
SUPPLEMENT ADDED AND HEAVILY REVISED CHAPTERS xx

SUPPLEMENT

Purpose
The addition of five new classes and several properties and methods into the
C5a Application Builder Classes has created an expanded Application
Handbook. As a service to our customers, TopSpeed is providing this PDF
of the new chapters and the revised PrintPreviewClass chapter, for easy
viewing and printing of the majority of this new material.

This document is a duplication of the new material found in the Application
Handbook (c5-ah.pdf), and is provided solely for the convenience of our
customer’s and does not supercede the complete Application Handbook (c5-
ah.pdf). This document is not a complete compilation of all new properties
and methods; see the readme file for a complete list of changes.

Contents

BrowseEipManagerClass (NEW)

EditSpinClass (NEW)

EIPManagerClass (NEW)

PrintPreviewClass (REVISED)

QueryListClass (NEW)

QueryListVisual (NEW)

Note: The chapter and page numbers in this document reflect the
chapter and page numbers in the new c5-ah.pdf distributed
with C5a.

CHAPTER 12 BROWSEEIPMANAGERCLASS 311

12- BROWSEEIPMANAGERCLASS

Overview
The BrowseEIPManagerClass is an EIPManager that displays an Edit-in-
place dialog, and handles events for that dialog. Each BrowseClass utilizing
Edit-in-place declares a BrowseEIPManagerClass to manage the events and
processes that are used by each Edit-in-place field in the browse.

BrowseEIPManagerClass Concepts

Each Edit-in-place control is a window created on top of the browse from
which it is called. The EIPManager dynamically creates an Edit-in-place
object and control upon request (Insert, Change, or Delete) by the end user.
When the end user accepts the edited record the EIPManager destroys the
edit-in-place object and control.

Relationship to Other Application Builder Classes

EIPManagerClass

The BrowseEIPManager class is derived from the EIPManager class.

BrowseClass

Each BrowseClass utilizing edit-in-place declares a
BrowseEIPManagerClass to manage the events and processes that are used
by each edit-in-place field in the browse.

The BrowseClass.AskRecord method is the calling method for edit-in-place
functionality when edit-in-place is enabled.

EditClass

The BrowseEIPManager provides the basic or “under the hood” interface
between the Edit classes and the Browse class. All fields in the browse
utilizing customized edit-in-place controls are kept track of by the
BrowseEIPManager via the BrowseEditQueue.

312 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

The Browse template declares a BrowseEIPManager when the
BrowseUpdateButtons control template enables default edit-in-place support
for the BrowseBox.

See Control Templates—BrowseBox, and BrowseUpdateButtons for more
information.

BrowseEIPManagerClass Source Files

The BrowseEIPManagerClass source code is installed by default to the
Clarion \LIBSRC folder. The specific BrowseEIPManagerClass source code
and their respective components are contained in:

ABBrowse.INC EditClass declarations
ABBrowse.CLW EditClass method definitions
ABBrowse.TRN EditClass translation strings

Conceptual Example

The following example shows a sequence of statements to declare, and
instantiate a BrowseEIPManager object. The example page-loads a LIST of
actions and associated priorities, then edits the list items via edit-in-place.
Note that the BrowseClass object declares a BrowseEIPManager which is a
refrence to the EIPManager as declared in ABBrowse.INC.

 PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABBROWSE.INC'),ONCE
 INCLUDE('ABEIP.INC'),ONCE
 INCLUDE('ABWINDOW.INC'),ONCE
 MAP
 END

Actions FILE,DRIVER('TOPSPEED'),PRE(ACT),CREATE,BINDABLE,THREAD
KeyAction KEY(ACT:Action),NOCASE,OPT
Record RECORD,PRE()
Action STRING(20)
Priority DECIMAL(2)
Completed DECIMAL(1)
 END
 END

Access:Actions &FileManager
Relate:Actions &RelationManager
GlobalErrors ErrorClass
GlobalRequest BYTE(0),THREAD

CHAPTER 12 BROWSEEIPMANAGERCLASS 313

ActionsView VIEW(Actions)
 END

Queue:Browse QUEUE
ACT:Action LIKE(ACT:Action)
ACT:Priority LIKE(ACT:Priority)
ViewPosition STRING(1024)
 END
BrowseWindow WINDOW('Browse Records'),AT(0,0,247,140),SYSTEM,GRAY
 LIST,AT(5,5,235,100),USE(?List),IMM,HVSCROLL,MSG('Browsing Records'),|
 FORMAT('80L~Action~@S20@8R~Priority~L@N2@'),FROM(Queue:Browse)
 BUTTON('&Insert'),AT(5,110,40,12),USE(?Insert),KEY(InsertKey)
 BUTTON('&Change'),AT(50,110,40,12),USE(?Change),KEY(CtrlEnter),DEFAULT
 BUTTON('&Delete'),AT(95,110,40,12),USE(?Delete),KEY(DeleteKey)
 END

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,DERIVED
Kill PROCEDURE(),BYTE,PROC,DERIVED
 END

BRW1 CLASS(BrowseClass)
Q &Queue:Browse
Init PROCEDURE(SIGNED ListBox,*STRING Posit,VIEW V,QUEUE Q,RelationManager

RM,WindowManager WM)
END

BRW1::EIPManager BrowseEIPManager ! Browse EIP Manager for Browse using ?List

 CODE
 GlobalErrors.Init
 Relate:Actions.Init
 GlobalResponse = ThisWindow.Run()
 Relate:Actions.Kill
 GlobalErrors.Kill

ThisWindow.Init PROCEDURE

ReturnValue BYTE,AUTO
 CODE
 SELF.Request = GlobalRequest
 ReturnValue =PARENT.Init()
 IF ReturnValue THEN RETURN ReturnValue.
 SELF.FirstField = ?List
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 SELF.AddItem(Toolbar)
 CLEAR(GlobalRequest)
 CLEAR(GlobalResponse)
 Relate:Actions.Open
 FilesOpened = True
 BRW1.Init(?List,Queue:Browse.ViewPosition,BRW1::View:Browse,Queue:Browse,Relate:Actions,SELF)
 OPEN(BrowseWindow)
 SELF.Opened=True
 BRW1.Q &= Queue:Browse
 BRW1.AddSortOrder(,ACT:KeyAction)
 BRW1.AddLocator(BRW1::Sort0:Locator)
 BRW1::Sort0:Locator.Init(,ACT:Action,1,BRW1)

314 CLARION 5 APPLICATION HANDBOOK

 BRW1.AddField(ACT:Action,BRW1.Q.ACT:Action)
 BRW1.AddField(ACT:Priority,BRW1.Q.ACT:Priority)
 BRW1.ArrowAction = EIPAction:Default+EIPAction:Remain+EIPAction:RetainColumn
 BRW1.InsertControl=?Insert
 BRW1.ChangeControl=?Change
 BRW1.DeleteControl=?Delete
 BRW1.AddToolbarTarget(Toolbar)
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE

ReturnValue BYTE,AUTO
 CODE
 ReturnValue =PARENT.Kill()
 IF ReturnValue THEN RETURN ReturnValue.
 IF FilesOpened
 Relate:Actions.Close
 END
 RETURN ReturnValue

BRW1.Init PROCEDURE(SIGNED ListBox,*STRING Posit,VIEW V,QUEUE Q,RelationManager
RM,WindowManager WM)

 CODE
 PARENT.Init(ListBox,Posit,V,Q,RM,WM)
 SELF.EIP &= BRW1::EIPManager

CHAPTER 12 BROWSEEIPMANAGERCLASS 315

BrowseEIPManagerClass Properties
The BrowseEIPManagerClass contains the following property and inherits
all the properties of the EIPManagerClass.

BC (browse class)

BC &BrowseClass, PROTECTED

The BC property is a reference to the calling BrowseClass object.

316 CLARION 5 APPLICATION HANDBOOK

BrowseEIPManagerClass Methods
The BrowseEIPManagerClass contains the following methods, and inherits
all the methods of the EIPManagerClass.

Functional Organization—Expected Use

As an aid to understanding the EIPManagerClass, it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the EIPManagerClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitD initialize the BrowseEditClass object
Kill D shut down the BrowseEditClass object

Mainstream Use:
TakeNewSelectionD handle Event:NewSelections

Occasional Use:
ClearColumnD reset column property values
TakeCompletedD process completion of edit

D These methods are also Derived

Derived Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are derived, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

InitD initialize the BrowseEditClass object
Kill D shut down the BrowseEditClass object
TakeNewSelectionD handle Event:NewSelections
ClearColumnD reset column property values
TakeCompletedD process completion of edit

CHAPTER 12 BROWSEEIPMANAGERCLASS 317

ClearColumn (reset column property values)

ClearColumn, DERIVED

The ClearColumn method checks for a value in the LastColumn property
and conditionally sets the column values to 0.

The TakeCompleted method calls the ClearColumn method.

Example:

BrowseEIPManager.TakeCompleted PROCEDURE(BYTE Force)
SaveAns UNSIGNED,AUTO
Id USHORT,AUTO
 CODE
 SELF.Again = 0
 SELF.ClearColumn
 SaveAns = CHOOSE(Force = 0,Button:Yes,Force)
 IF SELF.Fields.Equal()
 SaveAns = Button:No
 ELSE
 IF ~Force
 SaveAns = SELF.Errors.Message(Msg:SaveRecord,|

Button:Yes+Button:No+Button:Cancel,Button:Yes)
 END
 END
! code to handle user input from SaveRecord message

See Also: Column

Init (initialize the BrowseEIPManagerClass object)

Init, DERIVED, PROC

The Init method initializes the BrowseEIPManagerClass object.

Implementation: The Init method primes variables and calls the InitControls method which
then initializes the appropriate edit-in-place controls. It is indirectly called
by the BrowseClass.AskRecord method via a call to an inherited Run
method.

Return Data Type: BYTE

Example:

WindowManager.Run PROCEDURE
 CODE
 IF ~SELF.Init()
 SELF.Ask
 END
 SELF.Kill
 RETURN CHOOSE(SELF.Response=0,RequestCancelled,SELF.Response)

See Also: BrowseClass.ResetFromAsk

318 CLARION 5 APPLICATION HANDBOOK

Kill (shut down the BrowseEIPManagerClass object)

Kill, DERIVED, PROC

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code. The Kill method must leave
the object in a state in which it can be initialized.

Implementation: The Kill method calls the BrowseClass.ResetFromAsk method.

Return Data Type: BYTE

Example:

WindowManager.Run PROCEDURE
 CODE
 IF ~SELF.Init()
 SELF.Ask
 END
 SELF.Kill
 RETURN CHOOSE(SELF.Response=0,RequestCancelled,SELF.Response)

See Also: BrowseClass.ResetFromAsk

CHAPTER 12 BROWSEEIPMANAGERCLASS 319

TakeCompleted (process completion of edit)

TakeCompleted(force), DERIVED

TakeCompleted Determines the edit-in-place dialog’s action after either a
loss of focus or an end user action.

force An integer constant, variable, EQUATE, or expression
that indicates the record being edited should be saved
without prompting the end user.

The TakeCompleted method either saves the record being edited and end
the edit-in-place process, or prompts the end user to save the record and end
the edit-in-place process, cancel the changes and end the edit-in-place
process, or remain editing.

Implementation: The EIPManager.TakeFocusLoss and EIPManager.TakeAction methods call
the TakeCompleted method.

Note: TakeCompleted does not override the
WindowManager.TakeCompleted method.

Example:

EIPManager.TakeFocusLoss PROCEDURE
 CODE
 CASE CHOOSE(SELF.FocusLoss&=NULL,EIPAction:Default,BAND(SELF.FocusLoss,EIPAction:Save))
 OF EIPAction:Always OROF EIPAction:Default
 SELF.TakeCompleted(Button:Yes)
 OF EIPAction:Never
 SELF.TakeCompleted(Button:No)
 ELSE
 SELF.TakeCompleted(0)
 END

See Also: EIPManager.TakeFocusLoss, EIPManager.TakeAction

320 CLARION 5 APPLICATION HANDBOOK

TakeNewSelection (reset edit-in-place column)

TakeNewSelection, DERIVED, PROC

The TakeNewSelection method resets the edit-in-place column selected by
the end user.

Implementation: TakeNewSelection calls ResetColumn, and returns a Level:Benign.

Return Data Type: BYTE

Example:

WindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
 IF ~FIELD()
 RVal = SELF.TakeWindowEvent()
 IF RVal THEN RETURN RVal.
 END
 CASE EVENT()
 OF EVENT:Accepted
 RVal = SELF.TakeAccepted()
 OF EVENT:Rejected
 RVal = SELF.TakeRejected()
 OF EVENT:Selected
 RVal = SELF.TakeSelected()
 OF EVENT:NewSelection
 RVal = SELF.TakeNewSelection()
 OF EVENT:AlertKey
 IF SELF.HistoryKey AND KEYCODE() = SELF.HistoryKey
 SELF.RestoreField(FOCUS())
 END
 END
 IF RVal THEN RETURN RVal.

See Also: ResetColumn

CHAPTER 23 EDITSPINCLASS 425

23 - EDITSPINCLASS

Overview
The EditSpinClass is an EditClass that supports a SPIN control. The
EditSpinClass lets you implement a dynamic edit-in-place SPIN control for a
column in a LIST.

EditSpinClass Concepts

The EditSpinClass creates a SPIN control, accepts input from the end user,
then returns the input to the variable specified by the Init method, typically
the variable associated with a specific LIST cell—a field in the LIST
control’s data source QUEUE. The EditSpinClass also signals the calling
procedure whenever significant edit-in-place events occur, such as tabbing to
a new column, cancelling the edit, or completing the edit (moving to a new
record or row). The EditSpinClass provides a virtual TakeEvent method to let
you take control of significant edit-in-place events.

