs are declared in ABERROR.INC.

Tip: To prevent the Ask method from starting, RETURN
Level:Notify from the Init method.

Return Data Type: BYTE

996 CLARION 5 APPLICATION HANDBOOK

Example:

MyWindowManager.Run PROCEDURE
 CODE
 IF SELF.Init() = Level:Benign
 SELF.Ask
 END
 SELF.Kill

ThisWindow.Init PROCEDURE()
 CODE
 SELF.Request = GlobalRequest
 PARENT.Init()
 SELF.FirstField = ?Browse:1
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 SELF.AddItem(Toolbar)
 CLEAR(GlobalRequest)
 CLEAR(GlobalResponse)
 SELF.AddItem(?Close,RequestCancelled)
 Relate:Client.Open
 FilesOpened = True
 OPEN(QuickWindow)
 SELF.Opened=True
 Resizer.Init(AppStrategy:Surface,Resize:SetMinSize)
 SELF.AddItem(Resizer)
 Resizer.AutoTransparent=True
 BRW1.Init(?Browse:1,Queue:Browse:1.Position,BRW1::View:Browse,Queue:Browse:1,Relate:Client,SELF)
 BRW1.Q &= Queue:Browse:1
 BRW1::Sort1:StepClass.Init(+ScrollSort:AllowAlpha,ScrollBy:Runtime)
 BRW1.AddSortOrder(BRW1::Sort1:StepClass,CLI:NameKey)
 BRW1.AddLocator(BRW1::Sort1:Locator)
 BRW1::Sort1:Locator.Init(,CLI:Name,1,BRW1)
 BRW1.AddField(CLI:Name,BRW1.Q.CLI:Name)
 BRW1.AddField(CLI:StateCode,BRW1.Q.CLI:StateCode)
 BRW1.AddField(CLI:ID,BRW1.Q.CLI:ID)
 BRW1.InsertControl=?Insert:2
 BRW1.ChangeControl=?Change:2
 BRW1.DeleteControl=?Delete:2
 BRW1.AddToolbarTarget(Toolbar)
 BRW1.AskProcedure = 1
 SELF.SetAlerts()
 RETURN Level:Benign

See Also: AddItem, Ask, Kill, Run

CHAPTER 61 WINDOWMANAGER

Kill (shut down the WindowManager object)

Kill, VIRTUAL, PROC

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code. Kill returns a value to indicate
the status of the shut down.

Implementation: Kill sets the Dead property to True and returns Level:Benign to indicate a
normal shut down. If the Dead property is already set to True, Kill returns
Level:Notify to indicate it is taking no additional action.

Typically, the Kill method is paired with the Init method, performing the
converse of the Init method tasks.

The Run method calls the Kill method.

Return value EQUATEs are declared in ABERROR.INC.

Return Data Type: BYTE

Example:

ThisWindow.Kill PROCEDURE()
CODE
IF PARENT.Kill() THEN RETURN Level:Notify.
IF FilesOpened
Relate:Defaults.Close

END
IF SELF.Opened
INIMgr.Update('Main',AppFrame)

END
GlobalResponse = CHOOSE(LocalResponse=0,RequestCancelled,LocalResponse)

See Also: Dead, Init, Run

998 CLARION 5 APPLICATION HANDBOOK

Open (a virtual to execute on EVENT:OpenWindow)

Open, VIRTUAL

The Open method prepares the window for display. It is designed to execute
on window opening events such as EVENT:OpenWindow and
EVENT:GainFocus.

Implementation: The Open method invokes the Translator if present and calls the Reset
method to reset the WINDOW.

The TakeWindowEvent method calls the Open method.

Example:

ThisWindow.TakeWindowEvent PROCEDURE
 CODE
 CASE EVENT()
 OF EVENT:OpenWindow
 IF ~BAND(SELF.Inited,1)
 SELF.Open
 END
 OF EVENT:GainFocus
 IF BAND(SELF.Inited,1)
 SELF.Reset
 ELSE
 SELF.Open
 END
 END
 RETURN Level:Benign

ThisWindow.Open PROCEDURE
 CODE
 IF ~SELF.Translator&=NULL
 SELF.Translator.TranslateWindow
 END
 SELF.Reset
 SELF.Inited = BOR(SELF.Inited,1)

See Also: Reset, TakeWindowEvent

CHAPTER 61 WINDOWMANAGER

PostCompleted (initiates final Window processing)

PostCompleted

The PostCompleted method initiates final or closedown processing for the
window. This process is typically initiated with an “OK” button. The actual
processing depends on the type of window defined.

Implementation: The TakeAccepted method calls the PostCompleted method. The
ToolbarUpdateClass.TakeEvent also calls PostCompleted. The
PostCompleted method initiates AcceptAll mode for update Forms (see
SELECT in the Language Reference for more information) and POSTs an
EVENT:Completed for all other windows.

Example:

WindowManager.TakeAccepted PROCEDURE
I LONG,AUTO
A SIGNED,AUTO
 CODE
 A = ACCEPTED()
 IF ~SELF.Toolbar &= NULL
 SELF.Toolbar.TakeEvent(SELF.VCRRequest,SELF)
 IF A = Toolbar:History
 SELF.RestoreField(FOCUS())
 END
 END
 LOOP I = 1 TO RECORDS(SELF.Buttons)
 GET(SELF.Buttons,I)
 IF SELF.Buttons.Control = A
 SELF.SetResponse(SELF.Buttons.Action)
 RETURN Level:Notify
 END
 END
 IF SELF.OkControl AND SELF.OkControl = A
 SELF.PostCompleted
 END
 RETURN Level:Benign

See Also: OKControl, TakeAccepted

1000 CLARION 5 APPLICATION HANDBOOK

PrimeFields (a virtual to prime form fields)

PrimeFields, VIRTUAL

The PrimeFields method is a virtual placeholder method to prime fields for
adding a record. PrimeFields is called after the FileManager.PrimeRecord
method to allow update form specific field priming.

Example:

ThisWindow.PrimeFields PROCEDURE
CODE
CLI:StateCode = 'FL'
PARENT.PrimeFields

PrimeUpdate (update or prepare for update)

PrimeUpdate, VIRTUAL, PROC

The PrimeUpdate method prepares the record buffer for entering the update
form ACCEPT loop. For actions that can be completed without the ACCEPT
loop, PrimeUpdate prevents the ACCEPT loop from executing by returning
an appropriate value.

PrimeUpdate returns Level:Benign to indicate the record buffer is ready and
the update form’s ACCEPT loop should execute.

PrimeUpdate returns Level:Fatal to indicate the ACCEPT loop should not
execute, either because the record buffer could not be primed, or because
PrimeUpdate completed the requested operation and no further action is
necessary.

Implementation: The PrimeUpdate method primes the record buffer for inserts, deletes the
record for automatic deletes, and saves a copy of the record buffer in all
cases.

Return value EQUATEs are declared in ABERROR.INC.

Return Data Type: BYTE

Example:

ThisWindow.Init PROCEDURE()
 CODE
!procedure code

 IF SELF.PrimeUpdate() THEN RETURN Level:Fatal .
 OPEN(ClientFormWindow)
 SELF.SetAlerts()
 RETURN Level:Benign

CHAPTER 61 WINDOWMANAGER

Reset (reset the window for display)

Reset([force reset]), VIRTUAL

Reset Resets the WindowManager object.

force reset A numeric constant, variable, EQUATE, or expression
that indicates whether to conditionally or uncondition-
ally reset the window. A value of one (1 or True) uncon-
ditionally resets the window; a value of zero (0 or False)
only resets the window if circumstances require, such as
a new sort on browse object or a changed reset field on a
browse object. If omitted, force reset defaults to zero (0).

The Reset method resets the WindowManager object and any registered
(AddItem) objects. A force reset value of one (1 or True) unconditionally
resets all the objects and should therefore be used sparingly to enhance
performance.

Implementation: The Reset method calls the ResetSort and UpdateWindow methods for each
BrowseClass object registered by the AddItem method. It calls the
ResetQueue method for each FileDropClass object registered by the AddItem
method.

The Open, TakeWindowEvent, and TakeNewSelection methods all call the
Reset method.

Example:

ThisWindow.TakeWindowEvent PROCEDURE
 CODE
 CASE EVENT()
 OF EVENT:GainFocus
 IF BAND(SELF.Inited,1)
 SELF.Reset
 ELSE
 SELF.Open
 END
 OF EVENT:Sized
 IF BAND(SELF.Inited,2)
 SELF.Reset
 ELSE
 SELF.Inited = BOR(SELF.Inited,2)
 END
 END
 RETURN Level:Benign

See Also: AutoRefresh, Open, ResetOnGainFocus, TakeNewSelection,
TakeWindowEvent, BrowseClass.AddResetField, BrowseClass.ResetSort,
BrowseClass.UpdateWindow

1002 CLARION 5 APPLICATION HANDBOOK

RestoreField (restore field to last saved value)

RestoreField(control), VIRTUAL

RestoreField Restores the contents of the specified control.

control An integer constant, variable, EQUATE, or expression
containing the control number of the control whose
contents to restore. This is the field equate number of the
control.

The RestoreField method restores the contents of the specified control to the
value it contained when the record was last saved. The RestoreField only
works if the HistoryKey property is set.

Implementation: The AddHistoryFile method names the file and record buffers from which
fields are saved and restored. The AddHistoryField method associates
specific fields from the history file with their corresponding WINDOW
controls. The SaveHistory method saves a copy of the history fields. The
RestoreField method restores the contents of a specific control.

Example:

WindowManager.TakeAccepted PROCEDURE
A SIGNED,AUTO
 CODE
 A = ACCEPTED()
 IF ~SELF.Toolbar &= NULL
 SELF.Toolbar.TakeEvent(SELF.VCRRequest,SELF)
 IF A = Toolbar:History
 SELF.RestoreField(FOCUS())
 END
 END
!procedure code

See Also: AddHistoryField, AddHistoryFile, HistoryKey, SaveHistory

CHAPTER 61 WINDOWMANAGER

Run (run this procedure or a subordinate procedure)

Run([number, request]), VIRTUAL, PROC

Run Run this procedure, or run the specified subordinate
procedure.

number An integer constant, variable, EQUATE, or expression
identifying the subordinate procedure to run. A value of
one (1) runs the first procedure, two (2) runs the second
procedure, etc. Typically, this is the procedure’s position
within an EXECUTE structure. If omitted, Run executes
the normal WindowManager Init-Ask-Kill sequence.

request An integer constant, variable, EQUATE, or expression
identifying the action (insert, change, delete, select) the
subordinate procedure takes. If omitted, Run executes
the normal WindowManager Init-Ask-Kill sequence.

The Run method executes the normal WindowManager Init-Ask-Kill
sequence, or it runs the specified subordinate procedure on the same thread.
Run returns a value indicating whether it completed or cancelled the
requested operation.

Run
Executes the normal WindowManager Init-Ask-Kill sequence.

Run(number, request)
A virtual placeholder method to execute a procedure identified
by number. This allows other objects and template generated
code to invoke subordinate WindowManager procedures by
number rather than by name. The procedure runs on the same
thread as the calling procedure.

Return Data Type: BYTE

Implementation: Return value EQUATEs are declared in \LIBSRC\TPLEQU.CLW as follows:

RequestCompleted EQUATE (1) !Update Completed
RequestCancelled EQUATE (2) !Update Cancelled

1004 CLARION 5 APPLICATION HANDBOOK

Example:

!procedure data
 CODE
 ThisWindow.Run !normal Init-Ask-Kill sequence

ThisWindow.TakeAccepted PROCEDURE()
 CODE
!procedure code
IF SELF.Run(1,SelectRecord) = RequestCompleted !run a procedure on this thread
CLI:StateCode = ST:StateCode

ELSE
SELECT(?CLI:StateCode)
CYCLE

END

BrowseClass.Ask PROCEDURE(BYTE Request)
 CODE
!procedure code
Response=SELF.Window.Run(SELF.AskProcedure,Request) !run a procedure on this thread

ThisWindow.Run PROCEDURE !do Init-Ask-Kill sequence
 CODE
 IF SELF.Init() = Level:Benign
 SELF.Ask
 END
 SELF.Kill
 RETURN GlobalResponse

ThisWindow.Run PROCEDURE(USHORT Number,BYTE Request) !run a subordinate procedure
 CODE
 GlobalRequest = Request
 EXECUTE Number
 SelectStates
 UpdatePhones
 END
 RETURN GlobalResponse

See Also: Init, Ask, Kill

CHAPTER 61 WINDOWMANAGER

SaveHistory (save history fields for later restoration)

SaveHistory, PROTECTED

The SaveHistory method saves a copy of the fields named by the
AddHistoryField method for later restoration by the RestoreField method.

Implementation: The AddHistoryFile method names the file and record buffers from which
fields are saved and restored. The AddHistoryField method associates
specific fields from the history file with their corresponding WINDOW
controls. The SaveHistory method saves a copy of the history fields. The
RestoreField method restores the contents of a specific control.

Example:

WindowManager.TakeCompleted PROCEDURE
 CODE
 SELF.SaveHistory
 CASE SELF.Request
 OF InsertRecord
 DO InsertAction
 OF ChangeRecord
 DO ChangeAction
 OF DeleteRecord
 DO DeleteAction
 END

See Also: AddHistoryFile, AddHistoryField, HistoryKey, RestoreField

1006 CLARION 5 APPLICATION HANDBOOK

SetAlerts (alert window control keystrokes)

SetAlerts, VIRTUAL

The SetAlerts method alerts any required keystrokes for the window’s
controls, including keystrokes required by the window’s history key, browse
lists, and locators.

Implementation: The SetAlerts method calls the BrowseClass.SetAlerts method for each
BrowseClass object added by the AddItem method. SetAlerts also ALRTs the
HistoryKey keystroke for each AddHistoryField control.

Note that the alerted keystrokes are associated only with the specific affected
controls, such as a LIST or ENTRY. The keystrokes are not alerted for the
WINDOW. See ALRT in the Language Reference for more information.

Example:

ThisWindow.Init PROCEDURE()
 CODE
!procedure code

 SELF.SetAlerts()
 RETURN Level:Benign

See Also: AddHistoryField, HistoryKey, BrowseClass.SetAlerts

CHAPTER 61 WINDOWMANAGER

SetResponse (OK or Cancel the window)

SetResponse(response), VIRTUAL

SetResponse Initiates standard “OK” or “Cancel” processing.

response An integer constant, variable, EQUATE, or expression
indicating the WindowManager’s response (OK or
Cancel) to the requested operation.

The SetResponse method initiates standard “OK” or “Cancel” processing
for the procedure. That is, it registers the procedure’s result (completed or
cancelled) and triggers the normal procedure shut down.

Implementation: The TakeAccepted method calls the SetResponse method. SetResponse sets
the Response property and POSTs an EVENT:CloseWindow. If the response
is RequestCancelled, SetResponse also sets the VCRRequest property to
VCR:None.

EQUATEs for the response parameter are declared in
\LIBSRC\TPLEQU.CLW. as follows:

RequestCompleted EQUATE (1) !Update Completed
RequestCancelled EQUATE (2) !Update Aborted

Example:

WindowManager.TakeAccepted PROCEDURE
I LONG,AUTO
A SIGNED,AUTO
 CODE
 A = ACCEPTED()
!procedure code

 LOOP I = 1 TO RECORDS(SELF.Buttons)
 GET(SELF.Buttons,I)
 IF SELF.Buttons.Control = A
 SELF.SetResponse(SELF.Buttons.Action)
 RETURN Level:Notify
 END
 END
!procedure code

 RETURN Level:Benign

See Also: Request, Response

1008 CLARION 5 APPLICATION HANDBOOK

TakeAccepted (a virtual to process EVENT:Accepted)

TakeAccepted, VIRTUAL, PROC

The TakeAccepted method processes EVENT:Accepted events for the
window’s controls, and returns a value indicating whether window ACCEPT
loop processing is complete and should stop. TakeAccepted returns
Level:Benign to indicate processing of this event should continue normally;
it returns Level:Notify to indicate processing is completed for this event and
the ACCEPT loop should CYCLE; it returns Level:Fatal to indicate the event
could not be processed and the ACCEPT loop should BREAK.

Implementation: TakeAccepted carries out HistoryKey and 2 parameter AddItem actions.

Return values are declared in ABERROR.INC.

The TakeEvent method calls the TakeAccepted method.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: AddItem, HistoryKey, TakeEvent

CHAPTER 61 WINDOWMANAGER

TakeCloseEvent (a virtual to Cancel the window)

TakeCloseEvent, VIRTUAL, PROC

The TakeCloseEvent method processes EVENT:CloseWindow and
EVENT:CloseDown events for the window and returns a value indicating
whether window ACCEPT loop processing is complete and should stop.

TakeCloseEvent implements the default processing when the end user
cancels an update form (presses the Cancel button). The actual process
depends on the value of various WindowManager properties, including
Request, Response, CancelAction, OriginalRequest, etc.

TakeCloseEvent returns returns Level:Benign to indicate processing of this
event should continue normally; it returns Level:Notify to indicate
processing is completed for this event and the ACCEPT loop should
CYCLE; it returns Level:Fatal to indicate the event could not be processed
and the ACCEPT loop should BREAK.

Implementation: The TakeEvent method calls the TakeCloseEvent method. The
TakeCloseEvent method undoes any processing rendered invalid by the form
cancellation (for example, deleting a dummy autoincremented record that is
no longer needed).

Return values are declared in ABERROR.INC.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: CancelAction, Request, Response, OriginalRequest, TakeEvent

1010 CLARION 5 APPLICATION HANDBOOK

TakeCompleted (a virtual to complete an update form)

TakeCompleted, VIRTUAL, PROC

The TakeCompleted method processes the EVENT:Completed event for the
window and returns a value indicating whether window ACCEPT loop
processing is complete and should stop.

TakeCompleted implements the default processing when the end user accepts
an update form (presses the OK button). The actual process depends on the
value of various WindowManager properties, including Request,
InsertAction, VCRRequest, etc.

TakeCompleted returns Level:Benign to indicate processing of this event
should continue normally; it returns Level:Notify to indicate processing is
completed for this event and the ACCEPT loop should CYCLE; it returns
Level:Fatal to indicate the event could not be processed and the ACCEPT
loop should BREAK.

Implementation: The TakeCompleted method calls the SaveHistory method, then completes
the requested action (insert, change, or delete), subject to various validation
constraints. That is the FileManager object validates form fields and does
concurrency checking, and the RelationManager object enforces any
referential constraints.

TakeCompleted sets the Response property and POSTs an
EVENT:CloseWindow when appropriate.

Return values are declared in ABERROR.INC.

The TakeEvent method calls the TakeCompleted method.

Return Data Type: BYTE

CHAPTER 61 WINDOWMANAGER

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: InsertAction, Request, Response, TakeEvent, VCRRequest

1012 CLARION 5 APPLICATION HANDBOOK

TakeEvent (a virtual to process all events)

TakeEvent, VIRTUAL, PROC

The TakeEvent method processes all window events and returns a value
indicating whether ACCEPT loop processing is complete and should stop.
TakeEvent returns Level:Benign to indicate processing of this event should
continue normally; it returns Level:Notify to indicate processing is
completed for this event and the ACCEPT loop should CYCLE; it returns
Level:Fatal to indicate the event could not be processed and the ACCEPT
loop should BREAK.

Implementation: Return values are declared in ABERROR.INC.

The Ask method calls the TakeEvent method.

Return Data Type: BYTE

Example:

WindowManager.Ask PROCEDURE
 CODE
 IF SELF.Dead THEN RETURN .
 CLEAR(SELF.LastInsertedPosition)
 ACCEPT
 CASE SELF.TakeEvent()
 OF Level:Fatal
 BREAK
 OF Level:Notify
 CYCLE ! Not as dopey at it looks, it is for 'short-stopping' certain events
 END
 END

See Also: Ask

CHAPTER 61 WINDOWMANAGER

TakeFieldEvent (a virtual to process field events)

TakeFieldEvent, VIRTUAL, PROC

The TakeFieldEvent method is a virtual placeholder to process all field-
specific/control-specific events for the window. It returns a value indicating
whether window process is complete and should stop. TakeFieldEvent
returns Level:Benign to indicate processing of this event should continue
normally; it returns Level:Notify to indicate processing is completed for this
event and the ACCEPT loop should CYCLE; it returns Level:Fatal to
indicate the event could not be processed and the ACCEPT loop should
BREAK.

Implementation: Return values are declared in ABERROR.INC.

The TakeEvent method calls the TakeFieldEvent method.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: Ask

1014 CLARION 5 APPLICATION HANDBOOK

TakeNewSelection (a virtual to process EVENT:NewSelection)

TakeNewSelection, VIRTUAL, PROC

The TakeNewSelection method processes EVENT:NewSelection events for
the window’s controls and returns a value indicating whether window
ACCEPT loop processing is complete and should stop. TakeNewSelection
returns Level:Benign to indicate processing of this event should continue
normally; it returns Level:Notify to indicate processing is completed for this
event and the ACCEPT loop should CYCLE; it returns Level:Fatal to
indicate the event could not be processed and the ACCEPT loop should
BREAK.

Implementation: TakeNewSelection resets the WindowManager when the end user selects a
new TAB.

Return values are declared in ABERROR.INC.

The TakeEvent method calls the TakeNewSelection method.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: TakeEvent

CHAPTER 61 WINDOWMANAGER

TakeRejected (a virtual to process EVENT:Rejected)

TakeRejected, VIRTUAL, PROC

The TakeRejected method processes EVENT:Rejected events for the
window’s controls and returns a value indicating whether window ACCEPT
loop processing is complete and should stop. TakeRejected returns
Level:Benign to indicate processing of this event should continue normally;
it returns Level:Notify to indicate processing is completed for this event and
the ACCEPT loop should CYCLE; it returns Level:Fatal to indicate the event
could not be processed and the ACCEPT loop should BREAK.

Implementation: TakeRejected sounds the audible alarm and returns focus to the offending
(rejected) control.

Return values are declared in ABERROR.INC.

The TakeEvent method calls the TakeRejected method.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: TakeEvent

1016 CLARION 5 APPLICATION HANDBOOK

TakeSelected (a virtual to process EVENT:Selected)

TakeSelected, VIRTUAL, PROC

The TakeSelected method is a virtual placeholder to process
EVENT:Selected events for the window’s controls. It returns a value
indicating whether window ACCEPT loop processing is complete and should
stop. TakeSelected returns Level:Benign to indicate processing of this event
should continue normally; it returns Level:Notify to indicate processing is
completed for this event and the ACCEPT loop should CYCLE; it returns
Level:Fatal to indicate the event could not be processed and the ACCEPT
loop should BREAK.

Implementation: Return values are declared in ABERROR.INC.

The TakeEvent method calls the TakeSelected method.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: TakeEvent

CHAPTER 61 WINDOWMANAGER

TakeWindowEvent (a virtual to process non-field events)

TakeWindowEvent, VIRTUAL, PROC

The TakeWindowEvent method processes all non-field events for the
window and returns a value indicating whether window ACCEPT loop
processing is complete and should stop. TakeWindowEvent returns
Level:Benign to indicate processing of this event should continue normally;
it returns Level:Notify to indicate processing is completed for this event and
the ACCEPT loop should CYCLE; it returns Level:Fatal to indicate the event
could not be processed and the ACCEPT loop should BREAK.

Implementation: TakeWindowEvent implements standard handling of EVENT:OpenWindow
Open method), EVENT:LoseFocus, EVENT:GainFocus (Reset method), and
EVENT:Sized (WindowResizeClass.Resize method).

Return values are declared in ABERROR.INC.

The TakeEvent method calls the TakeWindowEvent method.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: Open, Reset, TakeEvent, WindowResizeClass.Resize

1018 CLARION 5 APPLICATION HANDBOOK

Update (prepare records for writing to disk)

Update, VIRTUAL

The Update method prepares the WindowManager’s FILE and VIEW
records for writing to disk by synchronizing buffer contents with their
corresponding screen values. The Update method also arms automatic
optimistic concurrency checking so an eventual write (PUT) to disk returns
an error if another user changed the data since it was retrieved.

Implementation: The Update method calls BrowseClass.UpdateViewRecord for each
BrowseClass object added by the AddItem method.

Example:

ThisWindow.TakeAccepted PROCEDURE()
Looped BYTE
 CODE
 LOOP
 IF Looped
 RETURN Level:Notify
 ELSE
 Looped = 1
 END
 PARENT.TakeAccepted()
 CASE ACCEPTED()
 OF ?Expand
 ThisWindow.Update
 ?CusTree{PropList:MouseDownRow} = CHOICE(?CusTree)
 DO REL1::ExpandAll
 OF ?Contract
 ThisWindow.Update
 ?CusTree{PropList:MouseDownRow} = CHOICE(?CusTree)
 DO REL1::ContractAll
 OF ?Insert
 ThisWindow.Update
 ?CusTree{PropList:MouseDownRow} = CHOICE(?CusTree)
 DO REL1::AddEntry
 OF ?Change
 ThisWindow.Update
 ?CusTree{PropList:MouseDownRow} = CHOICE(?CusTree)
 DO REL1::EditEntry
 OF ?Delete
 ThisWindow.Update
 ?CusTree{PropList:MouseDownRow} = CHOICE(?CusTree)
 DO REL1::RemoveEntry
 END
 RETURN Level:Benign

CHAPTER 62 WINDOWRESIZECLASS 1019

62 - WINDOWRESIZECLASS

Overview
The WindowResizeClass lets the end user resize windows that have
traditionally been fixed in size due to the controls they contain (List boxes,
entry controls, buttons, nested controls, etc.). The WindowResizeClass
intelligently repositions the controls, resizes the controls, or both, when the
end user resizes the window.

WindowResizeClass Concepts

The intelligent repositioning is accomplished by recognizing there are many
different types of controls that each have unique repositioning and resizing
requirements. The WindowResizeClass also recognizes that controls are
often nested, and considers whether a given control’s coordinates are more
closely related to the window’s coordinates or to another control’s
coordinates. That is, intelligent repositioning correctly identifies each
control’s parent. See SetParentControl for more information on the parent
concept.

The intelligent repositioning includes several overall strategies that apply to
all window controls, as well as custom per-control strategies for resizing and
repositioning individual controls. The overall strategies include:

Surface Makes the most of the available pixels by
positioning other controls to maximize the size of
LIST, SHEET, PANEL, and IMAGE controls. We
recommend this strategy for template generated
windows.

Spread Maintains the design-time look and feel of the
window by applying a strategy specific to each
control type. For example, BUTTON sizes are not
changed but their positions are tied to the nearest
window edge. In contrast, LIST sizes and positions
are scaled in proportion to the window.

Resize Rescales all controls in proportion to the window.

See SetStrategy for more information on resizing strategies for individual
controls.

1020 CLARION 5 APPLICATION HANDBOOK

Note: To allow window resizing you must set the WINDOW’s frame
type to Resizable. We also recommend adding the MAX
attribute. See The Window Formatter—The Window Properties
Dialog in the User’s Guide for more information on these
settings.

Relationship to Other Application Builder Classes

The WindowResizeClass is independent of the other Application Builder
Classes. It does not rely on other ABC classes, nor do other ABC classes rely
on it.

