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Bulletin #119 

Using Binary Numbers 

Overview 

This technical bulletin discusses binary numbers. It explains how to convert 
decimal numbers to binary numbers, how to shift binary numbers, and how to 
use ANDs, ORs, and XORs with binary numbers. 
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Using Binary Numbers 

A binary number is a way to represent numbers. The numbers we use everyday are decimal numbers. This 
means that the set of numbers belongs to the base 10. Base 10 (decimal) numbers consist of any 
combination of the numbers 0 - 9. The decimal number 10 itself is a combination of a 1 and O. 

Zero is the smallest positive decimal number. Zero can be thought of as 0, 00, 000, etc. Leading zeroes do 
not change the value of the number. (This information is obvious, but keep it in mind.) The numbers I, 10, 
100, etc. are not the same as I, 01, 001, etc. Both series of numbers are a combination of a single 1 and 
some number of zeroes; so why aren't they the same? The answer, of course, is that the placement of the 
digits is important. 

What does it mean when we think of the decimal number 10? The rightmost digit represents the number of 
ones we have. The next rightmost digit represents the number of tens we have. And the next represents the 
number of hundreds we have, and so on. 

1 0 
Decimal number 10 is: (1 ,. 10) + (0 ,. 1). 

4 6 
Decimal number 46 is: (4 ,. 10) + (6 ,. 1). 

281 
Decimal number 281 is: (2 * 100) + (8" 10)+(1 ,. 1) 

Binary numbers are the set of numbers belonging to the base 2 Base 2 (binary) numbers consist of any 
combination of the numbers 0 - 1. The binary number 10 itself is a combination of a 1 and 0 but does not 
have the same value as the decimal number 10. 

What does it really mean when we think of the binary number 10? The rightmost digit represents the 
number of ones we have. The next rightmost digit represents the number of twos we have. And 
the next rightmost digit represents the number of fours we have. The next digit represents the number of 
eights we have, and so on. 

1 0 
Binary number 10 is: (1 * 2) + (0 * 1) 

101 
Binary number 101 is: (1 * 4) + (0" 2) + (1 ,. 1 ) 

The binary number 10 is the same as the decimal number 2. The binary number 101 is the same as the 
decimal number 5. Any decimal number can be represented as a binary number. 
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Consider the following chart: 


POW E RIP LAC E MEN Ti 


B 
A 

S 

E 

7 6 5 4 3 2 1 0 

10 10,000,000 1,000,000 100,000 10,000 1,000 100 10 1 

2 128 64 32 16 8 4 2 1 

Converting Decimal to Binary 

How do we convert decimal numbers to binary numbers? The best way to explain it is to actually do some 
examples. Let's convert the decimal number 26 to binary. 

BASE 2 
Positions 	 128 64 32 16 8 4 2 1 

Is 26>=128 NO O.......B 
Is 26>=64 NO OO......B 
Is 26 > = 32 NO OOO.....B 
Is 26 >= 16 YES OOOl..••B 

(26-16) Is 10 >= 8 YES 000l1 ... B 
(10-8) Is 2 >= 4 NO 000110..B 

Is 2> 2 YES 000l101.B 
(2-2) Is 0>= 1 NO 00011010B 

As you can see, the decimal number 26 is the same as the binary number 11010. Any decimal number can 
be converted to binary in a similiar fashion. The leading zeroes can be ignored, just like in the decimal 
number 0026. For practice, try converting the numbers 25 and 50 (you should get 11001 and 110010). 

Likewise, we can easily convert a binary number to a decimal. 

'.BASE 2 
Positions 128 64 32 16 8 4 2 1 

Our Number 0 o o 1 1 o 1 o 

DECIMAL 	 = (0 * 128) + (0 * 64) + (0 * 32) + (1 * 16) + (1 * 8) + (0 * 4) + (1 * 2) + (0 * 1) 

= 16 + 8 + 2 

=26 
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ANDs I ORs I XORs with Binary Numbers 

Before we begin to explain ANDs and ORs, let's begin with the concept of truth tables. If someone said "I 
am a boy AND I am a girl," this would be a FALSE statement. It is a FALSE statement regardless of which 
condition is TRUE and which is FALSE. This is FALSE because the AND condition requires BOTH 
conditions to be TRUE in order for the statement to be TRUE. Obviously, one condition is TRUE and the 
other condition is FALSE. If someone said "I am dead AND I am invisible," this would also be a FALSE 
statement. Both conditions are FALSE and so the statement is FALSE. You have just learned the truth 
table for ANDs. If binary 15 represent TRUE conditions and binary Os represent FALSE conditions, we get 
the following truth tables. 