Relationship to Other Application Builder Classes

EditClass

The EditSpinClass is derived from the EditClass. The EditClass serves as the
foundation and framework for its derived classes. These derived classes each
provide a different type of input control or input user interface. You can
control the values returned by these derived EditClass objects by using their
virtual methods. See the Conceptual Example.

BrowseEIPManagerClass

The EditClass is managed by the BrowseEIPManagerClass. The
BrowseEIPManagerClass depends on the EditClass operating according to
it’s documented specifications; however, the EditClass may be called by non-
BrowseClass procedures and objects.

ABC Template Implementation

You can use the BrowseUpdateButtons control template (Configure
EditInPlace) to generate the code to instantiate an EditSpinClass object
called EditInPlace::fieldname and register the object with the BrowseClass
object. The BrowseClass object then calls the registered EditSpinClass
object’s methods as needed. See Control Templates—BrowseUpdateButtons
for more information.

426 CLARION 5 APPLICATION HANDBOOK

EditSpinClass Source Files

The EditSpinClass source code is installed by default to the Clarion
\LIBSRC folder. The specific EditSpinClass source code and their respective
components are contained in:

ABEIP.INC EditSpinClass declarations
ABEIP.CLW EditSpinClass method definitions

Conceptual Example

The following example shows a sequence of statements to declare,
instantiate, initialize, use, and terminate an EditSpinClass object and a
related BrowseClass object. The example page-loads a LIST of actions and
associated attributes (priority and completed), then edits the “Priority” items
with an EditSpinClass object. Note that the BrowseClass object calls the
“registered” EditSpinClass object’s methods as needed.

Note: The EditSpinClass requires values for PROP:RangeLow,
PROP:RangeHigh, and PROP:Step to function correctly. The
EditSpinClass.Init method is the proper place to set these
properties. See SPIN in the Language Reference for more
information.

 PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
 INCLUDE('ABWINDOW.INC'),ONCE
 INCLUDE('ABEIP.CLW'),ONCE
 INCLUDE('ABBROWSE.CLW'),ONCE
 MAP
 END
Actions FILE,DRIVER('TOPSPEED'),PRE(ACT),CREATE,BINDABLE,THREAD
KeyAction KEY(ACT:Action),NOCASE,OPT
Record RECORD,PRE()
Action STRING(20)
Priority DECIMAL(2)
Completed DECIMAL(1)
 END
 END
ViewActions VIEW(Actions)
 END
ActQ QUEUE
ACT:Action LIKE(ACT:Action)
ACT:Priority LIKE(ACT:Priority)
ACT:Completed LIKE(ACT:Completed)
ViewPosition STRING(1024)
 END

ActionWindow WINDOW('Actions File'),AT(,,164,144),IMM,HLP('BrowseActions'),SYSTEM,GRAY
LIST,AT(8,6,148,115),USE(?List),IMM,HVSCROLL,FORMAT('80L(2)|~Action~’&|
‘@S20@31C|~Priority~@N2@40L(2)|~Done~L(0)@N1@'),FROM(ActQ)
BUTTON('&Insert'),AT(10,126,45,14),USE(?Insert:2)

CHAPTER 23 EDITSPINCLASS 427

BUTTON('&Change'),AT(59,126,45,14),USE(?Change:2),DEFAULT
BUTTON('&Delete'),AT(108,126,45,14),USE(?Delete:2)

END
ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,DERIVED
Kill PROCEDURE(),BYTE,PROC,DERIVED
 END
BRW1 CLASS(BrowseClass)
Q &ActQ
 END
Edit:ACT:Priority CLASS(EditSpinClass) ! Edit-in-place class for field ACT:Priority
Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar),DERIVED
 END
 CODE
 GlobalResponse = ThisWindow.Run()

ThisWindow.Init PROCEDURE
ReturnValue BYTE,AUTO
 CODE
 SELF.Request = GlobalRequest
 ReturnValue =PARENT.Init()
 IF ReturnValue THEN RETURN ReturnValue.
 SELF.FirstField = ?List
 SELF.Errors &= GlobalErrors
 CLEAR(GlobalRequest)
 CLEAR(GlobalResponse)
 Relate:Actions.Open
 FilesOpened = True
 BRW1.Init(?List,ActQ.ViewActions,BRW1::ViewActions,ActQ,Relate:Actions,SELF)
 OPEN(ActionWindow)
 SELF.Opened=True
 BRW1.Q &= ActQ
 BRW1.AddSortOrder(ACT:KeyAction)
 BRW1.AddField(ACT:Action,BRW1.Q.ACT:Action)
 BRW1.AddField(ACT:Priority,BRW1.Q.ACT:Priority)
 BRW1.AddField(ACT:Completed,BRW1.Q.ACT:Completed)
 BRW1.AddEditControl(EditInPlace::ACT:Priority,2) !Add cutom edit-inplace class
 BRW1.ArrowAction = EIPAction:Default+EIPAction:Remain+EIPAction:RetainColumn
 BRW1.InsertControl=?Insert:2
 BRW1.ChangeControl=?Change:2
 BRW1.DeleteControl=?Delete:2
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE
ReturnValue BYTE,AUTO
 CODE
 ReturnValue =PARENT.Kill()
 IF ReturnValue THEN RETURN ReturnValue.
 IF FilesOpened
 Relate:Actions.Close
 END
 RETURN ReturnValue

Edit:ACT:Priority.Init PROCEDURE(UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)
 CODE
 PARENT.Init(FieldNumber,ListBox,UseVar)
 SELF.FEQ{PROP:RANGE,1} = 1 !Set the Low Range for the Spinbox
 SELF.FEQ{PROP:RANGE,2} = 10 !Set the High Range for the Spinbox
 SELF.FEQ{PROP:Step} = 1 !Set the incremental steps of the Spinbox

428 CLARION 5 APPLICATION HANDBOOK

EditSpinClass Properties
The EditSpinClass inherits all the properties of the EditClass from which it is
derived. See EditClass Properties and EditClass Concepts for more
information.

CHAPTER 23 EDITSPINCLASS 429

EditSpinClass Methods
The EditSpinClass inherits all the methods of the EditClass from which it is
derived. See EditClass Methods and EditClass Concepts.

In addition to (or instead of) the inherited methods, the EditSpinClass
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the EditSpinClass it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the EditSpinClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitVI initialize the EditSpinClass object
Kill VI shut down the EditSpinClass object

Mainstream Use:
TakeEventVI handle events for the SPIN control

Occasional Use:
CreateContolV create the SPIN control
SetAlertsVI alert keystrokes for the SPIN control

V These methods are also virtual.
I These methods are inherited from the EditClass

Virtual Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

InitI initialize the EditSpinClass object
CreateContol create the SPIN control
SetAlertsI alert keystrokes for the SPIN control
TakeEventI handle events for the SPIN control
Kill I shut down the EditSpinClass object

430 CLARION 5 APPLICATION HANDBOOK

CreateControl (create the edit-in-place SPIN control)

CreateControl, VIRTUAL, PROTECTED

The CreateControl method creates the edit-in-place SPIN control and sets
the FEQ property.

Implementation: The Init method calls the CreateControl method. The CreateControl method
sets the value of the FEQ property. Use the Init method or the CreateControl
method to set any required properties of the SPIN control.

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: FEQ, EditClass.CreateControl

CHAPTER 24 EIPMANAGERCLASS 431

24 - EIPMANAGERCLASS

Overview
The EIPManagerClass is a WindowManager that displays an edit-in-place
dialog, and handles events for that dialog . The EIPManagerClass is an
abstract class—it is not useful by itself, but serves as the foundation and
framework for the BrowseEIPManagerClass. See BrowseEIPManagerClass.

EIPManagerClass Concepts

Each edit-in-place control is created on top of the browse from which it is
called. The EIPManager dynamically creates an edit-in-place object and
control upon request (Insert, Change, or Delete) by the end user. When the
end user accepts the edited record the EIPManager destroys the edit-in-place
object and control.

Relationship to Other Application Builder Classes

WindowClass

The EIPManager class is derived from the WindowManager class.

BrowseClass

Each BrowseClass utilizing edit-in-place requires an BrowseEIPManager to
manage the events and processes that are used by each edit-in-place field in
the browse.

The BrowseClass.AskRecord method is the calling method for edit-in-place
functionality.

EditClasses

The EIPManager provides the basic or “under the hood” interface between
the Edit classes and the Browse class. The EIPManager uses the EditQueue
to keep track of the fields in the browse utilizing edit-in-place.

432 CLARION 5 APPLICATION HANDBOOK

ABC Template Implementation

The Browse template declares a BrowseEIPManager when the
BrowseUpdateButtons control template enables default edit-in-place support
for the BrowseBox.

See Control Templates—BrowseBox and BrowseUpdateButtons for more
information.

EIPManagerClass Source Files

The EIPManagerClass source code is installed by default to the Clarion
\LIBSRC folder. The specific EIPManagerClass source code and their
respective components are contained in:

ABEIP.INC EditClass declarations
ABEIP.CLW EditClass method definitions
ABEIP.TRN EditClass translation strings

Conceptual Example

The following example shows a sequence of statements to declare, and
instantiate an EIPManager object. The example page-loads a LIST of
actions and associated priorities, then edits the list items via edit-in-place.
Note that the BrowseClass object references the BrowseEIPManager which
is an EIPManager object, as referenced in ABBrowse.INC.

 PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 INCLUDE('ABBROWSE.INC'),ONCE
 INCLUDE('ABEIP.INC'),ONCE
 INCLUDE('ABWINDOW.INC'),ONCE
 MAP
 END

Actions FILE,DRIVER('TOPSPEED'),PRE(ACT),CREATE,BINDABLE,THREAD
KeyAction KEY(ACT:Action),NOCASE,OPT
Record RECORD,PRE()
Action STRING(20)
Priority DECIMAL(2)
Completed DECIMAL(1)
 END
 END

Access:Actions &FileManager
Relate:Actions &RelationManager
GlobalErrors ErrorClass
GlobalRequest BYTE(0),THREAD

CHAPTER 24 EIPMANAGERCLASS 433

ActionsView VIEW(Actions)
 END

Queue:Browse QUEUE
ACT:Action LIKE(ACT:Action)
ACT:Priority LIKE(ACT:Priority)
ViewPosition STRING(1024)
 END
BrowseWindow WINDOW('Browse Records'),AT(0,0,247,140),SYSTEM,GRAY
 LIST,AT(5,5,235,100),USE(?List),IMM,HVSCROLL,MSG('Browsing Records'),|
 FORMAT('80L~Action~@S20@8R~Priority~L@N2@'),FROM(Queue:Browse)
 BUTTON('&Insert'),AT(5,110,40,12),USE(?Insert),KEY(InsertKey)
 BUTTON('&Change'),AT(50,110,40,12),USE(?Change),KEY(CtrlEnter),DEFAULT
 BUTTON('&Delete'),AT(95,110,40,12),USE(?Delete),KEY(DeleteKey)
 END

ThisWindow CLASS(WindowManager)
Init PROCEDURE(),BYTE,PROC,DERIVED
Kill PROCEDURE(),BYTE,PROC,DERIVED
 END

BRW1 CLASS(BrowseClass)
Q &Queue:Browse
Init PROCEDURE(SIGNED ListBox,*STRING Posit,VIEW V,QUEUE Q,RelationManager

RM,WindowManager WM)
END

BRW1::EIPManager BrowseEIPManager ! EIPManager for Browse using ?List

 CODE
 GlobalErrors.Init
 Relate:Actions.Init
 GlobalResponse = ThisWindow.Run()
 Relate:Actions.Kill
 GlobalErrors.Kill

ThisWindow.Init PROCEDURE

ReturnValue BYTE,AUTO
 CODE
 SELF.Request = GlobalRequest
 ReturnValue =PARENT.Init()
 IF ReturnValue THEN RETURN ReturnValue.
 SELF.FirstField = ?List
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 SELF.AddItem(Toolbar)
 CLEAR(GlobalRequest)
 CLEAR(GlobalResponse)
 Relate:Actions.Open
 FilesOpened = True
 BRW1.Init(?List,Queue:Browse.ViewPosition,BRW1::View:Browse,Queue:Browse,Relate:Actions,SELF)
 OPEN(BrowseWindow)
 SELF.Opened=True
 BRW1.Q &= Queue:Browse
 BRW1.AddSortOrder(,ACT:KeyAction)
 BRW1.AddLocator(BRW1::Sort0:Locator)
 BRW1::Sort0:Locator.Init(,ACT:Action,1,BRW1)

434 CLARION 5 APPLICATION HANDBOOK

 BRW1.AddField(ACT:Action,BRW1.Q.ACT:Action)
 BRW1.AddField(ACT:Priority,BRW1.Q.ACT:Priority)
 BRW1.ArrowAction = EIPAction:Default+EIPAction:Remain+EIPAction:RetainColumn
 BRW1.InsertControl=?Insert
 BRW1.ChangeControl=?Change
 BRW1.DeleteControl=?Delete
 BRW1.AddToolbarTarget(Toolbar)
 SELF.SetAlerts()
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE

ReturnValue BYTE,AUTO
 CODE
 ReturnValue =PARENT.Kill()
 IF ReturnValue THEN RETURN ReturnValue.
 IF FilesOpened
 Relate:Actions.Close
 END
 RETURN ReturnValue

BRW1.Init PROCEDURE(SIGNED ListBox,*STRING Posit,VIEW V,QUEUE Q,RelationManager
RM,WindowManager WM)

 CODE
 PARENT.Init(ListBox,Posit,V,Q,RM,WM)
 SELF.EIP &= BRW1::EIPManager ! Browse object’s reference to the BrowseEIPManager

CHAPTER 24 EIPMANAGERCLASS 435

EIPManagerClass Properties
The EIPManagerClass contains the following properties.