ABC Template Implementation

The ABC Templates instantiate a WindowResizeClass object for each
WindowResize template in the application, typically one for each procedure
that manages a window. The templates may also derive a class from the
WindowResizeClass. The derived class (and its object) is called Resizer. The
ABC Templates provide the derived class so you can use the WindowResize
template Classes tab to easily modify the resizer’s behavior on an instance-
by-instance basis.

The object instantiated from the derived class is called Resizer. This object
supports all the functionality specified in the WindowResize template. See
Other Templates—Window Resize for more information on the template
implementation of this class.

WindowResizeClass Source Files

The WindowResizeClass source code is installed by default to the Clarion
\LIBSRC folder. The WindowResizeClass source code and its respective
components are contained in:

ABRESIZE.INC WindowResizeClass declarations
ABRESIZE.CLW WindowResizeClass method definitions

CHAPTER 62 WINDOWRESIZECLASS 1021

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a WindowResizeClass object. This
example illustrates the Surface strategy plus some custom strategies for
specific controls. The program does nothing except present a window with a
typical variety of controls.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
INCLUDE('ABRESIZE.INC') !declare WindowResizeClass
MAP
END

Resizer WindowResizeClass !declare Resizer object

ClientQ QUEUE,PRE(CLI) !declare LIST QUEUE
Name STRING(20)
State STRING(2)

END
!WINDOW needs IMM & RESIZE

window WINDOW('Client Information'),AT(,,185,100),IMM,GRAY,MAX,RESIZE
SHEET,AT(3,3,180,78),USE(?Sheet1)
TAB('Client List'),USE(?ListTab)
LIST,AT(10,20,165,55),USE(?List1),FROM(ClientQ),|
FORMAT('87L~Name~@s20@8L~State Code~@s2@')

END
TAB('Client Logo'),USE(?LogoTab)
IMAGE('TopSpeed.gif'),AT(50,35),USE(?CLI:Logo)

END
END
PROMPT('Locate:'),AT(7,87),USE(?LocatorPrompt)
ENTRY(@s20),AT(33,86,61,12),USE(CLI:Name)
BUTTON('Restore'),AT(110,84),USE(?Restore)
BUTTON('Close'),AT(150,84),USE(?Close)

END
CODE
OPEN(window)
window{PROP:MinWidth}=window{PROP:Width} !set window’s minimum width
window{PROP:MinHeight}=window{PROP:Height} !set window’s minimum height
Resizer.Init(AppStrategy:Surface) !initialize Resizer object
Resizer.SetStrategy(?LocatorPrompt, | !set control specific strategy:
Resize:FixLeft+Resize:FixBottom,Resize:LockSize) ! at bottom left & fixed size

Resizer.SetStrategy(?CLI:Name, | !set control specific strategy:
Resize:FixLeft+Resize:FixBottom,Resize:LockHeight) ! at bottom left & fixed height

ACCEPT
CASE EVENT()
OF EVENT:CloseWindow !on close window,
Resizer.Kill ! shut down Resizer object

OF EVENT:Sized !on sized window,
Resizer.Resize ! resize & reposition controls

END ! applying above strategies
CASE ACCEPTED()
OF ?Restore
Resizer.RestoreWindow !restore window to initial size

OF ?Close
POST(Event:CloseWindow)

. .

1022 CLARION 5 APPLICATION HANDBOOK

WindowResizeClass Properties
The WindowResizeClass contains the following properties.

AutoTransparent (optimize redraw)

AutoTransparent BYTE

The AutoTransparent property indicates whether controls that support it are
made transparent (TRN attribute) during the resize process. Transparent
controls result in less flicker and shadow and smoother resizing, and avoids a
Windows bug on some windows.

A value of one (1) makes controls transparent; a value of zero (0) does not.

DeferMoves (optimize resize)

DeferMoves BYTE

The DeferMoves property indicates whether to defer control movement until
the end of the ACCEPT loop (see PROP:DeferMove in the Language
Reference). This lets the runtime library perform all control movement at
once, resulting in a cleaner, “snappier” resize, and avoids a Windows bug on
some windows.

A value of one (1) defers control movement; a value of zero (0) does not.

CHAPTER 62 WINDOWRESIZECLASS 1023

WindowResizeClass Methods
The WindowResizeClass contains the methods listed below.

Functional Organization—Expected Use

As an aid to understanding the WindowResizeClass, it is useful to organize
the various WindowResizeClass methods into two large categories according
to their expected use—the primary interface and the virtual methods. This
organization reflects what we believe is typical use of the
WindowResizeClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Init initialize the WindowResizeClass object
Kill shut down the WindowResizeClass object

Mainstream Use:
ResizeV resize and reposition all controls

Occasional Use:
SetParentControl set control’s parent
SetStrategy set control’s resize strategy

V These methods are also Virtual.

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

SetParentDefaults set all controls’ parents
RestoreWindow restore window to initial size
GetParentControl return control’s parent
Resize resize and reposition all controls

1024 CLARION 5 APPLICATION HANDBOOK

GetParentControl (return parent control)

GetParentControl(control), VIRTUAL

GetParentControl Returns the parent for a window control.

control An integer constant, variable, EQUATE, or expression
containing a control number. The Resize method
rescales the control based on the coordinates of the
parent.

The GetParentControl method returns the parent for a window control. A
return value of zero indicates the WINDOW is the parent. Otherwise, the
return value is the field equate of another window control.

The SetParentDefaults method intelligently sets the appropriate parent for all
the window controls, and the SetParentControl method sets the parent for a
single control. The Resize method rescales the control based on the
coordinates of the parent.

Return Data Type: SIGNED

Example:

window WINDOW('Nested Controls'),AT(,,165,97),IMM,GRAY,MAX,RESIZE
GROUP('OuterGroup'),AT(5,3,154,92),USE(?OuterGroup),BOXED
BUTTON('Button 1'),AT(14,23),USE(?Button1)
ENTRY(@s20),AT(60,24),USE(Entry1)
GROUP('InnerGroup'),AT(11,49,141,38),USE(?InnerGroup),BOXED
CHECK('Check 1'),AT(32,64),USE(Check1)
CHECK('Check 2'),AT(91,64),USE(Check2)

. . .
CODE
OPEN(window)
Resizer.Init(AppStrategy:Spread) !initialize Resizer object
Resizer.SetParentDefaults !set parents for all controls
Resizer.SetParentControl(?Button1,?OuterGroup) !override parent for a control
Resizer.SetParentControl(?Check1,?InnerGroup) !override parent for a control
Resizer.SetParentControl(?Check2,?InnerGroup) !override parent for a control

See Also: Resize, SetParentControl, SetParentDefaults

CHAPTER 62 WINDOWRESIZECLASS 1025

GetPositionStrategy (return position strategy for a control type)

GetPositionStrategy(control type [, strategy])

GetPositionStrategy
Returns the repositioning strategy for a control type.

control type An integer constant, variable, EQUATE, or expression
indicating the type of control (BUTTON, ENTRY, LIST,
etc.).

strategy An integer constant, variable, EQUATE, or expression
indicating the overall strategy for resizing and reposi-
tioning all the controls on the window. If omitted,
strategy defaults to the strategy specified by the Init
method.

The GetPositionStrategy method returns the appropriate repositioning
strategy for a particular control type based on the overall strategy.

Implementation: The Reset method calls the GetPositionStrategy method to set the position
strategy for dynamically created controls.

EQUATEs for the control type parameter are declared in EQUATES.CLW.
Each control type EQUATE is prefixed with CREATE:.

EQUATEs for the return value are declared in ABRESIZE.INC. Each
strategy EQUATE is prefixed with Resize:.

Example:

GET(SELF.ControlQueue,SELF.ControlQueue.ID) !get control resize info
IF ERRORCODE() !if no control info, add it
SELF.ControlQueue.Type=FieldCounter{PROP:Type} ! set control type
SELF.ControlQueue.ParentID=0 ! set parent
SELF.ControlQueue.HasChildren=False ! set children
SELF.ControlQueue.ID=FieldCounter ! set ID
GetSizeInfo(FieldCounter,SELF.ControlQueue.Pos) ! set coordinates

! set resize strategies
SELF.ControlQueue.PositionalStrategy=SELF.GetPositionStrategy(SELF.ControlQueue.Type)
SELF.ControlQueue.ResizeStrategy=SELF.GetResizeStrategy(SELF.ControlQueue.Type)
ADD(SELF.ControlQueue,SELF.ControlQueue.ID) ! add control info
ASSERT(~ERRORCODE())

END

See Also: Init, Reset

1026 CLARION 5 APPLICATION HANDBOOK

GetResizeStrategy (return resize strategy for a control type)

GetResizeStrategy(control type [, strategy])

GetResizeStrategy
Returns the resizing strategy for a control type.

control type An integer constant, variable, EQUATE, or expression
indicating the type of control (BUTTON, ENTRY, LIST,
etc.).

strategy An integer constant, variable, EQUATE, or expression
indicating the overall strategy for resizing and reposi-
tioning all the controls on the window. If omitted,
strategy defaults to the strategy specified by the Init
method.

The GetResizeStrategy method returns the appropriate resizing strategy for
a particular control type based on the overall strategy.

Implementation: The Reset method calls the GetResizeStrategy method to set the resizing
strategy for dynamically created controls.

EQUATEs for the control type parameter are declared in EQUATES.CLW.
Each control type EQUATE is prefixed with CREATE:.

EQUATEs for the return value are declared in ABRESIZE.INC. Each
strategy EQUATE is prefixed with Resize:.

Return Data Type: USHORT

Example:

GET(SELF.ControlQueue,SELF.ControlQueue.ID) !get control resize info
IF ERRORCODE() !if no control info, add it
SELF.ControlQueue.Type=FieldCounter{PROP:Type} ! set control type
SELF.ControlQueue.ParentID=0 ! set parent
SELF.ControlQueue.HasChildren=False ! set children
SELF.ControlQueue.ID=FieldCounter ! set ID
GetSizeInfo(FieldCounter,SELF.ControlQueue.Pos) ! set coordinates

! set resize strategies
SELF.ControlQueue.PositionalStrategy=SELF.GetPositionStrategy(SELF.ControlQueue.Type)
SELF.ControlQueue.ResizeStrategy=SELF.GetResizeStrategy(SELF.ControlQueue.Type)
ADD(SELF.ControlQueue,SELF.ControlQueue.ID) ! add control info
ASSERT(~ERRORCODE())

END

See Also: Init, Reset

CHAPTER 62 WINDOWRESIZECLASS 1027

Init (initialize the WindowResizeClass object)

Init([strategy] [,minimum size] [,maximum size])

Init Initializes the WindowResizeClass object.

strategy An integer constant, variable, EQUATE, or expression
indicating the overall strategy for resizing and reposi-
tioning all the controls on the window. If omitted,
strategy defaults to AppStrategy:Resize, which rescales all
controls in proportion to the parent.

minimum size An integer constant, variable, EQUATE, or expression
indicating the minimum size of the window. A value of
one (1) sets the minimum window size to its design size.
If omitted, minimum size defaults to zero (0), which
indicates no minimum.

maximum size An integer constant, variable, EQUATE, or expression
indicating the minimum size of the window. A value of
one (1) sets the maximum window size to its design size.
If omitted, maximum size defaults to zero (0), which
indicates no maximum.

The Init method initializes the WindowResizeClass object and sets the
overall strategy for resizing and repositioning window controls. You can use
the SetStrategy method to override the overall strategy for individual
controls.

Implementation: The Init method adds the IMM attribute to the WINDOW.

If the strategy parameter is present, Init applies a strategy to each control
based on the parameter value. If the strategy parameter is absent, Init applies
the default strategy to each control. The default strategy is to rescale all
control coordinates (x, y, width, and height) proportionally with the parent.

The parent may be the WINDOW containing the control, or it may be
another control on the WINDOW. The SetParentControl and
SetParentDefaults methods determine the parent for a given control.

The strategy parameter EQUATEs are declared in RESIZE.INC as follows:

ITEMIZE(0),PRE(AppStrategy)
Resize EQUATE !Rescale all controls proportionally
Spread EQUATE !Preserve design time look & feel
Surface EQUATE !Maximize available pixels

END

The purpose and effect of these strategies are:

Resize Scales all window coordinates by the same amount
as the parent, thus preserving the relative sizes and
positions of all controls. This is the default strategy.

1028 CLARION 5 APPLICATION HANDBOOK

Surface Makes the most of the available pixels by
positioning other controls to maximize the size of
LIST, SHEET, PANEL, and IMAGE controls.

Spread Preserves the design-time look and feel of the
window by applying the following strategies by
control type:

BUTTON Horizontal and Vertical position (X and Y
coordinates) are “fixed” relative to the nearest parent
border; width and height are unchanged.

RADIO Horizontal and vertical position are scaled with the
parent, but width and height are unchanged.

CHECK Horizontal and vertical position are scaled with the
parent, but width and height are unchanged.

ENTRY Width, horizontal and vertical position are scaled
with the parent, but height is unchanged.

COMBO+DROP
Width, horizontal and vertical position are scaled
with the parent, but height is unchanged.

LIST+DROP Width, horizontal and vertical position are scaled
with the parent, but height is unchanged.

SPIN Width, horizontal and vertical position are scaled
with the parent, but height is unchanged.

Other All coordinates are scaled with the parent.

Tip: Even though LIST and COMBO controls may be resized, the
column widths within them are not resized. However, the right-
most column does expand or contract depending on the
available space.

Example:

OPEN(window)
Resizer.Init(AppStrategy:Surface) !initialize Resizer object
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow !on close window,
Resizer.Kill ! shut down Resizer object

OF EVENT:Sized !on sized window,
Resizer.Resize ! resize & reposition controls

END
END

See Also: SetParentControl, SetParentDefaults, SetStrategy

CHAPTER 62 WINDOWRESIZECLASS 1029

Kill (shut down the WindowResizeClass object)

Kill

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code.

Example:

OPEN(window)
Resizer.Init(AppStrategy:Surface) !initialize Resizer object
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow !on close window,
Resizer.Kill ! shut down Resizer object

OF EVENT:Sized !on sized window,
Resizer.Resize ! resize & reposition controls

END
END

Reset (resets the WindowResizeClass object)

Reset, VIRTUAL

The Reset method resets the WindowResizeClass object to conform to the
window in its present state.

Implementation: The Init method calls the Reset method. The Reset method stores the initial
coordinates for the window and its controls. The WindowResizeClass object
uses the stored coordinates to restore the window, establish parent-child
relationships between controls, etc.

Example:

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!procedure code

 Resizer.Init(AppStrategy:Surface,Resize:SetMinSize)
 SELF.AddItem(Resizer)
 Resizer.AutoTransparent=True
 Resizer.SetParentDefaults
 INIMgr.Fetch('BrowseMembers',QuickWindow)
 Resizer.Resize !Resize needed if window altered by INIMgr
 Resizer.Reset !Reset needed if window altered by INIMgr
 SELF.SetAlerts()
 RETURN ReturnValue

See Also: Init

1030 CLARION 5 APPLICATION HANDBOOK

Resize (resize and reposition controls)

Resize, VIRTUAL, PROC

The Resize method resizes and respositions each window control by
applying the specified strategy to each control, and returns a value indicating
whether ACCEPT loop processing is complete and should stop.

Resize returns Level:Benign to indicate processing of the event (typically
EVENT:Sized) should continue normally; it returns Level:Notify to indicate
processing is completed for the event and the ACCEPT loop should CYCLE;
it returns Level:Fatal to indicate the event could not be processed and the
ACCEPT loop should BREAK.

The Init method and the SetStrategy method determine the strategies to apply
to each control. All resizing strategies consider the new coordinates of the
each control’s “parent.” By default, the WINDOW is the parent of each
control. However, you may designate any control as the parent of any other
control with the SetParentControl method.

Return Data Type: BYTE

Example:

OPEN(window)
Resizer.Init(AppStrategy:Surface) !init Resizer-general strategy
Resizer.SetStrategy(?CloseButton, | !set control specific strategy:
Resize:FixRight+Resize:FixBottom,Resize:LockSize) ! at bottom right & fixed size

ACCEPT
CASE EVENT()
OF EVENT:CloseWindow !on close window,
Resizer.Kill ! shut down Resizer object

OF EVENT:Sized !on sized window,
Resizer.Resize ! resize & reposition controls

END
END

See Also: Init, SetStrategy, SetParentControl

CHAPTER 62 WINDOWRESIZECLASS 1031

RestoreWindow (restore window to initial size)

RestoreWindow, VIRTUAL

The RestoreWindow method restores the window and all its controls to their
sizes in effect when the Init method executed.

Example:

OPEN(window)
Resizer.Init(AppStrategy:Surface) !init Resizer overall strategy
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow
Resizer.Kill ! shut down Resizer object

OF EVENT:Sized
Resizer.Resize ! resize & reposition controls

END
CASE ACCEPTED()
OF ?RestoreButton
Resizer.RestoreWindow !restore window to original spec

END
END

See Also: Init

1032 CLARION 5 APPLICATION HANDBOOK

SetParentControl (set parent control)

SetParentControl(control [,parent])

SetParentControl Sets the parent for a window control.

control An integer constant, variable, EQUATE, or expression
containing a control number. The Resize method
rescales the control based on the coordinates of the
parent.

parent An integer constant, variable, EQUATE, or expression
containing a control number. The Resize method
rescales the control based on the coordinates of the
parent. If omitted, parent defaults to the WINDOW.

The SetParentControl method sets the parent for a window control. The
Resize method rescales the control based on the coordinates of the parent.

This lets you rescale a particular control based upon a related control’s
coordinates rather than on the window’s coordinates. This is appropriate
when the strategy applied to the parent control causes it to be scaled
disproportionately from the window. For example, controls within a GROUP
structure whose size is “locked” may be rescaled to fit the GROUP’s
coordinates rather than the window’s coordinates.

The SetParentDefaults method intelligently sets the appropriate parent for
each window control so you only need to use SetParentControl if
SetParentDefaults sets an inappropriate parent.

The GetParentControl method returns the parent control number for a
control.

Example:

window WINDOW('Nested Controls'),AT(,,165,97),IMM,GRAY,MAX,RESIZE
GROUP('OuterGroup'),AT(5,3,154,92),USE(?OuterGroup),BOXED
BUTTON('Button 1'),AT(14,23),USE(?Button1)
ENTRY(@s20),AT(60,24),USE(Entry1)
GROUP('InnerGroup'),AT(11,49,141,38),USE(?InnerGroup),BOXED
CHECK('Check 1'),AT(32,64),USE(Check1)
CHECK('Check 2'),AT(91,64),USE(Check2)

. . .
CODE
OPEN(window)
Resizer.Init(AppStrategy:Spread) !initialize Resizer object
Resizer.SetParentDefaults !set parents for all controls
Resizer.SetParentControl(?Button1,?OuterGroup) !override parent for a control
Resizer.SetParentControl(?Check1,?InnerGroup) !override parent for a control
Resizer.SetParentControl(?Check2,?InnerGroup) !override parent for a control

See Also: GetParentControl, Resize, SetParentDefaults

CHAPTER 62 WINDOWRESIZECLASS 1033

SetParentDefaults (set default parent controls)

SetParentDefaults, VIRTUAL

The SetParentDefaults method intelligently sets the appropriate parent for
each window control. The Resize method rescales each control based on the
coordinates of its parent.

This lets you rescale a particular control based upon a related control’s
coordinates rather than on the window’s coordinates. This is appropriate
when the strategy applied to the parent control causes it to be scaled
disproportionately from the window. For example, controls within a GROUP
structure whose size is “locked” may be rescaled to fit the GROUP’s
coordinates rather than the window’s coordinates.

You may use the SetParentControl method to set the parent for a single
control.

Implementation: The SetParentDefaults method considers each control’s coordinates. If the
control’s coordinates fall within the coordinates of another control, the
SetParentDefaults method sets the “outer” control as the parent of the “inner”
control.

The Init method calls the SetParentDefaults method when the resize strategy
is AppStrategy:Surface.

Example:

window WINDOW('Nested Controls'),AT(,,165,97),IMM,GRAY,MAX,RESIZE
GROUP('OuterGroup'),AT(5,3,154,92),USE(?OuterGroup),BOXED
BUTTON('Button 1'),AT(14,23),USE(?Button1)
ENTRY(@s20),AT(60,24),USE(Entry1)
GROUP('InnerGroup'),AT(11,49,141,38),USE(?InnerGroup),BOXED
CHECK('Check 1'),AT(32,64),USE(Check1)
CHECK('Check 2'),AT(91,64),USE(Check2)

. . .
CODE
OPEN(window)
Resizer.Init(AppStrategy:Spread) !initialize Resizer object
Resizer.SetParentDefaults !set parents for all controls
Resizer.SetParentControl(?Button1,?OuterGroup) !override parent for a control
Resizer.SetParentControl(?Check1,?InnerGroup) !override parent for a control
Resizer.SetParentControl(?Check2,?InnerGroup) !override parent for a control

See Also: Resize, SetParentControl

1034 CLARION 5 APPLICATION HANDBOOK

SetPosition (calculate control coordinates)

SetPosition(control, parentpos, parentnewpos, pos, newpos)

SetPosition Calculates the control’s new coordinates.

control An integer constant, variable, EQUATE, or expression
containing the control number (field equate) of the
control whose coordinates are calculated.

parentpos The label of the structure that contains the original
(before resizing) coordinates of the control’s parent.

parentnewpos The label of the structure that contains the new (after
resizing) coordinates of the control’s parent.

pos The label of the structure that contains the control’s
original (before resizing) coordinates.

newpos The label of the structure that receives the control’s
newly calculated coordinates.

The SetPosition method calculates a control’s new coordinates based on the
control’s resizing strategy and on the coordinates of the control’s parent.

The parentpos, parentnewpos, pos, and newpos parameters must name a
structure that begins like the PositionGroup structure declared in
ABRESIZE.INC.

Implementation: The Resize method (indirectly) calls the SetPosition method for each control
in the window. The SetPosition method sets the new control coordinates
based on the resize strategy for each control.

The parentpos, parentnewpos, pos, and newpos parameters must name a
structure that begins like the PositionGroup structure declared in
ABRESIZE.INC as follows:

PositionGroup GROUP,TYPE !Control coordinates
XPos SIGNED ! Horizontal coordinate
YPos SIGNED ! Vertical coordinate
Width UNSIGNED ! Width
Height UNSIGNED ! Height

END

Example:

MyWindowResizeClass.SetPosition PROCEDURE(SIGNED ControlID,PositionGroup ParentOrigPos,|
PositionGroup ParentCurrentPos, PositionGroup OrigPos, PositionGroup NewPos)

CODE
IF NoResize THEN RETURN. !conditionally disable the resize
IF ControlID{PROP:Type}=CREATE:Entry ! For ENTRY controls
ParentCurrentPos.Width=0{PROP:Width} ! tweak the coordinate calculation

END
PARENT.SetPosition(ControlID,ParentOrigPos,ParentCurrentPos,OrigPos,NewPos)

See Also: Resize

CHAPTER 62 WINDOWRESIZECLASS 1035

SetStrategy (set control resize strategy)

SetStrategy(|[control] ,position strategy, size strategy|)
 | source control, target control |

SetStrategy Sets the position strategy and the size strategy to apply
to a control.

control An integer constant, variable, EQUATE, or expression
containing a control number. If omitted, the SetStrategy
method applies position strategy and size strategy to all
controls on the WINDOW.

position strategy An integer constant, variable, EQUATE, or expression
indicating the position strategy to apply to the control.

size strategy An integer constant, variable, EQUATE, or expression
indicating the size strategy to apply to the control.

source control An integer constant, variable, EQUATE, or expression
identifying the control whose position strategy and size
strategy are applied to the target control.

target control An integer constant, variable, EQUATE, or expression
identifying the control whose position strategy and size
strategy are copied from the source control.

The SetStrategy method sets the position strategy and the size strategy to
apply to a window control or controls. The Resize method applies the
specified strategies.

Implementation: EQUATEs for the position strategy and the size strategy parameters are
declared in ABRESIZE.INC as follows. To apply two or more strategies,
simply add them together.

