
homeBlog HomeFeedcontactAbout 42www.42.nl

Liberating data from Clarion TPS files

Migrating a customer from a legacy system to his shiny new one never goes smoothly. In this
case the customer had a huge amount of data in a Clarion based system with the tables stored
in proprietary TPS (TopSpeed) files. In this blog post I’ll discuss the various ways of liberating
data from their TPS container and dive deep into the internals of the TPS file itself. Finally I
present a TPS to CSV converter.

Existing Clarion Tooling

A quick browse on the internet revealed that I was not the only one looking for a way to read
data from TPS files. There were no libraries or file format specifications that I could find.
However Clarions vendor, Soft Velocity, provides some tooling to work with TPS files.

The most obvious you’ll encounter is the TPS ODBC driver. You’ll have to buy it of course.
However, as I could not find any documentation on how to use it, I skipped this option. Then I
found out that together with the Clarion product comes a tool called TOPSCAN which you can
use to view, edit and export a TPS file as a delimited file. Great! Now where to get this utility. As
said it’s part of Clarion, but buying the whole product for a conversion utility is a bit expensive.
Fortunately our customer had an existing Clarion development setup so we could use his.

Getting the data out using TOPSCAN involves a lot of clicking, first you have to make sure
you’ve got all the columns visible, then you need to do the export. You’re best off with the
defaults as the exporter dialog keeps its settings but doesn’t apply them across exports so the
first export may be correct, but the 2nd is always in default. Also the the export doesn’t properly
escape any quotes and comma’s, so importing it into another tool is .. annoying.. requiring
manual fixes.

Strangely enough, for some files, TOPSCAN would display only the column information and
not the data itself, while the file was clearly not empty. After a bit of experimentation we found
out that those files where from an older version of Clarion, and could only be opened with that
version of the software. Oh dear.. All in all, while it is possible to get the data out using existing
tooling, its not exactly a smooth ride. So I decided to take it a step further, and see if I could
write a tool to parse TPS files and do the conversion automatically.

binary mode enabled

Reverse engineering TPS files

If you open a TPS file in your favorite hex-editor you’ll notice the string ‘tOpS’ at position 0x0E
which identifies the file as a TopSpeed one.The first 0x0200 bytes form the header of the file as
indicated by the length value at position 0x04. You’ll also notice that the format uses the so
called little endian notation with the least significant byte first (so 0x0200 would be written as
0x00 and 0x02, whereas big endian is 0x02 and 0x00, which is directly readable for humans).
Which leaves us the four mysterious 0x00’s at the start of the file.

00000000h: 00 00 00 00 00 02 00 DB 05 00 00 DB 05 00 74 4F ;Û...Û..tO
00000010h: 70 53 00 00 00 00 13 B8 23 3D 00 00 07 00 00 00 ; pS…..¸#=......

As it turns out, those four zero’s indicate the position in the file. If you scan through the whole
file you’ll find plenty of other locations where the value matches the file position (all at 0x0100
boundaries), followed by a two byte length value. This is the main mechanism how TopSpeed

42 B.V.: Liberating data from Clarion TPS files http://blog.42.nl/articles/liberating-data-from-clarion-tps-files

1 of 6 15-02-2013 9:19

organizes its pages. However, one would expect a kind of index to these pages so that you
don’t have to scan the whole file (or accidentally misinterpret a value). Well, there is some
index, although its not complete. Its in the header as well and pretty obscure.

00000020h: 00 00 00 00 00 00 00 00 0D 00 00 00 1B 02 00 00 ;
00000030h: E7 03 00 00 E7 04 00 00 72 05 00 00 A1 05 00 00 ; ç...ç...r…¡...

00000110h: 00 00 00 00 0D 00 00 00 1B 02 00 00 E6 03 00 00 ;æ...
00000120h: E7 04 00 00 6E 05 00 00 9C 05 00 00 BD 05 00 00 ; ç...n…œ...½...

The header contains two arrays of 4 byte values containing references to the start and end of a
block of pages. Some arithmetic needs to be applied though. First, the value needs to be
shifted 8 bits to the left and the length of the header must be added. This will get you a start
and end address for each combination (in this case, at position 1 in the array : start
0x00000000 -> 0x00000200 and end 0x000000D -> 0x00000F00) so the first block runs from
0x0200 to 0x0F00. Let’s have a look at at that:

00000200h: 00 02 00 00 FD 00 FD 00 1D 07 71 00 00 C0 0B 00 ;ý.ý...q..À..