Again (column usage flag)

Again BYTE, PROTECTED

The Again property contains a value that indicates whether or not the current
edit-in-place column has been selected by the user during an edit-in-place
process.

The TakeEvent method is where the Again property receives a value.

Arrow (edit-in-place action on arrow key)

Arrow &BYTE

The Arrow property is a reference to a BYTE which indicates the action to
take when the end user presses the up or down arrow key during an edit-in-
place process.

Note: The Arrow property should be treated as a PROTECTED
property except during initialization.

Implementation: When the EIPManager is instantiated from a browse the Arrow property will
point to the BrowseClass.ArrowAction.

See Also: BrowseClass.ArrowAction

Column (listbox column)

Column UNSIGNED

The Column property contains a value that indicates the column number of
the listbox field which currently has focus in an edit-in-place process.

436 CLARION 5 APPLICATION HANDBOOK

Enter (edit-in-place action on enter key)

Enter &BYTE

The Enter property is a reference to the BrowseClass.EnterAction property,
and indicates the action to take when the end user presses the ENTER key
during an edit-in-place process.

Note: The Enter property should be treated as a PROTECTED
property except during initialization.

See Also: BrowseClass.EnterAction

EQ (list of edit-in-place controls)

EQ &EditQueue

The EQ property is a reference to a structure containing a list of browse list
columns that will not utilize the default edit-in-place control. This list
includes columns that will not utilize edit-in-place.

Implementation: The AddControl method adds browse list columns to the EQ property. An
entry without an associated control indicates a column that has been
specified as non-edit-in-place.

You do not need to initialize this property to implement the default edit-in-
place controls. The EQ property supports custom edit-in-place controls.

The EQ property is a reference to a QUEUE declared in ABEdit.INC as
follows:

EditQueue QUEUE,TYPE
Field UNSIGNED
FreeUp BYTE
Control &EditClass

END

Note: The EQ property should be treated as a PROTECTED property
except during initialization.

See Also: AddControl

CHAPTER 24 EIPMANAGERCLASS 437

Fields (managed fields)

Fields &FieldPairsClass, PROTECTED

The Fields property is a reference to the FieldPairsClass object that moves
and compares data between the BrowseClass object’s FILE and the
EditClasses.

Note: The Fields property should be treated as a PROTECTED
property except during initialization.

See Also: BrowseClass.TabAction

FocusLoss (action on loss of focus)

FocusLoss &BYTE

The FocusLoss property is a reference to the BrowseClass.FocusLossAction
property, and indicates the action to take with regard to pending changes
when the edit control loses focus during an edit-in-place process.

Note: The FocusLoss property should be treated as a PROTECTED
property except during initialization.

See Also: BrowseClass.TabAction, BrowseClass.FocusLossAction

438 CLARION 5 APPLICATION HANDBOOK

Insert (placement of new record)

Insert BYTE

The Insert property indicates where in the list a new record will be added
when the end user inserts a new record. The default placement is below the
selected record.

Implementation: There are three places a new record can be placed in a list when using edit-
in-place: above the selected record; below the selected record (the default);
or appended to the bottom of the list.

Note: This does not change the sort order. After insertion, the list is
resorted and the new record appears in the proper position
within the sort sequence.

The specified placements are implemented by the BrowseEIPManager.Init
method. Set the record insertion point by assigning, adding, or subtracting
the following EQUATEd values to Insert. The following EQUATEs are in
ABEdit.INC:

 ITEMIZE,PRE(EIPAction)
Default EQUATE(0)
Always EQUATE(1)
Never EQUATE(2)
Prompted EQUATE(4)
Save EQUATE(7)
Remain EQUATE(8)
Before EQUATE(9) ! insert before/above selected record
Append EQUATE(10) ! insert at the bottom of the list
RetainColumn EQUATE(16)
 END

See Also: BrowseEIPManager.Init

ListControl (listbox control number)

ListControl SIGNED

The ListControl property contains the control number of the LIST control
that is utilizing edit-in-place.

Note: The ListControl property should be treated as a PROTECTED
property except during initialization.

See Also: BrowseClass.TabAction

CHAPTER 24 EIPMANAGERCLASS 439

LastColumn (previous edit-in-place column)

LastColumn BYTE, PROTECTED

The LastColumn property contains the column number of the previously
used edit-in-place control to facilitate the appropriate processing of a
NewSelection.

Implementation: The LastColumn method is assigned the value of the Column property in the
ResetColumn method.

Repost (event synchronization)

Repost UNSIGNED, PROTECTED

The Repost property indicates the appropriate event to post to the edit-in-
place control based on events posted from the browse procedure window.

Implementation: The TakeEvent and TakeFieldEvent methods assign the appropriate value to
the Repost property. The Kill method posts the specified event to the
appropriate edit-in-place control based on the value contained in the
RepostField property.

See Also: RepostField

RepostField (event synchronization field)

RepostField UNSIGNED, PROTECTED

The RepostField property contains the field control number of the listbox
field that is being edited.

Implementation: The TakeFieldEvent method assigns the appropriate value to the RepostField
property. The Kill method posts the specified event to the appropriate edit-
in-place control based on the value contained in the RepostField property.

See Also: Repost

440 CLARION 5 APPLICATION HANDBOOK

Req (database request)

Req BYTE, PROTECTED

The Req property indicates the database action the procedure is handling.
The EIPManager uses this property to make appropriate processing decisions
with regard to priming records, saving or abandoning changes, etc.

Implementation: The Run method is passed a parameter which contains the value assigned to
the Req property.

See Also: WindowManager.Request

SeekForward (get next field flag)

SeekForward BYTE, PROTECTED

The SeekForward property indicates that the end user has pressed the TAB

key during an edit-in-place process.

Implementation: The TakeAction method conditionally assigns a value of one (1) to the
SeekForward property based on the actions of the end user.

See Also: Next

Tab (action on a tab key)

Tab &BYTE

The Tab property is a reference to the BrowseClass.TabAction property that
indicates the action to take when the end user presses the TAB key during an
edit-in-place process.

Note: The Tab property should be treated as a PROTECTED property
except during initialization.

See Also: BrowseClass.TabAction

CHAPTER 24 EIPMANAGERCLASS 441

EIPManagerClass Methods
The EIPManagerClass contains the following methods.

Functional Organization—Expected Use

As an aid to understanding the EIPManagerClass, it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the EIPManagerClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
Run run this procedure
InitD initialize the EditClass object
InitControls initialize edit-in-place controls
Kill D shut down the EditClass object

Mainstream Use:
TakeEventD handle events for the edit control
TakeNewSelectionD handle Event:NewSelection

Occasional Use:
AddControl register edit-in-place controls
ClearColumnV reset column property values
CreateContolV a virtual to create the edit control
GetEditV identify edit-in-place field
Next get the next edit-in-place field
ResetColumnV reset edit-in-place object to selected field
SetAlertsV alert appropriate keystrokes for the edit control
TakeActionV process end user actions
TakeCompletedV process completion of edit
TakeFocusLossV process loss of focus
TakeFieldEventD handle field specific events

D These methods are also derived.
V These methods are also virtual.

442 CLARION 5 APPLICATION HANDBOOK

Virtual and Derived Methods

Typically you will not call these methods directly—the Primary Interface
methods call them. However, we anticipate you will often want to override
these methods, and because they are either derived or virtual, they are very
easy to override. These methods do provide reasonable default behavior in
case you do not want to override them.

InitD initialize the EditClass object
Kill D shut down the EditClass object
TakeEventD handle events for the edit control
TakeNewSelectionD handle Event:NewSelection
ClearColumnV reset column property values
CreateContolV a virtual to create the edit control
GetEditV identify edit-in-place field
ResetColumnV reset edit-in-place object to selected field
SetAlertsV alert appropriate keystrokes for the edit control
TakeActionV process end user actions
TakeCompletedV process completion of edit
TakeFocusLossV process loss of focus
TakeFieldEventD handle field specific events

CHAPTER 24 EIPMANAGERCLASS 443

AddControl (register edit-in-place controls)

AddControl([EditClass], Column , AutoFree)

AddControl Specifies an edit-in-place control.

EditClass The label of the EditClass. If omitted, the specified
column is not editable.

Column An integer constant, variable, EQUATE, or expression
that indicates the browse list column to edit with the
specified editclass object.

AutoFree A numeric constant, variable, EQUATE, or expression
that indicates whether the BrowseClass.Kill method
DISPOSEs of the editclass object. A zero (0) value
leaves the object intact. A non-zero value DISPOSEs the
object.

The AddControl method specifies the editclass that defines the edit-in-place
control for the browse column. Use autofree with caution; you should only
DISPOSE of memory allocated with a NEW statement. See the Language
Reference for more information on NEW and DISPOSE.

The AddControl method also registers fields which will not be editable via
edit-in-place. In this instance the EditClass parameter is omitted.

Implementation: The InitControls and BrowseClass.AddEditControl methods call the
AddControl method. The BrowseClass.AddEditControl method defines the
editclass for a column not utilizing the default editclass.

The AddControl method ADDs a record containing the values of EditClass,
Column, and AutoFree, to the EditQueue which is declared in ABEdit.INC as
follows:

EditQueue QUEUE,TYPE
Field UNSIGNED
FreeUp BYTE
Control &EditClass

END

Example:

BrowseClass.AddEditControl PROCEDURE(EditClass EC,UNSIGNED Id,BYTE Free)
 CODE
 SELF.CheckEIP
 SELF.EIP.AddControl(EC,Id,Free)

See Also: EQ, InitControls, BrowseClass.AddEditControl

444 CLARION 5 APPLICATION HANDBOOK

ClearColumn (reset column property values)

ClearColumn, VIRTUAL

The ClearColumn method checks for a value in the LastColumn property
and conditionally sets the column values to zero (0).

The TakeAction and TakeNewSelection methods call the ClearColumn
method.

Example:

EIPManager.TakeNewSelection PROCEDURE ! Must be overridden to handle out-of-row clicks
 CODE
 IF FIELD() = SELF.ListControl AND KEYCODE() = MouseLeft ! An in-row mouse click
 SELF.ClearColumn
 SELF.Column = SELF.ListControl{PROPLIST:MouseUpField}
 SELF.ResetColumn
 END
 RETURN Level:Benign

See Also: Column, TakeAction, TakeNewSelection

GetEdit (identify edit-in-place field)

GetEdit, VIRTUAL, PROTECTED

The GetEdit method checks for a value in the Control field of the
EditQueue.

Implementation: GetEdit is called by the Next method, and returns one (1) if any value is in
the Control field of the EditQueue, otherwise it returns zero (0).

Return Data Type: BYTE

Example:

EIPManager.Next PROCEDURE
 CODE

 GET(SELF.EQ,RECORDS(SELF.EQ))
? ASSERT(~ERRORCODE())
 LastCol=SELF.EQ.Field

 LOOP
 CLEAR(SELF.EQ)
 SELF.EQ.Field = SELF.Column
 GET(SELF.EQ,SELF.EQ.Field)
 IF ~ERRORCODE() AND SELF.GetEdit()
 BREAK
 END

!executable code

See Also: EQ, Next

CHAPTER 24 EIPMANAGERCLASS 445

Init (initialize the EIPManagerClass object)

Init, DERIVED, PROC

The Init method initializes the EIPManagerClass object.

Implementation: The BrowseEIPManager.Init method calls the Init method. The Init method
primes variables and calls the InitControls method which then initializes the
appropriate edit-in-place controls.

Return Data Type: BYTE

Example:

BrowseEIPManager.Init ! initialize BrowseEIPManagerClass object
!program code
RETURN PARENT.Init() ! call to the EIPManager.Init

See Also: BrowseEIPManager.Init, InitControls

InitControls (initialize edit-in-place controls)

InitControls, VIRTUAL

The InitControls method registers the default edit-in-place controls with the
EIPManager by calling the AddControl method, and initializes each added
control.

Implementation: The Init method calls the InitControls method. The InitControls method
checks for custom edit-in-place controls in the EditQueue before adding a
default edit-in-place control.

Example:

EIPManager.Init PROCEDURE
 CODE
 IF SELF.Column = 0 THEN SELF.Column = 1.
 SELF.LastColumn = 0
 SELF.Repost = 0
 SELF.RepostField = 0
 ASSERT(~SELF.EQ &= NULL)
 SELF.EQ.Field = 1

 SELF.InitControls
 SELF.ResetColumn
 RETURN Level:Benign

See Also: Init, EQ, AddControl

446 CLARION 5 APPLICATION HANDBOOK

Kill (shut down the EIPManagerClass object)

Kill, DERIVED, PROC

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code. The Kill method must leave
the object in a state in which an Init can be called.

Implementation: The BrowseEIPManager.Kill method calls the Kill method with a PARENT
call. The Kill method destroys the edit-in-place controls created by the
InitControls method.

Return Data Type: BYTE

Example:

BrowseEIPManager.Kill PROCEDURE
 CODE
 SELF.BC.ResetFromAsk(SELF.Req,SELF.Response)
 RETURN PARENT.Kill()

See Also: BrowseEIPManager.Kill

Next (get the next edit-in-place field)

Next, PROTECTED

The Next method gets the next edit-in-place control in the direction specified
(forward or backward) by the end user.

Implementation: The Next method loops through the EditQueue and gets the next edit-in-
place control based on the RETURN value of the GetEdit method.