!Resize strategies
Resize:Resize EQUATE(0000b) !rescale height & width
Resize:LockWidth EQUATE(0001b) !locks width
Resize:LockHeight EQUATE(0010b) !locks height
Resize:LockSize EQUATE(0011b) !locks height & width
Resize:ConstantRight EQUATE(0100b) !locks right edge, moves left
Resize:ConstantBottom EQUATE(1000b) !locks bottom edge, moves top

!Reposition Strategies - Horizontal position
Resize:Reposition EQUATE(0000h) !rescale X & Y
Resize:LockXPos EQUATE(0001h) !locks left edge (absolute)
Resize:FixRight EQUATE(0002h) !fixes right edge (relative)
Resize:FixLeft EQUATE(0003h) !fixes left edge (relative)
Resize:FixXCenter EQUATE(0004h) !fixes horizontal center (relative)
Resize:FixNearestX EQUATE(0005h) !FixRight or FixLeft

!Reposition Strategies - Vertical position
Resize:LockYPos EQUATE(0100h) !locks top edge (absolute)
Resize:FixBottom EQUATE(0200h) !fixes bottom edge (relative)
Resize:FixTop EQUATE(0300h) !fixes top edge (relative)
Resize:FixYCenter EQUATE(0400h) !fixes vertical center (relative)
Resize:FixNearestY EQUATE(0500h) !FixTop or FixBottom

1036 CLARION 5 APPLICATION HANDBOOK

Example:

window WINDOW('Client Information'),AT(,,185,100),IMM,GRAY,MAX,RESIZE
SHEET,AT(3,3,180,78),USE(?Sheet1)
TAB('Client List'),USE(?ListTab)
LIST,AT(10,20,165,55),USE(?List1),FROM(ClientQ),|
FORMAT('87L~Name~@s20@8L~State Code~@s2@')

END
TAB('Client Logo'),USE(?LogoTab)
IMAGE,AT(10,20,165,55),USE(?CLI:Logo)

END
END
PROMPT('Locate:'),AT(7,87),USE(?LocatorPrompt)
ENTRY(@s20),AT(33,86,61,12),USE(CLI:Name)
BUTTON('Close'),AT(150,84),USE(?Close)

END
CODE
OPEN(window)
Resizer.Init(AppStrategy:Surface) !init Resizer overall strategy
Resizer.SetStrategy(?LocatorPrompt, | !set control specific strategy:
Resize:FixLeft+Resize:FixBottom,Resize:LockSize) ! at bottom left & fixed size

Resizer.SetStrategy(?CLI:Name, | !set control specific strategy:
Resize:FixLeft+Resize:FixBottom,Resize:LockHeight) ! at bottom left & fixed height

See Also: Resize

INDEX 1037

INDEX

Symbols

!, PopupClass.AddItemMimic ... 647
%Error .. 469
%ErrorCode ... 469
%ErrorText ... 469
%Field .. 469
%File .. 469
%FileError .. 469
%FileErrorCode ... 469
%Message ... 469
%Previous .. 469
%ProgramType .. 77
.DLL ... 56
.EXP ... 69
.INI File Support ... 52
.LIB ... 113
801 variable not bound 125, 129, 153

A

ABC Coding Conventions .. 197
ABC Compliant Classes .. 68
ABC Library ... 191
ABC Templates .. 46

embed points .. 69
ABC Templates and SQL ... 50
Aborted Add/Change ... 165
ACCEPT .. 994
Accept browse control from Toolbar 121, 161
Accept control from Toolbar ... 143
Access:file ... 196. See FileManager
Access:filename ... 542
Action For Each Selection ... 148
Action for Process .. 102
Active Invisible ... 61
ActiveInvisible

BrowseClass ... 255
Add Extra Vertical Space ... 88
AddControl

EIPManagerClass ... 449
AddEditControl

BrowseClass ... 273
AddErrors

ErrorClass ... 475
AddField

BrowseClass ... 274

FileDropClass ... 516
AddHistoryField

WindowManagerClass .. 989
AddHistoryFile

WindowManagerClass .. 990
AddItem

ASCIIViewerClass ... 240
ConstantClass ... 336
FieldPairsClass ... 500
PopupClass ... 644
ProcessClass .. 701
QueryClass ... 715
StepCustomClass ... 842
WindowManagerClass .. 991

AddItemEvent
PopupClass ... 646

AddItemMimic
PopupClass ... 647

Additional Sort Fields .. 103, 107
AddKey

FileManagerClass ... 556
AddLocator

BrowseClass ... 275
AddMask

SelectFileClass ... 826
AddMenu

PopupClass ... 648
AddPair

BufferedPairsClass ... 326
FieldPairsClass ... 501

AddRange
ViewManagerClass ... 952

AddRelation
RelationManagerClass ... 789

AddRelationLink
RelationManagerClass ... 791

AddResetField
BrowseClass ... 276

AddSortOrder
BrowseClass ... 277
ViewManagerClass ... 953

AddSubMenu
PopupClass ... 650

AddTarget
ToolbarClass ... 889

AddToolbarTarget
BrowseClass ... 278

1038 CLARION 5 APPLICATION HANDBOOK

AddTranslation
TranslatorClass ... 934

AddUpdateField
FileDropClass ... 517

AddUpdateFile
WindowManagerClass .. 993

AddValue
EditMultiSelectClass ... 418

After successful insert ... 166
Again

EIPManagerClass ... 441
Alias Options .. 87
AliasedFile

FileManagerClass ... 546
Allow Unfilled ... 61
Allow User Variable Zooms? .. 109
AllowUnfilled

BrowseClass ... 255
AllowUserZoom

PrintPreviewClass ... 672
AppendOrder

ViewManagerClass ... 954
Application

deployment ... 69
Application Builder Class (ABC) Library 191
Application Builder Class Viewer 59, 65
application defaults .. 51
application modal windows .. 173
Application Wizard ... 76

control model .. 78
Full vs Simple .. 76
Generate Reports for each file .. 79
Overwrite existing procedures .. 79
SQL Applications .. 77
Toolbar .. 78

ApplyFilter
ViewManagerClass ... 954

ApplyOrder
ViewManagerClass ... 955

ApplyRange
BrowseClass ... 279
ViewManagerClass ... 955

Approx Record Count ... 103, 107
Array

Definition ... 67
Arrow

EIPManagerClass ... 441
ArrowAction

BrowseClass ... 256
ASCII viewer .. 111
ASCIIFile

ASCIIFileClass .. 206

ASCIIFileClass ... 203
Methods .. 207

FormatLine ... 208
GetDOSFilename ... 209
GetFilename ... 210
GetLastLineNo .. 210
GetLine ... 211
GetPercentile .. 212
Init ... 213
Kill ... 214
Reset .. 215
SetLine ... 216
SetPercentile .. 217
ValidateLine .. 218

Properties ... 206
ASCIIFile .. 206
ErrorMgr .. 206
OpenMode .. 206

ASCIIPrintButton .. 117
ASCIIPrintClass ... 219

Methods .. 223
Ask .. 223
Init ... 223
PrintLines .. 224

Properties ... 222
FileMgr .. 222
PrintPreview .. 222
Translator .. 222

ASCIISearchButton .. 117
ASCIISearchClass ... 225

Methods .. 230
Ask .. 230
Init ... 231
Next .. 231
Setup .. 232

Properties ... 228
FileMgr .. 228
Find ... 228
LineCounter .. 228
Translator .. 229

ASCIIViewControl .. 116
classes .. 117
General Options .. 116
Reassign FROM attribute after Kill 117
Value or queue to assign .. 117

ASCIIViewerClass .. 233
Methods .. 238

AddItem .. 240
AskGotoLine ... 241
DisplayPage .. 241
Init ... 242
Kill ... 244

INDEX 1039

PageDown .. 245
PageUp ... 245
Reset .. 246
SetLine ... 247
SetLineRelative .. 248
SetTranslator .. 249
TakeEvent ... 250

Properties ... 236
Popup ... 236
Printer ... 236
Searcher ... 236
TopLine ... 237

AsciiViewInListBox ... 178
Ask

ASCIIPrintClass .. 223
ASCIISearchClass .. 230
BrowseClass ... 280
FileDropComboClass .. 533
PopupClass ... 652
QueryClass ... 716
QueryFormClass ... 733
QueryListClass ... 755
ReportManagerClass .. 813
SelectFileClass ... 827
WindowManagerClass .. 994

Ask the user before adding another record 166
AskGotoLine

ASCIIViewerClass ... 241
AskPage

PrintPreviewClass ... 677
AskPreview

ReportManagerClass .. 813
AskPrintPages

PrintPreviewClass ... 678
AskProcedure

BrowseClass ... 256
AskRecord

BrowseClass ... 281
AskThumbnails

PrintPreviewClass ... 679
Assign as Reference? .. 177
AssignBufferToLeft

BufferedPairsClass ... 327
AssignBufferToRight

BufferedPairsClass ... 327
AssignLeftToBuffer

BufferedPairsClass ... 328
AssignLeftToRight

FieldPairsClass ... 502
AssignRightToBuffer

BufferedPairsClass ... 328
AssignRightToLeft

FieldPairsClass ... 503

Auto Tool Bar .. 62
autoincrement ... 558, 579, 582
Automatically find parent controls 62, 188
AutoRefresh

WindowManagerClass .. 977
AutoToolbar

WindowManagerClass .. 977
AutoTransparent

WindowResizeClass ... 1022
Available

EditMultiSelectClass ... 415

B

background processes
ReportManagerClass .. 810

Base Class ... 65
base class configuration .. 64
Batch Process .. 101
BC

BrowseEIPManagerClass ... 315
begins with, Filter Locator .. 609
BIND 105, 109, 125, 129, 131, 144, 150, 153, 156
BindFields

FileManagerClass ... 557
Browse

ToolbarListBoxClass ... 897
Browse Box Behavior ... 97
Browse, initial position ... 268
Browse Optimization, ISAM ... 61
Browse Optimization, SQL ... 61
Browse Template ... 96
Browse Wizard ... 80
Browse-Form Application Paradigm 49
BrowseBox ... 118

Accept browse control from Toolbar 121
classes ... 131, 139
colors .. 129
conditional behavior .. 128
Entry Locator .. 122
Filter Locator ... 123
filtering .. 134
filtering and record selection ... 125
Find Anywhere .. 124
Icons ... 130
Incremental Locator .. 123
Loading Method .. 120
Locator Behavior ... 122
print single record ... 131
QBE .. 133
refreshing .. 126
scroll bars .. 119

1040 CLARION 5 APPLICATION HANDBOOK

scrolling ... 126
selecting items .. 136
sorting ... 126
Step Locator .. 122
totals ... 131
updating records ... 137

browsebox navigation .. 122
BrowseBox Options ... 120
BrowseBox, reset ... 272
BrowseClass .. 251

Methods .. 271
AddEditControl ... 273
AddField ... 274
AddLocator ... 275
AddResetField .. 276
AddSortOrder ... 277
AddToolbarTarget ... 278
ApplyRange .. 279
Ask .. 280
AskRecord .. 281
Fetch ... 282
Init ... 283
Kill ... 284
Next .. 285
PostNewSelection ... 285
Previous .. 286
Records .. 286
ResetFromAsk .. 287
ResetFromBuffer .. 289
ResetFromFile .. 290
ResetFromView .. 291
ResetQueue ... 292
ResetResets ... 293
ResetSort .. 294
ScrollEnd .. 295
ScrollOne .. 296
ScrollPage .. 297
SetAlerts ... 298
SetQueueRecord .. 298
SetSort .. 299
TakeAcceptedLocator ... 300
TakeEvent ... 301
TakeKey .. 302
TakeLocate ... 302
TakeNewSelection .. 303
TakeScroll ... 304
TakeVCRScroll ... 305
UpdateBuffer .. 306
UpdateQuery .. 307
UpdateResets ... 308
UpdateThumb ... 308
UpdateThumbFixed .. 309

UpdateViewRecord ... 309
UpdateWindow ... 310

Properties ... 255
ActiveInvisible ... 255
AllowUnfilled ... 255
ArrowAction .. 256
AskProcedure ... 256
ChangeControl ... 257
DeleteControl .. 257
EditList .. 258
EIP .. 258
EnterAction ... 259
Fields .. 259
FocusLossAction .. 260
HasThumb .. 260
HideSelect .. 260
InsertControl ... 261
ListControl .. 261
ListQueue ... 261
Loaded .. 262
Popup ... 262
PrintControl ... 262
PrintProcedure .. 263
Query .. 263
QueryControl .. 264
QueryShared .. 264
QuickScan .. 265
RetainRow .. 265
SelectControl .. 266
Selecting ... 266
SelectWholeRecord .. 266
Sort ... 267
StartAtCurrent .. 268
TabAction .. 268
Toolbar .. 269
ToolbarItem ... 269
ToolControl ... 270
Window ... 270

BrowseClass Configuration .. 61
BrowseEIPManagerClass .. 311

Methods .. 316
ClearColumn ... 317
Init ... 317
Kill ... 318
TakeCompleted ... 319
TakeNewSelection .. 320

Properties ... 315
BC ... 315

BrowsePrintButton ... 131
BrowsePublishButton ... 132
BrowseQueryButton ... 133
BrowseSelectButton .. 136

INDEX 1041

BrowseToolboxButton .. 137
BrowseUpdateButtons ... 137
BRWn ... 196. See BrowseClass
BRWn::Sortn:Locator 196. See LocatorClass
BRWn::Sortn:StepClass 196. See StepClass
Buffer

FileManagerClass ... 546
buffer management .. 495
BufferedPairsClass .. 321

Methods .. 324
AddPair ... 326
AssignBufferToLeft ... 327
AssignBufferToRight ... 327
AssignLeftToBuffer ... 328
AssignRightToBuffer ... 328
EqualLeftBuffer ... 329
EqualRightBuffer .. 329
Init ... 330
Kill ... 330

Properties ... 323
RealList ... 323

Buffers
FileManagerClass ... 547

Build Menu From .. 172

C

CallABCMethod ... 169
CallProcedureAsLookup .. 170
Cancel without Confirming ... 165
CancelAction

WindowManagerClass .. 978
CancelAutoInc

FileManagerClass ... 558
RelationManagerClass ... 792

CancelButton .. 146, 167, 168
Case Sensitive matches? .. 156
Change Message ... 165
ChangeAction

WindowManagerClass .. 978
ChangeButton

ToolbarTargetClass ... 911
ChangeControl

BrowseClass ... 257
ChangeRecord ... 93
Changes .. 164
ChildRead

ProcessClass .. 697
choose a record from a list box .. 136
class configuration ... 64
class library .. 191
Class Viewer ... 59, 65

Classes tab .. 64
WindowManager ... 96

ClearColumn
BrowseEIPManagerClass ... 317
EIPManagerClass ... 450

ClearKey
FileManagerClass ... 560

ClearKeycode
PopupClass ... 642

ClearLeft
FieldPairsClass ... 504

ClearQuery
QueryClass ... 717

ClearRight
FieldPairsClass ... 505

Close
FileManagerClass ... 562
RelationManagerClass ... 793
ViewManagerClass ... 956

Close Button control template ... 146
Close when the user clicks on the splash window 111
CloseCurrentWindow ... 170
CODE ... 70
Code After, Canceled ... 170
Code After, Completed .. 170
Code before ... 170
Code Embed .. 66
Code Generation ... 46
Code Generation Wizards ... 73
Code template ... 169
Colorization, Browse Box ... 129
Colorization, FileDrop ... 151, 157
Colorization, Tree control ... 142
Colors

relation tree ... 144
Column

EIPManagerClass ... 441
Conditional Behavior

BrowseBox .. 128
configuration files ... 52
Confirm Cancel .. 165
confirmation of delete .. 165
ConfirmPages

PrintPreviewClass ... 672
ConstantClass ... 331

Methods .. 335
AddItem .. 336
Init ... 337
Kill ... 338
Next(copy to targets) .. 340
Next(load to fiel or queue) .. 339
Reset .. 341

1042 CLARION 5 APPLICATION HANDBOOK

Set .. 342
Properties ... 334

TerminatorValue ... 334
context menu ... 171
Contract Branch ... 143
Contracting Locator ... 123
Control

LocatorClass ... 633
ToolbarTargetClass ... 911

control file .. 53
control model

Application Wizard .. 78
Control Template .. 115
Control Templates

adding ... 115
Control templates ... 92
Controls

StepClass .. 833
ControlValueValidation ... 170
Conventions

documentation ... 42, 201
Core Classes ... 192
CREATE

attribute ... 55
Create

FileManagerClass ... 547
CreateControl

EditCheckClass ... 349
EditClass ... 358
EditColorClass .. 369
EditDropListClass ... 377
EditEntryClass .. 387
EditFileClass ... 396
EditFontClass .. 406
EditMultiSelectClass ... 419
EditSpinClass .. 430
EditTextClass .. 435

CurrentPage
PrintPreviewClass ... 672

D

data
external ... 52

Data Dictionary
Printing .. 86

Data Embed ... 66
Data Integrity ... 54
Database Operations ... 541

FileManagerClass ... 553
Date

display template .. 179

DateTimeDisplay ... 179
Day of Week ... 179
Dead

WindowManagerClass .. 979
declaring files ... 54
Default Classes .. 60
Default Directory .. 147
Default Filename .. 148
Default Icon ... 152, 158
Default message .. 52
Default to first entry if USE variable empty 150, 156
Default Window Controls ... 89
DefaultDirectory

SelectFileClass ... 825
DefaultFile

SelectFileClass ... 825
DefaultFill

FileDropClass ... 514
defaults

application wide .. 51
Defer opening files until accessed ... 57
DeferMoves

WindowResizeClass ... 1022
DeferOpenReport

ReportManagerClass .. 807
DeferWindow

ReportManagerClass .. 807
Delete

QueryClass ... 717
RelationManagerClass ... 794

Delete Message ... 165
DeleteAction

WindowManagerClass .. 979
DeleteControl

BrowseClass ... 257
DeleteImageQueue

PrintPreviewClass ... 680
DeleteItem

PopupClass ... 653
DeleteRecord ... 93
Deletes ... 164
deploying application files .. 69
Derive Classes ... 71
Derive? ... 65
DERIVED ... 200
derived class configuration .. 64
Deriving with Classes Tab .. 72
Deriving with Embed Points ... 72
Dictionary Print Wizard .. 86
DIM .. 67
dimensions ... 67
Display

INDEX 1043

PrintPreviewClass ... 681
Display Control ... 180
Display in Window .. 179
Display Record Identifier on the Title Bar 166
Display Time (in seconds) .. 111
DisplayButtons

ToolbarClass ... 889
ToolbarListBoxClass ... 898
ToolbarReltreeClass ... 907
ToolbarTargetClass ... 914
ToolbarUpdateClass ... 925

DisplayPage
ASCIIViewerClass ... 241

DisplayPopupMenu .. 171
Ditto Button .. 162
Ditto Key ... 165
DLL .. 56
DLL attribute .. 52
Do Not Auto-Populate This Aliased File 87
Do Not Auto-Populate This Field ... 87
Do Not Auto-Populate This File ... 87
Do Not Auto-Populate This Key ... 88
Do Not Validate .. 182
dockable toolbars ... 137
Documentation Conventions ... 42, 201
Don’t Alter Controls .. 185
DOS File Lookup Control template 111
DOS Filename Variable ... 147
DOSFileLookup ... 146
Drop down list ... 149, 155

E

Edit in place ... 138
EditCheckClass .. 343

Methods .. 348
CreateControl ... 349

Properties ... 347
EditClass .. 351

Methods .. 357
CreateControl ... 358
Init ... 359
Kill ... 359
SetAlerts ... 360
SetReadOnly .. 360
TakeEvent ... 361

Properties ... 356
FEQ .. 356
ReadOnly .. 356

EditColorClass ... 363
Methods .. 368

CreateControl ... 369

TakeEvent ... 370
Properties ... 367

Title ... 367
EditDropListClass .. 371

Methods .. 376
CreateControl ... 377
SetAlerts ... 378
SetReadOnly .. 378
TakeEvent ... 379

Properties ... 375
EditEntryClass ... 381

Methods .. 386
CreateControl ... 387

Properties ... 385
EditFileClass .. 389

Methods .. 395
CreateControl ... 396
TakeEvent ... 397

Properties ... 393
FileMask ... 393
FilePattern .. 393
Title ... 394

EditFontClass ... 399
Methods .. 405

CreateControl ... 406
TakeEvent ... 407

Properties ... 404
Title ... 404

EDITINPLACE ... 87
EditInPlace::field 195, 196. See EditClass
EditList

BrowseClass ... 258
EditMultiSelectClass .. 409

Methods .. 416
AddValue .. 418
CreateControl ... 419
Reset .. 419
TakeAction .. 420
TakeEvent ... 423

Properties ... 415
Available ... 415
FilePattern .. 415
Selected .. 415
Title ... 415

EditSpinClass .. 425
Methods .. 429

CreateControl ... 430
Properties ... 428

EditTextClass ... 431
Methods .. 434

CreateControl ... 435
TakeEvent ... 436

1044 CLARION 5 APPLICATION HANDBOOK

Properties ... 433
Title ... 433

EIP
BrowseClass ... 258

EIPManagerClass .. 437
Methods .. 447

AddControl .. 449
ClearColumn ... 450
GetEdit .. 450
Init ... 451
InitControls ... 451
Kill ... 452
Next .. 452
ResetColumn .. 453
Run ... 453
TakeAction .. 454
TakeCompleted ... 455
TakeEvent ... 456
TakeFieldEvent ... 457
TakeFocusLoss ... 458
TakeNewSelection .. 458

Properties ... 441
Again .. 441
Arrow .. 441
Column ... 441
Enter ... 442
EQ ... 442
Fields .. 443
FocusLoss .. 443
Insert ... 444
LastColumn .. 445
ListControl .. 444
Repost .. 445
RepostField .. 445
Req ... 446
SeekForward .. 446
Tab .. 446

Embed Points ... 45
Embedded source

comments ... 52
finding ... 52

Embedded Source dialog .. 69
Enable Run-Time Translation .. 52
Enclose RI code in transaction frame 54
Enter

EIPManagerClass ... 442
EnterAction

BrowseClass ... 259
Entries

StepCustomClass ... 841
Entry locator ... 122
EntryCompletion

FileDropComboClass .. 530
EntryLocatorClass ... 459

Methods .. 463
Init ... 463
Set .. 464
TakeAccepted ... 464
TakeKey .. 465
Update .. 466
UpdateWindow ... 466

Properties ... 462
Shadow ... 462

EQ
EIPManagerClass ... 442

Equal
FieldPairsClass ... 506

EqualBuffer
FileManagerClass ... 563

EqualLeftBuffer
BufferedPairsClass ... 329

EqualLeftRight
FieldPairsClass ... 506

EqualRightBuffer
BufferedPairsClass ... 329

error severity .. 467
Error Treatment .. 467
ErrorClass .. 467

macros .. 469
Methods .. 474

AddErrors ... 475
GetProcedureName.. 476
Init ... 476
Kill ... 477
Message ... 478
RemoveErrors ... 479
SetErrors .. 480
SetFatality ... 481
SetField .. 482
SetFile .. 482
SetId ... 483
SetProcedureName .. 484
SubsString .. 484
TakeBenign ... 485
TakeError .. 486
TakeFatal .. 487
TakeNotify ... 488
TakeOther ... 489
TakeProgram .. 490
TakeUser ... 491
Throw .. 492
ThrowFile .. 493

Properties ... 472
Errors .. 472

INDEX 1045

FieldName .. 473
FileName .. 473
MessageText .. 473

ErrorMgr
ASCIIFileClass .. 206

Errors
ErrorClass ... 472
FileManagerClass ... 548
WindowManagerClass .. 980

evaluating expressions ... 129, 153
Event Processing, ABC ... 970
Exclude unfiltered .. 110
Expand Branch .. 143
expanding list ... 141
ExtendProgressWindow .. 180
Extension templates .. 178
EXTERNAL .. 56
EXTERNAL attribute .. 52
External Globals and ABC’s Source Module 52
External library ... 113
External Module Options ... 58
External Template .. 113
Extract Filename .. 63
ExtractText

TranslatorClass ... 933

F

FDBn ... 196. See FileDropClass
FDCBn 196. See FileDropComboClass
FEQ

EditClass ... 356
Fetch

BrowseClass ... 282
FileManagerClass ... 564
INIClass .. 622

FetchField
INIClass .. 624

FetchQueue
INIClass .. 625

Field History Key .. 165
Field Options .. 87
Field Priming .. 164
Field to Fill From ... 150, 155
FieldLookupButton ... 149
FieldName

ErrorClass ... 473
FieldPairsClass .. 495

Methods .. 499
AddItem .. 500
AddPair ... 501
AssignLeftToRight ... 502

AssignRightToLeft ... 503
ClearLeft ... 504
ClearRight ... 505
Equal .. 506
EqualLeftRight .. 506
Init ... 507
Kill ... 507

Properties ... 498
List .. 498

Fields
BrowseClass ... 259
EIPManagerClass ... 443
printing .. 86

File
FileManagerClass ... 548

File Control .. 53
File Dialog Header ... 147
file handling .. 55
File Manager and Threaded Files .. 542
File Manager Class .. 541
File Mask ... 148
File Mask Description .. 148
File Masks .. 148
File Open Mode ... 57
File Options .. 87
File Overrides ... 57
file processing

multiple files .. 146
File selection .. 146
file sharing .. 55, 57
FileDrop

colors ... 151, 157
Icons .. 152, 158
range limit .. 151, 156

FileDrop control template ... 149, 155
FileDropClass .. 509

Methods .. 515
AddField ... 516
AddUpdateField .. 517
Init ... 518
Kill ... 519
ResetQueue ... 520
SetQueueRecord .. 521
TakeEvent ... 521
TakeNewSelection .. 522
ValidateRecord ... 523

Properties ... 514
DefaultFill .. 514
InitSyncPair ... 514

FileDropCombo
Classes ... 159
Hot Fields .. 159

1046 CLARION 5 APPLICATION HANDBOOK

Sort Fields .. 154, 159
Update Behavior ... 158

FileDropComboClass ... 525
Methods .. 531

Ask .. 533
GetQueueMatch ... 534
Init ... 535
ResetQueue ... 537
TakeEvent ... 538
TakeNewSelection .. 539

Properties ... 530
EntryCompletion ... 530
UseField ... 530

FileLookupN 196. See SelectFileClass
FileManagerClass .. 55

Database Operations .. 553
Interactive Database Operations 553
Methods .. 553

AddKey ... 556
BindFields ... 557
CancelAutoInc .. 558
ClearKey ... 560
Close .. 562
EqualBuffer ... 563
Fetch ... 564
GetComponents ... 565
GetEOF .. 566
GetError .. 567
GetField .. 568
GetFieldName .. 569
GetName .. 570
Init ... 571
Insert ... 572
KeyToOrder ... 573
Kill ... 574
Next .. 575
Open ... 576
Position ... 577
Previous .. 578
PrimeAutoInc .. 579
PrimeFields ... 581
PrimeRecord ... 582
RestoreBuffer .. 584
RestoreFile ... 585
SaveBuffer .. 586
SaveFile .. 587
SetError .. 588
SetKey .. 588
SetName ... 589
Throw .. 590
ThrowMessage ... 591
TryFetch .. 592

TryInsert .. 593
TryNext ... 594
TryOpen .. 595
TryPrevious ... 596
TryPrimeAutoInc ... 597
TryReget ... 599
TryUpdate ... 599
Update .. 600
UseFile ... 601
ValidateField ... 602

Properties ... 546
AliasedFile .. 546
Buffer .. 546
Buffers .. 547
Create ... 547
Errors .. 548
File .. 548
FileName .. 549
FileNameValue ... 550
LazyOpen ... 551
LockRecover ... 551
OpenMode .. 552
SkipHeldRecords .. 552

Silent Database Operations .. 553
FileMask

EditFileClass ... 393
FileMgr

AsciiPrintClass .. 222
ASCIISearchClass .. 228

FileName
ErrorClass ... 473
FileManagerClass ... 549
INIClass .. 621

Filename Variable .. 147
FileNameValue

FileManagerClass ... 550
FilePattern

EditFileClass ... 393
EditMultiSelectClass ... 415

Files
Creating .. 55
printing .. 86

files
declaring ... 54
sharing .. 53

Filter .. 102, 107, 125
FileDrop .. 150
FileDropCombo ... 155
relation tree ... 144

Filter locator ... 123
filtering browses and reports ... 968
FilterLocatorClass .. 605

Methods .. 610

INDEX 1047

TakeAccepted ... 610
UpdateWindow ... 611

Properties ... 609
FloatRight ... 609

Filters ... 109
Find .. 122

ASCIISearchClass .. 228
find ... 117
Find Anywhere ... 124
find record .. 161
FirstField

WindowManagerClass .. 980
Fixed Thumb .. 126
Flags

SelectFileClass ... 825
flat file applications .. 74
FldsEIP

QueryListVisual ... 763
FloatRight

FilterLocatorClass ... 609
FocusLoss

EIPManagerClass ... 443
FocusLossAction

BrowseClass ... 260
ForcedReset

WindowManagerClass .. 980
Form Tab .. 88
Form Template ... 97
Form Wizard .. 82
FormatLine

ASCIIFileClass .. 208
FormVCRControls ... 181
Frame Template ... 99
FrameBrowseControl 122, 143, 160, 181
free element ... 128
FreeElement

LocatorClass ... 633

G

Generate EMBED Comments ... 52
Generate Reports for each file

Application Wizard .. 79
Generate Template global data and ABC’s as EXTERNA 52
generating source code ... 46
GetComponents

FileManagerClass ... 565
GetDOSFilename

ASCIIFileClass .. 209
GetEdit

EIPManagerClass ... 450
GetEOF

FileManagerClass ... 566

GetError
FileManagerClass ... 567

GetField
FileManagerClass ... 568

GetFieldName
FileManagerClass ... 569

GetFilename
ASCIIFileClass .. 210

GetFilter
QueryClass ... 718

GetFreeElementName
ViewManagerClass ... 956

GetFreeElementPosition
ViewManagerClass ... 957

GETINI ... 53
GetItemChecked

PopupClass ... 654
GetItemEnabled

PopupClass ... 655
GetLastLineNo

ASCIIFileClass .. 210
GetLastSelection

PopupClass ... 655
GetLimit

QueryClass ... 720
GetLine

ASCIIFileClass .. 211
GetName

FileManagerClass ... 570
GetParentControl

WindowResizeClass ... 1024
GetPercentile

ASCIIFileClass .. 212
StepClass .. 834
StepCustomClass ... 843
StepLongClass ... 857
StepRealClass .. 865
StepStringClass .. 876