Cond1 AND C0nd2 

TRUE AND TRUE 
TRUE AND FALSE 
FALSE AND TRUE 
FALSE AND FALSE 

Result 

=TRUE 
= FALSE 
:: FALSE 
:: FALSE 

Cond1 AND C0nd2 

1 AND 1 
1 AND 0 
0 AND 1 
0 AND 0 

Result 

= 1 
:: 0 

0 
0 

Now let's try to AND two binary numbers together. In Clarion, BAND(6,12) returns 4. Let's see why. 
Decimal 6 is also CXXlOO110 binary. Decimal 12 is 00001100 binary. Let's place these two numbers into our 
truth table: 

-.(6) (12) = (4) 
Cond1 AND Cond2 

0 AND 0 
0 AND 0 
0 AND 0 
0 AND 0 
0 AND 1 
1 AND 1 
1 AND 0 
0 AND 0 

iResult 
"-./' 

:: 0 

0 


:: 0 
:: 0 
:: 0 

1 
= 0 
:: 

= 

0 

All this is good to know, but what use is it? Since binary numbers consist of the numbers 0 and 1, many 
programmers use these Binary digITS (BITS) to represent offen) and on(l) states. Let's say we have 8 
machines, any~of which may be running at any time. 

If machine 0 is on, then the Oth power (BIT 0) of two digit is on(l). 
If machine 1 is on, then the lth power (BIT 1) of two digit is on(l). 

. 
If machine 7 is on, then the 7th power (BIT 7) of two digit is on(l), etc. 
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Let's say that the program calls this function and it returns a value of 135 (decimal). Which machines an~ 
on? By treating the decimal value as a binary number (10000111) we realize that machines 7, 2, 1 and 0 are 
on. Let's assume that this program only cares if machine 5 is on. Thus, we must check to see that BIT 5 is 
on. To do this, we take 135 ANDed with 32 (00100000). In Clarion, this would be BAND(135,32). 

(135) (32) = (0) 
Cond1 AND C0nd2 

1 AND 0 
0 AND 0 
0 AND 1 
0 AND 0 
0 AND 0 
1 AND 0 
1 AND 0 
1 AND 0 

Result 

= 0 
= 0 

BIT 5-> = 	 0 
o 
o 

= 	 0 
o 
o 

You'll notice that the result of the ~ is zero. This is because machine 5 is off (not on). 

Let's build a truth table for ORing conditions. If someone said "I am a girl OR I am a boy," this would be a 
TRUE statement. Obviously, one condition is TRUE and the other condition is FALSE. It is a TRUE 
statement regardless of which condition is TRUE and which is FALSE. This is TRUE because the OR 
condition requires at least ONE condition to be TRUE in order for the statement to be TRUE. If someone 
said "I am dead OR I am invisible," this would be a FALSE statement. Both conditions are FALSE and so 
the statement is FALSE. You have just learned the truth table for ORs. If binary 1s represent TRUE 
conditions and binary Os represent FALSE conditions we get the following truth tables. 

Concl1 OR Conc12 

TRUE OR TRUE 
TRUE OR FALSE 
FALSE OR TRUE 
FALSE OR FALSE 

Result 

=TRUE 
=TRUE 
=TRUE 
= FALSE 

Cond1 OR Concl2 

1 OR 1 
1 OR 0 
0 OR 1 
0 OR 0 

Result 

= 	 1 
= 	 1 
= 	 1 
= 	 0 

Recalling the function before which returned the state of 8 machines, let's say that we wish to turn on 
machine 5 and leave the states of the other machines the same. To do this, we take 135 ORed with 32 
(00100000). The code in Clarion is BOR(135,32). 

(135) (32) = (167) 
Cond1 OR Concl2 

1 OR 0 
0 OR 0 
0 OR 1 
0 OR 0 
0 OR 0 
1 OR 0 
1 OR 0 
1 OR 0 

Result 

1 
= 	 0 

BIT 5-> = 	 1 
= 	 0 
= 	 0 

1 
1 

= 	 1 

As you can see, by ORing BIT 5 with a 1 (TRUE), we get a 1 in the result. What would happen if BIT 5 
was already on? Since 1 OR 1 is TRUE, we would get the identical result. 
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Now for some XORing. XOR can be very useful for such things as toggling bits on and off. Let's first look 
at a truth table, since it is more difficult to express how XOR works with simple sentences. 

Cord1 XOR ResultC0nd2 

= FALSETRUE XOR TRUE 
;: TRUEXOR FALSETRUE 
;: TRUEFALSE XOR TRUE 
;: FALSEXOR FALSEFALSE 

It is quite obvious how XOR works: any two statements that are both equal results in FALSE, any two that 
are unequal results in TRUE. Let's XOR two numbers, 134 (10000110) and 27 (00011011): 

(134) 

Cord1 XOR C0nd2 

1 XOR 1 
1 XOR 0 
0 XOR 1 
0 XOR 0 

= 
= 
;: 

;: 

(27) 
C0nd2 

0 
0 
0 
1 
1 
0 
1 
1 

;: (157) 
Result 

;: 1 
;: 0 
;: 0 
;: 1 
;: 1 
= 1 
= 0 
= 1 

Result 

0 
1 
1 
0 

BIT 6-> 

BIT 5-> 


BIT 1-> 


XORCord1 

XOR1 
0 XOR 

XOR0 
XOR0 
XOR0 
XOR1 
XOR1 
XOR0 

This would be represented by BXOR(134,27) in Clarion. Notice that in each case where both numbers are '-.../ 
the same, the outcome is FALSE (BITS 1,5 and 6). 