00000300h: 00 03 00 00 FD 00 FD 00 1D 07 71 00 00 C0 0B 00 ;ý.ý...q..À..

.. etc ..

00000900h: 00 09 00 00 36 00 36 00 4C 00 04 00 02 17 04 00 ;6.6.L…....

You’ll notice that the block starts with a page at address 0x00000200 of length 0x00FD. The
next page in the block is at address 0x00000300 and so on. There appears to be no index or
other management information about the pages inside a block. I wonder how it is kept track of.

Pages in a TPS File

So far we’ve examined the Header, Blocks and we know how to find Pages in a TPS file. Lets
examine the pages further, because that’s where the data is. In the previous examples, the
length was always followed by an identical value. However for block filled with record data their
values differ. Could there be some compression algorithm present and does the second value
indicate the length of the uncompressed page? It appears it does. For example:

00001b00h: 00 1B 00 00 BE 01 25 12 91 12 0A 00 00 05 C0 D5 ;¾.%.‘.....ÀÕ
00001b10h: 01 09 00 03 07 01 F3 00 00 02 C3 00 04 01 20 31 ;ó...Ã... 1
00001b20h: 01 00 03 01 20 31 03 00 00 20 60 03 00 00 20 22 ; 1… `... "
00001b30h: 01 00 03 01 20 A9 01 02 00 20 27 0B 08 C4 3B 02 ; ©... '..Ä;.

Here, the page length (0x01BE) is different from the uncompressed length (0x1225) indicating
that the page is compressed. The actual algorithm used is a form of Run Length Encoding
(RLE). This particular implementation alternates between copying bytes and repeating them.
The data starts at 0x001b0E with 0x05 bytes to copy, so 0xC0 0xD5 0x01 0x09 0x00 are copied
as is. The next value is 0x03 which indicates that the previous byte should be repeated 0x03
times, so 0x00 0x00 0x00, then the next value is 0x07 indicating that a further 0x07 bytes
should be copied as-is. And so on and so on.

This is a pretty effective high performance algorithm on data with a lot of blanks.

Sometimes it happens that much more bytes need to be repeated or copied that fits in the
single byte used to encode it. In that case a special extension mechanism is used marked by
the 0x80 bit of the byte. If set, another byte follows which holds the upper 8 bits of a 15 (!) bit
value. (the marker bit is skipped).

So this is a page, lets have a look what is inside.

42 B.V.: Liberating data from Clarion TPS files http://blog.42.nl/articles/liberating-data-from-clarion-tps-files

2 of 6 15-02-2013 9:19

TPS Records

Pages are populated by records (finally!) which use an interesting mechanism to save some
(more) bytes. As the header of a record is often identical to the next record, its possible for
records to ‘borrow’ each others header information. This is indicated by the first byte of the
record. If its value 0xC0 this is a complete record. The highest two bytes indicate if length
information is present, otherwise its needs to be copied from the previous record. The lower bits
indicate how many other bytes need to be copied from the previous record as well.

C0 D5 01 09 00 00 00 00 01 F3 00 00 02 C3 00 ..

The first length byte is the whole record (0x01D5) , the second byte is the length of the header
(0x0009). The header indicates the kind of record. In this case type 0xF3 is a data record with
the following bytes indicating the record number (0x000002C3) in big-endian notation! The rest
of the data inside the record is actually the row data of the record. Now we only need to be
able to understand the values.

There are several other record types, such as memo (0xFC) and table definition (0xFA) records.
The table definition records are interesting because they describe the format of the data inside
the data records. Of course, this requires some more byte guessing. And then I found this
page. It describes most of the TPS format (and specifically how to read the table definition
records) in Russian. Mmm. ¡google translate al rescate!

It took a bit of effort to understand but its quite good. Table definitions consist of column, index
and memo definitions. Column definitions map directly on the record data using an offset and a
length and a data type (how to read the bytes). Indexes are built up using the column values
by referencing them and memo’s are stored separately.

There are some data types that were present in my data files, but not explained in the Russian
page. So I had figure them out myself. These are the types 0x04 (date) and 0x05 (time). Both
use a mask encoding to store individual values in a 4 byte integer:

 Time : 0xHHmm????
 Date : 0xyyyyMMdd

Strangely enough there is another date encoding possible as well, but those are stored as
normal integer values and not as (some form of) dates. After some searching I found out that
they hold the number of days since 1800-12-28.