GetPositionStrategy
WindowResizeClass ... 1025

GetProcedureName
ErrorClass ... 476

GetQueueMatch
FileDropComboClass .. 534

GetResizeStrategy
WindowResizeClass ... 1026

GetValue
StepClass .. 834
StepCustomClass ... 844
StepLongClass ... 858
StepRealClass .. 866
StepStringClass .. 877

1048 CLARION 5 APPLICATION HANDBOOK

Give option to expand and contract all levels 143
Global Data .. 69
Global Data, saving and restoring ... 53
global INCLUDEs ... 69
global MAP .. 69
Global Properties dialog .. 51
GlobalErrors ... 196. See ErrorClass
GlobalRequest ... 93
GlobalResponse .. 93

H

hand code .. 113
HasThumb

BrowseClass ... 260
Help File ... 77
HelpButton

ToolbarTargetClass ... 912
Hide:Access:filename .. 542
Hide:Relate:filename .. 543, 782
HideSelect

BrowseClass ... 260
hierarchical list ... 141
High

StepLongClass ... 856
StepRealClass .. 864

History
ToolbarUpdateClass ... 924

HistoryKey
WindowManagerClass .. 981

Horizontal Positional Strategy 175, 187
Horizontal Resize Strategy ... 174, 187
Hot Fields 105, 108, 109, 128, 150, 153, 156

FileDrop Control Template .. 159
HTML code generation

publish BrowseBox ... 132

I

Icon
Browse Box ... 130
FileDrop ... 152, 158

Icons
relation tree ... 144

ImageQueue
PrintPreviewClass ... 673

Include File .. 65
Incremental Locator ... 123
IncrementalLocatorClass ... 613

Methods .. 617
SetAlerts ... 617
TakeKey .. 618

Properties ... 617
Individual File Overrides .. 57
INI file

location .. 53
INI File Settings ... 96
INI File Support .. 52
INIClass ... 619

Methods .. 622
Fetch ... 622
FetchField ... 624
FetchQueue .. 625
Init ... 626
TryFetch .. 627
TryFetchField .. 628
Update .. 629

Properties ... 621
FileName .. 621

INIMgr .. 196. See INIClass
Init

ASCIIFileClass .. 213
ASCIIPrintClass .. 223
ASCIISearchClass .. 231
ASCIIViewerClass ... 242
BrowseClass ... 283
BrowseEIPManagerClass ... 317
BufferedPairsClass ... 330
ConstantClass ... 337
EditClass ... 359
EIPManagerClass ... 451
EntryLocatorClass .. 463
ErrorClass ... 476
FieldPairsClass ... 507
FileDropClass ... 518
FileDropComboClass .. 535
FileManagerClass ... 571
INIClass .. 626
LocatorClass ... 635
PopupClass ... 656
PrintPreviewClass ... 683
ProcessClass .. 702
QueryClass ... 721
QueryFormClass ... 734
QueryFormVisual .. 743
QueryListClass ... 756
QueryListVisual ... 765
QueryVisualClass ... 775
RelationManagerClass ... 795
ReportManagerClass .. 814
SelectFileClass ... 828
StepClass .. 835
StepCustomClass ... 845
StepStringClass .. 878

INDEX 1049

ToolbarClass ... 890
TranslatorClass ... 936
ViewManagerClass ... 958
WindowManagerClass .. 995
WindowResizeClass ... 1027

InitControls
EIPManagerClass ... 451

Initial Window Position ... 109
Initial Zoom .. 108
Initializing Fields .. 164
Initiate Thread .. 173
InitSyncPair

FileDropClass ... 514
InPageList

PrintPreviewClass ... 684
Insert

EIPManagerClass ... 444
FileManagerClass ... 572

Insert Message .. 165
InsertAction

WindowManagerClass .. 981
InsertButton

ToolbarTargetClass ... 912
InsertControl

BrowseClass ... 261
InsertRecord .. 93
Inserts .. 164
Inter-Procedure Communication .. 93
Interactive Database Operations ... 541

FileManagerClass ... 553
internationalization ... 52
Internet

publish BrowseBox ... 132
invoice reports ... 182
Is a Reference .. 67
Issue Template warning if LOGOUT() not allowed 55
Item Properties .. 172

K

Keep View synchronized with Selection? 156
KeepVisible

ReportManagerClass .. 808
Key Distribution .. 127
Key Options ... 88
Keys

printing .. 86
KeyToOrder

FileManagerClass ... 573
Kill

ASCIIFileClass .. 214
ASCIIViewerClass ... 244

BrowseClass ... 284
BrowseEIPManagerClass ... 318
BufferedPairsClass ... 330
ConstantClass ... 338
EditClass ... 359
EIPManagerClass ... 452
ErrorClass ... 477
FieldPairsClass ... 507
FileDropClass ... 519
FileManagerClass ... 574
PopupClass ... 656
PrintPreviewClass ... 684
ProcessClass .. 704
QueryClass ... 722
QueryFormClass ... 735
QueryListClass ... 757
QueryVisualClass ... 776
RelationManagerClass ... 796
ReportManagerClass .. 815
StepClass .. 835
StepCustomClass ... 845
StepStringClass .. 879
ToolbarClass ... 890
TranslatorClass ... 936
ViewManagerClass ... 959
WindowManagerClass .. 997
WindowResizeClass ... 1029

L

language, multiple language user interface 52
large files

browsing .. 118
scrolling ... 119

LastColumn
EIPManagerClass ... 445

LazyOpen .. 57
FileManagerClass ... 551

Level:Benign .. 468
Level:Cancel .. 468
Level:Fatal ... 198, 468
Level:Notify ... 198, 468
Level:Program .. 468
Level:User ... 198, 468
LineCounter

ASCIISearchClass .. 228
LINK ... 68
LIST ... 118
List

FieldPairsClass ... 498
list box navigation ... 122, 143
List to use .. 178

1050 CLARION 5 APPLICATION HANDBOOK

ListControl
BrowseClass ... 261
EIPManagerClass ... 444

ListLinkingFields
RelationManagerClass ... 797

ListQueue
BrowseClass ... 261

Loaded
BrowseClass ... 262

Loading Method, BrowseBox ... 120
Locate record ... 161
Location ... 179
Location of Message .. 166
Locator ... 122

Contracting .. 123
Entry .. 122
Filter .. 123
Incremental ... 123
Step ... 122

Locator Behavior .. 122
Locator Class ... 125
LocatorClass .. 631

Methods .. 635
Init ... 635
Reset .. 636
Set .. 636
SetAlerts ... 637
SetEnabled ... 637
TakeAccepted ... 638
TakeKey .. 638
UpdateWindow ... 638

Properties ... 633
Control .. 633
FreeElement ... 633
NoCase ... 633
ViewManager .. 634

LockRecover
FileManagerClass ... 551

Logo Screen .. 110
LOGOUT .. 55
look up ... 149
Lookup Field .. 174
Lookup Key .. 173
Lookup Procedure .. 170, 171
LookupMode

StepStringClass .. 873
LookupUpNon-RelatedRecord .. 173
Low

StepLongClass ... 856
StepRealClass .. 864

M

Macro Substitution
TranslatorClass ... 930

main procedure .. 99
Marking list items .. 154, 160
Mask Variable .. 148
Maximize

PrintPreviewClass ... 673
Maximize Preview Window .. 109
Maximum Height .. 186
Maximum Width ... 186
MDI .. 173
MDI application .. 99
Me

RelationManagerClass ... 787
MEMBER ... 56
menu

popup menu .. 171
Menu Description ... 172
Menu Items .. 172
Menu String ... 172
Menu Template .. 101
Message

ErrorClass ... 478
Messages and Titles .. 164
MessageText

ErrorClass ... 473
Method to Call .. 169
Minimum Height ... 186
Minimum Width .. 185
Minimum Window Size .. 185, 186
Modeless windows ... 173
modeless windows ... 173
Module Definition file ... 69
Module Name .. 113
More Field Assignments ... 150, 155
More File Masks .. 148
Movable Thumb .. 126, 127
MSG attribute ... 89
Multi-Select? .. 148
Multi-threading ... 49
multiuser files ... 53

N

navigation in browse box ... 122
navigation in relation tree ... 143
New Class Methods .. 65, 66
New Class Properties ... 65, 67
New Method Name .. 66
New Method Prototype .. 66

INDEX 1051

Next
ASCIISearchClass .. 231
BrowseClass ... 285
ConstantClass .. 339, 340
EIPManagerClass ... 452
FileManagerClass ... 575
ProcessClass .. 705
ReportManagerClass .. 816
ViewManagerClass ... 959

NoCase
LocatorClass ... 633

Normalized Data .. 49

O

Object Name ... 64, 169, 177
Offer to save changes .. 165
OK button ... 164
OKControl

WindowManagerClass .. 982
OPEN ... 57
Open

FileManagerClass ... 576
PrintPreviewClass ... 685
RelationManagerClass ... 798
ReportManagerClass .. 817
ViewManagerClass ... 960
WindowManagerClass .. 998

Opened
WindowManagerClass .. 982

OpenMode
ASCIIFileClass .. 206
FileManagerClass ... 552

OpenReport
ReportManagerClass .. 818

OpsEIP
QueryListVisual ... 763

Optimize Moves .. 62, 188
Optimize Redraws ... 62, 188
Optimizing a Dictionary for Wizards 88
Order

ViewManagerClass ... 947
OriginalRequest

WindowManagerClass .. 983
Other Data Type ... 67
Other Picture .. 179
outline list ... 141
Override Control Strategies ... 186
Override default locator control .. 124
Overwrite existing procedures

Application Wizard .. 79

P

PageDown
ASCIIViewerClass ... 245

PagesAcross
PrintPreviewClass ... 673

PagesAhead
ViewManagerClass ... 948

PagesBehind
ViewManagerClass ... 948

PagesDown
PrintPreviewClass ... 673

PageSize
ViewManagerClass ... 948

PagesToPrint
PrintPreviewClass ... 674

PageUp
ASCIIViewerClass ... 245

Parameters
Procedure Properties ... 95, 97
Source Template ... 114

Passed Parameters ... 169
PauseButton .. 163
Percentile

ProcessClass .. 697
Picture .. 179
Population Order ... 87, 88
Popup ... 196. See PopupClass

ASCIIViewerClass ... 236
BrowseClass ... 262
PrintPreviewClass ... 674

popup menu
template .. 171

PopupClass .. 639
Methods .. 643

AddItem .. 644
AddItemEvent ... 646
AddItemMimic ... 647
AddMenu .. 648
AddSubMenu .. 650
Ask .. 652
DeleteItem .. 653
GetItemChecked ... 654
GetItemEnabled .. 655
GetLastSelection .. 655
Init ... 656
Kill ... 656
Restore ... 657
Save .. 658
SetIcon ... 659
SetItemCheck ... 660
SetItemEnable .. 661

1052 CLARION 5 APPLICATION HANDBOOK

SetLevel .. 661
SetText .. 662
SetToolbox .. 663
SetTranslator .. 664
Toolbox ... 665
ViewMenu ... 665

Properties ... 642
ClearKeycode ... 642

Position
FileManagerClass ... 577

PostCompleted
WindowManagerClass .. 999

PostNewSelection
BrowseClass ... 285

Preview
ReportManagerClass .. 808

Preview Options ... 108
Previewer 196. See PrintPreviewClass
PreviewQueue

ReportManagerClass .. 809
Previous

BrowseClass ... 286
FileManagerClass ... 578
ViewManagerClass ... 960

Primary
ViewManagerClass ... 949
WindowManagerClass .. 983

PrimeAutoInc
FileManagerClass ... 579

PrimeFields
FileManagerClass ... 581
WindowManagerClass .. 1000

PrimeRecord
FileManagerClass ... 582
ViewManagerClass ... 961

PrimeUpdate
WindowManagerClass .. 1000

Priming Fields .. 164
Print Preview ... 106, 108
print preview, suppress .. 180
PrintControl

BrowseClass ... 262
Printer

ASCIIViewerClass ... 236
Printing

Data Dictionary ... 86
printing text .. 117
PrintLines

ASCIIPrintClass .. 224
PrintPreview

AsciiPrintClass .. 222
PrintPreviewClass .. 667

Methods .. 676
AskPage ... 677
AskPrintPages .. 678
AskThumbnails ... 679
DeleteImageQueue .. 680
Display .. 681
Init ... 683
InPageList ... 684
Kill ... 684
Open ... 685
SetDefaultPages ... 686
SetINIManager ... 686
SetPosition .. 687
SetZoom ... 688
SyncImageQueue ... 688
TakeAccepted ... 689
TakeEvent ... 690
TakeFieldEvent ... 691
TakeWindowEvent .. 692

Properties ... 672
AllowUserZoom .. 672
ConfirmPages ... 672
CurrentPage ... 672
ImageQueue ... 673
Maximize .. 673
PagesAcross ... 673
PagesDown .. 673
PagesToPrint .. 674
Popup ... 674
UserPercentile .. 674
WindowPosSet ... 674
WindowSizeSet .. 675
ZoomIndex .. 675

PrintProcedure
BrowseClass ... 263

PROC ... 200
Procedure Communication .. 93
Procedure Properties

Return Value 95, 97, 98, 100, 101, 106, 111, 112
Window Behavior .. 95

Procedure properties
Parameters ... 95, 97

Procedure Properties dialog .. 91
Procedure Templates ... 91
Procedure Wizard ... 80, 82, 84
Process

ReportManagerClass .. 809
Process Template

classes .. 105
Process template ... 101

RI constraints .. 102
single record mode ... 181

INDEX 1053

ProcessClass ... 693
Methods .. 699

AddItem .. 701
Init ... 702
Kill ... 704
Next .. 705
Reset .. 706
SetProgressLimits .. 706
TakeRecord .. 707

Properties ... 697
ChildRead ... 697
Percentile .. 697
PText ... 698
RecordsProcessed ... 698
RecordsToProcess ... 698

ProcessRecord .. 93
Program Author .. 51
progress bar ... 107
progress window, suppress ... 180
ProgressMgr ... 196. See StepClass
Property Name .. 67
Property to Set ... 177
Property Type ... 67
PROTECTED ... 200
PText

ProcessClass .. 698
public data .. 52
PUTINI ... 53

Q

QBE ... 133
QC

QueryVisualClass ... 774
QFC

QueryFromVisual .. 741
QueryListVisual ... 763

Query
BrowseClass ... 263

Query button .. 133
Query-by-example ... 133
QueryClass .. 709

Methods .. 714
AddItem .. 715
Ask .. 716
ClearQuery ... 717
Delete ... 717
GetFilter .. 718
GetLimit .. 720
Init ... 721
Kill ... 722
Reset .. 722

Restore ... 723
Save .. 723
SetLimit ... 724
SetQuickPopup ... 726
Take .. 726

Properties ... 713
QueryControl

BrowseClass ... 264
QueryFormClass .. 727

Methods .. 732
Ask .. 733
Init ... 734
Kill ... 735

Properties ... 731
QueryFormVisual ... 737

Methods .. 742
Init ... 743
SetText .. 744
TakeAccepted ... 745
TakeCompleted ... 746
TakeFieldEvent ... 747
UpdateFields .. 748

Properties ... 741
QFC .. 741

QueryFormViual
Methods

ResetFromQuery .. 744
QueryListClass .. 749

Methods .. 754
Ask .. 755
Init ... 756
Kill ... 757

Properties ... 753
QueryListVisual .. 759

Methods .. 764
Init ... 765
SetAlerts ... 766
TakeAccepted ... 767
TakeCompleted ... 768
TakeEvent ... 769
TakeFieldEvent ... 770
UpdateFields .. 771

Properties ... 763
FldsEIP ... 763
OpsEIP ... 763
QFC .. 763

QueryListViual
Methods

ResetFromQuery .. 766
QueryShared

BrowseClass ... 264
QueryVisualClass .. 773

1054 CLARION 5 APPLICATION HANDBOOK

Methods
Init ... 775
Kill ... 776
Reset .. 777
TakeAccepted ... 778
TakeFieldEvent ... 779
TakeWindowEvent .. 780

Properties
QC .. 774
Resizer .. 774

Quick Start Wizard ... 74
Quick-Scan Records ... 102, 106, 121
QuickScan

BrowseClass ... 265

R

Range Limit ... 104, 108, 125
FileDrop ... 151, 156

Range Limit Field 104, 108, 151, 156
Range Limit Type 104, 108, 125, 151, 156
Read and write ... 57
Read only ... 57
ReadOnly

EditClass ... 356
RealList

BufferedPairsClass ... 323
Reassign FROM attribute after Kill 117
Record Identifier .. 166
Record order .. 119
record selection 102, 104, 107, 108

FileDrop ... 151, 156
Record Validation .. 99, 112
Records

BrowseClass ... 286
RecordsProcessed

ProcessClass .. 698
RecordsToProcess

ProcessClass .. 698
RecordValidation .. 182
RECOVER ... 55
Reference .. 67
Referential Integrity .. 54
referential integrity

enforcement of .. 781
Refresh Application Builder Class Information 59, 66
refresh/redisplay ABC BrowseBoxes 272
Relate:file 196. See RelationManager
Relate:filename ... 543, 782
Related Field .. 174
Relation Tree

filtering and record selection ... 144

relation tree navigation .. 143
RelationManagerClass .. 781

Methods .. 788
AddRelation .. 789
AddRelationLink ... 791
CancelAutoInc .. 792
Close .. 793
Delete ... 794
Init ... 795
Kill ... 796
ListLinkingFields ... 797
Open ... 798
Save .. 798
SetAlias .. 799
SetQuickScan ... 800
Update .. 801

Properties ... 787
Me ... 787
UseLogout .. 787

Relationship
printing .. 86

RelationTree
colors .. 144
icons .. 144
Primary File Settings ... 143
Secondary File Settings .. 145

RelationTree Control template ... 141
RelationTreeUpdateButtons ... 145
RELn::Toolbar 196. See ToolbarReltreeClass
Remove Duplicates .. 156
RemoveErrors

ErrorClass ... 479
Repeat previous record .. 162, 165
repetitive insert/add ... 166
Report

ReportManagerClass .. 809
Report Properties .. 106
Report Template .. 105

classes .. 110
Report template

single record mode ... 181
Report Wizard .. 84
ReportChildFiles .. 182

Child File ... 183
Detail ... 183

ReportDateStamp .. 167
ReportManagerClass ... 803

Methods .. 812
Ask .. 813
AskPreview ... 813
Init ... 814
Kill ... 815

INDEX 1055

Next .. 816
Open ... 817
OpenReport .. 818
TakeCloseEvent .. 819
TakeNoRecords .. 820
TakeWindowEvent .. 821

Properties ... 807
DeferOpenReport ... 807
DeferWindow .. 807
KeepVisible ... 808
Preview ... 808
PreviewQueue .. 809
Process ... 809
Report ... 809
SkipPreview .. 810
TimeSlice .. 810
WaitCursor .. 811
Zoom .. 811

ReportPageNumber ... 168
ReportTimeStamp ... 168
Repost

EIPManagerClass ... 445
RepostField

EIPManagerClass ... 445
Req

EIPManagerClass ... 446
Request

ToolbarUpdateClass ... 924
WindowManagerClass .. 984

RequestCancelled ... 93
RequestCompleted .. 93
Reset

ASCIIFileClass .. 215
ASCIIViewerClass ... 246
ConstantClass ... 341
EditMultiSelectClass ... 419
FilterLocatorClass ... 636
ProcessClass .. 706
QueryClass ... 722
QueryVisualClass ... 777
ViewManagerClass ... 962
WindowManagerClass .. 1001
WindowResizeClass ... 1029

reset ABC BrowseBoxes .. 272
Reset Fields ... 126
Reset on gain focus ... 62
ResetColumn

EIPManagerClass ... 453
ResetFromAsk

BrowseClass ... 287
ResetFromBuffer

BrowseClass ... 289

ResetFromFile
BrowseClass ... 290

ResetFromQuery
QueryFormVisual .. 744
QueryListVisual ... 766

ResetFromView
BrowseClass ... 291

ResetOnGainFocus
WindowManagerClass .. 984

ResetQueue
BrowseClass ... 292
FileDropClass ... 520
FileDropComboClass .. 537

ResetResets
BrowseClass ... 293

ResetSort
BrowseClass ... 294

Resize .. 185
WindowResizeClass ... 1030

Resize Strategy .. 184
resize strategy

for a single control .. 186, 187
resize windows ... 184
Resizer 196. See WindowResizeClass

QueryVisualClass ... 774
Resizer Configuration Options ... 188
ResizeSetStrategy ... 174
Response

WindowManagerClass .. 985
Restore

PopupClass ... 657
QueryClass ... 723

RestoreBuffer
FileManagerClass ... 584

RestoreField
WindowManagerClass .. 1002

RestoreFile
FileManagerClass ... 585

RestoreWindow
WindowResizeClass ... 1031

Retain Row .. 61
RetainRow

BrowseClass ... 265
Return to original directory when done 148
Return Value

Procedure Properties
95, 97, 98, 100, 101, 106, 111, 112

Return Value Assignment .. 169
Reusability ... 191
Reusable code ... 45
RI constraints

Process template .. 102

1056 CLARION 5 APPLICATION HANDBOOK

Root
StepStringClass .. 874

Run
EIPManagerClass ... 453
WindowManagerClass .. 1003

Run-Time Translation ... 52

S

Save
PopupClass ... 658
QueryClass ... 723
RelationManagerClass ... 798

Save and Restore Window Location 96
Save Button control template ... 164
SaveBuffer

FileManagerClass ... 586
Saved

WindowManagerClass .. 985
SaveFile

FileManagerClass ... 587
SaveHistory

WindowManagerClass .. 1005
Saving Global Data Between Sesssions 53
Scroll Bar Behavior .. 126
Scroll bottom .. 162
Scroll down one page .. 162
Scroll down one row .. 162
Scroll top .. 161
Scroll up one page ... 161
Scroll up one row ... 161
ScrollEnd

BrowseClass ... 295
scrolling

large files ... 119
Scrolling Form .. 181
ScrollOne

BrowseClass ... 296
ScrollPage

BrowseClass ... 297
SDI ... 101
SDI (Single Document Interface) ... 101
Search .. 122
search .. 117
search record ... 161
Searcher

ASCIIViewerClass ... 236
Seconds for RECOVER ... 55
SeekForward

EIPManagerClass ... 446
Select File dialog ... 146
SelectButton

ToolbarTargetClass ... 913

SelectControl
BrowseClass ... 266

Selected
EditMultiSelectClass ... 415

SelectFileClass .. 823
Methods .. 826

AddMask ... 826
Ask .. 827
Init ... 828
SetMask .. 829

Properties ... 825
DefaultDirectory .. 825
DefaultFile ... 825
Flags ... 825
WindowTitle .. 825

Selecting
BrowseClass ... 266

selecting records .. 125
FileDrop .. 150
FileDropCombo ... 155
Relation tree .. 144

SelectRecord ... 93
SelectToolbarTarget ... 176
SelectWholeRecord

BrowseClass ... 266
Set

ConstantClass ... 342
EntryLocatorClass .. 464
LocatorClass ... 636
StepLocatorClass ... 852

Set Initial Window Position ... 109
Set progress bar limits manually? 103, 107
SetABCProperty .. 177
SetAlerts

BrowseClass ... 298
EditClass ... 360
EditDropListClass ... 378
IncrementalLocatorClass .. 617
LocatorClass ... 637
QueryListVisual ... 766
WindowManagerClass .. 1006

SetAlias
RelationManagerClass ... 799

SetDefaultPages
PrintPreviewClass ... 686

SetEnabled
LocatorClass ... 637

SetError
FileManagerClass ... 588

SetErrors
ErrorClass ... 480

SetFatality
ErrorClass ... 481

INDEX 1057

SetField
ErrorClass ... 482

SetFile
ErrorClass ... 482

SetFilter
ViewManagerClass ... 963

SetIcon
PopupClass ... 659

SetId
ErrorClass ... 483

SetINIManager
PrintPreviewClass ... 686

SetItemCheck
PopupClass ... 660

SetItemEnable
PopupClass ... 661

SetKey
FileManagerClass ... 588

SetLevel
PopupClass ... 661

SetLimit
QueryClass ... 724
StepClass .. 836
StepLongClass ... 859
StepRealClass .. 867
StepStringClass .. 879

SetLimitNeeded
StepClass .. 836
StepStringClass .. 880

SetLine
ASCIIFileClass .. 216
ASCIIViewerClass ... 247

SetLineRelative
ASCIIViewerClass ... 248

SetMask
SelectFileClass ... 829

SetName
FileManagerClass ... 589

SetOrder
ViewManagerClass ... 965

SetParentControl
WindowResizeClass ... 1032

SetParentDefaults
WindowResizeClass ... 1033

SetPercentile
ASCIIFileClass .. 217

SetPosition
PrintPreviewClass ... 687
WindowResizeClass ... 1034

SetProcedureName
ErrorClass ... 484

SetProgressLimits
ProcessClass .. 706

SetProperty .. 177
SetQueueRecord

BrowseClass ... 298
FileDropClass ... 521

SetQuickPopup
QueryClass ... 726

SetQuickScan
RelationManagerClass ... 800

SetReadOnly
EditClass ... 360
EditDropListClass ... 378

SetResponse
WindowManagerClass .. 1007

SetSort
BrowseClass ... 299
ViewManagerClass ... 966

SetStrategy
WindowResizeClass ... 1035

SetTarget
ToolbarClass ... 891

SetText
PopupClass ... 662
QueryFormVisual .. 744

SetToolbox
PopupClass ... 663

SetTranslator
ASCIIViewerClass ... 249
PopupClass ... 664

Setup
ASCIISearchClass .. 232

SetZoomPercentile
PrintPreviewClass ... 688

Shadow
EntryLocatorClass .. 462

SHARE ... 57
sharing files ... 53, 57
Ship List ... 69
Silent Database Operations ... 541

FileManagerClass ... 553
SkipHeldRecords

FileManagerClass ... 552
SkipPreview

ReportManagerClass .. 810
Sort

BrowseClass ... 267
Sort Fields ... 103, 107
SortChars

StepStringClass .. 874
sorting

browse lists ... 126

1058 CLARION 5 APPLICATION HANDBOOK

Source Template .. 113
Parameters .. 114

Splash Screen ... 100
Splash Template .. 110
Spread ... 185

WindowResizeClass ... 1019
SQL

Application Wizard .. 77
SQL and ABC Templates ... 50
SQL Browse Optimization .. 61
Standard Windows Behavior .. 99
START .. 173
StartAtCurrent

BrowseClass ... 268
Status Bar Section ... 180
Step Locator .. 122
StepClass .. 831

Methods .. 834
GetPercentile .. 834
GetValue ... 834
Init ... 835
Kill ... 835
SetLimit ... 836
SetLimitNeeded .. 836

Properties ... 833
Controls .. 833

StepCustomClass .. 837
Methods .. 842

AddItem .. 842
GetPercentile .. 843
GetValue ... 844
Init ... 845
Kill ... 845

Properties ... 841
Entries .. 841

StepLocatorClass .. 847
Methods .. 852

Set .. 852
TakeKey .. 852

Properties ... 851
StepLongClass .. 853

Methods .. 857
GetPercentile .. 857
GetValue ... 858
SetLimit ... 859

Properties ... 856
High .. 856
Low ... 856

StepRealClass ... 861
Methods .. 865

GetPercentile .. 865
GetValue ... 866

SetLimit ... 867
Properties ... 864

High .. 864
Low ... 864

StepStringClass ... 869
Methods .. 876

GetPercentile .. 876
GetValue ... 877
Init ... 878
Kill ... 879
SetLimit ... 879
SetLimitNeeded .. 880

