
CLAJ liON
I ECHNICALBULLE liN

Bulletin #119

Using Binary Numbers

Overview

This technical bulletin discusses binary numbers. It explains how to convert
decimal numbers to binary numbers, how to shift binary numbers, and how to
use ANDs, ORs, and XORs with binary numbers.

CopyrIght 1990 by Clarton Software CorporatIon, February Page 1

Bulletin .119 - UsIng Binary Numbers

Using Binary Numbers

A binary number is a way to represent numbers. The numbers we use everyday are decimal numbers. This
means that the set of numbers belongs to the base 10. Base 10 (decimal) numbers consist of any
combination of the numbers 0 - 9. The decimal number 10 itself is a combination of a 1 and O.

Zero is the smallest positive decimal number. Zero can be thought of as 0, 00, 000, etc. Leading zeroes do
not change the value of the number. (This information is obvious, but keep it in mind.) The numbers I, 10,
100, etc. are not the same as I, 01, 001, etc. Both series of numbers are a combination of a single 1 and
some number of zeroes; so why aren't they the same? The answer, of course, is that the placement of the
digits is important.

What does it mean when we think of the decimal number 10? The rightmost digit represents the number of
ones we have. The next rightmost digit represents the number of tens we have. And the next represents the
number of hundreds we have, and so on.

1 0
Decimal number 10 is: (1 ,. 10) + (0 ,. 1).

4 6
Decimal number 46 is: (4 ,. 10) + (6 ,. 1).

281
Decimal number 281 is: (2 * 100) + (8" 10)+(1 ,. 1)

Binary numbers are the set of numbers belonging to the base 2 Base 2 (binary) numbers consist of any
combination of the numbers 0 - 1. The binary number 10 itself is a combination of a 1 and 0 but does not
have the same value as the decimal number 10.

What does it really mean when we think of the binary number 10? The rightmost digit represents the
number of ones we have. The next rightmost digit represents the number of twos we have. And
the next rightmost digit represents the number of fours we have. The next digit represents the number of
eights we have, and so on.

1 0
Binary number 10 is: (1 * 2) + (0 * 1)

101
Binary number 101 is: (1 * 4) + (0" 2) + (1 ,. 1)

The binary number 10 is the same as the decimal number 2. The binary number 101 is the same as the
decimal number 5. Any decimal number can be represented as a binary number.

Copyright 1990 by Clarion Software Corporation, February Page 2

Bulletin .119 - UsIng Binary Numbers

Consider the following chart:

POW E RIP LAC E MEN Ti

B
A

S

E

7 6 5 4 3 2 1 0

10 10,000,000 1,000,000 100,000 10,000 1,000 100 10 1

2 128 64 32 16 8 4 2 1

Converting Decimal to Binary

How do we convert decimal numbers to binary numbers? The best way to explain it is to actually do some
examples. Let's convert the decimal number 26 to binary.

BASE 2
Positions 	 128 64 32 16 8 4 2 1

Is 26>=128 NO O.......B
Is 26>=64 NO OO......B
Is 26 > = 32 NO OOO.....B
Is 26 >= 16 YES OOOl..••B

(26-16) Is 10 >= 8 YES 000l1 ... B
(10-8) Is 2 >= 4 NO 000110..B

Is 2> 2 YES 000l101.B
(2-2) Is 0>= 1 NO 00011010B

As you can see, the decimal number 26 is the same as the binary number 11010. Any decimal number can
be converted to binary in a similiar fashion. The leading zeroes can be ignored, just like in the decimal
number 0026. For practice, try converting the numbers 25 and 50 (you should get 11001 and 110010).

Likewise, we can easily convert a binary number to a decimal.

'.BASE 2
Positions 128 64 32 16 8 4 2 1

Our Number 0 o o 1 1 o 1 o

DECIMAL 	 = (0 * 128) + (0 * 64) + (0 * 32) + (1 * 16) + (1 * 8) + (0 * 4) + (1 * 2) + (0 * 1)

= 16 + 8 + 2

=26

Copyright 1990 by Clarion Software CorporaUon, February Page 3 ,

Bulletn ..119 - Using Binary Numbers

ANDs I ORs I XORs with Binary Numbers

Before we begin to explain ANDs and ORs, let's begin with the concept of truth tables. If someone said "I
am a boy AND I am a girl," this would be a FALSE statement. It is a FALSE statement regardless of which
condition is TRUE and which is FALSE. This is FALSE because the AND condition requires BOTH
conditions to be TRUE in order for the statement to be TRUE. Obviously, one condition is TRUE and the
other condition is FALSE. If someone said "I am dead AND I am invisible," this would also be a FALSE
statement. Both conditions are FALSE and so the statement is FALSE. You have just learned the truth
table for ANDs. If binary 15 represent TRUE conditions and binary Os represent FALSE conditions, we get
the following truth tables.