Example:

EIPManager.ResetColumn PROCEDURE
 CODE
 SETKEYCODE(0)
 SELF.Next
 IF SELF.Column <> SELF.LastColumn
 SELF.ListControl{PROP:Edit,SELF.EQ.Field} = SELF.EQ.Control.Feq
 SELECT(SELF.EQ.Control.Feq)
 SELF.LastColumn = SELF.Column
 END

See Also: GetEdit, SeekForward, Column, EQ

CHAPTER 24 EIPMANAGERCLASS 447

ResetColumn (reset edit-in-place object to selected field)

ResetColumn, VIRTUAL, PROTECTED

The ResetColumn method selects the appropriate edit-in-place control
based on the selected listbox field.

Implementation: The ResetColumn method resets the FEQ to the selected ListControl field.

Example:

EIPManager.TakeCompleted PROCEDURE(BYTE Force)
 CODE
 SELF.Column = 1
 IF SELF.Again
 SELF.ResetColumn
 END

See Also: EditClass.FEQ, Init, ListControl, TakeAction, TakeCompleted,
TakeNewSelection

Run (run the EIPManager)

Run(request)

Run Run the EIPManager.

request An integer constant, variable, EQUATE, or expression
identifying the database action (insert, change, delete)
requested.

The Run method assigns the passed value to the Req property and executes
the EIPManager.

Implementation: Return value EQUATEs are declared in \LIBSRC\TPLEQU.CLW as follows:

RequestCompleted EQUATE (1) !Update Completed
RequestCancelled EQUATE (2) !Update Cancelled

Return Data Type: BYTE

Example:

BrowseClass.AskRecord PROCEDURE(BYTE Req)
 CODE
 SELF.CheckEIP
 RETURN SELF.EIP.Run(Req)

See Also: BrowseEIPManager.Run, Req

448 CLARION 5 APPLICATION HANDBOOK

TakeAction (process edit-in-place action)

TakeAction(action), VIRTUAL

TakeAction Processes edit-in-place action.

action An integer constant, variable, EQUATE, or expression
that contains the action to process. Valid EQUATEs are
forward, backward, next, previous, complete, and
cancel.

The TakeAction method processes an EIPManager dialog action. The
TakeAction method is your opportunity to interpret and implement the
meaning of the end user’s selection.

Implementation: The TakeFieldEvent conditionally calls the TakeAction method.

Corresponding EQUATEs are declared in ABEIP.INC as follows:

EditAction ITEMIZE(0),PRE
None EQUATE
Forward EQUATE ! Next field
Backward EQUATE ! Previous field
Complete EQUATE ! OK
Cancel EQUATE ! Cancel
Next EQUATE ! Focus moving to Next record
Previous EQUATE ! Focus moving to Previous record
Ignore EQUATE
 END

Example:

EIPManager.TakeFieldEvent PROCEDURE
I UNSIGNED(1)
 CODE
 IF FIELD() = SELF.ListControl THEN RETURN Level:Benign .
 LOOP I = 1 TO RECORDS(SELF.EQ)+1
 ! Optimised to pick up subsequent events from same field
 IF ~SELF.EQ.Control &= NULL AND SELF.EQ.Control.Feq = FIELD()
 SELF.TakeAction(SELF.EQ.Control.TakeEvent(EVENT()))
 RETURN Level:Benign
 END
 GET(SELF.EQ,I)
 END
 ! Code to handle an unknown field

See Also: TakeFieldEvent

CHAPTER 24 EIPMANAGERCLASS 449

TakeCompleted (process completion of edit)

TakeCompleted(force), VIRTUAL

TakeCompleted Determines the edit-in-place dialog’s action after either a
loss of focus or an end user action.

action An integer constant, variable, EQUATE, or expression
that indicates an end user requested action.

The TakeCompleted method conditionally calls the ResetColumn method.
The BrowseEIPManager.TakeCompleted provides the bulk of the process
completion functionality, and is derived from the TakeCompleted method.

Implementation: The BrowseEIPManager.TakeCompleted method calls the TakeCompleted
method via PARENT syntax. TakeFocusLoss and TakeAction also call the
TakeCompleted method.

Note: TakeCompleted does not override the
WindowManager.TakeCompleted method.

Example:

EIPManager.TakeFocusLoss PROCEDURE
 CODE
 CASE CHOOSE(SELF.FocusLoss&=NULL,EIPAction:Default,BAND(SELF.FocusLoss,EIPAction:Save))
 OF EIPAction:Always OROF EIPAction:Default
 SELF.TakeCompleted(Button:Yes)
 OF EIPAction:Never
 SELF.TakeCompleted(Button:No)
 ELSE
 SELF.TakeCompleted(0)
 END

See Also: BrowseEIPManager.TakeCompleted, TakeFocusLoss, TakeAction

450 CLARION 5 APPLICATION HANDBOOK

TakeEvent (process window specific events)

TakeEvent, DERIVED, PROC

The TakeEvent method processes window specific events and returns
Level:Notify for an EVENT:Size, EVENT:Iconize, or EVENT:Maximize; it
returns a Level:Fatal for an EVENT:CloseDown, EVENT:CloseWindow, or
EVENT:Sized; all other window events return a Level:Benign.

Implementation: The TakeFieldEvent method calls the TakeEvent method. The TakeEvent
method calls the TakeFocusLoss method subsequent to returning a
Level:Fatal.

Return Data Type: BYTE

Example:

EIPManager.TakeFieldEvent PROCEDURE
I UNSIGNED(1)
 CODE
 IF FIELD() = SELF.ListControl THEN RETURN Level:Benign .
 LOOP I = 1 TO RECORDS(SELF.EQ)+1
 ! Optimised to pick up subsequent events from same field
 IF ~SELF.EQ.Control &= NULL AND SELF.EQ.Control.Feq = FIELD()
 SELF.TakeAction(SELF.EQ.Control.TakeEvent(EVENT()))
 RETURN Level:Benign
 END
 GET(SELF.EQ,I)
 END
 ! Code to handle an unknown field

See Also: TakeFieldEvent, TakeFocusLoss

CHAPTER 24 EIPMANAGERCLASS 451

TakeFieldEvent (process field specific events)

TakeFieldEvent, DERIVED, PROC

The TakeFieldEvent method processes all field-specific/control-specific
events for the window. It returns a value indicating whether edit-in-place
process is complete and should stop.

TakeFieldEvent returns Level:Benign to indicate processing of this event
should continue normally; it returns Level:Notify to indicate processing is
completed for this event and the ACCEPT loop should CYCLE; it returns
Level:Fatal to indicate the event could not be processed and the ACCEPT
loop should BREAK.

Implementation: The WindowManager.TakeEvent method calls the TakeFieldEvent method.

Return value EQUATEs are declared in ABERROR.INC.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

452 CLARION 5 APPLICATION HANDBOOK

TakeFocusLoss (a virtual to process loss of focus)

TakeFocusLoss, VIRTUAL

The TakeFocusLoss method determines the appropriate action to take when
the EIPManager window loses focus, and calls the TakeCompleted method
with the appropriate parameter.

Implementation: TakeEvent and TakeFieldEvent methods conditionally call the
TakeFocusLoss method.

Example:

EIPManager.TakeFieldEvent PROCEDURE
I UNSIGNED(1)
 CODE
 IF FIELD() = SELF.ListControl THEN RETURN Level:Benign .
 LOOP I = 1 TO RECORDS(SELF.EQ)+1
 ! Optimised to pick up subsequent events from same field
 IF ~SELF.EQ.Control &= NULL AND SELF.EQ.Control.Feq = FIELD()
 SELF.TakeAction(SELF.EQ.Control.TakeEvent(EVENT()))
 RETURN Level:Benign
 END
 GET(SELF.EQ,I)
 END
 ! Code to handle an unknown field

See Also: TakeCompleted

TakeNewSelection (reset edit-in-place column)

TakeNewSelection, DERIVED, PROC

The TakeFieldEvent method resets the edit-in-place column selected by the
end user.

Implementation: TakeNewSelection is called by the BrowseEIPManager.TakeNewSelection
method.

TakeNewSelection calls ResetColumn, and returns a Level:Benign.

Return Data Type: BYTE

Example:

BrowseEIPManager.TakeNewSelection PROCEDURE
 CODE
 IF FIELD() = SELF.ListControl
 IF CHOICE(SELF.ListControl) = SELF.BC.CurrentChoice
 RETURN PARENT.TakeNewSelection()
 ELSE

! Code to handle Focus change to different record
END

END

See Also: ResetColumn

CHAPTER 36 PRINTPREVIEWCLASS 661

36 - PRINTPREVIEWCLASS

Overview
The PrintPreviewClass is a WindowManager that implements a full-featured
print preview dialog.

PrintPreviewClass Concepts

This print preview facility includes pinpoint zoom-in and zoom-out with
configurable zoom magnification, random and sequential page navigation,
plus thumbnail views of each report page. You can even specify how many
rows and columns of thumbnails the print preview facility displays.

When you finish viewing the report, you can send it directly to the printer for
immediate What You See Is What You Get (WYSIWYG) printing.

The PrintPreviewClass previews reports in the form of a Windows metafile
(.WMF) per report page. The PREVIEW attribute generates reports in
Windows metafile format, and the Clarion Report templates provide this
capability as well. See PREVIEW in the Language Reference for more
information, and see Procedure Templates—Report for more information on
Report templates.

662 CLARION 5 APPLICATION HANDBOOK

Relationship to Other Application Builder Classes

The PrintPreviewClass is derived from the WindowManager class (see
Window Manager Class for more information).

The PrintPreviewClass relies on the PopupClass and, optionally, the
TranslatorClass to accomplish some of its tasks. Therefore, if your program
instantiates the PrintPreviewClass, it should also instantiate the PopupClass
and may need the Translator class as well. Much of this is automatic when
you INCLUDE the PrintPreviewClass header (ABREPORT.INC) in your
program’s data section. See the Conceptual Example.

The ASCIIPrintClass and the ReportManager use te PrintPreviewClass to
provide a print preview facility.

ABC Template Implementation

The Report and Viewer Procedure templates and the Report Wizard Utility
template automatically generate all the code and include all the classes
necessary to provide the print preview facility for your application’s reports.

These Report templates instantiate a PrintPreviewClass object called
Previewer for each report procedure in the application. This object supports
all the functionality specified in the Preview Options section of the Report
template’s Report Properties dialog. See Procedure Templates—Report for
more information.

The template generated ReportManager object (ThisWindow) “drives” the
Previewer object, so generally, the only references to the Previewer object
within the template generated code are to initially configure the Previewer’s
properties.

PrintPreviewClass Source Files

The PrintPreviewClass source code is installed by default to the Clarion
\LIBSRC folder. The PrintPreviewClass source code and its respective
components are contained in:

ABREPORT.INC PrintPreviewClass declarations
ABREPORT.CLW PrintPreviewClass method definitions
ABREPORT.TRN PrintPreviewClass user interface text

CHAPTER 36 PRINTPREVIEWCLASS 663

Zoom Configuration

The user interface text and the standard zoom choices the PrintPreviewClass
displays at runtime are defined in the ABREPORT.TRN file. To modify or
customize this text or the standard zoom choices, simply back up the
ABREPORT.TRN file then edit it to suit your needs. See ZoomIndex for
more information.

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a PrintPreviewClass object and
some related objects.

This example uses the PrintPreviewClass object to preview a very simple
report before printing it. The program specifies an initial position and size
for the print preview window and allows custom zoom factors.

 PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
 INCLUDE('ABREPORT.INC') !declare ReportManager &

! and PrintPreviewClass
 MAP
 END

GlobalErrors ErrorClass
VCRRequest LONG(0),THREAD

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),THREAD
BYNUMBER KEY(CUS:CUSTNO),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
CUSTNO LONG
Name STRING(30)
State STRING(2)

END
END

Access:Customer CLASS(FileManager) !declare Access:Customer object
Init PROCEDURE

END

Relate:Customer CLASS(RelationManager) !declare Relate:Customer object
Init PROCEDURE

END

CusView VIEW(Customer) !declare CusView VIEW
END

PctDone BYTE !track progress variable

664 CLARION 5 APPLICATION HANDBOOK

report REPORT,AT(1000,1542,6000,7458),PRE(RPT),FONT('Arial',10,,),THOUS
HEADER,AT(1000,1000,6000,542),FONT(,,,FONT:bold)
STRING('Customers'),AT(2000,20),FONT(,14,,)
STRING('Id'),AT(52,313),TRN
STRING('Name'),AT(2052,313),TRN
STRING('State'),AT(4052,313),TRN

END
detail DETAIL,AT(,,6000,281),USE(?detail)

STRING(@n-14),AT(52,52),USE(CUS:CUSTNO)
STRING(@s30),AT(2052,52),USE(CUS:NAME)
STRING(@s2),AT(4052,52),USE(CUS:State)

END
FOOTER,AT(1000,9000,6000,219)
STRING(@pPage <<<#p),AT(5250,31),PAGENO,USE(?PageCount)

END
END

ProgressWindow WINDOW('Progress...'),AT(,,142,59),CENTER,TIMER(1),GRAY,DOUBLE
PROGRESS,USE(PctDone),AT(15,15,111,12),RANGE(0,100)
STRING(''),AT(0,3,141,10),USE(?UserString),CENTER
STRING(''),AT(0,30,141,10),USE(?TxtDone),CENTER
BUTTON('Cancel'),AT(45,42),USE(?Cancel)

END

ThisProcedure CLASS(ReportManager) !declare ThisProcedure object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