Properties ... 873
LookupMode ... 873
Root .. 874
SortChars ... 874
TestLen ... 875

String variable for ... 171
sub-class configuration .. 64
SubsString

ErrorClass ... 484
Surface ... 185

WindowResizeClass ... 1019
SyncImageQueue

PrintPreviewClass ... 688
Syntax Diagram ... 201

T

Tab
EIPManagerClass ... 446

TabAction
BrowseClass ... 268

tagging records in a list ... 154, 160
Take

QueryClass ... 726
TakeAccepted

EntryLocatorClass .. 464
FilterLocatorClass ... 610
LocatorClass ... 638
PrintPreviewClass ... 689
QueryFormVisual .. 745
QueryListVisual ... 767
QueryVisualClass ... 778
WindowManagerClass .. 1008

TakeAcceptedLocator
BrowseClass ... 300

TakeAction
EditMultiSelectClass ... 420
EIPManagerClass ... 454

TakeBenign
ErrorClass ... 485

INDEX 1059

TakeCloseEvent
ReportManagerClass .. 819
WindowManagerClass .. 1009

TakeCompleted
BrowseEIPManagerClass ... 319
EIPManagerClass ... 455
QueryFormVisual .. 746
QueryListVisual ... 768
WindowManagerClass .. 1010

TakeError
ErrorClass ... 486

TakeEvent
ASCIIViewerClass ... 250
BrowseClass ... 301
EditClass ... 361
EditColorClass .. 370
EditDropListClass ... 379
EditFileClass ... 397
EditFontClass .. 407
EditMultiSelectClass ... 423
EditTextClass .. 436
EIPManagerClass ... 456
FileDropClass ... 521
FileDropComboClass .. 538
PrintPreviewClass ... 690
QueryListVisual ... 769
ToolbarClass ... 892
ToolbarListBoxClass ... 899
ToolbarTargetClass ... 915
ToolbarUpdateClass ... 926
WindowManagerClass .. 1012

TakeFatal
ErrorClass ... 487

TakeFieldEvent
EIPManagerClass ... 457
PrintPreviewClass ... 691
QueryFormVisual .. 747
QueryVisualClass ... 779
WindowManagerClass .. 1013

TakeFocusLoss
EIPManagerClass ... 458

TakeKey
BrowseClass ... 302
EntryLocatorClass .. 465
IncrementalLocatorClass .. 618
LocatorClass ... 638
StepLocatorClass ... 852

TakeListEvent
QueryFormVisual .. 770

TakeLocate
BrowseClass ... 302

TakeNewSelection

BrowseClass ... 303
BrowseEIPManagerClass ... 320
EIPManagerClass ... 458
FileDropClass ... 522
FileDropComboClass .. 539
WindowManagerClass .. 1014

TakeNoRecords
ReportManagerClass .. 820

TakeNotify
ErrorClass ... 488

TakeOther
ErrorClass ... 489

TakeProgram
ErrorClass ... 490

TakeRecord
ProcessClass .. 707

TakeRejected
WindowManagerClass .. 1015

TakeScroll
BrowseClass ... 304

TakeSelected
WindowManagerClass .. 1016

TakeToolbar
ToolbarListBoxClass ... 900
ToolbarReltreeClass ... 908
ToolbarTargetClass ... 916
ToolbarUpdateClass ... 927

TakeUser
ErrorClass ... 491

TakeVCRScroll
BrowseClass ... 305

TakeWindowEvent
PrintPreviewClass ... 692
QueryVisualClass ... 780
ReportManagerClass .. 821
WindowManagerClass .. 1017

Target Field ... 150, 155
Template

ascii viewer ... 111
AsciiPrintButton .. 117
AsciiSearchButton .. 117
ASCIIViewControl ... 116
browse procedure ... 96
external procedure .. 113
file viewer .. 111
form procedure .. 97
frame ... 99
overview .. 45
process ... 101
report procedure ... 105
source ... 113
splash .. 110

1060 CLARION 5 APPLICATION HANDBOOK

window .. 96
Template Embed Points ... 45
Template Prompts .. 45
Templates

BrowseBox .. 118
CancelButton ... 146, 167, 168
class configuration .. 64
control .. 92, 115
DOSFileLookup .. 146
procedure .. 91

TerminatorValue
ConstantClass ... 334

TestLen
StepStringClass .. 875

ThisProcess .. 196. See ProcessClass
ThisReport ... 196
ThisWindow 196. See ReportManager; WindowManager
THREAD ... 55, 542
Throw

ErrorClass ... 492
FileManagerClass ... 590

ThrowFile
ErrorClass ... 493

ThrowMessage
FileManagerClass ... 591

Time display template .. 179
TimeOut

ViewManagerClass ... 949
TimeSlice

ReportManagerClass .. 810
Title

EditColorClass .. 367
EditFileClass ... 394
EditFontClass .. 404
EditMultiSelectClass ... 415
EditTextClass .. 433

Toolbar .. 121, 196
Application Wizard .. 78
BrowseClass ... 269

Toolbar Control Buttons ... 181
Toolbar Navigation Target .. 176
ToolbarClass .. 881

Methods .. 888
AddTarget ... 889
DisplayButtons .. 889
Init ... 890
Kill ... 890
SetTarget .. 891
TakeEvent ... 892

Properties ... 887
ToolbarForm 196. See ToolbarUpdateClass
ToolbarItem

BrowseClass ... 269

ToolbarListBoxClass .. 893
Methods .. 898

DisplayButtons .. 898
TakeEvent ... 899
TryTakeToolbar ... 901

Properties ... 897
Browse .. 897

ToolbarReltreeClass .. 903
Methods .. 907

DisplayButtons .. 907
TakeToolbar .. 908

Properties ... 907
Toolbars, dockable ... 137
ToolbarTargetClass .. 909

Methods .. 914
DisplayButtons .. 914
TakeEvent ... 915
TakeToolbar .. 916
TryTakeToolbar ... 916

Properties ... 911
ChangeButton ... 911
Control .. 911
DeleteButton ... 912
HelpButton .. 912
InsertButton .. 912
SelectButton ... 913

ToolbarUpdateClass .. 917
Methods .. 925

DisplayButtons .. 925
TakeEvent ... 926
TakeToolbar .. 927
TryTakeToolbar ... 928

Properties ... 924
History .. 924
Request .. 924

Toolbox
PopupClass ... 665

Toolbox button .. 137
ToolControl

BrowseClass ... 270
TopLine

ASCIIViewerClass ... 237
Totals .. 131
TranslateControl

TranslatorClass ... 937
TranslateControls

TranslatorClass ... 938
TranslateProperty

TranslatorClass ... 939
TranslateString

TranslatorClass ... 940
TranslateWindow

TranslatorClass ... 941

INDEX 1061

translating window and report text ... 52
Translation, Run-Time .. 52
Translator ... 196

AsciiPrintClass .. 222
ASCIISearchClass .. 229
WindowManagerClass .. 986

TranslatorClass .. 929
macros .. 930
Methods .. 934

AddTranslation .. 934
Init ... 936
Kill ... 936
TranslateControl ... 937
TranslateControls .. 938
TranslateProperty ... 939
TranslateString .. 940
TranslateWindow .. 941

Properties ... 933
ExtractText .. 933

TranslatorClass Configuration .. 63
Tree controls .. 141
Tree heading Icon .. 143
Tree Heading Text .. 143
TryFetch

FileManagerClass ... 592
INIClass .. 627

TryFetchField
INIClass .. 628

TryInsert
FileManagerClass ... 593

TryNext
FileManagerClass ... 594

TryOpen
FileManagerClass ... 595

TryPrevious
FileManagerClass ... 596

TryPrimeAutoInc
FileManagerClass ... 597

TryReget
FileManagerClass ... 599

TryTakeToolbar
ToolbarListBoxClass ... 901
ToolbarTargetClass ... 916
ToolbarUpdateClass ... 928

TryUpdate
FileManagerClass ... 599

U

Undo .. 146
Update

EntryLocatorClass .. 466
FileManagerClass ... 600

INIClass .. 629
RelationManagerClass ... 801
WindowManagerClass .. 1018

update a single record from a file .. 97
Update entire window? .. 148
Update Procedure ... 137, 143
Update Selected Fields ... 149
Update(FileManager) ... 989
UpdateBuffer

BrowseClass ... 306
UpdateFields

QueryFormVisual .. 748
QueryListVisual ... 771

UpdateQuery
BrowseClass ... 307

UpdateResets
BrowseClass ... 308

UpdateThumb
BrowseClass ... 308

UpdateThumbFixed
BrowseClass ... 309

UpdateViewRecord
BrowseClass ... 309

UpdateWindow
BrowseClass ... 310
EntryLocatorClass .. 466
FilterLocatorClass ... 611
LocatorClass ... 638

Use a variable file mask ... 148
Use Application Builder Class ... 64
Use Application Wizard .. 78
Use Default Application Builder Class 64
Use default FileManager .. 55
Use default RelationManager .. 55
Use field description as MSG() when MSG() is blank 51
Use RI constraints on action .. 102
Use Window Setting ... 96
UseField

FileDropComboClass .. 530
UseFile

FileManagerClass ... 601
UseLogout

RelationManagerClass ... 787
User Options ... 87, 88
UserPercentile

PrintPreviewClass ... 674
UseView

ViewManagerClass ... 967
Utility Templates ... 73

V

Validate during NonStop Select ... 182

1062 CLARION 5 APPLICATION HANDBOOK

Validate when the control is Accepted 182
ValidateField

FileManagerClass ... 602
ValidateLine

ASCIIFileClass .. 218
ValidateRecord

FileDropClass ... 523
ViewManagerClass ... 968

Value or queue to assign ... 117
Value to Set ... 177
VCR buttons ... 181
VCRRequest

WindowManagerClass .. 986
Vertical Positional Strategy ... 175, 187
Vertical Resize Strategy .. 175, 187
View

ViewManagerClass ... 949
Viewer Template .. 111
ViewerN ... 196. See AsciiViewerClass
ViewManager

LocatorClass ... 634
ViewManagerClass .. 943

Methods .. 950
AddRange ... 952
AddSortOrder ... 953
AppendOrder .. 954
ApplyFilter ... 954
ApplyOrder ... 955
ApplyRange .. 955
Close .. 956
GetFreeElementName .. 956
GetFreeElementPosition ... 957
Init ... 958
Kill ... 959
Next .. 959
Open ... 960
Previous .. 960
PrimeRecord ... 961
Reset .. 962
SetFilter .. 963
SetOrder ... 965
SetSort .. 966
UseView .. 967
ValidateRecord ... 968

Properties ... 947
Order ... 947
PagesAhead ... 948
PagesBehind .. 948
PageSize .. 948
Primary ... 949
TimeOut .. 949
View .. 949

ViewMenu
PopupClass ... 665

VIRTUAL .. 200

W

WaitCursor
ReportManagerClass .. 811

Web page
publish BrowseBox ... 132

When called for Delete .. 165
Window

BrowseClass ... 270
generic .. 94
individual control resizing .. 174

Window Behavior
Procedure Properties .. 95

Window Controls
default control settings for a field 89

Window Message .. 102
Window Operation Mode ... 96
Window Template ... 94
Window Update Options .. 148
WindowManager Configuration ... 62
WindowManagerClass ... 969

Methods .. 987
AddHistoryField .. 989
AddHistoryFile .. 990
AddItem .. 991
AddUpdateFile .. 993
Ask .. 994
Init ... 995
Kill ... 997
Open ... 998
PostCompleted ... 999
PrimeFields ... 1000
PrimeUpdate ... 1000
Reset .. 1001
RestoreField ... 1002
Run ... 1003
SaveHistory .. 1005
SetAlerts ... 1006
SetResponse .. 1007
TakeAccepted ... 1008
TakeCloseEvent .. 1009
TakeCompleted ... 1010
TakeEvent ... 1012
TakeFieldEvent ... 1013
TakeRejected .. 1015
TakeSelected .. 1016
TakeWindowEvent .. 1017
Update .. 1018

INDEX 1063

Properties ... 977
AutoRefresh .. 977
AutoToolbar .. 977
CancelAction .. 978
ChangeAction ... 978
Dead ... 979
DeleteAction ... 979
Errors .. 980
FirstField ... 980
ForceRefresh .. 980
HistoryKey .. 981
InsertAction .. 981
OKControl ... 982
Opened ... 982
OriginalRequest .. 983
Primary ... 983
Request .. 984
ResetOnGainFocus .. 984
Response ... 985
Saved .. 985
Translator .. 986
VCRRequest ... 986

WindowPosSet
PrintPreviewClass ... 674

WindowResize ... 184
WindowResizeClass .. 1019

Methods .. 1023
GetParentControl .. 1024
GetPositionStrategy .. 1025
GetResizeStrategy ... 1026
Init ... 1027
Kill ... 1029
Reset .. 1029
Resize ... 1030
RestoreWindow .. 1031
SetParentControl .. 1032
SetParentDefaults ... 1033
SetPosition .. 1034
SetStrategy ... 1035

Properties ... 1022
AutoTransparent ... 1022
DeferMoves .. 1022

WindowResizeClass Configuration .. 62
windows

application modal .. 173
modeless ... 173

Windows file dialog .. 146
Windows help file ... 77
WindowSizeSet

PrintPreviewClass ... 675
WindowTitle

SelectFileClass ... 825

Wizard
browse procedure ... 80
report procedure ... 84
update form procedure ... 82

Wizards ... 46, 73
build entire application from dictionary 76
customizing ... 87
starting .. 73

Write only ... 57

Z

Zoom
ReportManagerClass .. 811

Zoom Setting ... 108
ZoomIndex

PrintPreviewClass ... 675

1064 CLARION 5 APPLICATION HANDBOOK

	Foreword
	Welcome
	Documentation Conventions
	Typeface Conventions
	Keyboard Conventions
	Other Conventions

	Part I -- Application Builder Class Templates
	1 - Template Overview
	What is a Template
	Clarion Templates and Application Builder Class (ABC) Templates
	ABC Templates and Code Generation
	ABC Templates and the ABC Library
	Browse-Form Application Paradigm

	ABC Templates and SQL
	Global ABC Template Settings
	General Tab Options
	File Control Tab Options
	Individual File Overrides Tab Options
	External Module Options Tab
	Classes Tab Options-Global

	Classes Tab Options-Local
	ABC Compliant Classes
	Global ABC Embed Points
	Using ABC Templates to Derive Classes
	Why the Templates Derive Classes
	Deriving with Embed Points
	Deriving with Classes Tab

	2 - Wizards and Utility Templates
	Code Generation Wizards
	Application Wizards
	Quick Start Wizard
	Application Wizard

	Procedure Wizards
	Browse Wizard
	Form Wizard
	Report Wizard

	Dictionary Print Wizard
	Optimizing the Wizards
	File Options
	Alias Options
	Field Options
	Key Options
	Relation Options
	Naming Conventions
	Using Default Window Controls

	3 - Procedure Templates
	Overview
	Procedures and Procedure Templates
	Procedures as Containers
	Inter-Procedure Communication

	Window Procedure Templates
	Window Template
	Browse Template
	Form Template
	Frame Template
	Menu Template
	Process Template
	Report Template
	Splash Template
	Viewer Template

	Other Procedure Templates
	External Template
	Source Template

	4 - Control Templates
	Overview
	Adding Control Templates

	Read-Only Browse Templates
	ASCIIViewControl
	ASCIIPrintButton
	ASCIISearchButton

	Read-Write Browse Templates
	BrowseBox Overview
	Scrolling with a Page-loaded BrowseBox
	BrowseBox Options
	BrowsePrintButton
	BrowsePublishButton
	BrowseQueryButton
	BrowseSelectButton
	BrowseToolboxButton
	BrowseUpdateButtons
	RelationTree Overview
	RelationTree Options
	RelationTreeUpdateButtons

	Other Window Control Templates
	CancelButton
	CloseButton
	DOSFileLookup
	FieldLookupButton
	FileDrop
	FileDropCombo
	FrameBrowseControl
	PauseButton
	SaveButton

	Report Control Templates
	ReportDateStamp
	ReportTimeStamp
	ReportPageNumber

	5 - Code and Extension Templates
	Code Templates
	CallABCMethod
	CallProcedureAsLookup
	CloseCurrentWindow
	ControlValueValidation
	DisplayPopupMenu
	InitiateThread
	LookupNonRelatedRecord
	ResizeSetStrategy
	SelectToolbarTarget
	SetABCProperty
	SetProperty

	Extension Templates
	AsciiViewInListBox
	DateTimeDisplay
	ExtendProgressWindow
	FormVCRControls
	RecordValidation
	ReportChildFiles
	WindowResize

	Part II -- Application Builder Class Library
	6 - ABC Library Overview
	About This Part
	Application Builder Class (ABC) Library
	Class Libraries Generally
	Application Builder Classes-The ABCs of Rapid Application Development
	ABC Library and the ABC Templates

	ABC Coding Conventions
	Method Names
	Where to Initilize & Kill Objects
	Return Values
	PRIVATE (undocumented) Items
	PROTECTED, VIRTUAL, DERIVED, and PROC Attributes

	Documentation Conventions
	Reference Item and Syntax Diagram
	Conceptual Example

	7 - ASCIIFileClass
	Overview
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	ASCIIFileClass Source Files
	Conceptual Example

	AsciiFileClass Properties
	ASCIIFile (the ASCII file)
	ErrorMgr (ErrorClass object)
	OpenMode (file access/sharing mode)

	AsciiFileClass Methods
	Functional Organization-Expected Use
	FormatLine (a virtual to format text)
	GetDOSFilename (let end user select file)
	GetFilename (return the filename)
	GetLastLineNo (return last line number)
	GetLine (return line of text)
	GetPercentile (convert file position to percentage)
	Init (initialize the ASCIIFileClass object)
	Kill (shut down the ASCIIFileClass object)
	Reset (reset the ASCIIFileClass object)
	SetLine (a virtual to position the file)
	SetPercentile (set file to relative position)
	ValidateLine (a virtual to implement a filter)

	8 - ASCIIPrintClass
	Overview
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	ASCIIPrintClass Source Files
	Conceptual Example

	AsciiPrintClass Properties
	FileMgr (AsciiFileClass object)
	PrintPreview (print preview switch)
	Translator (TranslatorClass object)

	AsciiPrintClass Methods
	Ask (solicit print specifications)
	Init (initialize the ASCIIPrintClass object)
	PrintLines (print or preview specified lines)

	9 - ASCIISearchClass
	Overview
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	ASCIISearchClass Source Files
	Conceptual Example

	AsciiSearchClass Properties
	Find (search constraints)
	FileMgr (AsciiFileClass object)
	LineCounter (current line number)
	Translator (TranslatorClass object)

	AsciiSearchClass Methods
	Ask (solicit search specifications)
	Init (initialize the ASCIISearchClass object)
	Next (find next line containing search text)
	Setup (set search constraints)

	10 - ASCIIViewerClass
	Overview
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	ASCIIViewerClass Source Files
	Conceptual Example

	AsciiViewerClass Properties
	Popup (PopupClass object)
	Printer (ASCIIPrintClass object)
	Searcher (ASCIISearchClass object)
	TopLine (first line currently displayed)

	AsciiViewerClass Methods
	Functional Organization-Expected Use
	AddItem (program the AsciiViewer object)
	AskGotoLine (go to user specified line)
	DisplayPage (display new page)
	Init (initialize the ASCIIViewerClass object)
	Kill (shut down the ASCIIViewerClass object)
	PageDown (scroll down one page)
	PageUp (scroll up one page)
	Reset (reset the ASCIIViewerClass object)
	SetLine (position to specific line)
	SetLineRelative (move n lines)
	SetTranslator (set run-time translator)
	TakeEvent (process ACCEPT loop event)

	11 - BrowseClass
	Overview
	BrowseClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	BrowseClass Source Files
	Conceptual Example

	BrowseClass Properties
	ActiveInvisible (obscured browse list action)
	AllowUnfilled (display filled list)
	ArrowAction (edit-in-place action on arrow key)
	AskProcedure (update procedure)
	ChangeControl (change/edit button)
	DeleteControl (delete button)
	EditList (list of edit-in-place controls)
	EIP (edit-in-place manager)
	EnterAction (edit-in-place action on enter key)
	Fields (managed fields)
	FocusLossAction (edit-in-place action on lose focus)
	HasThumb (vertical scroll bar flag)
	HideSelect (hide select button)
	InsertControl (add/insert button)
	ListControl (browse LIST control)
	ListQueue (browse data queue)
	Loaded (queue loaded flag)
	Popup (popup menu manager)
	PrintControl (print button)
	PrintProcedure (print procedure)
	Query (ad hoc query manager)
	QueryControl (query button)
	QueryShared (query scope flag)
	QuickScan (buffered reads flag)
	RetainRow (highlight bar refresh behavior)
	SelectControl (select button)
	Selecting (select mode only flag)
	SelectWholeRecord (select entire record flag)
	Sort (browse sort information)
	StartAtCurrent (initial browse position)
	TabAction (edit-in-place action on tab key)
	Toolbar (browse Toolbar object)
	ToolbarItem (browse ToolbarTarget object)
	ToolControl (toolbox button)
	Window (WindowManager object)

	BrowseClass Methods
	Functional Organization-Expected Use
	AddEditControl (specify custom edit-in-place class)
	AddField (specify a FILE/QUEUE field pair)
	AddLocator (specify a locator)
	AddResetField (set a field to monitor for changes)
	AddSortOrder (specify a browse sort order)
	AddToolbarTarget (set the browse toolbar)
	ApplyRange (refresh browse based on resets and range limits)
	Ask (update selected browse item)
	AskRecord (edit-in-place selected browse item)
	Fetch (get a page of browse items)
	Init (initialize the BrowseClass object)
	Kill (shut down the BrowseClass object)
	Next (get the next browse item)
	PostNewSelection (post an EVENT:NewSelection to the browse list)
	Previous (get the previous browse item)
	Records (return the number of browse queue items)
	ResetFromAsk (reset browse after update)
	ResetFromBuffer (fill queue starting from record buffer)
	ResetFromFile (fill queue starting from file POSITION)
	ResetFromView (reset browse from current result set)
	ResetQueue (fill or refill queue)
	ResetResets (copy the Reset fields)
	ResetSort (apply sort order to browse)
	ScrollEnd (scroll to first or last item)
	ScrollOne (scroll up or down one item)
	ScrollPage (scroll up or down one page)
	SetAlerts (alert keystrokes for list and locator controls)
	SetQueueRecord (copy data from file buffer to queue buffer)
	SetSort (apply a sort order to the browse)
	TakeAcceptedLocator (apply an accepted locator value)
	TakeEvent (process the current ACCEPT loop event)
	TakeKey (process an alerted keystroke)
	TakeLocate (collect and apply ad hoc query)
	TakeNewSelection (process a new selection)
	TakeScroll (process a scroll event)
	TakeVCRScroll (process a VCR scroll event)
	UpdateBuffer (copy selected item from queue buffer to file buffer)
	UpdateQuery (set default query interface)
	UpdateResets (copy reset fields to file buffer)
	UpdateThumb (position the scrollbar thumb)
	UpdateThumbFixed (position the scrollbar fixed thumb)
	UpdateViewRecord (get view data for the selected item)
	UpdateWindow (update display variables to match browse)

	12- BrowseEIPManagerClass
	Overview
	BrowseEIPManagerClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	BrowseEIPManagerClass Source Files
	Conceptual Example

	BrowseEIPManagerClass Properties
	BC (browse class)

	BrowseEIPManagerClass Methods
	Functional Organization-Expected Use
	ClearColumn (reset column property values)
	Init (initialize the BrowseEIPManagerClass object)
	Kill (shut down the BrowseEIPManagerClass object)
	TakeCompleted (process completion of edit)
	TakeNewSelection (reset edit-in-place column)

	13 - BufferedPairsClass
	Overview
	BufferedPairsClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	BufferedPairsClass Source Files
	Conceptual Example

	BufferedPairsClass Properties
	RealList (recognized field pairs)

	BufferedPairsClass Methods
	Functional Organization-Expected Use
	AddPair (add a field pair)
	AssignBufferToLeft (copy from "buffer" fields to "left" fields)
	AssignBufferToRight (copy from "buffer" fields to "right" fields)
	AssignLeftToBuffer (copy from "left" fields to "buffer" fields)
	AssignRightToBuffer (copy from "right" fields to "buffer" fields)
	EqualLeftBuffer (compare "left" fields to "buffer" fields)
	EqualRightBuffer (compare "right" fields to "buffer" fields)
	Init (initialize the BufferedPairsClass object)
	Kill (shut down the BufferedPairsClass object)

	14 - ConstantClass
	Overview
	ConstantClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	ConstantClass Source Files
	Conceptual Example

	ConstantClass Properties
	TerminatorValue (end of data marker)

	ConstantClass Methods
	Functional Organization-Expected Use
	AddItem (set constant datatype and target variable)
	Init (initialize the ConstantClass object)
	Kill (shut down the ConstantClass object)
	Next (load all constant items to file or queue)
	Next (copy next constant item to targets)
	Reset (reset the object to the beginning of the constant data)
	Set (set the constant data to process)

	15 - EditCheckClass
	Overview
	EditCheckClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	EditCheckClass Source Files
	Conceptual Example

	EditCheckClass Properties
	EditCheckClass Methods
	Functional Organization-Expected Use
	CreateControl (create the edit-in-place CHECK control)

	16 - EditClass
	Overview
	EditClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	EditClass Source Files
	Conceptual Example

	EditClass Properties
	FEQ (the edit-in-place control number)
	ReadOnly (edit-in-place control is read-only)

	EditClass Methods
	Functional Organization-Expected Use
	CreateControl (a virtual to create the edit control)
	Init (initialize the EditClass object)
	Kill (shut down the EditClass object)
	SetAlerts (alert keystrokes for the edit control)
	SetReadOnly (set edit control to read-only)
	TakeEvent (process edit-in-place events)

	17 - EditColorClass
	Overview
	EditColorClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	EditColorClass Source Files
	Conceptual Example

	EditColorClass Properties
	Title (color dialog title text)

	EditColorClass Methods
	Functional Organization-Expected Use
	CreateControl (create the edit-in-place control)
	TakeEvent (process edit-in-place events)

	18 - EditDropListClass
	Overview
	EditDropListClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	EditDropListClass Source Files
	Conceptual Example

	EditDropListClass Properties
	EditDropListClass Methods
	Functional Organization-Expected Use
	CreateControl (create the edit-in-place DROPLIST control)
	SetAlerts (alert keystrokes for the edit control)
	SetReadOnly (set edit control to read-only)
	TakeEvent (process edit-in-place events)

	19 - EditEntryClass
	Overview
	EditEntryClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	EditEntryClass Source Files
	Conceptual Example

	EditEntryClass Properties
	EditEntryClass Methods
	Functional Organization-Expected Use
	CreateControl (create the edit-in-place ENTRY control)

