
CLAlIIDN
I ECHNICA' BULLE I IN

Bulletin #120

File Format of Clarion Help Files

Overview

This bulletin contains details about the fIle format of Clarion Help files.

Copyright 1990 by Clarion Software CoFJ?Oration. February Page 1

BulieUn #120 - Rle Format of Clarion Help Files

File Format of Clarion Help Flies

This bulletin contains details about the fUe format of Clarion Help fUes, and assumes that you possess a basic
understanding of C data structures. (For an overview of how help fUes work, see Clarion Technical Bulletin
#112, "Clarion Help Files.")

As you may already know, parts of the .HLP fUes are compressed. It is important for you to know how this
compression works in order to store and retrieve help window information outside of Helper or the Clarion
environment. First, we will discuss the format of Clarion help fUes, and then take a look at the compression
routine.

The following help fUe dump contains three help windows. The windows are named HELPl, HELP2, and
HELP3. The HELPl window chains to the HELP2 window, which chains to the HELP3 window. There are
no menu fields in any of these windows, which will keep the explanation of the dump fairly simple.

0000: EO 49 AC 01 000068 00 00 0006 00 OF 3E 06 OA j.I •••• h••••••>•• !
0010: 01 CD 2F 4845 4C 50 32 20 20 20 01 C9 00 CD 3C j •• /HELP2 ••.. <,
0020: BB BA 00 20 3C BA BA 00 20 3C BA SA 00 20 3C BA I'" <••• <••• <.j
0030: BA 00 20 3C BA BA 00 203C BA BA 00 20 184845 I" <••• <•••• HE j0040: 4C 50 20 5749 4E 44 4F 572031 00 20 17 SA SA ILP WINDOW 1. "'1
0050: 00 20 3C SA SA 00 20 3C BA SA 00 20 3C BA BA 00 I' <••• <••• <"'1
0060: 20 3C BA BA 00 20 3C BA BA 00 20 3C BA BA 00 20 1 <••• <••• <••• I
0070: 3C BA C8 00 CD 3C BC 00 2F FF 00 2F FF 00 2F FF ,<•••• <•• 1..1.•1.1
0080: 00 2F AS 01 0000 FF 00 00 FF 0000 FF 0000 AS l.I..............1
0090: 06 OA 14 47 2F 01 68 00 OD 00 06 00 OF 3E 06 OA j •••G/.h •••••• >•• 1
OOAO: 01 CD 2F 4845 4C 50 33 20 20 20 01 C9 00 CD 3C 1··/HELP3 •••• <1
OOBO: BB BA 00 20 3C BA BA 00 20 3C SA SA 00 20 3C BA I'" <••• <••• <'j
OOco: BA 00 20 3C SA BA 00 20 3C BA SA 00 20 184845 I" <••• <•••• HE,
DODO: 4C 50 20 5749 4E 44 4F 5720320020 17 BA SA ILP WINDOW 2. "'j
OOEO: 0020 3C BA SA 00 20 3C BA SA 00 20 3C BA BA 00 I' <••• <••• <"'1
OOFO: 20 3C BA BA 00 20 3C BA SA 00 20 3C SA SA 00 20 1 <••• <••• <••• 1
0100: 3C SA C8 00 CD 3C SC 00 2F FF 00 2F FF 00 2F FF 1< ••••<••1••1••1.
0110: 00 2F AS 01 0000 FF 0000 FF 00 00 FF 0000 AS 1./•••••••••••••• 11
0120: 06 OA 1447 2F 01 68 00 OD 00 06 00 OF 3E 06 OA 1•••G/.h •••••• >•• 1
0130: 00 01 C9 00 CD 3C SS SA 00 20 3C SA BA 00 20 3C j ••••• <••• <••• <I
0140: BA SA 00 JO 3C SA SA 00 20 3C SA BA 00 20 3C SA I'" <••• <••• <'j
0150: SA 00 20'1848 45 4C 50205749 4E 44 4F 5720 I" .HELP WINDOW I
0160: 3300 20 17 SA SA 00 20 3C SA SA 00 20 3C SA SA 13 ••••• <••• <"1
0170: 0020 3C SA BA,OO 20 3C SA BA 00 20 3C SA SA 00 I' <••• <••• <••• ,
0180: 20 3C SA SA 00 20 3C SA C8 00 CD 3C BC 00 2F FF , <••• <•••• <••1.1
0190: 00 2F FF 00 2F FF 00 2F AS 01 0000 FF 0000 FF j.I .•I ••I ••••••.. ,
01AO: 0000 FF 00 00 AS 06 OA 14 47 2F 01 4845 4C 50 I.........G/.HELPI'
01S0: 31 202020 06 00 00 00 48 45 4C 5032 20 20 20 1 •••• HELP2
01CO: 9600000048 45 4C 50 33 20 20 20 26 01 0000 !....HELP3 &... 1

We have given names to the different areas. Field names within those areas will be supplied to identify the
data that is stored there. Preceding each field name is the offset in hexidecimal for this fUe, relative to zero.
The important areas will be discussed in detail in the next section.