CusReport CLASS(ProcessClass) !declare CusReport object
TakeRecord PROCEDURE(),BYTE,PROC,VIRTUAL

END

Previewer PrintPreviewClass !declare Previewer object
! for use with ThisProcedure

 CODE
 ThisProcedure.Run() !run the procedure

ThisProcedure.Init PROCEDURE() !initialize ThisProcedure
ReturnValue BYTE,AUTO
 CODE
 GlobalErrors.Init
 Relate:Customer.Init
 ReturnValue = PARENT.Init()
 SELF.FirstField = ?PctDone
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 Relate:Customer.Open
 OPEN(ProgressWindow)
 SELF.Opened=True
 CusReport.Init(CusView,Relate:Customer,?TxtDone,PctDone,RECORDS(Customer))
 CusReport.AddSortOrder(CUS:BYNUMBER)
 SELF.AddItem(?Cancel,RequestCancelled)
 SELF.Init(CusReport,report,Previewer) !register Previewer with ThisProcedure
 SELF.Zoom = PageWidth
 Previewer.AllowUserZoom=True !allow custom zoom factors
 Previewer.Maximize=True !initially maximize preview window
 SELF.SetAlerts()
 RETURN ReturnValue

CHAPTER 36 PRINTPREVIEWCLASS 665

ThisProcedure.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Kill()
 Relate:Customer.Close
 Relate:Customer.Kill
 GlobalErrors.Kill
 RETURN ReturnValue

CusReport.TakeRecord PROCEDURE()
ReturnValue BYTE,AUTO
SkipDetails BYTE
 CODE
 ReturnValue = PARENT.TakeRecord()
 PRINT(RPT:detail)
 RETURN ReturnValue

Access:Customer.Init PROCEDURE
 CODE
 PARENT.Init(Customer,GlobalErrors)
 SELF.FileNameValue = 'Customer'
 SELF.Buffer &= CUS:Record
 SELF.Create = 0
 SELF.LazyOpen = False
 SELF.AddKey(CUS:BYNUMBER,'CUS:BYNUMBER',0)

Relate:Customer.Init PROCEDURE
 CODE
 Access:Customer.Init
 PARENT.Init(Access:Customer,1)

666 CLARION 5 APPLICATION HANDBOOK

PrintPreviewClass Properties
The PrintPreviewClass contains properties that primarily allow configuration
of the print preview window and its features. The PrintPreviewClass
properties are described below.

AllowUserZoom (allow any zoom factor)

AllowUserZoom BYTE

The AllowUserZoom property indicates whether the PrintPreviewClass
object provides user zoom capability for the end user. The user zoom lets the
end user apply any zoom factor. Without user zoom, the end user may only
apply the standard zoom choices.

The ZoomIndex property indicates whether a user zoom factor or a standard
zoom factor is applied.

Implementation: A value of one (1) enables user zoom capability; a value of zero (0) disables
user zoom. The UserPercentile property contains the user zoom factor.

See Also: UserPercentile, ZoomIndex

ConfirmPages (force 'pages to print' confirmation)

ConfirmPages BYTE

The ConfirmPages property indicates whether or not the AskPrintPages
method should be called before printing.

Implementation: Zero (0) is the default; a value of one (1) forces the enduser to choose the
pages to print before the print job is sent to the printer.

See Also: AskPrintPages

CurrentPage (the selected report page)

CurrentPage LONG

The CurrentPage property contains the number of the selected report page.
The PrintPreviewClass object uses this property to highlight the selected
report page when more than one page is displayed, to navigate pages, and to
dislay the current page number for the end user.

CHAPTER 36 PRINTPREVIEWCLASS 667

ImageQueue (page list)

ImageQueue &PreviewQueue, PROTECTED

The ImageQueue property is a reference to the
ReportManager.PreviewQueue property which contains a list of the full
pathnames for the page images generated by the report.

Maximize (number of pages displayed horizontally)

Maximize BYTE

The Maximize property indicates whether to open the preview window
mazimized. A value of one (1 or True) maximizes the window; a value of
zero (0 or False) opens the window according to the WindowSizeSet
property.

See Also: WindowSizeSet

PagesAcross (number of pages displayed horizontally)

PagesAcross USHORT

The PagesAcross property contains the number of thumbnail pages the
PrintPreviewClass object displays horizontally within the preview window.
The PrintPreviewClass object uses this property to calculate appropriate
positions and sizes when displaying several pages at a time.

The PrintPreviewClass object displays the PagesAcross value at runtime and
lets the end user set the value as well.

PagesDown (number of vertical thumbnails)

PagesDown USHORT

The PagesDown property contains the number of thumbnail pages the
PrintPreviewClass object displays vertically within the preview window. The
PrintPreviewClass object uses this property to calculate appropriate positions
and sizes when displaying several pages at a time.

The PrintPreviewClass object displays the PagesDown value at runtime and
lets the end user set the value as well.

668 CLARION 5 APPLICATION HANDBOOK

PagesToPrint (the pages to print)

PagesToPrint CSTRING(256), PROTECTED

The PagesToPrint property contains the page range to print.

The default value is 1-n, where n is equal to the total number of pages in the
report. Individual pages can be printed by seperating page numbers by
commas. A range of pages to print can be specified by seperating the first
page number to print and the last page number to print by a dash (-).
Combinations of individual pages and ranges of pages are allowed.

Popup (popup menu)

Popup &PopupClass, PROTECTED

The Popup property is a reference to the PopupClass object PrintPreview
uses to provide alternate zoom factors.

UserPercentile (custom zoom factor)

UserPercentile USHORT

The UserPercentile property contains the user specified zoom factor. The
PrintPreviewClass object solicits this factor from the end user and applies it
to the selected report page when the AllowUserZoom property is True. The
SetZoomPercentile method sets the UserPercentile property.

See Also: AllowUserZoom, SetZoomPercentile

WindowPosSet (use a non-default initial preview window position)

WindowPosSet BYTE

The WindowPosSet property contains a value indicating whether a non-
default initial position is specified for the print preview window. The
PrintPreviewClass object uses this property to determine the initial position
of the print preview window.

Implementation: The SetPosition method sets the value of this property. A value of one (1 or
True) indicates a non-default initial position is specified and is applied; a
zero (0 or False) indicates no position is specified and the default position is
applied.

See Also: SetPosition

CHAPTER 36 PRINTPREVIEWCLASS 669

WindowSizeSet (use a non-default initial preview window size)

WindowSizeSet BYTE

The WindowSizeSet property contains a value indicating whether a non-
default initial size is specified for theprint preview window. The
PrintPreviewClass object uses this property to determine the initial size of
the print preview window.

Implementation: The SetPosition method sets the value of this property. A value of one (1 or
True) indicates a non-default initial size is specified and is applied; a zero (0
of False) indicates no size is specified and the default size is applied.

See Also: SetPosition

ZoomIndex (index to applied zoom factor)

ZoomIndex BYTE

The ZoomIndex property contains a value indicating which zoom factor is
applied. The PrintPreviewClass object uses this property to identify and
apply the selected zoom factor. The SetZoomPercentile method sets the
ZoomIndex property.

Implementation: The ZoomIndex value “points” to one of the 7 standard zoom settings or to a
user zoom setting. The PrintPreviewClass object sets the ZoomIndex value
when the end user selects a zoom setting from one of the zoom menus or
from the zoom combo box. The standard zoom choices are defined in
ABREPORT.TRN as follows:

No Zoom Displays the specified number of pages
(PagesAcross and PagesDown properties) in a tiled
arrangement in the preview window.

Page Width Displays a single page whose width is the same as
the width of the preview window.

50% Displays a single page at 50% of actual print size.

75% Displays a single page at 75% of actual print size.

100% Displays a single page at 100% of actual print size.

200% Displays a single page at 200% of actual print size.

300% Displays a single page at 300% of actual print size.

A ZoomIndex value of zero (0) indicates a nonstandard zoom factor is
specified. Nonstandard zoom factors may be specified when the
AllowUserZoom property is True. The UserPercentile property contains the
nonstandard zoom factor.

See Also: AllowUserZoom, PagesAcross, PagesDown, UserPercentile, SetZoomPercentile

670 CLARION 5 APPLICATION HANDBOOK

PrintPreviewClass Methods
The PrintPreviewClass contains the methods listed below.

Functional Organization—Expected Use

As an aid to understanding the PrintPreviewClass, it is useful to organize its
methods into two large categories according to their expected use—the
primary interface and the virtual methods. This organization reflects what we
believe is typical use of the PrintPreviewClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into two categories:

Housekeeping (one-time) Use:
InitV initialize the PrintPreviewClass object
SetPosition set initial preview window coordinates
DisplayV preview the report
Kill V shut down the PrintPreviewClass object

Occasional Use:
SetINIManager save and restore window coordinates
SetPosition set print preview position and size
SetZoomPercentile set user or standard zoom factor

V These methods are also Virtual.

Virtual Methods

Typically you will not call these methods directly—the Display method calls
them. However, we anticipate you will often want to override these methods,
and because they are virtual, they are very easy to override. These methods
do provide reasonable default behavior in case you do not want to override
them.

InitV initialize the PrintPreviewClass object
AskPage prompt for new report page
AskThumbnails prompt for new thumbnail configuration
Display preview the report
Open prepare preview window for display
TakeAccepted process EVENT:Accepted events
TakeEvent process all events
TakeFieldEvent a virtual to process field events
TakeWindowEvent process non-field events
Kill V shut down the PrintPreviewClass object

CHAPTER 36 PRINTPREVIEWCLASS 671

AskPage (prompt for new report page)

AskPage, PROC, VIRTUAL, PROTECTED

The AskPage method prompts the end user for a specific report page to
display and returns a value indicating whether a new page is selected. A
return value of one (1) indicates a new page is selected and a screen redraw
is required; a return value of zero (0) indicates a new page is not selected and
a screen redraw is not required.

Implementation: The PrintPreviewClass.Display method calls the AskPage method. The
AskPage method displays a dialog that prompts for a specific report page.

Return Data Type: BYTE

Example:

!Virtual implementation of AskPage: a simplified version with no translator...
PrintPreviewClass.AskPage FUNCTION
JumpPage LONG,AUTO
RVal BOOL(False)

JumpWin WINDOW('Jump to Page'),AT(,,181,26),CENTER,GRAY,DOUBLE
PROMPT('&Page:'),AT(5,8),USE(?JumpPrompt)
SPIN(@n5),AT(30,7),USE(JumpPage),RANGE(1,10),STEP(1)
BUTTON('OK'),AT(89,7),USE(?OKButton),DEFAULT
BUTTON('Cancel'),AT(134,7),USE(?CancelButton)

END
CODE
JumpPage=SELF.CurrentPage
OPEN(JumpWin)
ACCEPT
CASE EVENT()
OF EVENT:OpenWindow
?JumpPage{PROP:RangeHigh}=RECORDS(SELF.ImageQueue)

OF EVENT:Accepted
CASE ACCEPTED()
OF ?OKButton
IF JumpPage NOT=SELF.CurrentPage
RVal=True !SELF.CurrentPage changed
SELF.CurrentPage=JumpPage

END
POST(EVENT:CloseWindow)

OF ?CancelButton
POST(EVENT:CloseWindow)

. . .
 CLOSE(JumpWin)
 RETURN RVal

672 CLARION 5 APPLICATION HANDBOOK

AskPrintPages (prompt for pages to print)

AskPrintPages, VIRTUAL, PROTECTED, PROC

The AskPrintPages method prompts the end user for the number(s) of the
pages to print from the previewed report.

Implementation: The PrintPreviewClass.TakeAccepted method calls the AskPrintPages
method and returns TRUE (1) when completed or FALSE (0) if the user
presses the cancel button. The AskPrintPages method displays a dialog that
prompts for the page numbers to print.

Return Data Type: BYTE

Example:

!Virtual implementation of AskThumbnails
PrintPreviewClass.AskPrintPages PROCEDURE
Preserve LIKE(PrintPreviewClass.PagesToPrint),AUTO
Window WINDOW('Pages to Print'),AT(,,260,37),CENTER,SYSTEM,GRAY
 PROMPT('&Pages to Print:'),AT(4,8),USE(?Prompt)
 ENTRY(@s255),AT(56,4,200,11),USE(SELF.PagesToPrint, , ?PagesToPrint)
 BUTTON('&Reset'),AT(116,20,45,14),USE(?Reset)
 BUTTON('&Ok'),AT(164,20,45,14),USE(?Ok),DEFAULT
 BUTTON('&Cancel'),AT(212,20,45,14),USE(?Cancel),STD(STD:Close)
 END
RVal BYTE(False)
 CODE
 Preserve = SELF.PagesToPrint
 OPEN(Window)
 ACCEPT
 CASE EVENT()
 OF EVENT:Accepted
 CASE ACCEPTED()
 OF ?Cancel
 SELF.PagesToPrint = Preserve
 POST(EVENT:CloseWindow)
 OF ?Ok
 RVal = True
 POST(EVENT:CloseWindow)
 OF ?Reset
 SELF.SetDefaultPages
 SELECT(?PagesToPrint)
 END
 OF EVENT:OpenWindow
 ! INIMgr code for FETCHing window settings
 OF EVENT:CloseWindow
 ! INIMgr code for UPDATEing window settings
 END
 END
 CLOSE(Window)
 RETURN RVal

CHAPTER 36 PRINTPREVIEWCLASS 673

AskThumbnails (prompt for new thumbnail configuration)

AskThumbnails, VIRTUAL, PROTECTED

The AskThumbnails method prompts the end user for the number of pages
to tile across and down the preview window.