	20 - EditFileClass
	Overview
	EditFileClass Concepts
	Relationship to Other Application Builder Classes
	EditFileClass Source Files
	Conceptual Example

	EditFileClass Properties
	FileMask (file dialog behavior)
	FilePattern (file dialog filter)
	Title (file dialog title text)

	EditFileClass Methods
	Functional Organization-Expected Use
	CreateControl (create the edit-in-place control)
	TakeEvent (process edit-in-place events)

	21 - EditFontClass
	Overview
	EditFontClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	EditFontClass Source Files
	Conceptual Example

	EditFontClass Properties
	Title (font dialog title text)

	EditFontClass Methods
	Functional Organization-Expected Use
	CreateControl (create the edit-in-place control)
	TakeEvent (process edit-in-place events)

	22 - EditMultiSelectClass
	Overview
	EditMultiSelectClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	EditMultiSelectClass Source Files
	Conceptual Example

	EditMultiSelectClass Properties
	Available (multi-select dialog available items queue)
	FilePattern (multi-select dialog file pattern text)
	Selected (multi-select dialog selected items queue)
	Title (multi-select dialog title text)

	EditMultiSelectClass Methods
	Functional Organization-Expected Use
	AddValue (prime the MultiSelect dialog)
	CreateControl (create the edit-in-place control)
	Reset (reset the EditMultiSelectClass object)
	TakeAction (process MultiSelect dialog action)
	TakeEvent (process edit-in-place events)

	23 - EditSpinClass
	Overview
	EditSpinClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	EditSpinClass Source Files
	Conceptual Example

	EditSpinClass Properties
	EditSpinClass Methods
	Functional Organization-Expected Use
	CreateControl (create the edit-in-place SPIN control)

	24 - EditTextClass
	Overview
	EditTextClass Concepts
	Relationship to Other Application Builder Classes
	EditTextClass Source Files

	EditTextClass Properties
	Title (text dialog title text)

	EditTextClass Methods
	Functional Organization-Expected Use
	CreateControl (create the edit-in-place control)
	TakeEvent (process edit-in-place events)

	25 - EIPManagerClass
	Overview
	EIPManagerClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	EIPManagerClass Source Files
	Conceptual Example

	EIPManagerClass Properties
	Again (column usage flag)
	Arrow (edit-in-place action on arrow key)
	Column (listbox column)
	Enter (edit-in-place action on enter key)
	EQ (list of edit-in-place controls)
	Fields (managed fields)
	FocusLoss (action on loss of focus)
	Insert (placement of new record)
	ListControl (listbox control number)
	LastColumn (previous edit-in-place column)
	Repost (event synchronization)
	RepostField (event synchronization field)
	Req (database request)
	SeekForward (get next field flag)
	Tab (action on a tab key)

	EIPManagerClass Methods
	Functional Organization-Expected Use
	AddControl (register edit-in-place controls)
	ClearColumn (reset column property values)
	GetEdit (identify edit-in-place field)
	Init (initialize the EIPManagerClass object)
	InitControls (initialize edit-in-place controls)
	Kill (shut down the EIPManagerClass object)
	Next (get the next edit-in-place field)
	ResetColumn (reset edit-in-place object to selected field)
	Run (run the EIPManager)
	TakeAction (process edit-in-place action)
	TakeCompleted (process completion of edit)
	TakeEvent (process window specific events)
	TakeFieldEvent (process field specific events)
	TakeFocusLoss (a virtual to process loss of focus)
	TakeNewSelection (reset edit-in-place column)

	26 - EntryLocatorClass
	Overview
	EntryLocatorClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	EntryLocatorClass Source Files
	Conceptual Example

	EntryLocatorClass Properties
	Shadow (the search value)

	EntryLocatorClass Methods
	Init (initialize the EntryLocatorClass object)
	Set (restart the locator)
	TakeAccepted (process an accepted locator value)
	TakeKey (process an alerted keystroke)
	Update (update the locator control and free elements)
	UpdateWindow (redraw the locator control)

	27 - Error Class
	Overview
	ErrorClass Source Files
	Multiple Customizable Levels of Error Treatment
	Predefined Windows and Database Errors
	Dynamic Extensibility of Errors
	ABC Template Implementation
	Relationship to Other Application Builder Classes
	Macro Expansion
	Multi-Language Capability
	Conceptual Example

	ErrorClass Properties
	Errors (recognized error definitions)
	FieldName (field that produced the error)
	FileName (file that produced the error)
	MessageText (custom error message text)

	ErrorClass Methods
	Functional Organization-Expected Use
	AddErrors (add or override recognized errors)
	GetProcedureName (return procedure name)
	Init (initialize the ErrorClass object)
	Kill (perform any necessary termination code)
	Message (display an error message)
	RemoveErrors (remove or restore recognized errors)
	SetErrors (save the error state)
	SetFatality (set severity level for a particular error)
	SetField (set the substitution value of the %Field macro)
	SetFile (set the substitution value of the %File macro)
	SetId (make a specific error current)
	SetProcedureName (stores procedure names)
	SubsString (resolves error message macros)
	TakeBenign (process benign error)
	TakeError (process specified error)
	TakeFatal (process fatal error)
	TakeNotify (process notify error)
	TakeOther (process other error)
	TakeProgram (process program error)
	TakeUser (process user error)
	Throw (process specified error)
	ThrowFile (set value of %File, then process error)

	28 - FieldPairsClass
	Overview
	FieldPairsClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	FieldPairsClass Source Files
	Conceptual Example

	FieldPairsClass Properties
	List (recognized field pairs)

	FieldPairsClass Methods
	Functional Organization-Expected Use
	AddItem (add a field pair from one source field)
	AddPair (add a field pair)
	AssignLeftToRight (copy from "left" fields to "right" fields)
	AssignRightToLeft (copy from "right" fields to "left" fields)
	ClearLeft (clear each "left" field)
	ClearRight (clear each "right" field)
	Equal (return 1 if all pairs are equal)
	EqualLeftRight (return 1 if all pairs are equal)
	Init (initialize the FieldPairsClass object)
	Kill (shut down the FieldPairsClass object)

	29 - FileDropClass
	Overview
	Future FileDropClasses
	FileDropClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	FileDropClass Source Files
	Conceptual Example

	FileDropClass Properties
	DefaultFill (initial display value)
	InitSyncPair (initial list position)

	FileDropClass Methods
	Functional Organization-Expected Use
	AddField (specify display fields)
	AddUpdateField (specify field assignments)
	Init (initialize the FileDropClass object)
	Kill (shut down the FileDropClass object)
	ResetQueue (fill filedrop queue)
	SetQueueRecord (copy data from file buffer to queue buffer)
	TakeEvent (process the current ACCEPT loop event)
	TakeNewSelection (process EVENT:NewSelection events)
	ValidateRecord (a virtual to validate records)

	30 - FileDropComboClass
	Overview
	Future File DropCombo Classes
	FileDropComboClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	FileDropComboClass Source Files
	Conceptual Example

	FileDropComboClass Properties
	EntryCompletion (automatic fill-ahead flag)
	UseField (COMBO USE variable)

	FileDropComboClass Methods
	Functional Organization-Expected Use
	Ask (add a record to the lookup file)
	GetQueueMatch (locate a list item)
	Init (initialize the FileDropComboClass object)
	ResetQueue (refill the filedrop queue)
	TakeEvent (process the current ACCEPT loop event)
	TakeNewSelection (process EVENT:NewSelection events)

	31 - FileManager
	Overview
	Dual Approach to Database Operations
	Relationship to Other Application Builder Classes
	FileManager and Threaded Files
	ABC Template Implementation
	FileManager Source Files
	Conceptual Example

	FileManagerClass Properties
	AliasedFile (the primary file)
	Buffer (the record buffer)
	Buffers (saved record buffers)
	Create (create file switch)
	Errors (the ErrorManager)
	File (the managed file)
	FileName (variable filename)
	FileNameValue (constant filename)
	LazyOpen (delay file open until access)
	LockRecover (/RECOVER wait time parameter)
	OpenMode (file access/sharing mode)
	SkipHeldRecords (HELD record switch)

	FileManagerClass Methods
	Naming Conventions and Dual Approach to Database Operations
	Functional Organization-Expected Use
	AddKey (set the file's keys)
	BindFields (bind fields when file is opened)
	CancelAutoInc (undo PrimeAutoInc)
	ClearKey (clear specified key components)
	Close (close the file)
	EqualBuffer (detect record buffer changes)
	Fetch (get a specific record by key value)
	GetComponents (return the number of key components)
	GetEOF (return end of file status)
	GetError (return the current error ID)
	GetField (return a reference to a key component)
	GetFieldName (return a key component field name)
	GetName (return the filename)
	Init (initialize the FileManager object)
	Insert (add a new record)
	KeyToOrder (return ORDER expression for a key)
	Kill (shutdown the FileManager object)
	Next (get next record in sequence)
	Open (open the file)
	Position (return the current record position)
	Previous (get previous record in sequence)
	PrimeAutoInc (prepare an autoincremented record for adding)
	PrimeFields (a virtual to prime fields)
	PrimeRecord (prepare a record for adding)
	RestoreBuffer (restore a previously saved record buffer)
	RestoreFile (restore a previously saved file state)
	SaveBuffer (save a copy of the record buffer)
	SaveFile (save the current file state)
	SetError (save the specified error and underlying error state)
	SetKey (set current key)
	SetName (set current filename)
	Throw (pass an error to the error handler for processing)
	ThrowMessage (pass an error and text to the error handler)
	TryFetch (try to get a specific record by key value)
	TryInsert (try to add a new record)
	TryNext (try to get next record in sequence)
	TryOpen (try to open the file)
	TryPrevious (try to get previous record in sequence)
	TryPrimeAutoInc (try to prepare an autoincremented record for adding)
	TryReget (try to get a specific record by position)
	TryUpdate (try to change the current record)
	Update (change the current record)
	UseFile (use LazyOpen file)
	ValidateField (validate a field)

	32 - FilterLocatorClass
	Overview
	FilterLocatorClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	FilterLocatorClass Source Files
	Conceptual Example

	FilterLocatorClass Properties
	FloatRight ("contains" or "begins with" flag)

	FilterLocatorClass Methods
	TakeAccepted (process an accepted locator value)
	UpdateWindow (apply the search criteria)

	33 - IncrementalLocatorClass
	Overview
	IncrementalLocatorClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	IncrementalLocatorClass Source Files
	Conceptual Example

	IncrementalLocatorClass Properties
	IncrementalLocatorClass Methods
	SetAlerts (alert keystrokes for the LIST control)
	TakeKey (process an alerted keystroke)

	34 - INIClass
	Overview
	INI Class Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	INI Class Source Files
	Conceptual Example

	INIClass Properties
	FileName

	INIClass Methods
	Fetch (get INI file entries)
	FetchField (return comma delimited INI file value)
	FetchQueue (get INI file queue entries)
	Init (initialize the INIClass object)
	TryFetch (get a value from the INI file)
	TryFetchField (return comma delimited INI file value)
	Update (write INI file entries)

	35 - LocatorClass
	Overview
	LocatorClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	LocatorClass Source Files

	LocatorClass Properties
	Control (the locator control number)
	FreeElement (the locator's first free key element)
	NoCase (case sensitivity flag)
	ViewManager (the locator's ViewManager object)

	LocatorClass Methods
	Init (initialize the LocatorClass object)
	Reset (reset the locator for next search)
	Set (restart the locator)
	SetAlerts (alert keystrokes for the LIST control)
	SetEnabled (enable or disable the locator control)
	TakeAccepted (process an accepted locator value)
	TakeKey (process an alerted keystroke)
	UpdateWindow (redraw the locator control with its current value)

	36 - PopupClass
	Overview
	PopupClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	PopupClass Source Files
	Conceptual Example

	PopupClass Properties
	ClearKeycode (clear KEYCODE character)

	PopupClass Methods
	Functional Organization-Expected Use
	AddItem (add menu item)
	AddItemEvent (set menu item action)
	AddItemMimic (tie menu item to a button)
	AddMenu (add a menu)
	AddSubMenu (add submenu)
	Ask (display the popup menu)
	DeleteItem (remove menu item)
	GetItemChecked (return toggle item status)
	GetItemEnabled (return item status)
	GetLastSelection (return selected item)
	Init (initialize the PopupClass object)
	Kill (shut down the PopupClass object)
	Restore (restore a saved menu)
	Save (save a menu for restoration)
	SetIcon (set menu item icon)
	SetItemCheck (set toggle item status)
	SetItemEnable (set item status)
	SetLevel (set menu item level)
	SetText (set menu item text)
	SetToolbox (include item on toolbox)
	SetTranslator (set run-time translator)
	Toolbox (display the popup toolbox)
	ViewMenu (popup menu debugger)

	37 - PrintPreviewClass
	Overview
	PrintPreviewClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	PrintPreviewClass Source Files
	Zoom Configuration
	Conceptual Example

	PrintPreviewClass Properties
	AllowUserZoom (allow any zoom factor)
	ConfirmPages (force 'pages to print' confirmation)
	CurrentPage (the selected report page)
	ImageQueue (page list)
	Maximize (number of pages displayed horizontally)
	PagesAcross (number of pages displayed horizontally)
	PagesDown (number of vertical thumbnails)
	PagesToPrint (the pages to print)
	Popup (popup menu)
	UserPercentile (custom zoom factor)
	WindowPosSet (use a non-default initial preview window position)
	WindowSizeSet (use a non-default initial preview window size)
	ZoomIndex (index to applied zoom factor)

	PrintPreviewClass Methods
	Functional Organization-Expected Use
	AskPage (prompt for new report page)
	AskPrintPages (prompt for pages to print)
	AskThumbnails (prompt for new thumbnail configuration)
	DeleteImageQueue (remove non-selected pages)
	Display (preview the report)
	Init (initialize the PrintPreviewClass object)
	InPageList (check page number)
	Kill (shut down the PrintPreviewClass object)
	Open (prepare preview window for display)
	SetINIManager (save and restore window coordinates)
	SetDefaultPages (set the default pages to print)
	SetPosition (set initial preview window coordinates)
	SetZoomPercentile (set user or standard zoom factor)
	SyncImageQueue (sync image queue with PagesToPrint)
	TakeAccepted (process EVENT:Accepted events)
	TakeEvent (process all events)
	TakeFieldEvent (a virtual to process field events)
	TakeWindowEvent (process non-field events)

	38 - ProcessClass
	Overview
	ProcessClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	ProcessClass Source Files
	Conceptual Example

	ProcessClass Properties
	ChildRead (portion of process completed)
	Percentile (portion of process completed)
	PText (progress control number)
	RecordsProcessed (number of elements processed)
	RecordsToProcess (number of elements to process)

	ProcessClass Methods
	Functional Organization-Expected Use
	AddItem (add a child viewmanager)
	Init (initialize the ProcessClass object)
	Kill (shut down the ProcessClass object)
	Next (get next element)
	Reset (position to the first element)
	SetProgressLimits (calibrate the progress monitor)
	TakeRecord (a virtual to process each record)

	39 - QueryClass
	Overview
	QueryClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	QueryClass Source Files
	Conceptual Example

	QueryClass Properties
	QKCurrentQuery (popup menu choice)
	QKIcon (icon for popup submenu)
	QKMenuIcon (icon for popup menu)
	QKSupport (quickqbe flag)
	Window (browse window)

	QueryClass Methods
	Functional Organization-Expected Use
	AddItem (add field to query)
	Ask (a virtual to accept query criteria)
	ClearQuery (remove loaded query)
	Delete (remove saved query)
	GetFilter (return filter expression)
	GetLimit (get searchvalues)
	Init (initialize the QueryClass object)
	Kill (shut down the QueryClass object)
	Reset (reset the QueryClass object)
	Restore (retrieve saved query)
	Save (save a query)
	SetLimit (set search values)
	SetQuickPopup (add QuickQBE to browse popup)
	Take (process QuickQBE popup menu choice)

	40 - QueryFormClass
	Overview
	QueryFormClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	QueryFormClass Source Files
	Conceptual Example

	QueryFormClass Properties
	QueryFormClass Methods
	Functional Organization-Expected Use
	Ask (solicit query criteria)
	Init (initialize the QueryFormClass object)
	Kill (shut down the QueryFormClass object)

	41 - QueryFormVisual
	Overview
	QueryFormVisual Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	QueryFormVisual Source Files
	Conceptual Example

	QueryFormVisual Properties
	QFC (reference to the QueryFormClass)

	QueryFormVisual Methods
	Functional Organization-Expected Use
	Init (initialize the QueryFormVisual object)
	ResetFromQuery (reset the QueryFormVisual object)
	SetText (set prompt text)
	TakeAccepted (handle query dialog EVENT:Accepted events)
	TakeCompleted (complete the query dialog)
	TakeFieldEvent (a virtual to process field events)
	UpdateFields (process query values)

	42 - QueryListClass
	Overview
	QueryListClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	QueryListClass Source Files
	Conceptual Example

	QueryListClass Properties
	QueryListClass Methods
	Functional Organization-Expected Use
	Ask (solicit query criteria)
	Init (initialize the QueryListClass object)
	Kill (shut down the QueryListClass object)

	43 - QueryListVisual
	Overview
	QueryListVisual Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	QueryListVisual Source Files
	Conceptual Example

	QueryListVisual Properties
	QFC (reference to the QueryListClass)
	OpsEIP (reference to the EditDropListClass)
	FldsEIP (reference to the EditDropListClass)

	QueryListVisual Methods
	Functional Organization-Expected Use
	Init (initialize the QueryListVisual object)
	ResetFromQuery (reset the QueryFormVisual object)
	SetAlerts (alert keystrokes for the edit control)
	TakeAccepted (handle query dialog EVENT:Accepted events)
	TakeCompleted (complete the query dialog)
	TakeEvent (process edit-in-place events)
	TakeFieldEvent (a virtual to process field events)
	UpdateFields (process query values)

	45 - RelationManager
	Overview
	Relation Manager Concepts and Conventions
	ABC Template Implementation
	Relationship to Other Application Builder Classes
	RelationManager Source Files
	Conceptual Example

	RelationManager Properties
	Me (the primary file's FileManager object)
	UseLogout (transaction framing flag)

	RelationManager Methods
	Functional Organization-Expected Use
	AddRelation (set a file relationship)
	AddRelationLink (set linking fields for a relationship)
	CancelAutoInc (undo autoincrement)
	Close (close a file and any related files)
	Delete (delete record subject to referential constraints)
	Init (initialize the RelationManager object)
	Kill (shut down the RelationManager object)
	ListLinkingFields (map pairs of linked fields)
	Open (open a file and any related files)
	Save (copy the current record and any related records)
	SetAlias (set a file alias)
	SetQuickScan (enable QuickScan on a file and any related files)
	Update (update record subject to referential constraints)

	46 - ReportManager
	Overview
	ReportManager Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	ReportManager Source Files
	Conceptual Example

	ReportManager Properties
	DeferOpenReport (defer open)
	DeferWindow (defer progress window display)
	KeepVisible (persistent progress window)
	Preview (PrintPreviewClass object)
	PreviewQueue (report metafile pathnames)
	Process (ProcessClass object)
	Report (the managed REPORT)
	SkipPreview (print rather than preview)
	TimeSlice (report resource usage)
	WaitCursor (defer progress window display)
	Zoom (initial report preview magnification)

	ReportManager Methods
	Functional Organization-Expected Use
	Ask (display window and process its events)
	AskPreview (preview or print the report)
	Init (initialize the ReportManager object)
	Kill (shut down the ReportManager object)
	Next (get next report record)
	Open (a virtual to execute on EVENT:OpenWindow)
	OpenReport (prepare report for execution)
	TakeCloseEvent (a virtual to process EVENT:CloseWindow)
	TakeNoRecords (process empty report)
	TakeWindowEvent (a virtual to process non-field events)

	47 - SelectFileClass
	Overview
	SelectFileClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	SelectFileClass Source Files
	Conceptual Example

	SelectFileClass Properties
	DefaultDirectory (initial path)
	DefaultFile (initial filename/filemask)
	Flags (file dialog behavior)
	WindowTitle (file dialog title text)

	SelectFileClass Methods
	AddMask (add file dialog file masks)
	Ask (display Windows file dialog)
	Init (initialize the SelectFileClass object)
	SetMask (set file dialog file masks)

	48 - StepClass
	Overview
	StepClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	StepClass Source Files

	StepClass Properties
	Controls (the StepClass sort sequence)

	StepClass Methods
	GetPercentile (return a value's percentile)
	GetValue (return a percentile's value)
	Init (initialize the StepClass object)
	Kill (shut down the StepClass object)
	SetLimit (set smooth data distribution)
	SetLimitNeeded (return static/dynamic boundary flag)

	49 - StepCustomClass
	Overview
	StepCustomClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	StepCustomClass Source Files
	Conceptual Example

	StepCustomClass Properties
	Entries (expected data distribution)

	StepCustomClass Methods
	AddItem (add a step marker)
	GetPercentile (return a value's percentile)
	GetValue (return a percentile's value)
	Init (initialize the StepCustomClass object)
	Kill (shut down the StepCustomClass object)

	50 - StepLocatorClass
	Overview
	StepLocatorClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	StepLocatorClass Source Files
	Conceptual Example

	StepLocatorClass Properties
	StepLocatorClass Methods
	Set (restart the locator)
	TakeKey (process an alerted keystroke)

	51 - StepLongClass
	Overview
	StepLongClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	StepLongClass Source Files
	Conceptual Example

	StepLongClass Properties
	 Low (lower boundary)
	High (upper boundary)

	StepLongClass Methods
	GetPercentile (return a value's percentile)
	GetValue (return a percentile's value)
	SetLimit (set smooth data distribution)

	52 - StepRealClass
	Overview
	StepRealClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	StepRealClass Source Files
	Conceptual Example

	StepRealClass Properties
	 Low (lower boundary)
	High (upper boundary)

	StepRealClass Methods
	GetPercentile (return a value's percentile)
	GetValue (return a percentile's value)
	SetLimit (set smooth data distribution)

	53 - StepStringClass
	Overview
	StepStringClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	StepStringClass Source Files
	Conceptual Example

	StepStringClass Properties
	LookupMode (expected data distribution)
	Root (the static portion of the step)
	SortChars (valid sort characters)
	TestLen (length of the static step portion)

	StepStringClass Methods
	GetPercentile (return a value's percentile)
	GetValue (return a percentile's value)
	Init (initialize the StepStringClass object)
	Kill (shut down the StepStringClass object)
	SetLimit (set smooth data distribution)
	SetLimitNeeded (return static/dynamic boundary flag)

	54 -ToolbarClass
	Overview
	ToolbarClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	Toolbar Class Source Files
	Conceptual Example

	ToolbarClass Properties
	ToolbarClass Methods
	Functional Organization-Expected Use
	AddTarget (register toolbar driven entity)
	DisplayButtons (enable appropriate toolbar buttons)
	Init (initialize the ToolbarClass object)
	Kill (shut down the ToolbarClass object)
	SetTarget (sets the active target)
	TakeEvent (process toolbar event)

	55 - ToolbarListboxClass
	Overview
	ToolbarListboxClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	ToolbarListboxClass Source Files
	Conceptual Example

	ToolbarListboxClass Properties
	Browse (BrowseClass object)

	ToolbarListboxClass Methods
	DisplayButtons (enable appropriate toolbar buttons)
	TakeEvent (convert toolbar events)
	TakeToolbar (assume contol of the toolbar)
	TryTakeToolbar (return toolbar control indicator)

	56 - ToolbarReltreeClass
	Overview
	ToolbarReltreeClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	Toolbar ToolbarReltreeClass Source Files
	Conceptual Example

	ToolbarReltreeClass Properties
	ToolbarReltreeClass Methods
	DisplayButtons (enable appropriate toolbar buttons)
	TakeToolbar (assume control of the toolbar)

	57 - ToolbarTargetClass
	Overview
	ToolbarTarget Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	ToolbarTarget Source Files

	ToolbarTarget Properties
	ChangeButton (change control number)
	Control (window control)
	DeleteButton (delete control number)
	HelpButton (help control number)
	InsertButton (insert control number)
	SelectButton (select control number)

	ToolbarTarget Methods
	Functional Organization-Expected Use
	DisplayButtons (enable appropriate toolbar buttons)
	TakeEvent (convert toolbar events)
	TakeToolbar (assume control of the toolbar)
	TryTakeToolbar (return toolbar control indicator)

	58 - ToolbarUpdateClass
	Overview
	ToolbarUpdateClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	ToolbarUpdateClass Source Files
	Conceptual Example

	ToolbarUpdateClass Properties
	Request (requested database operation)
	History (enable toolbar history button)

	ToolbarUpdateClass Methods
	DisplayButtons (enable appropriate toolbar buttons)
	TakeEvent (convert toolbar events)
	TakeToolbar (assume control of the toolbar)
	TryTakeToolbar (return toolbar control indicator)

	59 - TranslatorClass
	Overview
	TranslatorClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	TranslatorClass Source Files
	Conceptual Example

	TranslatorClass Properties
	ExtractText (identify text to translate)

	TranslatorClass Methods
	AddTranslation (add translation pairs)
	Init (initialize the TranslatorClass object)
	Kill (shut down the TranslatorClass object)
	TranslateControl (translate text for a control)
	TranslateControls (translate text for range of controls)
	TranslateProperty (translate textual control property)
	TranslateString (translate text)
	TranslateWindow (translate text for a window)

	60 - ViewManager
	Overview
	ViewManager Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	ViewManager Source Files
	Conceptual Example

	ViewManager Properties
	Order (sort, range-limit, and filter information)
	PagesAhead (buffered pages)
	PagesBehind (buffered pages)
	PageSize (buffer page size)
	Primary (the primary file RelationManager)
	TimeOut (buffered pages freshness)
	View (the managed VIEW)

	ViewManager Methods
	Functional Organization-Expected Use
	AddRange (add a range limit)
	AddSortOrder (add a sort order)
	AppendOrder (refine a sort order)
	ApplyFilter (range limit and filter the result set)
	ApplyOrder (sort the result set)
	ApplyRange (conditionally range limit and filter the result set)
	Close (close the view)
	GetFreeElementName (return free key element name)
	GetFreeElementPosition (return free key element position)
	Init (initialize the ViewManager object)
	Kill (shut down the ViewManager object)
	Next (get the next element)
	Open (open the view)
	Previous (get the previous element)
	PrimeRecord (prepare a record for adding)
	Reset (reset the view position)
	SetFilter (add, change, or remove active filter)
	SetOrder (replace a sort order)
	SetSort (set the active sort order)
	UseView (use LazyOpen files)
	ValidateRecord (validate an element)

	61 - WindowManager
	Overview
	WindowManager Concepts
	ABC Template Implementation
	Relationship to Other Application Builder Classes
	WindowManager Source Files
	Conceptual Example

	WindowManager Properties
	AutoRefresh (reset window as needed flag)
	AutoToolbar (set toolbar target on new tab selection)
	CancelAction (response to cancel request)
	ChangeAction (response to change request)
	Dead (shut down flag)
	DeleteAction (response to delete request)
	Errors (ErrorClass object)
	FirstField (first window control)
	ForcedReset (force reset flag)
	HistoryKey (restore field key)
	InsertAction (response to insert request)
	OKControl (window acceptance control-OK button)
	Opened (window opened flag)
	OriginalRequest (original database request)
	Primary (RelationManager object)
	Request (database request)
	ResetOnGainFocus (gain focus reset flag)
	Response (response to database request)
	Saved (copy of primary file record buffer)
	Translator (TranslatorClass object)
	VCRRequest (delayed scroll request)