H you use Scanner to look at a help ftIe, add one to each offset you see here since Scanner starts the fUe at
offset 0001. We will use the HELPl window to show how the windows are retrieved.

CopyrIght 1990 by Clarion Software CorporatIon, February Page 2

BulleUn #120 - File Fonnat of Clarion Help Flies

FILE HEADER:

struct {
unsigned signature;
unsigned long wincH ist;
};

(0000) signature

(0002) windlist

WINDOW LIST STRUCTURE:

struct {
char windid[8];
unsigned long woffset;
};

(OlAe) windid

(01B4) woffset

1* file signature *1
1* offset to window list *1

The rtIe's signature (EO 49). This field tells us that this is a file created
by Helper (chlp.exe) version 2. Since the bytes are stored in reverse
order due to the Intel architecture, the value is actually hex 49 EO. H
this value is something other than EO 49, version 2 of Helper will NOT
recognize this as a help file.

The offset into the window list (AC 01 00 00). The window list contains
the name(s) of the window(s) and the offset(s) into each window's
header information. Again, since the bytes are stored in reverse order,
and this is an unsigned long, the value is actually hex OOOOOlAC.

1* wi ndow name *1
1* offset of window header *1

The name of the first help window in the window list (HELP1).

The offset of this window's header information (06 00 00 00).

After the first window list structure, you will find the structures for all of the other windows stored in this
help file.

WINDOW HEADER:

struct { .
uns i gned wfndbuf;
unsigned contbufi
unsigned paintbuf;
char noli
char flOC;
char trow;
char tcol;
char chain;
}; .

(0006) windbuf

\.-

1* size of window buffer *1
/* size of control buffer *1
/* size of paint buffer *1
1* number of lines in window *1
/* number of columns in window */
1* beginning row of window *1
/* beginning colll1l1 of window *1
1* chain to window */

The length of the compressed window buffer (68 00). The window
buffer is where the characters and their attributes are stored for the
HELPl window.

Copyrtght 1990 by Clarion Software Corporation, February Page 3

i

BulieUn .120 - FIle Format of Clarion Help FIles

(0008) contbuf 	 The length of the compressed control buffer (OD 00). The control
buffer will follow the window buffer. This buffer contains attributes that
are used by Helper.

(OOOA) painthuf 	 The length of the paint buffer (06 00). The paint buffer will follow the
control buffer. This buffer contains paint attributes that are used by
Helper.

(OOOC) nol 	 The number of lines in the window (OF).

(OOOD) noc 	 The number of columns in the window (3E).

(OOOE) trow 	 The beginning row of the window (06). If the high order bit of this byte
is set to ON (i.e. 86h), then this window position would be FIXED at
the row indicated. The actual row used to display a FLOATING help
window in the Clarion environment is determined where it is being
referenced.

(OOOF) tcol 	 The beginning column of the window (OA). Again, if the fixed indicator
was on in the row field, this column will be the fixed location of the
window. Floating windows determine the column where they are
referenced.

(0010) chain 	 This byte indicates that there is a chain to another window from this
window (01).

00 -> no chain or menu
01 -> chain to another window

> 01 - > menu items in this window
menu items = chain - 1

As you can see, you cannot have both a chain and a menu item for a
given window.

WINDOW CHAIN STRUCTURE:

struct {
uns i gned overh; /* helper overhead */
char chw;ndow[S]; /* chain to window name */
>;

(0011) overh 	 These two bytes are overhead for Helper (CD 2F).

(0013) chwindow 	 The name of the help window that this window chains to (HELP2).

(The areas ~low and the compression technique will be discussed in a later section.)

(OOlB) 	 This byte is where the compressed window buffer begins. The number
of bytes to read for this buffer is in the windbuf variable in the window
header structure.

Copyright 1990 by Clarion Software Corpor..uon. February Page 4

BuDetI" .,20 - Ale Fonnat of Clarion Help Ales

(0083) 	 This byte is where the compressed control buffer begins. The number
of bytes to read for this buffer is in the contbuf variable in the window
header structure.

(0090) 	 This byte is where the paint buffer begins. This buffer is not
compressed. The number of bytes to read for this buffer is in the
paintbuf variable in the window header structure.