Implementation: The PrintPreviewClass.Display method calls the AskThumbnails method.
The AskThumbnails method displays a dialog that prompts for the number of
thumbnails to display horizontally, and the number of thumbnails to display
vertically.

Example:

!Virtual implementation of AskThumbnails
! a slightly simplified version with no translator...
PrintPreviewClass.AskThumbnails PROCEDURE

SelectWindow WINDOW('Pages Displayed'),AT(,,141,64),GRAY,DOUBLE
 GROUP('Across'),AT(7,10,62,32),BOXED
 SPIN(@N2),AT(13,22,15),USE(SELF.PagesAcross,,?PagesAcross),RANGE(1,10)
 END
 GROUP('Down'),AT(72,10,62,32),BOXED
 SPIN(@N2),AT(79,22,15),USE(SELF.PagesDown,,?PagesDown),RANGE(1,10)
 END
 BUTTON('OK'),AT(98,47,40,14),KEY(EnterKey),USE(?OK)
 END

 CODE
 OPEN(SelectWindow)
 ACCEPT
 CASE EVENT()
 OF EVENT:Accepted
 CASE FIELD()
 OF ?OK
 IF SELF.PagesAcross*SELF.PagesDown>RECORDS(SELF.ImageQueue)
 SELECT(?PagesAcross)
 ELSE
 POST(EVENT:CloseWindow)
 END
 END
 END
 END
 CLOSE(SelectWindow)

674 CLARION 5 APPLICATION HANDBOOK

DeleteImageQueue (remove non-selected pages)

DeleteImageQueue(page), VIRTUAL, PROC

DeleteImageQueueRemoves a page number from the ImageQueue.

page An integer constant, variable, EQUATE, or expression
containing the page number to delete.

The DeleteImageQueue method removes records from the ImageQueue,
and the associated image file, which have not been selected for printing.

Implementation: The SyncImageQueue method calls the DeleteImageQueue method. The
value contained in the PagesToPrint property determines which records and
images are deleted.

Return Data Type: BYTE

Example:

PrintPreviewClass.SyncImageQueue PROCEDURE
i LONG,AUTO

 CODE
 LOOP i = RECORDS(SELF.ImageQueue) TO 1 BY -1
 IF ~SELF.InPageList(i)
 SELF.DeleteImageQueue(i)
 END
 END

See Also: PagesToPrint,ImageQueue

CHAPTER 36 PRINTPREVIEWCLASS 675

Display (preview the report)

Display([zoom] [, page] [, across] [, down]), VIRTUAL, PROC

Display Displays the report image metafiles.

zoom An integer constant, variable, EQUATE, or expression
containing the initial zoom factor for the print preview
display. If omitted, the Display method uses the default
zoom factor in the ABREPORT.TRN file.

page An integer constant, variable, EQUATE, or expression
containing the initial page number to display. If omitted,
page defaults to one (1).

across An integer constant, variable, EQUATE, or expression
containing the number of horizontal thumbnails for the
initial print preview display. If omitted, across defaults
to one (1).

down An integer constant, variable, EQUATE, or expression
containing the number of vertical thumbnails for the
initial print preview display. If omitted, down defaults to
one (1).

The Display method displays the report image metafiles and returns a value
indicating whether or not to print them. A return value of one (1 or True)
indicates the end user asked to print the report; a return value of zero (0 or
False) indicates the end user did not ask to print the report.

The Display method is the print preview engine. It manages the print
preview, providing navigation, zoom, thumbnail configuration, plus the
option to immediately print the report.

Implementation: The Display method declares the preview WINDOW, then calls the
WindowManager.Ask method to display the preview WINDOW and process
its events.

EQUATEs for the zoom parameter are declared in ABREPORT.INC:

NoZoom EQUATE(-2)
PageWidth EQUATE(-1)

In addition to the EQUATE values, you may specify any integer zoom factor,
such as 50 (50% zoom) or 200 (200% zoom).

Return Data Type: BYTE

676 CLARION 5 APPLICATION HANDBOOK

Example:

IF ReportCompleted !if report was not cancelled
ENDPAGE(report) !force final page overflow
IF PrtPrev.Display() !preview the report on-line
report{PROP:FlushPreview} = True !and print it if user asked to

END
END

See Also: WindowManager.Ask

CHAPTER 36 PRINTPREVIEWCLASS 677

Init (initialize the PrintPreviewClass object)

Init(image queue), VIRTUAL

Init Initializes the PrintPreviewClass object.

image queue The label of the QUEUE containing the filenames of the
report image metafiles. See PREVIEW in the Language
Reference for more information on report image
metafiles.

The Init method Initializes the PrintPreviewClass object.

Implementation: The PrintPreviewClass.Init method instantiates a PopupClass object for the
PrintPreviewClass object, using the menu text defined in ABREPORT.TRN.

The image queue parameter names a QUEUE with the same structure as the
PreviewQueue declared in \ABREPORT.INC as follows:

PreviewQueue QUEUE,TYPE
Filename STRING(128)
 END

Example:

PrintPreviewQueue PreviewQueue !declare report image queue
PrtPrev PrintPreviewClass !declare PrtPrev object
CODE
PrtPrev.Init(PrintPreviewQueue) !initialize PrtPrev object
!program code
PrtPrev.Kill !shut down PrtPrev object

678 CLARION 5 APPLICATION HANDBOOK

InPageList (check page number)

InPageList(page)

InPageList Evaluates page against value(s) in PagesToPrint.

page An integer constant, variable, EQUATE, or expression
containing the page number to check.

The InPageList method evaluates a page number against the value(s)
contained in the PagesToPrint property, and returns TRUE (1) if the page is
in PagesToPrint or FALSE (0) if it is not.

Implementation: The PageManagerClass.Draw and SyncImageQueue methods call the
InPageList method to verify report pages for inclusion in the preview
window and the printed report respectively.

Return Data Type: BYTE

Example:

PrintPreviewClass.SyncImageQueue PROCEDURE
i LONG,AUTO
 CODE
 LOOP i = RECORDS(SELF.ImageQueue) TO 1 BY -1
 IF ~SELF.InPageList(i)
 SELF.DeleteImageQueue(i)
 . .

See Also: PagesToPrint, PageManagerClass.Draw

Kill (shut down the PrintPreviewClass object)

Kill, VIRTUAL, PROC

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code.Kill returns a value to indicate
the status of the shut down.

Implementation: The Kill method calls the WindowManager.Kill method and returns
Level:Benign to indicate a normal shut down. Return value EQUATEs are
declared in ABERROR.INC.

Return Data Type: BYTE

Example:

PrintPreviewQueue PreviewQueue !declare report image queue
PrtPrev PrintPreviewClass !declare PrtPrev object
CODE
PrtPrev.Init(PrintPreviewQueue) !initialize PrtPrev object
!program code
PrtPrev.Kill !shut down PrtPrev object

See Also: WindowManager.Kill

CHAPTER 36 PRINTPREVIEWCLASS 679

Open (prepare preview window for display)

Open, VIRTUAL

The Open method prepares the PrintPreviewClass window for initial display.
It is designed to execute on window opening events such as
EVENT:OpenWindow and EVENT:GainFocus.

Implementation: The Open method sets the window’s initial size and position, enables and
disables controls as needed, and sets up the specified zoom configuration.

The WindowManager.TakeWindowEvent method calls the Open method.

Example:

ThisWindow.TakeWindowEvent PROCEDURE
 CODE
 CASE EVENT()
 OF EVENT:OpenWindow
 IF ~BAND(SELF.Inited,1)
 SELF.Open
 END
 OF EVENT:GainFocus
 IF BAND(SELF.Inited,1)
 SELF.Reset
 ELSE
 SELF.Open
 END
 END
 RETURN Level:Benign

See Also: WindowManager.TakeWindowEvent

680 CLARION 5 APPLICATION HANDBOOK

SetINIManager (save and restore window coordinates)

SetINIManager(INI manager)

SetINIManager Enables save and restore of preview window position
and size between computing sessions.

INI manager The label of the INIClass object that saves and restores
window coordinates. See INI Class for more informa-
tion.

The SetINIManager method names an INIClass object to save and restore
window coordinates between computing sessions.

Implementation: The Open method uses the INI manager to restore the window’s initial size
and position. The TakeEvent method uses the INI manager to save the
window’s size and position.

Example:

ThisWindow.Init PROCEDURE()
 CODE
!procedure code

 ThisWindow.Init(Process,report,Previewer)
 Previewer.SetINIManager(INIMgr)

See Also: Open, TakeEvent

SetDefaultPages (set the default pages to print)

SetDefaultPages, VIRTUAL

The SetDefaultPages method sets the initial value of the PagesToPrint
property. The initial value is 1-n, where n is equal to the total number of
pages in the report.

Implementation: The Display and AskPrintPreview methods call the SetDefaultPages method.

Example:

!Virtual implementation of SetDefaultPages method
PrintPreviewClass.SetDefaultPages PROCEDURE
 CODE
 SELF.PagesToPrint = '1-' & RECORDS(SELF.ImageQueue)

See Also: PagesToPrint

CHAPTER 36 PRINTPREVIEWCLASS 681

SetPosition (set initial preview window coordinates)

SetPosition([x] [,y] [,width] [,height])

SetPosition Sets the initial position and size of the print preview
window.

x An integer constant, variable, EQUATE, or expression
containing the initial horizontal position of the print
preview window. If omitted, the print preview window
opens to the default Windows position.

y An integer constant, variable, EQUATE, or expression
containing the initial vertical position of the print
preview window. If omitted, the print preview window
opens to the default Windows position.

width An integer constant, variable, EQUATE, or expression
containing the initial width of the print preview window.
If omitted, the print preview window opens to its default
width.

height An integer constant, variable, EQUATE, or expression
containing the initial height of the print preview window.
If omitted, the print preview window opens to its default
height.

The SetPosition method sets the initial position and size of the print preview
window.

Implementation: The SetPosition method sets the WindowPosSet and WindowSizeSet
properties.

The Display method definition determines the default width and height of the
print preview window.

Example:

PrtPrev.SetPosition(1,1,300,250) !set initial position and size
PrtPrev.SetPosition(1,1) !set initial position only
PrtPrev.SetPosition(,,300,250) !set initial size only

See Also: WindowPosSet, WindowSizeSet

682 CLARION 5 APPLICATION HANDBOOK

SetZoomPercentile (set user or standard zoom factor)

SetZoomPercentile(zoom factor)

SetZoomPercentileSets the ZoomIndex and UserPercentile properties.

zoom factor An integer contant, variable, EQUATE, or expression
indicating the zoom factor to apply.

The SetZoomPercentile method sets the ZoomIndex property and the
UserPercentile property.

Implementation: The SetZoomPercentile method assumes the AllowUserZoom property is
True. If the zoom factor equals a defined ZoomIndex choice,
SetZoomPercentile sets the ZoomIndex property to that choice and sets the
UserPercentile property to zero. If the zoom factor does not equal a defined
ZoomIndex choice, SetZoomPercentile sets the UserPercentile property to
the zoom factor and sets the ZoomIndex property to zero.

Example:

ThisWindow.Init PROCEDURE()
 CODE
!procedure code

 ThisWindow.Init(Process,report,Previewer)
 Previewer.SetZoomPercentile(120)

See Also: AllowUserZoom, UserPercentile, ZoomIndex

SyncImageQueue (sync image queue with PagesToPrint)

SyncImageQueue, VIRTUAL

The SyncImageQueue method synconizes the image queue with the
contents of PagesToPrint to ensure that only the specified pages are sent to
the printer.

Implementation: The Display method calls the SyncImageQueue method. The value
contained in the PagesToPrint property determines which pages are printed.

Example:

PrintPreviewClass.Display PROCEDURE
! Window declaration
! executable Display code
 IF SELF.PrintOk
 SELF.SyncImageQueue
 END
 RETURN SELF.PrintOK

See Also: PagesToPrint,ImageQueue

CHAPTER 36 PRINTPREVIEWCLASS 683

TakeAccepted (process EVENT:Accepted events)

TakeAccepted, VIRTUAL, PROC

The TakeAccepted method processes EVENT:Accepted events for all the
controls on the preview window, then returns a value indicating whether
window ACCEPT loop processing is complete and should stop.
TakeAccepted returns Level:Benign to indicate processing of this event
should continue normally; it returns Level:Notify to indicate processing is
completed for this event and the ACCEPT loop should CYCLE; it returns
Level:Fatal to indicate the event could not be processed and the ACCEPT
loop should BREAK.

Implementation: The TakeEvent method calls the TakeAccepted method. The TakeAccepted
method calls the WindowManager.TakeAccepted method, then processes
EVENT:Accepted events for all the controls on the preview window,
including zoom controls, print button, navigation controls, thumbnail
configuration controls, etc.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: TakeEvent, WindowManager.TakeEvent

684 CLARION 5 APPLICATION HANDBOOK

TakeEvent (process all events)

TakeEvent, VIRTUAL, PROC

The TakeEvent method processes all preview window events and returns a
value indicating whether ACCEPT loop processing is complete and should
stop. TakeEvent returns Level:Benign to indicate processing of this event
should continue normally; it returns Level:Notify to indicate processing is
completed for this event and the ACCEPT loop should CYCLE; it returns
Level:Fatal to indicate the event could not be processed and the ACCEPT
loop should BREAK.

Implementation: The Ask method calls the TakeEvent method. The TakeEvent method calls
the WindowManager.TakeEvent method, then processes
EVENT:CloseWindow, EVENT:Sized and EVENT:AlertKey events for the
preview window.