	WindowManager Methods
	Functional Organization-Expected Use
	AddHistoryField (add restorable control and field)
	AddHistoryFile (add restorable history file)
	AddItem (program the WindowManager object)
	AddUpdateFile (register batch add files)
	Ask (display window and process its events)
	Init (initialize the WindowManager object)
	Kill (shut down the WindowManager object)
	Open (a virtual to execute on EVENT:OpenWindow)
	PostCompleted (initiates final Window processing)
	PrimeFields (a virtual to prime form fields)
	PrimeUpdate (update or prepare for update)
	Reset (reset the window for display)
	RestoreField (restore field to last saved value)
	Run (run this procedure or a subordinate procedure)
	SaveHistory (save history fields for later restoration)
	SetAlerts (alert window control keystrokes)
	SetResponse (OK or Cancel the window)
	TakeAccepted (a virtual to process EVENT:Accepted)
	TakeCloseEvent (a virtual to Cancel the window)
	TakeCompleted (a virtual to complete an update form)
	TakeEvent (a virtual to process all events)
	TakeFieldEvent (a virtual to process field events)
	TakeNewSelection (a virtual to process EVENT:NewSelection)
	TakeRejected (a virtual to process EVENT:Rejected)
	TakeSelected (a virtual to process EVENT:Selected)
	TakeWindowEvent (a virtual to process non-field events)
	Update (prepare records for writing to disk)

	62 - WindowResizeClass
	Overview
	WindowResizeClass Concepts
	Relationship to Other Application Builder Classes
	ABC Template Implementation
	WindowResizeClass Source Files
	Conceptual Example

	WindowResizeClass Properties
	AutoTransparent (optimize redraw)
	DeferMoves (optimize resize)

	WindowResizeClass Methods
	Functional Organization-Expected Use
	GetParentControl (return parent control)
	GetPositionStrategy (return position strategy for a control type)
	GetResizeStrategy (return resize strategy for a control type)
	Init (initialize the WindowResizeClass object)
	Kill (shut down the WindowResizeClass object)
	Reset (resets the WindowResizeClass object)
	Resize (resize and reposition controls)
	RestoreWindow (restore window to initial size)
	SetParentControl (set parent control)
	SetParentDefaults (set default parent controls)
	SetPosition (calculate control coordinates)
	SetStrategy (set control resize strategy)

	Index
	Symbols
	!, PopupClass.AddItemMimic
	%Error
	%ErrorCode
	%ErrorText
	%Field
	%File
	%FileError
	%FileErrorCode
	%Message
	%Previous
	%ProgramType
	.DLL
	.EXP
	.INI File Support
	.LIB
	801 variable not bound

	A
	ABC Coding Conventions
	ABC Compliant Classes
	ABC Library
	ABC Templates
	embed points

	ABC Templates and SQL
	Aborted Add/Change
	ACCEPT
	Accept browse control from Toolbar
	Accept control from Toolbar
	Access:file
	Access:filename
	Action For Each Selection
	Action for Process
	Active Invisible
	ActiveInvisible
	BrowseClass

	Add Extra Vertical Space
	AddControl
	EIPManagerClass

	AddEditControl
	BrowseClass

	AddErrors
	ErrorClass

	AddField
	BrowseClass
	FileDropClass

	AddHistoryField
	WindowManagerClass

	AddHistoryFile
	WindowManagerClass

	AddItem
	ASCIIViewerClass
	ConstantClass
	FieldPairsClass
	PopupClass
	ProcessClass
	QueryClass
	StepCustomClass
	WindowManagerClass

	AddItemEvent
	PopupClass

	AddItemMimic
	PopupClass

	Additional Sort Fields
	AddKey
	FileManagerClass

	AddLocator
	BrowseClass

	AddMask
	SelectFileClass

	AddMenu
	PopupClass

	AddPair
	BufferedPairsClass
	FieldPairsClass

	AddRange
	ViewManagerClass

	AddRelation
	RelationManagerClass

	AddRelationLink
	RelationManagerClass

	AddResetField
	BrowseClass

	AddSortOrder
	BrowseClass
	ViewManagerClass

	AddSubMenu
	PopupClass

	AddTarget
	ToolbarClass

	AddToolbarTarget
	BrowseClass

	AddTranslation
	TranslatorClass

	AddUpdateField
	FileDropClass

	AddUpdateFile
	WindowManagerClass

	AddValue
	EditMultiSelectClass

	After successful insert
	Again
	EIPManagerClass

	Alias Options
	AliasedFile
	FileManagerClass

	Allow Unfilled
	Allow User Variable Zooms?
	AllowUnfilled
	BrowseClass

	AllowUserZoom
	PrintPreviewClass

	AppendOrder
	ViewManagerClass

	Application
	deployment

	Application Builder Class (ABC) Library
	Application Builder Class Viewer
	application defaults
	application modal windows
	Application Wizard
	control model
	Full vs Simple
	Generate Reports for each file
	Overwrite existing procedures
	SQL Applications
	Toolbar

	ApplyFilter
	ViewManagerClass

	ApplyOrder
	ViewManagerClass

	ApplyRange
	BrowseClass
	ViewManagerClass

	Approx Record Count
	Array
	Definition

	Arrow
	EIPManagerClass

	ArrowAction
	BrowseClass

	ASCII viewer
	ASCIIFile
	ASCIIFileClass

	ASCIIFileClass
	Methods
	FormatLine
	GetDOSFilename
	GetFilename
	GetLastLineNo
	GetLine
	GetPercentile
	Init
	Kill
	Reset
	SetLine
	SetPercentile
	ValidateLine

	Properties
	ASCIIFile
	ErrorMgr
	OpenMode

	ASCIIPrintButton
	ASCIIPrintClass
	Methods
	Ask
	Init
	PrintLines

	Properties
	FileMgr
	PrintPreview
	Translator

	ASCIISearchButton
	ASCIISearchClass
	Methods
	Ask
	Init
	Next
	Setup

	Properties
	FileMgr
	Find
	LineCounter
	Translator

	ASCIIViewControl
	classes
	General Options
	Reassign FROM attribute after Kill
	Value or queue to assign

	ASCIIViewerClass
	Methods
	AddItem
	AskGotoLine
	DisplayPage
	Init
	Kill
	PageDown
	PageUp
	Reset
	SetLine
	SetLineRelative
	SetTranslator
	TakeEvent

	Properties
	Popup
	Printer
	Searcher
	TopLine

	AsciiViewInListBox
	Ask
	ASCIIPrintClass
	ASCIISearchClass
	BrowseClass
	FileDropComboClass
	PopupClass
	QueryClass
	QueryFormClass
	QueryListClass
	ReportManagerClass
	SelectFileClass
	WindowManagerClass

	Ask the user before adding another record
	AskGotoLine
	ASCIIViewerClass

	AskPage
	PrintPreviewClass

	AskPreview
	ReportManagerClass

	AskPrintPages
	PrintPreviewClass

	AskProcedure
	BrowseClass

	AskRecord
	BrowseClass

	AskThumbnails
	PrintPreviewClass

	Assign as Reference?
	AssignBufferToLeft
	BufferedPairsClass

	AssignBufferToRight
	BufferedPairsClass

	AssignLeftToBuffer
	BufferedPairsClass

	AssignLeftToRight
	FieldPairsClass

	AssignRightToBuffer
	BufferedPairsClass

	AssignRightToLeft
	FieldPairsClass

	Auto Tool Bar
	autoincrement
	Automatically find parent controls
	AutoRefresh
	WindowManagerClass

	AutoToolbar
	WindowManagerClass

	AutoTransparent
	WindowResizeClass

	Available
	EditMultiSelectClass

	B
	background processes
	ReportManagerClass

	Base Class
	base class configuration
	Batch Process
	BC
	BrowseEIPManagerClass

	begins with, Filter Locator
	BIND
	BindFields
	FileManagerClass

	Browse
	ToolbarListBoxClass

	Browse Box Behavior
	Browse, initial position
	Browse Optimization, ISAM
	Browse Optimization, SQL
	Browse Template
	Browse Wizard
	Browse-Form Application Paradigm
	BrowseBox
	Accept browse control from Toolbar
	classes
	colors
	conditional behavior
	Entry Locator
	Filter Locator
	filtering
	filtering and record selection
	Find Anywhere
	Icons
	Incremental Locator
	Loading Method
	Locator Behavior
	print single record
	QBE
	refreshing
	scroll bars
	scrolling
	selecting items
	sorting
	Step Locator
	totals
	updating records

	browsebox navigation
	BrowseBox Options
	BrowseBox, reset
	BrowseClass
	Methods
	AddEditControl
	AddField
	AddLocator
	AddResetField
	AddSortOrder
	AddToolbarTarget
	ApplyRange
	Ask
	AskRecord
	Fetch
	Init
	Kill
	Next
	PostNewSelection
	Previous
	Records
	ResetFromAsk
	ResetFromBuffer
	ResetFromFile
	ResetFromView
	ResetQueue
	ResetResets
	ResetSort
	ScrollEnd
	ScrollOne
	ScrollPage
	SetAlerts
	SetQueueRecord
	SetSort
	TakeAcceptedLocator
	TakeEvent
	TakeKey
	TakeLocate
	TakeNewSelection
	TakeScroll
	TakeVCRScroll
	UpdateBuffer
	UpdateQuery
	UpdateResets
	UpdateThumb
	UpdateThumbFixed
	UpdateViewRecord
	UpdateWindow

	Properties
	ActiveInvisible
	AllowUnfilled
	ArrowAction
	AskProcedure
	ChangeControl
	DeleteControl
	EditList
	EIP
	EnterAction
	Fields
	FocusLossAction
	HasThumb
	HideSelect
	InsertControl
	ListControl
	ListQueue
	Loaded
	Popup
	PrintControl
	PrintProcedure
	Query
	QueryControl
	QueryShared
	QuickScan
	RetainRow
	SelectControl
	Selecting
	SelectWholeRecord
	Sort
	StartAtCurrent
	TabAction
	Toolbar
	ToolbarItem
	ToolControl
	Window

	BrowseClass Configuration
	BrowseEIPManagerClass
	Methods
	ClearColumn
	Init
	Kill
	TakeCompleted
	TakeNewSelection

	Properties
	BC

	BrowsePrintButton
	BrowsePublishButton
	BrowseQueryButton
	BrowseSelectButton
	BrowseToolboxButton
	BrowseUpdateButtons
	BRWn
	BRWn::Sortn:Locator
	BRWn::Sortn:StepClass
	Buffer
	FileManagerClass

	buffer management
	BufferedPairsClass
	Methods
	AddPair
	AssignBufferToLeft
	AssignBufferToRight
	AssignLeftToBuffer
	AssignRightToBuffer
	EqualLeftBuffer
	EqualRightBuffer
	Init
	Kill

	Properties
	RealList

	Buffers
	FileManagerClass

	Build Menu From

	C
	CallABCMethod
	CallProcedureAsLookup
	Cancel without Confirming
	CancelAction
	WindowManagerClass

	CancelAutoInc
	FileManagerClass
	RelationManagerClass

	CancelButton
	Case Sensitive matches?
	Change Message
	ChangeAction
	WindowManagerClass

	ChangeButton
	ToolbarTargetClass

	ChangeControl
	BrowseClass

	ChangeRecord
	Changes
	ChildRead
	ProcessClass

	choose a record from a list box
	class configuration
	class library
	Class Viewer
	Classes tab
	WindowManager

	ClearColumn
	BrowseEIPManagerClass
	EIPManagerClass

	ClearKey
	FileManagerClass

	ClearKeycode
	PopupClass

	ClearLeft
	FieldPairsClass

	ClearQuery
	QueryClass

	ClearRight
	FieldPairsClass

	Close
	FileManagerClass
	RelationManagerClass
	ViewManagerClass

	Close Button control template
	Close when the user clicks on the splash window
	CloseCurrentWindow
	CODE
	Code After, Canceled
	Code After, Completed
	Code before
	Code Embed
	Code Generation
	Code Generation Wizards
	Code template
	Colorization, Browse Box
	Colorization, FileDrop
	Colorization, Tree control
	Colors
	relation tree

	Column
	EIPManagerClass

	Conditional Behavior
	BrowseBox

	configuration files
	Confirm Cancel
	confirmation of delete
	ConfirmPages
	PrintPreviewClass

	ConstantClass
	Methods
	AddItem
	Init
	Kill
	Next(copy to targets)
	Next(load to fiel or queue)
	Reset
	Set

	Properties
	TerminatorValue

	context menu
	Contract Branch
	Contracting Locator
	Control
	LocatorClass
	ToolbarTargetClass

	control file
	control model
	Application Wizard

	Control Template
	Control Templates
	adding

	Control templates
	Controls
	StepClass

	ControlValueValidation
	Conventions
	documentation

	Core Classes
	CREATE
	attribute

	Create
	FileManagerClass

	CreateControl
	EditCheckClass
	EditClass
	EditColorClass
	EditDropListClass
	EditEntryClass
	EditFileClass
	EditFontClass
	EditMultiSelectClass
	EditSpinClass
	EditTextClass

	CurrentPage
	PrintPreviewClass

	D
	data
	external

	Data Dictionary
	Printing

	Data Embed
	Data Integrity
	Database Operations
	FileManagerClass

	Date
	display template

	DateTimeDisplay
	Day of Week
	Dead
	WindowManagerClass

	declaring files
	Default Classes
	Default Directory
	Default Filename
	Default Icon
	Default message
	Default to first entry if USE variable empty
	Default Window Controls
	DefaultDirectory
	SelectFileClass

	DefaultFile
	SelectFileClass

	DefaultFill
	FileDropClass

	defaults
	application wide

	Defer opening files until accessed
	DeferMoves
	WindowResizeClass

	DeferOpenReport
	ReportManagerClass

	DeferWindow
	ReportManagerClass

	Delete
	QueryClass
	RelationManagerClass

	Delete Message
	DeleteAction
	WindowManagerClass

	DeleteControl
	BrowseClass

	DeleteImageQueue
	PrintPreviewClass

	DeleteItem
	PopupClass

	DeleteRecord
	Deletes
	deploying application files
	Derive Classes
	Derive?
	DERIVED
	derived class configuration
	Deriving with Classes Tab
	Deriving with Embed Points
	Dictionary Print Wizard
	DIM
	dimensions
	Display
	PrintPreviewClass

	Display Control
	Display in Window
	Display Record Identifier on the Title Bar
	Display Time (in seconds)
	DisplayButtons
	ToolbarClass
	ToolbarListBoxClass
	ToolbarReltreeClass
	ToolbarTargetClass
	ToolbarUpdateClass

	DisplayPage
	ASCIIViewerClass

	DisplayPopupMenu
	Ditto Button
	Ditto Key
	DLL
	DLL attribute
	Do Not Auto-Populate This Aliased File
	Do Not Auto-Populate This Field
	Do Not Auto-Populate This File
	Do Not Auto-Populate This Key
	Do Not Validate
	dockable toolbars
	Documentation Conventions
	Don't Alter Controls
	DOS File Lookup Control template
	DOS Filename Variable
	DOSFileLookup
	Drop down list

	E
	Edit in place
	EditCheckClass
	Methods
	CreateControl

	Properties

	EditClass
	Methods
	CreateControl
	Init
	Kill
	SetAlerts
	SetReadOnly
	TakeEvent

	Properties
	FEQ
	ReadOnly

	EditColorClass
	Methods
	CreateControl
	TakeEvent

	Properties
	Title

	EditDropListClass
	Methods
	CreateControl
	SetAlerts
	SetReadOnly
	TakeEvent

	Properties

	EditEntryClass
	Methods
	CreateControl

	Properties

	EditFileClass
	Methods
	CreateControl
	TakeEvent

	Properties
	FileMask
	FilePattern
	Title

	EditFontClass
	Methods
	CreateControl
	TakeEvent

	Properties
	Title

	EDITINPLACE
	EditInPlace::field
	EditList
	BrowseClass

	EditMultiSelectClass
	Methods
	AddValue
	CreateControl
	Reset
	TakeAction
	TakeEvent

	Properties
	Available
	FilePattern
	Selected
	Title

	EditSpinClass
	Methods
	CreateControl

	Properties

	EditTextClass
	Methods
	CreateControl
	TakeEvent

	Properties
	Title

	EIP
	BrowseClass

	EIPManagerClass
	Methods
	AddControl
	ClearColumn
	GetEdit
	Init
	InitControls
	Kill
	Next
	ResetColumn
	Run
	TakeAction
	TakeCompleted
	TakeEvent
	TakeFieldEvent
	TakeFocusLoss
	TakeNewSelection

	Properties
	Again
	Arrow
	Column
	Enter
	EQ
	Fields
	FocusLoss
	Insert
	LastColumn
	ListControl
	Repost
	RepostField
	Req
	SeekForward
	Tab

	Embed Points
	Embedded source
	comments
	finding

	Embedded Source dialog
	Enable Run-Time Translation
	Enclose RI code in transaction frame
	Enter
	EIPManagerClass

	EnterAction
	BrowseClass

	Entries
	StepCustomClass

	Entry locator
	EntryCompletion
	FileDropComboClass

	EntryLocatorClass
	Methods
	Init
	Set
	TakeAccepted
	TakeKey
	Update
	UpdateWindow

	Properties
	Shadow

	EQ
	EIPManagerClass

	Equal
	FieldPairsClass

	EqualBuffer
	FileManagerClass

	EqualLeftBuffer
	BufferedPairsClass

	EqualLeftRight
	FieldPairsClass

	EqualRightBuffer
	BufferedPairsClass

	error severity
	Error Treatment
	ErrorClass
	macros
	Methods
	AddErrors
	GetProcedureName
	Init
	Kill
	Message
	RemoveErrors
	SetErrors
	SetFatality
	SetField
	SetFile
	SetId
	SetProcedureName
	SubsString
	TakeBenign
	TakeError
	TakeFatal
	TakeNotify
	TakeOther
	TakeProgram
	TakeUser
	Throw
	ThrowFile

	Properties
	Errors
	FieldName
	FileName
	MessageText

	ErrorMgr
	ASCIIFileClass

	Errors
	ErrorClass
	FileManagerClass
	WindowManagerClass

	evaluating expressions
	Event Processing, ABC
	Exclude unfiltered
	Expand Branch
	expanding list
	ExtendProgressWindow
	Extension templates
	EXTERNAL
	EXTERNAL attribute
	External Globals and ABC's Source Module
	External library
	External Module Options
	External Template
	Extract Filename
	ExtractText
	TranslatorClass

	F
	FDBn
	FDCBn
	FEQ
	EditClass

	Fetch
	BrowseClass
	FileManagerClass
	INIClass

	FetchField
	INIClass

	FetchQueue
	INIClass

	Field History Key
	Field Options
	Field Priming
	Field to Fill From
	FieldLookupButton
	FieldName
	ErrorClass

	FieldPairsClass
	Methods
	AddItem
	AddPair
	AssignLeftToRight
	AssignRightToLeft
	ClearLeft
	ClearRight
	Equal
	EqualLeftRight
	Init
	Kill

	Properties
	List

	Fields
	BrowseClass
	EIPManagerClass
	printing

	File
	FileManagerClass

	File Control
	File Dialog Header
	file handling
	File Manager and Threaded Files
	File Manager Class
	File Mask
	File Mask Description
	File Masks
	File Open Mode
	File Options
	File Overrides
	file processing
	multiple files

	File selection
	file sharing
	FileDrop
	colors
	Icons
	range limit

	FileDrop control template
	FileDropClass
	Methods
	AddField
	AddUpdateField
	Init
	Kill
	ResetQueue
	SetQueueRecord
	TakeEvent
	TakeNewSelection
	ValidateRecord

	Properties
	DefaultFill
	InitSyncPair

	FileDropCombo
	Classes
	Hot Fields
	Sort Fields
	Update Behavior

	FileDropComboClass
	Methods
	Ask
	GetQueueMatch
	Init
	ResetQueue
	TakeEvent
	TakeNewSelection

	Properties
	EntryCompletion
	UseField

	FileLookupN
	FileManagerClass
	Database Operations
	Interactive Database Operations
	Methods
	AddKey
	BindFields
	CancelAutoInc
	ClearKey
	Close
	EqualBuffer
	Fetch
	GetComponents
	GetEOF
	GetError
	GetField
	GetFieldName
	GetName
	Init
	Insert
	KeyToOrder
	Kill
	Next
	Open
	Position
	Previous
	PrimeAutoInc
	PrimeFields
	PrimeRecord
	RestoreBuffer
	RestoreFile
	SaveBuffer
	SaveFile
	SetError
	SetKey
	SetName
	Throw
	ThrowMessage
	TryFetch
	TryInsert
	TryNext
	TryOpen
	TryPrevious
	TryPrimeAutoInc
	TryReget
	TryUpdate
	Update
	UseFile
	ValidateField

	Properties
	AliasedFile
	Buffer
	Buffers
	Create
	Errors
	File
	FileName
	FileNameValue
	LazyOpen
	LockRecover
	OpenMode
	SkipHeldRecords

	Silent Database Operations

	FileMask
	EditFileClass

	FileMgr
	AsciiPrintClass
	ASCIISearchClass

	FileName
	ErrorClass
	FileManagerClass
	INIClass

	Filename Variable
	FileNameValue
	FileManagerClass

	FilePattern
	EditFileClass
	EditMultiSelectClass

	Files
	Creating
	printing

	files
	declaring
	sharing

	Filter
	FileDrop
	FileDropCombo
	relation tree

	Filter locator
	filtering browses and reports
	FilterLocatorClass
	Methods
	TakeAccepted
	UpdateWindow

	Properties
	FloatRight

	Filters
	Find
	ASCIISearchClass

	find
	Find Anywhere
	find record
	FirstField
	WindowManagerClass

	Fixed Thumb
	Flags
	SelectFileClass

	flat file applications
	FldsEIP
	QueryListVisual

	FloatRight
	FilterLocatorClass

	FocusLoss
	EIPManagerClass

	FocusLossAction
	BrowseClass

	ForcedReset
	WindowManagerClass

	Form Tab
	Form Template
	Form Wizard
	FormatLine
	ASCIIFileClass

	FormVCRControls
	Frame Template
	FrameBrowseControl
	free element
	FreeElement
	LocatorClass

	G
	Generate EMBED Comments
	Generate Reports for each file
	Application Wizard

	Generate Template global data and ABC's as EXTERNA
	generating source code
	GetComponents
	FileManagerClass

	GetDOSFilename
	ASCIIFileClass

	GetEdit
	EIPManagerClass

	GetEOF
	FileManagerClass

	GetError
	FileManagerClass

	GetField
	FileManagerClass

	GetFieldName
	FileManagerClass

	GetFilename
	ASCIIFileClass

	GetFilter
	QueryClass

	GetFreeElementName
	ViewManagerClass

	GetFreeElementPosition
	ViewManagerClass

	GETINI
	GetItemChecked
	PopupClass

	GetItemEnabled
	PopupClass

	GetLastLineNo
	ASCIIFileClass

	GetLastSelection
	PopupClass

	GetLimit
	QueryClass

	GetLine
	ASCIIFileClass

	GetName
	FileManagerClass

	GetParentControl
	WindowResizeClass

	GetPercentile
	ASCIIFileClass
	StepClass
	StepCustomClass
	StepLongClass
	StepRealClass
	StepStringClass

	GetPositionStrategy
	WindowResizeClass

	GetProcedureName
	ErrorClass

	GetQueueMatch
	FileDropComboClass

	GetResizeStrategy
	WindowResizeClass

	GetValue
	StepClass
	StepCustomClass
	StepLongClass
	StepRealClass
	StepStringClass

	Give option to expand and contract all levels
	Global Data
	Global Data, saving and restoring
	global INCLUDEs
	global MAP
	Global Properties dialog
	GlobalErrors
	GlobalRequest
	GlobalResponse

	H
	hand code
	HasThumb
	BrowseClass

	Help File
	HelpButton
	ToolbarTargetClass

	Hide:Access:filename
	Hide:Relate:filename
	HideSelect
	BrowseClass

	hierarchical list
	High
	StepLongClass
	StepRealClass

	History
	ToolbarUpdateClass

	HistoryKey
	WindowManagerClass

	Horizontal Positional Strategy
	Horizontal Resize Strategy
	Hot Fields
	FileDrop Control Template

	HTML code generation
	publish BrowseBox

	I
	Icon
	Browse Box
	FileDrop

	Icons
	relation tree

	ImageQueue
	PrintPreviewClass

	Include File
	Incremental Locator
	IncrementalLocatorClass
	Methods
	SetAlerts
	TakeKey

	Properties

	Individual File Overrides
	INI file
	location

	INI File Settings
	INI File Support
	INIClass
	Methods
	Fetch
	FetchField
	FetchQueue
	Init
	TryFetch
	TryFetchField
	Update

	Properties
	FileName

	INIMgr
	Init
	ASCIIFileClass
	ASCIIPrintClass
	ASCIISearchClass
	ASCIIViewerClass
	BrowseClass
	BrowseEIPManagerClass
	BufferedPairsClass
	ConstantClass
	EditClass
	EIPManagerClass
	EntryLocatorClass
	ErrorClass
	FieldPairsClass
	FileDropClass
	FileDropComboClass
	FileManagerClass
	INIClass
	LocatorClass
	PopupClass
	PrintPreviewClass
	ProcessClass
	QueryClass
	QueryFormClass
	QueryFormVisual
	QueryListClass
	QueryListVisual
	QueryVisualClass
	RelationManagerClass
	ReportManagerClass
	SelectFileClass
	StepClass
	StepCustomClass
	StepStringClass
	ToolbarClass
	TranslatorClass
	ViewManagerClass
	WindowManagerClass
	WindowResizeClass

	InitControls
	EIPManagerClass

	Initial Window Position
	Initial Zoom
	Initializing Fields
	Initiate Thread
	InitSyncPair
	FileDropClass

	InPageList
	PrintPreviewClass

	Insert
	EIPManagerClass
	FileManagerClass

	Insert Message
	InsertAction
	WindowManagerClass

	InsertButton
	ToolbarTargetClass

	InsertControl
	BrowseClass

	InsertRecord
	Inserts
	Inter-Procedure Communication
	Interactive Database Operations
	FileManagerClass

	internationalization
	Internet
	publish BrowseBox

	invoice reports
	Is a Reference
	Issue Template warning if LOGOUT() not allowed
	Item Properties

	K
	Keep View synchronized with Selection?
	KeepVisible
	ReportManagerClass

	Key Distribution
	Key Options
	Keys
	printing

	KeyToOrder
	FileManagerClass

	Kill
	ASCIIFileClass
	ASCIIViewerClass
	BrowseClass
	BrowseEIPManagerClass
	BufferedPairsClass
	ConstantClass
	EditClass
	EIPManagerClass
	ErrorClass
	FieldPairsClass
	FileDropClass
	FileManagerClass
	PopupClass
	PrintPreviewClass
	ProcessClass
	QueryClass
	QueryFormClass
	QueryListClass
	QueryVisualClass
	RelationManagerClass
	ReportManagerClass
	StepClass
	StepCustomClass
	StepStringClass
	ToolbarClass
	TranslatorClass
	ViewManagerClass
	WindowManagerClass
	WindowResizeClass