WINDOW BUFFER AREA

This area, when decompressed, contains the characters and attributes for the help window. The characters
are stored in the first half of the buffer and the attributes corresponding to each character are stored in the
second half of the buffer.

CONTROL BUFFER AREA

This area, when decompressed, contains the control character for each window character. The control
character is used by Helper to determine whether to use the paint attribute or use the character
attribute for that character. In our example, all the control characters are set to zero. This tells Helper to
use the paint attributes in the paint buffer when editing the window.

PAINT BUFFER AREA

~ This area is not compressed and can be broken into six byte structures.

PAINT STRUCTURE:

struct {
char trow; /* top row of paint */
char tcol; /* top colUlll of paint */
char erow: /* ending row of paint */
char ecol: /* ending colUlll of paint */
unsigned colatr; /* paint color attribute */
)i

There will be'at least one paint structure for each window. This paint structure indicates the base
foreground and background colors for this window. For each different paint used in Helper, a corresponding
paint structure will be in the paint buffer.

HELP FILE COMPRESSION

For each help window, the window buffer and the control buffer areas are compressed. We will explain the
compression technique through illustration. F'trst, we will decompress part of the window buffer for the
HELP! window in the help file dump. This should give a clear explanation of how the data is compressed.

CopyrIght 1990 by ClarIon Software CorporaUon. February Page 5

BulleUn .120 • File Format of Clarion Help Files

11 byte compressed section of the HELP1 window buffer:

byte
offset 111

hex

value

1 2 3 4 5 6 7 8 9 10

01 C9 00 CD 3C BB BA 00 20 3C BA

r - 1 II Isp I
Ascii Characters to be Displayed

Byte Hex value Explanation

1 01 This indicates that the window buffer is in fact compressed. A value of
(00) would indicate that the entire buffer is not compressed.

2 C9 This is the ftrst character in the help window. Since it is not preceded
by a (00). no compression took place on this character. Store (C9) 'Ii"
to the uncompressed buffer.

3 00 Compressed character indicator. This tells us that the next byte is the
value of a compressed character.

4 CD This is the character value that was compressed.

5 3C This is the number of positions that byte 4 occupied in succession.
Store 60 (3C hex) '::' characters into the uncompressed buffer.

6 BB This indicates no compression. Store (BB) 'ii' to the
uncompressed buffer.

7 BA This indicates no compression. Store (BA) , II' to the
uncompressed buffer.

S 00 Compressed character indicator. This tells us that the next byte is the
value of a compressed character.

9 20 This is the character value that was compressed.

10 3C This is the number of positions that byte 9 occupied in succession.
Store 60 ' , characters into the uncompressed buffer.

11 BA This indicates no compression. Store (BA) , II ' to the
uncompressed buffer.

IT we displayed the characters that we uncompressed, it would look like the following:

Copyright 1990 by Clarion Software Corpo'raUon. February Page 6

Bulletin .120 - File Fonnat or Clarion Help Files

It's easy to see how much space is saved by this compression technique. 124 window characters were
compressed down to 10 bytes.

When you understand how the data is decompressed, it should be easy to understand the compression
technique. There are a couple of things to remember when compressing/decompressing Clarion help
windows:

1. 	 Characters are normally compressed when three or more are found in succession.

2. 	 The maximum number of characters compressed in succession is 255. (255 is the largest value a byte
can hold.)

3. 	 The characters and attributes are compressed separately, yet in the same buffer, to increase the amount
of compression. When the entire windbuf has been decompressed, the characters and attributes are
then reunited, char, aUr, char, attr, etc.

HELP WINDOW MENU ITEM

A menu item in a help window gives that window the capability to jump to a particular help screen. A help
window can contain multiple menu items, although they cannot have both menu items and a chain. When a
menu item is created for a window, the "chain to" option is ignored and the window chain structure is
replaced with the following window menu structure.

WINDOW MENU STRUCTURE:
\...-..

struct {

char mrow; /* beg row of menu item */
char meol; /* beg col of menu item */
char mlen; /* length of menu item */
char sel; /* select attribute */
char ctl; /* character attribute */
char flet; /* first letter of menu item */
char mwind[8] /* window name to jump to */
};

A menu structure is detected by the chain variable in the window header structure. When this variable
contains a value greater than (01) it indicates menu structures to follow. As stated earlier, the number of
menu structures is computed as follows:

number of menu items = chain - 1

This is done because Helper interprets a chain value of 1 as a CHAINED window, rather than a window
with MENU ITEMS. Therefore, a 2 in the chain byte means that there is 1 menu item on the window.

Copyright 1990 by Clarion Software CoJporatlon, February Page 7