Return Data Type: BYTE

Example:

WindowManager.Ask PROCEDURE
 CODE
 IF SELF.Dead THEN RETURN .
 CLEAR(SELF.LastInsertedPosition)
 ACCEPT
 CASE SELF.TakeEvent()
 OF Level:Fatal
 BREAK
 OF Level:Notify
 CYCLE ! Not as dopey at it looks, it is for 'short-stopping' certain events
 END
 END

See Also: WindowManager.Ask

CHAPTER 36 PRINTPREVIEWCLASS 685

TakeFieldEvent (a virtual to process field events)

TakeFieldEvent, VIRTUAL, PROC

The TakeFieldEvent method is a virtual placeholder to process all field-
specific/control-specific events for the window. It returns a value indicating
whether window process is complete and should stop. TakeFieldEvent
returns Level:Benign to indicate processing of this event should continue
normally; it returns Level:Notify to indicate processing is completed for this
event and the ACCEPT loop should CYCLE; it returns Level:Fatal to
indicate the event could not be processed and the ACCEPT loop should
BREAK.

Implementation: The TakeEvent method calls the TakeFieldEvent method. The
TakeFieldEvent method processes EVENT:NewSelection events for the
preview window SPIN controls.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: Ask

686 CLARION 5 APPLICATION HANDBOOK

TakeWindowEvent (process non-field events)

TakeWindowEvent, VIRTUAL, PROC

The TakeWindowEvent method processes all non-field events for the
preview window and returns a value indicating whether window ACCEPT
loop processing is complete and should stop. TakeWindowEvent returns
Level:Benign to indicate processing of this event should continue normally;
it returns Level:Notify to indicate processing is completed for this event and
the ACCEPT loop should CYCLE; it returns Level:Fatal to indicate the event
could not be processed and the ACCEPT loop should BREAK.

Implementation: The TakeEvent method calls the TakeWindowEvent method. The
TakeWindowEvent method calls the WindowManager.TakeWindowEvent
method for all events except EVENT:GainFocus.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: TakeEvent

CHAPTER 36 PRINTPREVIEWCLASS 687

740 CLARION 5 APPLICATION HANDBOOK

41 - QUERYLISTCLASS

Overview
The QueryListClass is a QueryClass with a “list” user interface. The
QueryListClass provides support for ad hoc queries against Clarion VIEWs.
The list interface includes is an edit-in-place, 3-column listbox with a field
column, an equivalence operator (contains, begins, equal, not equal, greater
than, less than) column, and a value (to query for) column.

QueryListClass Concepts

Use the AddItem method to define a user input dialog at runtime. Or create a
custom dialog to plug into your QueryClass object. Use the Ask method to
solicit end user query criteria (search values) or use the SetLimit method to
programmatically set query search values. Finally, use the GetFilter method
to build the filter expression to apply to your VIEW. Use the
ViewManager.SetFilter method or the PROP:Filter property to apply the
resulting filter.

Relationship to Other Application Builder Classes

The QueryListClass is derived from the QueryClass, plus it relies on the
QueryListVisual class to display its input dialog and handle the dialog
events.

The BrowseClass optionally uses the QueryListClass to filter its result set. If
your BrowseClass object uses a QueryListClass object, it must instantiate a
QueryListClass object and a QueryListVisual object.

The BrowseClass automatically provides a default query dialog that solicits
end user search values for each field displayed in the browse list. See the
Conceptual Example.

ABC Template Implementation

The ABC Templates declare a local QueryClass class and object for each
instance of the BrowseQBEButton template. The ABC Templates
automatically include all the code necessary to support the functionality
specified in the BrowseQBEButton template.

The templates optionally derive a QueryListClass object for each
BrowseQBEButton control in the application. The derived class is called

CHAPTER 41 QUERYLISTCLASS 741

QBE# where # is the instance number of the BrowseQBEButton template.
The templates provide the derived class so you can use the
BrowseQBEButton template Classes tab to easily modify the query’s
behavior on an instance-by-instance basis.

Tip: Use the BrowseQBEButton control template to add a
QueryListClass object to your template generated
BrowseBoxes.

QueryListClass Source Files

The QueryListClass source code is installed by default to the Clarion
\LIBSRC folder. The specific QueryListClass files and their respective
components are:

ABQUERY.INC QueryListClass declarations
ABQUERY.CLW QueryListClass method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a QueryListClass object and related
objects. The example plugs a QueryListClass into a BrowseClass object. The
QueryListClass object solicits query criteria (search values) with a “list”
dialog, then generates a filter expression based on the end user input.

PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE('ABWINDOW.INC')
INCLUDE('ABBROWSE.INC')
INCLUDE('ABQUERY.INC')

 MAP
 END

GlobalErrors ErrorClass
Access:Customer CLASS(FileManager)
Init PROCEDURE

END

Relate:Customer CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END

GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD

742 CLARION 5 APPLICATION HANDBOOK

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),CREATE,THREAD
CustomerIDKey KEY(CUS:ID),NOCASE,OPT,PRIMARY
NameKey KEY(CUS:LastName),NOCASE,OPT
Record RECORD,PRE()
ID LONG
LastName STRING(20)
FirstName STRING(15)
City STRING(20)
State STRING(2)
ZIP STRING(10)

END
END

CustView VIEW(Customer)
END

CustQ QUEUE
CUS:LastName LIKE(CUS:LastName)
CUS:FirstName LIKE(CUS:FirstName)
CUS:ZIP LIKE(CUS:ZIP)
ViewPosition STRING(1024)
 END

CusWindow WINDOW('Browse Customers'),AT(,,210,105),IMM,SYSTEM,GRAY
LIST,AT(5,5,200,80),USE(?CusList),IMM,HVSCROLL,FROM(CustQ),|
FORMAT('80L(2)|M~Last~@s20@64L(2)|M~First~@s15@44L(2)|M~ZIP~@s10@')
BUTTON('&Query'),AT(50,88),USE(?Query)
BUTTON('Close'),AT(90,88),USE(?Close)

END

ThisWindow CLASS(WindowManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

Query QueryListmClass !declare Query object
QBEWindow QueryListVisual !declare QBEWindow object
BRW1 CLASS(BrowseClass) !declare BRW1 object
Q &CustQ

END
CODE
GlobalErrors.Init
Relate:Customer.Init
GlobalResponse = ThisWindow.Run() !ThisWindow handles all events
Relate:Customer.Kill
GlobalErrors.Kill

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
IF ReturnValue THEN RETURN ReturnValue.
SELF.FirstField = ?CusList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
SELF.AddItem(?Close,RequestCancelled)
Relate:Customer.Open
BRW1.Init(?CusList,CustQ.ViewPosition,CustView,CustQ,Relate:Customer,ThisWindow)

CHAPTER 41 QUERYLISTCLASS 743

OPEN(CusWindow)
SELF.Opened=True
Query.Init(QBEWindow) !initialize Query object
BRW1.Q &= CustQ
BRW1.AddSortOrder(,CUS:NameKey)
BRW1.AddField(CUS:LastName,BRW1.Q.CUS:LastName)
BRW1.AddField(CUS:FirstName,BRW1.Q.CUS:FirstName)
BRW1.AddField(CUS:ZIP,BRW1.Q.CUS:ZIP)
BRW1.QueryControl = ?Query !register Query button w/ BRW1
BRW1.UpdateQuery(Query) !make each browse item Queryable
Query.AddItem('Cus:State','State') !make State field Queryable too
SELF.SetAlerts()
RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill()
IF ReturnValue THEN RETURN ReturnValue.
Relate:Customer.Close
RETURN ReturnValue

Access:Customer.Init PROCEDURE
CODE
PARENT.Init(Customer,GlobalErrors)
SELF.FileNameValue = 'Customer'
SELF.Buffer &= CUS:Record
SELF.Create = 1
SELF.AddKey(CUS:CustomerIDKey,'CUS:CustomerIDKey',1)
SELF.AddKey(CUS:NameKey,'CUS:NameKey',0)

Relate:Customer.Init PROCEDURE
CODE
Access:Customer.Init
PARENT.Init(Access:Customer,1)

Relate:Customer.Kill PROCEDURE
CODE
Access:Customer.Kill
PARENT.Kill

744 CLARION 5 APPLICATION HANDBOOK

QueryListClass Properties
The QueryListClass inherits all the properties of the QueryClass from which
it is derived.

CHAPTER 41 QUERYLISTCLASS 745

QueryListClass Methods
The QueryListClass inherits all the methods of the QueryClass from which it
is derived. See QueryClass Methods for more information.

In addition to (or instead of) the inherited methods, the QueryListClass
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the QueryListClass, it is useful to organize its
various methods into two large categories according to their expected use—
the primary interface and the virtual methods. This organization reflects
what we believe is typical use of the QueryListClass methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into two categories:

Housekeeping (one-time) Use:
Init initialize the QueryListClass object
AddItemI add a field to query
Kill V shut down the QueryListListClass object

Mainstream Use:
AskV accept query criteria
GetFilterI return filter expression

Occasional Use:
ResetI reset the QueryListClass object
GetLimitI get search values
SetLimitI set search values

V These methods are also Virtual.
I These methods are inherited from the QueryClass.

Virtual Methods

Typically you will not call these methods directly—other ABC Library
methods call them. However, we anticipate you will often want to override
these methods, and because they are virtual, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

Ask accept query criteria
Kill shut down the QueryListClass object

746 CLARION 5 APPLICATION HANDBOOK

Ask (solicit query criteria)

Ask([uselast]), DERIVED, PROC

Ask Accepts query criteria (search values) from the end user.

uselast An integer constant, variable, EQUATE, or expression
that determines whether the QueryListClass object
carries forward previous query criteria. A value of one
(1) carries forward input from the previous query; a
value of zero (0) discards previous input.

The Ask method displays a query dialog, processes its events, and returns a
value indicating whether to apply the query or abandon it. A return value of
Level:Notify indicates the QueryListClass object should apply the query
criteria; a return value of Level:Benign indicates the end user cancelled the
query input dialog and the QueryListClass object should not apply the query
criteria.

Implementation: The Ask method declares a generic (empty) dialog to accept query criteria.
The Ask method calls the QueryListClass object’s WindowManager to define
the dialog and process it’s events.

The GetFilter method generates filter expressions using the search values set
by the Ask method.

The Init method sets the value of the QueryListClass object’s
WindowManager.

Return Data Type: BYTE

Example:

MyBrowseClass.TakeLocate PROCEDURE
CurSort USHORT,AUTO
I USHORT,AUTO
CODE
IF ~SELF.Query&=NULL AND SELF.Query.Ask()
CurSort = POINTER(SELF.Sort)
LOOP I = 1 TO RECORDS(SELF.Sort)
PARENT.SetSort(I)
SELF.SetFilter(SELF.Query.GetFilter(),'9 - QBE')

END
PARENT.SetSort(CurSort)
SELF.ResetSort(1)

END

See Also: GetFilter, Init, QueryListVisual

CHAPTER 41 QUERYLISTCLASS 747

Init (initialize the QueryListClass object)

Init(querywindowmanager)

Init Initializes the QueryListClass object.

querywindowmanager
The label of the QueryListVisual object that displays the
query input dialog list and processes it’s events.

The Init method initializes the QueryListClass object.

Implementation: The Init method sets the QFC property for the querywindowmanager.

Example:

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other initialization code

 Query.Init(QueryWindow)
 Query.AddItem('UPPER(CLI:LastName)','Name','s20')
 Query.AddItem('CLI:ZIP+1','ZIP+1','')
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other termination code

 Query.Kill
 RETURN ReturnValue

See Also: Kill, QueryListVisual, QueryListVisual.QFC

748 CLARION 5 APPLICATION HANDBOOK

Kill (shut down the QueryListClass object)

Kill, DERIVED

The Kill method frees any memory allocated during the life of the object and
performs any other required termination code.

Example:

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other initialization code

 Query.Init(QueryWindow)
 Query.AddItem('UPPER(CLI:LastName)','Name','s20')
 Query.AddItem('CLI:ZIP+1','ZIP+1','')
 RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
 CODE
!other termination code

 Query.Kill
 RETURN ReturnValue

See Also: Init

CHAPTER 41 QUERYLISTCLASS 749

750 CLARION 5 APPLICATION HANDBOOK

42 - QUERYLISTVISUAL

Overview
The QueryListVisual class is a WindowManager that displays a query input
dialog and handles the dialog events. The query dialog includes an edit-in-
place, 3-column listbox which allows the end user to choose the fields to
query, the equivalence operator, and the value to query for.

QueryListVisual Concepts

The QueryListVisual provides the query window for a QueryListClass
object. The Init method defines and “programs” the query input dialog at
runtime. The query interface includes an edit-in-place, 3-column listbox
with a field column, an equivalence operator (contains, begins, equal, not
equal, greater than, less than)column, and a value (to query for) column.

Relationship to Other Application Builder Classes

The QueryListVisual class is derived from the WindowManager.

The BrowseClass optionally uses the QueryListVisual class to provide the
user an edit-in-place list interface to it’s query facility.

The QueryListClass requires the QueryListVisual class as a window
manager.

ABC Template Implementation

The ABC Templates declare a local QueryListVisual class and object for
each instance of the BrowseQBEButton template. The ABC Templates
automatically include all the code necessary to support the functionality
specified in the BrowseQBEButton template.

The templates optionally derive a class from the QueryListVisual for each
BrowseQBEButton control in the application. The derived class is called
QBV# where # is the instance number of the BrowseQBEButton template.
The templates provide the derived class so you can use the
BrowseQBEButton template Classes tab to easily modify the query’s
behavior on an instance-by-instance basis.

Tip: Use the BrowseQBEButton control template to add a
QueryListClass object to your template generated
BrowseBoxes.