	L
	language, multiple language user interface
	large files
	browsing
	scrolling

	LastColumn
	EIPManagerClass

	LazyOpen
	FileManagerClass

	Level:Benign
	Level:Cancel
	Level:Fatal
	Level:Notify
	Level:Program
	Level:User
	LineCounter
	ASCIISearchClass

	LINK
	LIST
	List
	FieldPairsClass

	list box navigation
	List to use
	ListControl
	BrowseClass
	EIPManagerClass

	ListLinkingFields
	RelationManagerClass

	ListQueue
	BrowseClass

	Loaded
	BrowseClass

	Loading Method, BrowseBox
	Locate record
	Location
	Location of Message
	Locator
	Contracting
	Entry
	Filter
	Incremental
	Step

	Locator Behavior
	Locator Class
	LocatorClass
	Methods
	Init
	Reset
	Set
	SetAlerts
	SetEnabled
	TakeAccepted
	TakeKey
	UpdateWindow

	Properties
	Control
	FreeElement
	NoCase
	ViewManager

	LockRecover
	FileManagerClass

	Logo Screen
	LOGOUT
	look up
	Lookup Field
	Lookup Key
	Lookup Procedure
	LookupMode
	StepStringClass

	LookupUpNon-RelatedRecord
	Low
	StepLongClass
	StepRealClass

	M
	Macro Substitution
	TranslatorClass

	main procedure
	Marking list items
	Mask Variable
	Maximize
	PrintPreviewClass

	Maximize Preview Window
	Maximum Height
	Maximum Width
	MDI
	MDI application
	Me
	RelationManagerClass

	MEMBER
	menu
	popup menu

	Menu Description
	Menu Items
	Menu String
	Menu Template
	Message
	ErrorClass

	Messages and Titles
	MessageText
	ErrorClass

	Method to Call
	Minimum Height
	Minimum Width
	Minimum Window Size
	Modeless windows
	modeless windows
	Module Definition file
	Module Name
	More Field Assignments
	More File Masks
	Movable Thumb
	MSG attribute
	Multi-Select?
	Multi-threading
	multiuser files

	N
	navigation in browse box
	navigation in relation tree
	New Class Methods
	New Class Properties
	New Method Name
	New Method Prototype
	Next
	ASCIISearchClass
	BrowseClass
	ConstantClass
	EIPManagerClass
	FileManagerClass
	ProcessClass
	ReportManagerClass
	ViewManagerClass

	NoCase
	LocatorClass

	Normalized Data

	O
	Object Name
	Offer to save changes
	OK button
	OKControl
	WindowManagerClass

	OPEN
	Open
	FileManagerClass
	PrintPreviewClass
	RelationManagerClass
	ReportManagerClass
	ViewManagerClass
	WindowManagerClass

	Opened
	WindowManagerClass

	OpenMode
	ASCIIFileClass
	FileManagerClass

	OpenReport
	ReportManagerClass

	OpsEIP
	QueryListVisual

	Optimize Moves
	Optimize Redraws
	Optimizing a Dictionary for Wizards
	Order
	ViewManagerClass

	OriginalRequest
	WindowManagerClass

	Other Data Type
	Other Picture
	outline list
	Override Control Strategies
	Override default locator control
	Overwrite existing procedures
	Application Wizard

	P
	PageDown
	ASCIIViewerClass

	PagesAcross
	PrintPreviewClass

	PagesAhead
	ViewManagerClass

	PagesBehind
	ViewManagerClass

	PagesDown
	PrintPreviewClass

	PageSize
	ViewManagerClass

	PagesToPrint
	PrintPreviewClass

	PageUp
	ASCIIViewerClass

	Parameters
	Procedure Properties
	Source Template

	Passed Parameters
	PauseButton
	Percentile
	ProcessClass

	Picture
	Population Order
	Popup
	ASCIIViewerClass
	BrowseClass
	PrintPreviewClass

	popup menu
	template

	PopupClass
	Methods
	AddItem
	AddItemEvent
	AddItemMimic
	AddMenu
	AddSubMenu
	Ask
	DeleteItem
	GetItemChecked
	GetItemEnabled
	GetLastSelection
	Init
	Kill
	Restore
	Save
	SetIcon
	SetItemCheck
	SetItemEnable
	SetLevel
	SetText
	SetToolbox
	SetTranslator
	Toolbox
	ViewMenu

	Properties
	ClearKeycode

	Position
	FileManagerClass

	PostCompleted
	WindowManagerClass

	PostNewSelection
	BrowseClass

	Preview
	ReportManagerClass

	Preview Options
	Previewer
	PreviewQueue
	ReportManagerClass

	Previous
	BrowseClass
	FileManagerClass
	ViewManagerClass

	Primary
	ViewManagerClass
	WindowManagerClass

	PrimeAutoInc
	FileManagerClass

	PrimeFields
	FileManagerClass
	WindowManagerClass

	PrimeRecord
	FileManagerClass
	ViewManagerClass

	PrimeUpdate
	WindowManagerClass

	Priming Fields
	Print Preview
	print preview, suppress
	PrintControl
	BrowseClass

	Printer
	ASCIIViewerClass

	Printing
	Data Dictionary

	printing text
	PrintLines
	ASCIIPrintClass

	PrintPreview
	AsciiPrintClass

	PrintPreviewClass
	Methods
	AskPage
	AskPrintPages
	AskThumbnails
	DeleteImageQueue
	Display
	Init
	InPageList
	Kill
	Open
	SetDefaultPages
	SetINIManager
	SetPosition
	SetZoom
	SyncImageQueue
	TakeAccepted
	TakeEvent
	TakeFieldEvent
	TakeWindowEvent

	Properties
	AllowUserZoom
	ConfirmPages
	CurrentPage
	ImageQueue
	Maximize
	PagesAcross
	PagesDown
	PagesToPrint
	Popup
	UserPercentile
	WindowPosSet
	WindowSizeSet
	ZoomIndex

	PrintProcedure
	BrowseClass

	PROC
	Procedure Communication
	Procedure Properties
	Return Value
	Window Behavior

	Procedure properties
	Parameters

	Procedure Properties dialog
	Procedure Templates
	Procedure Wizard
	Process
	ReportManagerClass

	Process Template
	classes

	Process template
	RI constraints
	single record mode

	ProcessClass
	Methods
	AddItem
	Init
	Kill
	Next
	Reset
	SetProgressLimits
	TakeRecord

	Properties
	ChildRead
	Percentile
	PText
	RecordsProcessed
	RecordsToProcess

	ProcessRecord
	Program Author
	progress bar
	progress window, suppress
	ProgressMgr
	Property Name
	Property to Set
	Property Type
	PROTECTED
	PText
	ProcessClass

	public data
	PUTINI

	Q
	QBE
	QC
	QueryVisualClass

	QFC
	QueryFromVisual
	QueryListVisual

	Query
	BrowseClass

	Query button
	Query-by-example
	QueryClass
	Methods
	AddItem
	Ask
	ClearQuery
	Delete
	GetFilter
	GetLimit
	Init
	Kill
	Reset
	Restore
	Save
	SetLimit
	SetQuickPopup
	Take

	Properties

	QueryControl
	BrowseClass

	QueryFormClass
	Methods
	Ask
	Init
	Kill

	Properties

	QueryFormVisual
	Methods
	Init
	SetText
	TakeAccepted
	TakeCompleted
	TakeFieldEvent
	UpdateFields

	Properties
	QFC

	QueryFormViual
	Methods
	ResetFromQuery

	QueryListClass
	Methods
	Ask
	Init
	Kill

	Properties

	QueryListVisual
	Methods
	Init
	SetAlerts
	TakeAccepted
	TakeCompleted
	TakeEvent
	TakeFieldEvent
	UpdateFields

	Properties
	FldsEIP
	OpsEIP
	QFC

	QueryListViual
	Methods
	ResetFromQuery

	QueryShared
	BrowseClass

	QueryVisualClass
	Methods
	Init
	Kill
	Reset
	TakeAccepted
	TakeFieldEvent
	TakeWindowEvent

	Properties
	QC
	Resizer

	Quick Start Wizard
	Quick-Scan Records
	QuickScan
	BrowseClass

	R
	Range Limit
	FileDrop

	Range Limit Field
	Range Limit Type
	Read and write
	Read only
	ReadOnly
	EditClass

	RealList
	BufferedPairsClass

	Reassign FROM attribute after Kill
	Record Identifier
	Record order
	record selection
	FileDrop

	Record Validation
	Records
	BrowseClass

	RecordsProcessed
	ProcessClass

	RecordsToProcess
	ProcessClass

	RecordValidation
	RECOVER
	Reference
	Referential Integrity
	referential integrity
	enforcement of

	Refresh Application Builder Class Information
	refresh/redisplay ABC BrowseBoxes
	Relate:file
	Relate:filename
	Related Field
	Relation Tree
	filtering and record selection

	relation tree navigation
	RelationManagerClass
	Methods
	AddRelation
	AddRelationLink
	CancelAutoInc
	Close
	Delete
	Init
	Kill
	ListLinkingFields
	Open
	Save
	SetAlias
	SetQuickScan
	Update

	Properties
	Me
	UseLogout

	Relationship
	printing

	RelationTree
	colors
	icons
	Primary File Settings
	Secondary File Settings

	RelationTree Control template
	RelationTreeUpdateButtons
	RELn::Toolbar
	Remove Duplicates
	RemoveErrors
	ErrorClass

	Repeat previous record
	repetitive insert/add
	Report
	ReportManagerClass

	Report Properties
	Report Template
	classes

	Report template
	single record mode

	Report Wizard
	ReportChildFiles
	Child File
	Detail

	ReportDateStamp
	ReportManagerClass
	Methods
	Ask
	AskPreview
	Init
	Kill
	Next
	Open
	OpenReport
	TakeCloseEvent
	TakeNoRecords
	TakeWindowEvent

	Properties
	DeferOpenReport
	DeferWindow
	KeepVisible
	Preview
	PreviewQueue
	Process
	Report
	SkipPreview
	TimeSlice
	WaitCursor
	Zoom

	ReportPageNumber
	ReportTimeStamp
	Repost
	EIPManagerClass

	RepostField
	EIPManagerClass

	Req
	EIPManagerClass

	Request
	ToolbarUpdateClass
	WindowManagerClass

	RequestCancelled
	RequestCompleted
	Reset
	ASCIIFileClass
	ASCIIViewerClass
	ConstantClass
	EditMultiSelectClass
	FilterLocatorClass
	ProcessClass
	QueryClass
	QueryVisualClass
	ViewManagerClass
	WindowManagerClass
	WindowResizeClass

	reset ABC BrowseBoxes
	Reset Fields
	Reset on gain focus
	ResetColumn
	EIPManagerClass

	ResetFromAsk
	BrowseClass

	ResetFromBuffer
	BrowseClass

	ResetFromFile
	BrowseClass

	ResetFromQuery
	QueryFormVisual
	QueryListVisual

	ResetFromView
	BrowseClass

	ResetOnGainFocus
	WindowManagerClass

	ResetQueue
	BrowseClass
	FileDropClass
	FileDropComboClass

	ResetResets
	BrowseClass

	ResetSort
	BrowseClass

	Resize
	WindowResizeClass

	Resize Strategy
	resize strategy
	for a single control

	resize windows
	Resizer
	QueryVisualClass

	Resizer Configuration Options
	ResizeSetStrategy
	Response
	WindowManagerClass

	Restore
	PopupClass
	QueryClass

	RestoreBuffer
	FileManagerClass

	RestoreField
	WindowManagerClass

	RestoreFile
	FileManagerClass

	RestoreWindow
	WindowResizeClass

	Retain Row
	RetainRow
	BrowseClass

	Return to original directory when done
	Return Value
	Procedure Properties

	Return Value Assignment
	Reusability
	Reusable code
	RI constraints
	Process template

	Root
	StepStringClass

	Run
	EIPManagerClass
	WindowManagerClass

	Run-Time Translation

	S
	Save
	PopupClass
	QueryClass
	RelationManagerClass

	Save and Restore Window Location
	Save Button control template
	SaveBuffer
	FileManagerClass

	Saved
	WindowManagerClass

	SaveFile
	FileManagerClass

	SaveHistory
	WindowManagerClass

	Saving Global Data Between Sesssions
	Scroll Bar Behavior
	Scroll bottom
	Scroll down one page
	Scroll down one row
	Scroll top
	Scroll up one page
	Scroll up one row
	ScrollEnd
	BrowseClass

	scrolling
	large files

	Scrolling Form
	ScrollOne
	BrowseClass

	ScrollPage
	BrowseClass

	SDI
	SDI (Single Document Interface)
	Search
	search
	search record
	Searcher
	ASCIIViewerClass

	Seconds for RECOVER
	SeekForward
	EIPManagerClass

	Select File dialog
	SelectButton
	ToolbarTargetClass

	SelectControl
	BrowseClass

	Selected
	EditMultiSelectClass

	SelectFileClass
	Methods
	AddMask
	Ask
	Init
	SetMask

	Properties
	DefaultDirectory
	DefaultFile
	Flags
	WindowTitle

	Selecting
	BrowseClass

	selecting records
	FileDrop
	FileDropCombo
	Relation tree

	SelectRecord
	SelectToolbarTarget
	SelectWholeRecord
	BrowseClass

	Set
	ConstantClass
	EntryLocatorClass
	LocatorClass
	StepLocatorClass

	Set Initial Window Position
	Set progress bar limits manually?
	SetABCProperty
	SetAlerts
	BrowseClass
	EditClass
	EditDropListClass
	IncrementalLocatorClass
	LocatorClass
	QueryListVisual
	WindowManagerClass

	SetAlias
	RelationManagerClass

	SetDefaultPages
	PrintPreviewClass

	SetEnabled
	LocatorClass

	SetError
	FileManagerClass

	SetErrors
	ErrorClass

	SetFatality
	ErrorClass

	SetField
	ErrorClass

	SetFile
	ErrorClass

	SetFilter
	ViewManagerClass

	SetIcon
	PopupClass

	SetId
	ErrorClass

	SetINIManager
	PrintPreviewClass

	SetItemCheck
	PopupClass

	SetItemEnable
	PopupClass

	SetKey
	FileManagerClass

	SetLevel
	PopupClass

	SetLimit
	QueryClass
	StepClass
	StepLongClass
	StepRealClass
	StepStringClass

	SetLimitNeeded
	StepClass
	StepStringClass

	SetLine
	ASCIIFileClass
	ASCIIViewerClass

	SetLineRelative
	ASCIIViewerClass

	SetMask
	SelectFileClass

	SetName
	FileManagerClass

	SetOrder
	ViewManagerClass

	SetParentControl
	WindowResizeClass

	SetParentDefaults
	WindowResizeClass

	SetPercentile
	ASCIIFileClass

	SetPosition
	PrintPreviewClass
	WindowResizeClass

	SetProcedureName
	ErrorClass

	SetProgressLimits
	ProcessClass

	SetProperty
	SetQueueRecord
	BrowseClass
	FileDropClass

	SetQuickPopup
	QueryClass

	SetQuickScan
	RelationManagerClass

	SetReadOnly
	EditClass
	EditDropListClass

	SetResponse
	WindowManagerClass

	SetSort
	BrowseClass
	ViewManagerClass

	SetStrategy
	WindowResizeClass

	SetTarget
	ToolbarClass

	SetText
	PopupClass
	QueryFormVisual

	SetToolbox
	PopupClass

	SetTranslator
	ASCIIViewerClass
	PopupClass

	Setup
	ASCIISearchClass

	SetZoomPercentile
	PrintPreviewClass

	Shadow
	EntryLocatorClass

	SHARE
	sharing files
	Ship List
	Silent Database Operations
	FileManagerClass

	SkipHeldRecords
	FileManagerClass

	SkipPreview
	ReportManagerClass

	Sort
	BrowseClass

	Sort Fields
	SortChars
	StepStringClass

	sorting
	browse lists

	Source Template
	Parameters

	Splash Screen
	Splash Template
	Spread
	WindowResizeClass

	SQL
	Application Wizard

	SQL and ABC Templates
	SQL Browse Optimization
	Standard Windows Behavior
	START
	StartAtCurrent
	BrowseClass

	Status Bar Section
	Step Locator
	StepClass
	Methods
	GetPercentile
	GetValue
	Init
	Kill
	SetLimit
	SetLimitNeeded

	Properties
	Controls

	StepCustomClass
	Methods
	AddItem
	GetPercentile
	GetValue
	Init
	Kill

	Properties
	Entries

	StepLocatorClass
	Methods
	Set
	TakeKey

	Properties

	StepLongClass
	Methods
	GetPercentile
	GetValue
	SetLimit

	Properties
	High
	Low

	StepRealClass
	Methods
	GetPercentile
	GetValue
	SetLimit

	Properties
	High
	Low

	StepStringClass
	Methods
	GetPercentile
	GetValue
	Init
	Kill
	SetLimit
	SetLimitNeeded

	Properties
	LookupMode
	Root
	SortChars
	TestLen

	String variable for
	sub-class configuration
	SubsString
	ErrorClass

	Surface
	WindowResizeClass

	SyncImageQueue
	PrintPreviewClass

	Syntax Diagram

	T
	Tab
	EIPManagerClass

	TabAction
	BrowseClass

	tagging records in a list
	Take
	QueryClass

	TakeAccepted
	EntryLocatorClass
	FilterLocatorClass
	LocatorClass
	PrintPreviewClass
	QueryFormVisual
	QueryListVisual
	QueryVisualClass
	WindowManagerClass

	TakeAcceptedLocator
	BrowseClass

	TakeAction
	EditMultiSelectClass
	EIPManagerClass

	TakeBenign
	ErrorClass

	TakeCloseEvent
	ReportManagerClass
	WindowManagerClass

	TakeCompleted
	BrowseEIPManagerClass
	EIPManagerClass
	QueryFormVisual
	QueryListVisual
	WindowManagerClass

	TakeError
	ErrorClass

	TakeEvent
	ASCIIViewerClass
	BrowseClass
	EditClass
	EditColorClass
	EditDropListClass
	EditFileClass
	EditFontClass
	EditMultiSelectClass
	EditTextClass
	EIPManagerClass
	FileDropClass
	FileDropComboClass
	PrintPreviewClass
	QueryListVisual
	ToolbarClass
	ToolbarListBoxClass
	ToolbarTargetClass
	ToolbarUpdateClass
	WindowManagerClass

	TakeFatal
	ErrorClass

	TakeFieldEvent
	EIPManagerClass
	PrintPreviewClass
	QueryFormVisual
	QueryVisualClass
	WindowManagerClass

	TakeFocusLoss
	EIPManagerClass

	TakeKey
	BrowseClass
	EntryLocatorClass
	IncrementalLocatorClass
	LocatorClass
	StepLocatorClass

	TakeListEvent
	QueryFormVisual

	TakeLocate
	BrowseClass

	TakeNewSelection
	BrowseClass
	BrowseEIPManagerClass
	EIPManagerClass
	FileDropClass
	FileDropComboClass
	WindowManagerClass

	TakeNoRecords
	ReportManagerClass

	TakeNotify
	ErrorClass

	TakeOther
	ErrorClass

	TakeProgram
	ErrorClass

	TakeRecord
	ProcessClass

	TakeRejected
	WindowManagerClass

	TakeScroll
	BrowseClass

	TakeSelected
	WindowManagerClass

	TakeToolbar
	ToolbarListBoxClass
	ToolbarReltreeClass
	ToolbarTargetClass
	ToolbarUpdateClass

	TakeUser
	ErrorClass

	TakeVCRScroll
	BrowseClass

	TakeWindowEvent
	PrintPreviewClass
	QueryVisualClass
	ReportManagerClass
	WindowManagerClass

	Target Field
	Template
	ascii viewer
	AsciiPrintButton
	AsciiSearchButton
	ASCIIViewControl
	browse procedure
	external procedure
	file viewer
	form procedure
	frame
	overview
	process
	report procedure
	source
	splash
	window

	Template Embed Points
	Template Prompts
	Templates
	BrowseBox
	CancelButton
	class configuration
	control
	DOSFileLookup
	procedure

	TerminatorValue
	ConstantClass

	TestLen
	StepStringClass

	ThisProcess
	ThisReport
	ThisWindow
	THREAD
	Throw
	ErrorClass
	FileManagerClass

	ThrowFile
	ErrorClass

	ThrowMessage
	FileManagerClass

	Time display template
	TimeOut
	ViewManagerClass

	TimeSlice
	ReportManagerClass

	Title
	EditColorClass
	EditFileClass
	EditFontClass
	EditMultiSelectClass
	EditTextClass

	Toolbar
	Application Wizard
	BrowseClass

	Toolbar Control Buttons
	Toolbar Navigation Target
	ToolbarClass
	Methods
	AddTarget
	DisplayButtons
	Init
	Kill
	SetTarget
	TakeEvent

	Properties

	ToolbarForm
	ToolbarItem
	BrowseClass

	ToolbarListBoxClass
	Methods
	DisplayButtons
	TakeEvent
	TryTakeToolbar

	Properties
	Browse

	ToolbarReltreeClass
	Methods
	DisplayButtons
	TakeToolbar

	Properties

	Toolbars, dockable
	ToolbarTargetClass
	Methods
	DisplayButtons
	TakeEvent
	TakeToolbar
	TryTakeToolbar

	Properties
	ChangeButton
	Control
	DeleteButton
	HelpButton
	InsertButton
	SelectButton

	ToolbarUpdateClass
	Methods
	DisplayButtons
	TakeEvent
	TakeToolbar
	TryTakeToolbar

	Properties
	History
	Request

	Toolbox
	PopupClass

	Toolbox button
	ToolControl
	BrowseClass

	TopLine
	ASCIIViewerClass

	Totals
	TranslateControl
	TranslatorClass

	TranslateControls
	TranslatorClass

	TranslateProperty
	TranslatorClass

	TranslateString
	TranslatorClass

	TranslateWindow
	TranslatorClass

	translating window and report text
	Translation, Run-Time
	Translator
	AsciiPrintClass
	ASCIISearchClass
	WindowManagerClass

	TranslatorClass
	macros
	Methods
	AddTranslation
	Init
	Kill
	TranslateControl
	TranslateControls
	TranslateProperty
	TranslateString
	TranslateWindow

	Properties
	ExtractText

	TranslatorClass Configuration
	Tree controls
	Tree heading Icon
	Tree Heading Text
	TryFetch
	FileManagerClass
	INIClass

	TryFetchField
	INIClass

	TryInsert
	FileManagerClass

	TryNext
	FileManagerClass

	TryOpen
	FileManagerClass

	TryPrevious
	FileManagerClass

	TryPrimeAutoInc
	FileManagerClass

	TryReget
	FileManagerClass

	TryTakeToolbar
	ToolbarListBoxClass
	ToolbarTargetClass
	ToolbarUpdateClass

	TryUpdate
	FileManagerClass

	U
	Undo
	Update
	EntryLocatorClass
	FileManagerClass
	INIClass
	RelationManagerClass
	WindowManagerClass

	update a single record from a file
	Update entire window?
	Update Procedure
	Update Selected Fields
	Update(FileManager)
	UpdateBuffer
	BrowseClass

	UpdateFields
	QueryFormVisual
	QueryListVisual

	UpdateQuery
	BrowseClass

	UpdateResets
	BrowseClass

	UpdateThumb
	BrowseClass

	UpdateThumbFixed
	BrowseClass

	UpdateViewRecord
	BrowseClass

	UpdateWindow
	BrowseClass
	EntryLocatorClass
	FilterLocatorClass
	LocatorClass

	Use a variable file mask
	Use Application Builder Class
	Use Application Wizard
	Use Default Application Builder Class
	Use default FileManager
	Use default RelationManager
	Use field description as MSG() when MSG() is blank
	Use RI constraints on action
	Use Window Setting
	UseField
	FileDropComboClass

	UseFile
	FileManagerClass

	UseLogout
	RelationManagerClass

	User Options
	UserPercentile
	PrintPreviewClass

	UseView
	ViewManagerClass

	Utility Templates

	V
	Validate during NonStop Select
	Validate when the control is Accepted
	ValidateField
	FileManagerClass

	ValidateLine
	ASCIIFileClass

	ValidateRecord
	FileDropClass
	ViewManagerClass

	Value or queue to assign
	Value to Set
	VCR buttons
	VCRRequest
	WindowManagerClass

	Vertical Positional Strategy
	Vertical Resize Strategy
	View
	ViewManagerClass

	Viewer Template
	ViewerN
	ViewManager
	LocatorClass

	ViewManagerClass
	Methods
	AddRange
	AddSortOrder
	AppendOrder
	ApplyFilter
	ApplyOrder
	ApplyRange
	Close
	GetFreeElementName
	GetFreeElementPosition
	Init
	Kill
	Next
	Open
	Previous
	PrimeRecord
	Reset
	SetFilter
	SetOrder
	SetSort
	UseView
	ValidateRecord

	Properties
	Order
	PagesAhead
	PagesBehind
	PageSize
	Primary
	TimeOut
	View

	ViewMenu
	PopupClass

	VIRTUAL

	W
	WaitCursor
	ReportManagerClass

	Web page
	publish BrowseBox

	When called for Delete
	Window
	BrowseClass
	generic
	individual control resizing

	Window Behavior
	Procedure Properties

	Window Controls
	default control settings for a field

	Window Message
	Window Operation Mode
	Window Template
	Window Update Options
	WindowManager Configuration
	WindowManagerClass
	Methods
	AddHistoryField
	AddHistoryFile
	AddItem
	AddUpdateFile
	Ask
	Init
	Kill
	Open
	PostCompleted
	PrimeFields
	PrimeUpdate
	Reset
	RestoreField
	Run
	SaveHistory
	SetAlerts
	SetResponse
	TakeAccepted
	TakeCloseEvent
	TakeCompleted
	TakeEvent
	TakeFieldEvent
	TakeRejected
	TakeSelected
	TakeWindowEvent
	Update

	Properties
	AutoRefresh
	AutoToolbar
	CancelAction
	ChangeAction
	Dead
	DeleteAction
	Errors
	FirstField
	ForceRefresh
	HistoryKey
	InsertAction
	OKControl
	Opened
	OriginalRequest
	Primary
	Request
	ResetOnGainFocus
	Response
	Saved
	Translator
	VCRRequest

	WindowPosSet
	PrintPreviewClass

	WindowResize
	WindowResizeClass
	Methods
	GetParentControl
	GetPositionStrategy
	GetResizeStrategy
	Init
	Kill
	Reset
	Resize
	RestoreWindow
	SetParentControl
	SetParentDefaults
	SetPosition
	SetStrategy

	Properties
	AutoTransparent
	DeferMoves

	WindowResizeClass Configuration
	windows
	application modal
	modeless

	Windows file dialog
	Windows help file
	WindowSizeSet
	PrintPreviewClass

	WindowTitle
	SelectFileClass

	Wizard
	browse procedure
	report procedure
	update form procedure

	Wizards
	build entire application from dictionary
	customizing
	starting

	Write only

	Z
	Zoom
	ReportManagerClass

	Zoom Setting
	ZoomIndex
	PrintPreviewClass