A TPS to CSV converter

After all this reverse engineering I’ve built a tool that extracts record and memo information out
of an given TPS file and stores this as a (properly escaped) CSV file. I’ve licensed it under the
Apache 2 license, so feel free to make code adjustments yourself. You can also use it as a
library for writing your own tools. If you come across any record types that are not understood,
please send me a copy of the TPS file if possible. If you decide to use this tool for migrating
data, do double check the results, as its all based on reverse engineering and may not be
accurate or complete.

Checkout the Sourcecode on Github.

TAGS: Java clarion tps

42 B.V.: Liberating data from Clarion TPS files http://blog.42.nl/articles/liberating-data-from-clarion-tps-files

3 of 6 15-02-2013 9:19

Jan '1321 Author Erik Hooijmeijer

(Show all articles by Erik Hooijmeijer)

There are few developers that can hear a customer out, grasp the intent of what is required
and implement that with a speed that borders the supernatural. Erik is a hard-core coder
and proud of it. Customers love him for his execution prowess.

His accomplishments are many, including Java coding tournament software, an Android
app, plugins, generators, and many, many games. Erik has remade most popular
frameworks just to get a good feel for the subject material.

Despite his champion skills, Erik is a gentle teamlead with strong coaching skills. He can be
entrusted to run a team of developers with the goal firmly in mind.

In case you got a comment

Name *

E-mail *

Website

Remember this

Notify me

What's written here? *

Your comment *

42 bv on twitter

42 B.V.: Liberating data from Clarion TPS files http://blog.42.nl/articles/liberating-data-from-clarion-tps-files

4 of 6 15-02-2013 9:19

RSS

Blogposts are written by

Bas de Vos
Bram Pramono
Dave van Eijck
Erik Hooijmeijer
Gerard Visser
Jeroen van Schagen
Johan Scholten
Jonck van der Kogel
Oscar Westra van Holthe - Kind
Robert Bor
Sander Benschop
Stefan Kohler
Theo van Essen
Willem Dekker

42 Tag cloud

Repository performance Cross Origin Resource Sharing W iki Browser Attach Mockito clarion Config PowerMock Spring Security Crowd Agile

Fragile Agile Bonfire QueryDSL Design JIRA Speakeasy Security jmx IzPack Installer Frameworks Liquibase Mock OpenStack Maven JOSS

javascript CSS REST HTML Confluence TDD JPA JARB Quality Database Atlassian Spring Java

42 Previous Don't Panic! articles

Integrating JavaScript web applications with a web service using Crowd
Securing Stateless Web Service with Spring Security 3 and Crowd
Fragile Agile explained
Connecting to a JVM programmatically
Fragile Agile - a cardgame on quality in software development
Making web applications available offline
REST and DDD: incompatible?
Running Cross Product Integration Tests for Atlassian Plugins
“Do Not Optimize Prematurely”, but be careful!
Workshops on Java and the Database
JavaEE 6 Web Profile and the Instant Developer Experience
Managing Complexity - Multiple Components and Release Schedules
Confluence 4.x rich editor survival guide
An introduction to Agile Testing with Bonfire
What’s new in Spring Web Services 2.0
Type safe property paths using QueryDSL
Change in jQuery
Automated database migration with Izpack and Liquibase
The Dependency Inversion Principle
JARB in practice
Awesome tables with CSS3
REST webservices do not need integration tests
Easy Installer with IzPack
Spring Data JPA with QueryDSL: Repositories made easy

42 B.V.: Liberating data from Clarion TPS files http://blog.42.nl/articles/liberating-data-from-clarion-tps-files

5 of 6 15-02-2013 9:19

Easy Command Line Interface coding with JCommander
CSS3, lightning talks and foosball on KTM
Atlassian Summit 2011 Wrap Up
Advanced unit testing (with) your Spring configuration
42 sponsors GOTO Amsterdam conference
Java Repository Bridge library in practice
Drop XML: configure your Spring web application in Java
Using database constraints in Java
The idea behind JARB - JAva Repository Bridge
Introducing a security layer in your application architecture
Mock frameworks
Leveraging the Spring MVC 3.1 HandlerMethodArgumentResolver interface
Testing RESTful applications
HTML and CSS workshop for JAVA developers
Bridging the divide between Java and the database with Liquibase
Automate Liquibase migrations
Using Speakeasy for integration
Spring Security: accessing Spring beans from your security annotations

42 B.V.: Liberating data from Clarion TPS files http://blog.42.nl/articles/liberating-data-from-clarion-tps-files

6 of 6 15-02-2013 9:19