Cond1 AND C0nd2

TRUE AND TRUE
TRUE AND FALSE
FALSE AND TRUE
FALSE AND FALSE

Result

=TRUE
= FALSE
:: FALSE
:: FALSE

Cond1 AND C0nd2

1 AND 1
1 AND 0
0 AND 1
0 AND 0

Result

= 1
:: 0

0
0

Now let's try to AND two binary numbers together. In Clarion, BAND(6,12) returns 4. Let's see why.
Decimal 6 is also CXXlOO110 binary. Decimal 12 is 00001100 binary. Let's place these two numbers into our
truth table:

-.(6) (12) = (4)
Cond1 AND Cond2

0 AND 0
0 AND 0
0 AND 0
0 AND 0
0 AND 1
1 AND 1
1 AND 0
0 AND 0

iResult
"-./'

:: 0

0

:: 0
:: 0
:: 0

1
= 0
::

=

0

All this is good to know, but what use is it? Since binary numbers consist of the numbers 0 and 1, many
programmers use these Binary digITS (BITS) to represent offen) and on(l) states. Let's say we have 8
machines, any~of which may be running at any time.

If machine 0 is on, then the Oth power (BIT 0) of two digit is on(l).
If machine 1 is on, then the lth power (BIT 1) of two digit is on(l).

.
If machine 7 is on, then the 7th power (BIT 7) of two digit is on(l), etc.

CopyrIght 1990 by Clarion Software Corporation, February Page 4

BulleUn .119 - Using Binary Numbers

Let's say that the program calls this function and it returns a value of 135 (decimal). Which machines an~
on? By treating the decimal value as a binary number (10000111) we realize that machines 7, 2, 1 and 0 are
on. Let's assume that this program only cares if machine 5 is on. Thus, we must check to see that BIT 5 is
on. To do this, we take 135 ANDed with 32 (00100000). In Clarion, this would be BAND(135,32).

(135) (32) = (0)
Cond1 AND C0nd2

1 AND 0
0 AND 0
0 AND 1
0 AND 0
0 AND 0
1 AND 0
1 AND 0
1 AND 0

Result

= 0
= 0

BIT 5-> = 	 0
o
o

= 	 0
o
o

You'll notice that the result of the ~ is zero. This is because machine 5 is off (not on).

Let's build a truth table for ORing conditions. If someone said "I am a girl OR I am a boy," this would be a
TRUE statement. Obviously, one condition is TRUE and the other condition is FALSE. It is a TRUE
statement regardless of which condition is TRUE and which is FALSE. This is TRUE because the OR
condition requires at least ONE condition to be TRUE in order for the statement to be TRUE. If someone
said "I am dead OR I am invisible," this would be a FALSE statement. Both conditions are FALSE and so
the statement is FALSE. You have just learned the truth table for ORs. If binary 1s represent TRUE
conditions and binary Os represent FALSE conditions we get the following truth tables.

Concl1 OR Conc12

TRUE OR TRUE
TRUE OR FALSE
FALSE OR TRUE
FALSE OR FALSE

Result

=TRUE
=TRUE
=TRUE
= FALSE

Cond1 OR Concl2

1 OR 1
1 OR 0
0 OR 1
0 OR 0

Result

= 	 1
= 	 1
= 	 1
= 	 0

Recalling the function before which returned the state of 8 machines, let's say that we wish to turn on
machine 5 and leave the states of the other machines the same. To do this, we take 135 ORed with 32
(00100000). The code in Clarion is BOR(135,32).

(135) (32) = (167)
Cond1 OR Concl2

1 OR 0
0 OR 0
0 OR 1
0 OR 0
0 OR 0
1 OR 0
1 OR 0
1 OR 0

Result

1
= 	 0

BIT 5-> = 	 1
= 	 0
= 	 0

1
1

= 	 1

As you can see, by ORing BIT 5 with a 1 (TRUE), we get a 1 in the result. What would happen if BIT 5
was already on? Since 1 OR 1 is TRUE, we would get the identical result.

Copyrtght 1990 by Clarion Software CorporaUon, February Page 5
,

Bulletin "119 - Using BInary Numbers

Now for some XORing. XOR can be very useful for such things as toggling bits on and off. Let's first look
at a truth table, since it is more difficult to express how XOR works with simple sentences.

Cord1 XOR ResultC0nd2

= FALSETRUE XOR TRUE
;: TRUEXOR FALSETRUE
;: TRUEFALSE XOR TRUE
;: FALSEXOR FALSEFALSE

It is quite obvious how XOR works: any two statements that are both equal results in FALSE, any two that
are unequal results in TRUE. Let's XOR two numbers, 134 (10000110) and 27 (00011011):

(134)

Cord1 XOR C0nd2

1 XOR 1
1 XOR 0
0 XOR 1
0 XOR 0

=
=
;:

;:

(27)
C0nd2

0
0
0
1
1
0
1
1

;: (157)
Result

;: 1
;: 0
;: 0
;: 1
;: 1
= 1
= 0
= 1

Result

0
1
1
0

BIT 6->

BIT 5->

BIT 1->

XORCord1

XOR1
0 XOR

XOR0
XOR0
XOR0
XOR1
XOR1
XOR0

This would be represented by BXOR(134,27) in Clarion. Notice that in each case where both numbers are '-.../
the same, the outcome is FALSE (BITS 1,5 and 6).