Have you ever wondered how certain strings of Christmas lights seem to "move?" Well, one possible way of 
doing it would be to use the XOR function. Pretend that each BIT represents a light, 1 for on and 0 for off. 
Here's our string of lights: 10101010. All we need to do is simply XOR this value with 11111111 over and 
over again. 

Cord1 XOR C0nd2 

1 XOR 1 
0 XOR 1 
1 XOR 1 
0 XOR 1 
1 XOR 1 
0 XOR 1 
1 XOR 1 
0 XOR 1 

Result 

= 0 
1= 

;: 0 
1 
0 

= 

;: 1 
;: 0 

1 

01010101 XOR 11111111 = 10101010 
10101010 XOR 11111111 = 01010101 
01010101 XOR 11111111 = 10101010 
10101010 XOR 11111111 = 01010101 
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Voila! flMoving" lights. By toggling each light (BIT) on and off, this produces an effect making the lights 
move. Follow the 1's in the example above to better understand how it works. 

Many encryption methods use XOR to "disguise" idata. For example, take the sentence "Hello World.fl This 
sentence is represented in memory by the decimal ASCII values (H)72, (e)101, (1)108, (1)108, (0)111, ()32, 
(W)87, (0)101, (r)114, (1)108, and (d)l00. Now we need a "key," and any number will do - we'll use 52. A 
simple encryption would XOR each value in the data with the key like this: 

ENCRYPT DECRYPT 

ASCIIASCII XOR KEY 

7Z XOR 52 
101 XOR 52 
108 XOR 52 
108 XOR 52 
111 XOR 52 
32 XOR 52 
87 XOR 52 
111 XOR 52 
114 XOR 52 
108 XOR 52 
100 XOR 52 

Result 

= 
= 
= 
= 
= 
= 
= 
= 
:: 

= 
= 

124 
81 
88 
88 
91 
20 
99 
91 
70 
88 
80 

I 
I 

Q 

X 

X 

[
AT 
c 
Q 
F 

X 

p 

ResultXOR KEY 

XOR 52 
XOR 52 

88 XOR 52 
88 XOR 52 
91 XOR 52 
20 XOR 52 
99 XOR 52 
91 XOR 52 
70 XOR 52 
88 XOR 52 
80 XOR 52 

= 

= 

= 
= 
= 
= 
= 
= 
= 

7Z 
101 
108 
108 
111 
32 
87 
111 
114 
108 
100 

H 
e 
l 
l 
0 

w 
0 

r 
l 
d 

Our resulting encrypted data looks like this: "I QXX["TcQFXP." Try to read that! Now, to get our original 
sentence back again, simply take each of the resulting numbers and re-XOR them with 52. Our original 
"Hello WorW is back. Of course, this is a very simple encryption routine, but by using XOR in other 
different ways, we can create much more difficult patterns. 

SHIFTIng Binary Numbers 

Shifting binary numbers is a method of multiplying or dividing binary numbers by some power of 2. Let's 
frrst think about shifting decimal numbers. 

First, I'll explain the concept of shifting to the right. If I took the number 234 and shifted all the numbers to 
the right 1 place, I would get the number 023. If I shifted right 1 more place, I would get the number 002. 
Notice that each shift to the right 1 place is equivalent to dividing the decimal number by 10. Zeroes are 
added in the Jeftmost position to replace the vacated position. The same concept applies for binary numbers. 
Let's start with the number 234 (11101010 binary). If I shift right all the binary digits (bits) 1 place, I would 
get the binary number 01110101 (117 decimal). Shifting to the right 1 more place> would create the number 
00111010 (58 decimal). Notice that each shift to the right 1 place is equivalent to dividing by 2. 

Shifting to the left is similiar to shifting to the right. Zeroes are added in the rightmost position to replace 
the vacated position. Each shift to the left 1 place is equivalent to multiplying by 2. 

In Clarion;BSHIFT(value,count) is how you shift binary numbers. Say, for example, that machines 0 - 3 are 
on, and machines 4 - 7 are off. One way of turning off the lower four machines and turning on the upper 
four machines would be to shift the BITS to the left 4 places. To do this we would use BSHJFT(15,4): 
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Original Setup 00001111 

1st Shift 00011110 

2nd Shift 00111100 

3rd Shift 01111000 

4th Shift 11110000 


Since each shift to the left is equivilant to multiplying by two, we can assume BSHJFf(15,4) = 15 * 2 * 2 * 2 
* 2 = 11l10000B. To shift to the RIGHT, we would use BSHIFr(15,·4). 

Realize that if we shift 11110000 to the left one more time, we lose the high BIT, ending up with 11100000. 
Likewise, if we shift 00001111 to the right one we lose the low BIT, resulting in 00000111. 
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