CHAPTER 42 QUERYLISTVISUAL 751

QueryListVisual Source Files

The QueryListVisual source code is installed by default to the Clarion
\LIBSRC folder. The specific QueryListVisual files and their respective
components are:

ABQUERY.INC QueryListVisual declarations
ABQUERY.CLW QueryListVisual method definitions

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a QueryListVisual object and related
objects. The example plugs a QueryListClass into a BrowseClass object. The
QueryListClass object uses the QueryListVisual to solicit query criteria
(search values) from the end user.

Note that the WindowManager and BrowseClass objects internally handle
the normal events surrounding the query.

PROGRAM

ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE('ABWINDOW.INC')
INCLUDE('ABBROWSE.INC')
INCLUDE('ABQUERY.INC')

 MAP
 END

GlobalErrors ErrorClass
Access:Customer CLASS(FileManager)
Init PROCEDURE

END

Relate:Customer CLASS(RelationManager)
Init PROCEDURE
Kill PROCEDURE,VIRTUAL

END

GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD

Customer FILE,DRIVER('TOPSPEED'),PRE(CUS),CREATE,THREAD
CustomerIDKey KEY(CUS:ID),NOCASE,OPT,PRIMARY
NameKey KEY(CUS:LastName),NOCASE,OPT
Record RECORD,PRE()
ID LONG
LastName STRING(20)
FirstName STRING(15)

752 CLARION 5 APPLICATION HANDBOOK

City STRING(20)
State STRING(2)
ZIP STRING(10)

END
END

CustView VIEW(Customer)
END

CustQ QUEUE
CUS:LastName LIKE(CUS:LastName)
CUS:FirstName LIKE(CUS:FirstName)
CUS:ZIP LIKE(CUS:ZIP)
ViewPosition STRING(1024)
 END

CusWindow WINDOW('Browse Customers'),AT(,,210,105),IMM,SYSTEM,GRAY
LIST,AT(5,5,200,80),USE(?CusList),IMM,HVSCROLL,FROM(CustQ),|
FORMAT('80L(2)|M~Last~@s20@64L(2)|M~First~@s15@44L(2)|M~ZIP~@s10@')
BUTTON('&Query'),AT(50,88),USE(?Query)
BUTTON('Close'),AT(90,88),USE(?Close)

END

ThisWindow CLASS(WindowManager) !declare ThisWindow object
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END

Query QueryListClass !declare Query object
QBEWindow QueryListVisual !declare QBEWindow object
BRW1 CLASS(BrowseClass) !declare BRW1 object
Q &CustQ

END
CODE
GlobalErrors.Init
Relate:Customer.Init
GlobalResponse = ThisWindow.Run() !ThisWindow handles all events
Relate:Customer.Kill
GlobalErrors.Kill

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Init()
IF ReturnValue THEN RETURN ReturnValue.
SELF.FirstField = ?CusList
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
SELF.AddItem(?Close,RequestCancelled)
Relate:Customer.Open
BRW1.Init(?CusList,CustQ.ViewPosition,CustView,CustQ,Relate:Customer,ThisWindow)
OPEN(CusWindow)
SELF.Opened=True
Query.Init(QBEWindow) !initialize Query object
BRW1.Q &= CustQ
BRW1.AddSortOrder(,CUS:NameKey)
BRW1.AddField(CUS:LastName,BRW1.Q.CUS:LastName)
BRW1.AddField(CUS:FirstName,BRW1.Q.CUS:FirstName)
BRW1.AddField(CUS:ZIP,BRW1.Q.CUS:ZIP)
BRW1.QueryControl = ?Query !register Query button w/ BRW1

CHAPTER 42 QUERYLISTVISUAL 753

BRW1.UpdateQuery(Query) !make each browse item Queryable
Query.AddItem('Cus:State','State') !make State field Queryable too
SELF.SetAlerts()
RETURN ReturnValue

ThisWindow.Kill PROCEDURE()
ReturnValue BYTE,AUTO
CODE
ReturnValue = PARENT.Kill()
IF ReturnValue THEN RETURN ReturnValue.
Relate:Customer.Close
RETURN ReturnValue

Access:Customer.Init PROCEDURE
CODE
PARENT.Init(Customer,GlobalErrors)
SELF.FileNameValue = 'Customer'
SELF.Buffer &= CUS:Record
SELF.Create = 1
SELF.AddKey(CUS:CustomerIDKey,'CUS:CustomerIDKey',1)
SELF.AddKey(CUS:NameKey,'CUS:NameKey',0)

Relate:Customer.Init PROCEDURE
CODE
Access:Customer.Init
PARENT.Init(Access:Customer,1)

Relate:Customer.Kill PROCEDURE
CODE
Access:Customer.Kill
PARENT.Kill

754 CLARION 5 APPLICATION HANDBOOK

QueryListVisual Properties
The QueryListVisual inherits all the properties of the WindowManager from
which it is derived. See WindowManager Properties for more information.

In addition to the inherited properties, the QueryListVisual contains the
following property:

QFC (reference to the QueryListClass)

QFC &QueryListClass

The QFC property is a reference to the QueryListClass that uses this
QueryListVisual object to solicit query criteria (search values) from the end
user.

Implementation: The QueryListClass.Init method sets the QFC property.

See Also: QueryListClass.Init

OpsEIP (reference to the EditDropListClass)

OpsEIP &EditDropListClass,PROTECTED

The OpsEIP property is a reference to the EditDropListClass that displays
the available operators in the QueryList dialog.

FldsEIP (reference to the EditDropListClass)

FldsEIP &EditDropListClass,PROTECTED

The FldsEIP property is a reference to the EditDropListClass that displays
the available fields to query in the QueryList dialog.

CHAPTER 42 QUERYLISTVISUAL 755

QueryListVisual Methods
The QueryListVisual inherits all the methods of the WindowManagerClass
from which it is derived. See WindowManager Methods for more
information.

In addition to (or instead of) the inherited methods, the QueryListVisual
contains the following methods:

Functional Organization—Expected Use

As an aid to understanding the QueryListVisual class, it is useful to organize
its various methods into two large categories according to their expected
use—the primary interface and the virtual methods. This organization
reflects what we believe is typical use of the QueryListVisual methods.

Primary Interface Methods

The primary interface methods, which you are likely to call fairly routinely
from your program, can be further divided into three categories:

Housekeeping (one-time) Use:
InitD program the QueryListVisual object

MainStream Use:
none

Occasional Use:
none

D These methods are Derived.

Derived Methods

Typically you will not call these methods directly—other ABC Library
methods call them. However, we anticipate you will often want to override
these methods, and because they are derived, they are very easy to override.
These methods do provide reasonable default behavior in case you do not
want to override them.

Init program the QueryListVisual object
SetAlerts prepare the query dialog for EIP
TakeEvent Handle events for the query dialog
TakeCompleted wrap up the query dialog
TakeAccepted handle EVENT:Accepted events

756 CLARION 5 APPLICATION HANDBOOK

Init (initialize the QueryListVisual object)

Init, DERIVED PROC

The Init method initializes the QueryListVisual object. Init returns
Level:Benign to indicate normal initialization.

The Init method “programs” the QueryListVisual object.

Implementation: The QueryListClass.Ask method (indirectly) calls the Init method to
configure the QueryListClass WINDOW.

The Init method reads each queryable item (defined by the QFC property)
from a queue, then creates an edit-in-place, 3-column listbox with a field
column, an equivalence operator (equal, not equal, greater than, etc.) column,
and a value (to query for) column.

The Init method sets the coordinates for the QueryListClass WINDOW and
for the individual controls.

Return Data Type: BYTE

Example:

QueryListClass.Ask PROCEDURE(BYTE UseLast)
W WINDOW('Query'),AT(,,300,200),FONT('MS SansSerif',8,,FONT:regular),SYSTEM,GRAY,DOUBLE

LIST,AT(5,5,290,174),USE(?List,FEQ:ListBox),|
FORMAT('91L|M~Field~@s20@44C|M~Operator~L@s10@120C|M~Value~L@s30@')
BUTTON('Insert'),AT(5,183,45,14),USE(?Insert,FEQ:Insert)
BUTTON('Change'),AT(52,183,45,14),USE(?Change,FEQ:Change)
BUTTON('Delete'),AT(99,183,45,14),USE(?Delete,FEQ:Delete)
BUTTON('&OK'),AT(203,183,45,14),USE(?Ok,FEQ:OK),DEFAULT
BUTTON('Cancel'),AT(250,183,45,14),USE(?Cancel,FEQ:Cancel)

END
CODE
OPEN(W)
IF ~UseLast THEN SELF.Reset().
RETURN CHOOSE(SELF.Win.Run()=RequestCancelled,Level:Benign,Level:Notify)

See Also: QFC

CHAPTER 42 QUERYLISTVISUAL 757

SetAlerts (alert keystrokes for the edit control)

SetAlerts, DERIVED

The SetAlerts method method alerts appropriate keystrokes for the edit-in-
place control.

Implementation: The Init method calls the CreateControl method to create the input control
and set the FEQ property. The Init method then calls the SetAlerts method to
alert specific keystrokes for the query dialog. Alerted keys are:

MouseLeft2 !edit selected record
InsertKey !add a query field
CtrlEnter !edit selected record
DeleteKey !delete query field

Example:

EditClass.Init PROCEDURE(UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
CODE
SELF.ListBoxFeq = ListBox
SELF.CreateControl()
ASSERT(SELF.Feq)
SELF.UseVar &= UseVar
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNo}
SELF.Feq{PROP:Use} = UseVar
SELF.SetAlerts

See Also: Init

758 CLARION 5 APPLICATION HANDBOOK

TakeAccepted (handle query dialog EVENT:Accepted events)

TakeAccepted, DERIVED, PROC

The TakeAccepted method processes EVENT:Accepted events for the query
dialog’s controls, and returns a value indicating whether ACCEPT loop
processing is complete and should stop. TakeAccepted returns Level:Benign
to indicate processing of this event should continue normally; it returns
Level:Notify to indicate processing is completed for this event and the
ACCEPT loop should CYCLE; it returns Level:Fatal to indicate the event
could not be processed and the ACCEPT loop should BREAK.

Implementation: The TakeAccepted method handles the processing of the update butons
(Insert, Change, Delete) on the Query list dialog.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: QFC

CHAPTER 42 QUERYLISTVISUAL 759

TakeCompleted (complete the query dialog)

TakeCompleted, DERIVED, PROC

The TakeCompleted method processes the EVENT:Completed event for the
query dialog and returns a value indicating whether window ACCEPT loop
processing is complete and should stop.

TakeCompleted returns Level:Benign to indicate processing of this event
should continue normally; it returns Level:Notify to indicate processing is
completed for this event and the ACCEPT loop should CYCLE; it returns
Level:Fatal to indicate the event could not be processed and the ACCEPT
loop should BREAK.

Implementation: Based on the current state of the querydialog, the TakeCompleted method
sets the search values in the QFC property. The QFC property may use these
search values to create a filter expresssion.

Return Data Type: BYTE

Example:

MyWindowManager.TakeEvent PROCEDURE
RVal BYTE(Level:Benign)
I USHORT,AUTO
 CODE
IF ~FIELD()
RVal = SELF.TakeWindowEvent()
IF RVal THEN RETURN RVal.

END
CASE EVENT()
OF EVENT:Accepted; RVal = SELF.TakeAccepted()
OF EVENT:Rejected; RVal = SELF.TakeRejected()
OF EVENT:Selected; RVal = SELF.TakeSelected()
OF EVENT:NewSelection;RVal = SELF.TakeNewSelection()
OF EVENT:Completed; RVal = SELF.TakeCompleted()
OF EVENT:CloseWindow OROF EVENT:CloseDown
RVal = SELF.TakeCloseEvent()

END
IF RVal THEN RETURN RVal.
IF FIELD()
RVal = SELF.TakeFieldEvent()

END
RETURN RVal

See Also: QFC

760 CLARION 5 APPLICATION HANDBOOK

TakeEvent (process edit-in-place events)

TakeEvent(event), VIRTUAL

TakeEvent Processes an event for the QueryListVisualClass object.

event An integer constant, variable, EQUATE, or expression
that contains the event number (see EVENT in the
Language Reference).

The TakeEvent method processes an event for the QueryListVisualClass
object and returns a value indicating the user requested action. Valid actions
are none, insert (InsertKey), change (MouseLeft2 or CtrlEnter), or delete
(DeleteKey).

Implementation: The EIPManager.TakeFieldEvent method calls the TakeEvent method. The
TakeEvent method process an EVENT:AlertKey for the edit-in-place control
and returns a value indicating the user requested action.

Return Data Type: BYTE

Example:

EIPManager.TakeFieldEvent PROCEDURE
I UNSIGNED(1)
 CODE
 IF FIELD() = SELF.ListControl THEN RETURN Level:Benign .
 LOOP I = 1 TO RECORDS(SELF.EQ)+1
 ! Optimised to pick up subsequent events from same field
 IF ~SELF.EQ.Control &= NULL AND SELF.EQ.Control.Feq = FIELD()
 SELF.TakeAction(SELF.EQ.Control.TakeEvent(EVENT()))
 RETURN Level:Benign
 END
 GET(SELF.EQ,I)
 END
 ! Not a known field
 IF ?{PROP:Type} <> CREATE:Button OR EVENT() <> EVENT:Selected ! Wait to post accepted
for button
 SELF.Repost = EVENT()
 SELF.RepostField = FIELD()
 SELF.TakeFocusLoss
 END
 RETURN Level:Benign

See Also: EIPManager.TakeFieldEvent, SetAlerts

CHAPTER 42 QUERYLISTVISUAL 761