Have you ever wondered how certain strings of Christmas lights seem to "move?" Well, one possible way of
doing it would be to use the XOR function. Pretend that each BIT represents a light, 1 for on and 0 for off.
Here's our string of lights: 10101010. All we need to do is simply XOR this value with 11111111 over and
over again.

Cord1 XOR C0nd2

1 XOR 1
0 XOR 1
1 XOR 1
0 XOR 1
1 XOR 1
0 XOR 1
1 XOR 1
0 XOR 1

Result

= 0
1=

;: 0
1
0

=

;: 1
;: 0

1

01010101 XOR 11111111 = 10101010
10101010 XOR 11111111 = 01010101
01010101 XOR 11111111 = 10101010
10101010 XOR 11111111 = 01010101

Copyright 1990 by Clarion Software Corpor;llUon, February Page 6

Bulletin .119 - UsIng Binary NumberS

Voila! flMoving" lights. By toggling each light (BIT) on and off, this produces an effect making the lights
move. Follow the 1's in the example above to better understand how it works.

Many encryption methods use XOR to "disguise" idata. For example, take the sentence "Hello World.fl This
sentence is represented in memory by the decimal ASCII values (H)72, (e)101, (1)108, (1)108, (0)111, ()32,
(W)87, (0)101, (r)114, (1)108, and (d)l00. Now we need a "key," and any number will do - we'll use 52. A
simple encryption would XOR each value in the data with the key like this:

ENCRYPT DECRYPT

ASCIIASCII XOR KEY

7Z XOR 52
101 XOR 52
108 XOR 52
108 XOR 52
111 XOR 52
32 XOR 52
87 XOR 52
111 XOR 52
114 XOR 52
108 XOR 52
100 XOR 52

Result

=
=
=
=
=
=
=
=
::

=
=

124
81
88
88
91
20
99
91
70
88
80

I
I

Q

X

X

[
AT
c
Q
F

X

p

ResultXOR KEY

XOR 52
XOR 52

88 XOR 52
88 XOR 52
91 XOR 52
20 XOR 52
99 XOR 52
91 XOR 52
70 XOR 52
88 XOR 52
80 XOR 52

=

=

=
=
=
=
=
=
=

7Z
101
108
108
111
32
87
111
114
108
100

H
e
l
l
0

w
0

r
l
d

Our resulting encrypted data looks like this: "I QXX["TcQFXP." Try to read that! Now, to get our original
sentence back again, simply take each of the resulting numbers and re-XOR them with 52. Our original
"Hello WorW is back. Of course, this is a very simple encryption routine, but by using XOR in other
different ways, we can create much more difficult patterns.

SHIFTIng Binary Numbers

Shifting binary numbers is a method of multiplying or dividing binary numbers by some power of 2. Let's
frrst think about shifting decimal numbers.

First, I'll explain the concept of shifting to the right. If I took the number 234 and shifted all the numbers to
the right 1 place, I would get the number 023. If I shifted right 1 more place, I would get the number 002.
Notice that each shift to the right 1 place is equivalent to dividing the decimal number by 10. Zeroes are
added in the Jeftmost position to replace the vacated position. The same concept applies for binary numbers.
Let's start with the number 234 (11101010 binary). If I shift right all the binary digits (bits) 1 place, I would
get the binary number 01110101 (117 decimal). Shifting to the right 1 more place> would create the number
00111010 (58 decimal). Notice that each shift to the right 1 place is equivalent to dividing by 2.

Shifting to the left is similiar to shifting to the right. Zeroes are added in the rightmost position to replace
the vacated position. Each shift to the left 1 place is equivalent to multiplying by 2.

In Clarion;BSHIFT(value,count) is how you shift binary numbers. Say, for example, that machines 0 - 3 are
on, and machines 4 - 7 are off. One way of turning off the lower four machines and turning on the upper
four machines would be to shift the BITS to the left 4 places. To do this we would use BSHJFT(15,4):

Copyright 1990 by Clarion Software CorporaUon. February Page 7

http:World.fl

Bulletin "111 - Using Binary Numbers

Original Setup 00001111

1st Shift 00011110

2nd Shift 00111100

3rd Shift 01111000

4th Shift 11110000

Since each shift to the left is equivilant to multiplying by two, we can assume BSHJFf(15,4) = 15 * 2 * 2 * 2
* 2 = 11l10000B. To shift to the RIGHT, we would use BSHIFr(15,·4).

Realize that if we shift 11110000 to the left one more time, we lose the high BIT, ending up with 11100000.
Likewise, if we shift 00001111 to the right one we lose the low BIT, resulting in 00000111.

Copyright 1190 by Clarion Software Corpofatlon. February Page 8

