
CI AI ilON
I ECHNICAL BULLE liN

Bulletin #118

Clarion Index and Key Files

Overview

This bulletin explains the layout of Clarion index and key files.

Copyright 1989 by Clarion Software ?orporatlon Page 1

BulieUn #118 - Clarion Index and Key Flies

Clarion Index and Key Files

While Technical Bulletin #117, "Clarion Data Files," covered the layout of Clarion Professional Developer's
data fIles, it only touched on the subject of the index and key fIles that Professional Developer uses to access
your data in a specific order. The purpose of this technical bulletin is to explain how Clarion's key and index
fIles are laid out.

This technical bulletin assumes a knowledge of basic data structures and the C programming language.
While you don't have to be a C guru to understand the material presented here, a passing knowledge helps,
as C makes it easy to create many types of data structures.

As far as this discussion is concerned, there are NO internal differences between index and key fIles. Index
fIles are simply key fIles that are not updated automatically by adding, deleting, or changing records in your
data base.

Also, this bulletin will not explain how you create key fIles, only how to read them. Our method of managing
B+ Trees is proprietary and quite complicated. In all fairness, we can only support products that create key
fIles using our own code. When you see a non-Clarion product that creates and/or maintains Clarion key
fIles, it means they have licensed our code for use in their product.

Let's Begin

Computers are very good at storing many types of information. However, in today's business world, just
being able to store a lot of data isn't good enough; accessing this data quickly is of primary importance. It
doesn't do you any good for your computer to store 1,000,000 records if it takes 30 minutes to find a specific
record.

Clarion products use a method of indexing called "B + Trees" (pronounced "Bee Plus Trees"). B + Trees are
a modification of another indexing method called "B-Trees," which were created by a man named R. Bayer in
1970. Let's start by seeing what a B-Tree is and how it works.

The Ubiquitous 8-Tree (with apologies to Doug Comer)

A B-Tree is a data structure that, when drawn on paper, resembles an upside-down tree. B-Trees consist of
a ROOT nodej zero or more interior NODES, and zero or more LEAYES. A typical tree would look like
this: r

ROOT

NODE NODE

LEAF LEAF LEAF LEAF LEAF LEAF

In actuality, all pieces of the tree are NODES, but they are given special names because of properties unique
to each one. In any B-Tree, there is only one ROOT node. It is where the tree starts. LEAF nodes are

Copyright 1989 by Clarion Software CorporaUon Page 2

,

Bulletin #118 - Clarion Index and Key Rles

nodes that have no child nodes. All other nodes are called "interior" nodes, or just NODES.

Nodes contain pairs of key-pointer structures. The key will contain whatever data you've built the tree from
and the pointer will either be a reference to another node or to data in your data base. You read the tree by
starting at the root and looking at the key values. If the key you have is less than the first key in the root,
you take the first branch. If the key you have is greater than or equal to the first key in the root, but less
than the second, take the second branch, and so on. When you take a branch, continue with the same
operation. When you finally reach the leaf level, you'll either fmd a match (meaning a record with the key
you are looking for exists in the data base) or you won't. If you do find a match, the pointer in the leaf will
tell you where in the data base the matching record is. The nice thing about B-Trees is that if you run into
the "not found" condition, you are currently at the place in the tree where the key would be added if you
wanted to add it to the tree. However, you can't just create a data structure that looks like this and call it a
B-Tree. B-Trees have specffic properties, several of which make the B-Tree as efficient as it is. For
example, B-Trees are balanced trees, which means that no matter what data you add to the tree, it always
takes the same number of accesses to retrieve a record.

Let's look at the properties of a B-Tree. A B-Tree is a B-Tree of 'order" X if the following is true:

1) The ROOT has at least two children, unless the tree is empty, in which case the ROOT node has no
children at all.

2) Each node has a maximum of X children, but each node IS AT LEAST half full (this does not apply
to the ROOT or the LEAVES). This means that all interior nodes have at least X/2 children, but
no more than X children. For example, if a B-Tree is of order 6, then all interior nodes will have at
least 3 children, but no more than 6.

3) Each path in the tree from the ROOT to a particular LEAF is the same length.

Notice that this discussion keeps mentioning "child nodes." This is quite common in B-Trees. Nodes can·
have children. They also have parent nodes. You can carry this even farther with "grandparent" and
"grandchild" nodes. All nodes (with the exception of the ROOT) have a parent. All nodes (with the
exception of the LEA VES) have children. All nodes are linked together so you can traverse the tree. In a
typical B-Tree, only the leaves actually point to data; the rest of the nodes point to other nodes.

Perhaps you are wondering what the difference between a B-Tree and a B + Tree is. The main difference is
that a B + Tree has links to the left and right between the leaves. Thus, the previous diagram would change a
little:

ROOT

I

NODE NODE

LEAF- LEAF LEAF LEAF LEAF LEAF

Copyrtght 1989 by Clarton Software CorporaUon Page 3

Bulletin #118 - Clarion Index and Key Flies -'
If you want to add a key to a tree, first fmd out where in the tree your new key should go; then insert the key
into the proper place in the tree. However, this procedure is not as simple as it sounds. Remember, B+
trees have specific rules regarding their layout. Y~u can't have more than ~X~ keys per node, where ~X~ is
the order of the tree. Thus, if adding a key to a node causes it to overflow, you must then ~split" the node
into two parts. This means, for example, that adding a key to a leaf node might cause the node to overflow,
thus making you split the leaf into two new leaves. This split of the leaves will cause a new entry to be made
into the parent of the leaf. If this causes the parent to overflow, you must then split the parent. You can see
that this could propagate up the entire tree. Indeed, some additions will cause splits all the way to the root
node, sometimes causing a new root to be created.

This "cascading" effect can also happen during deletions. For example, if you delete a key in a node and this
causes the node to have less than X/2 entries in it, you then try to combine the node with less than X/2
entries with some neighbor node that has X/2 entries. Let's say you do this and you have to combine two
neighboring leaves. When you combine the leaves, you will remove an entry from the parent node of the
leaves, since the parent will have pointers to both leaves. Again, let's say that this causes the parent node to
have less than X/2 keys, thus causing the parent node to be combined with some other parent node. Like
additions, deletions also can result in reorganization of the entire tree. But it is this reorganization that
keeps the tree "balanced."

Clarion Index/Key FIles

That's enough theory. Let's take a look at Clarion key ftles and see what they look like.

Clarion key ftles consist of a header and a sequence of zero or more nodes. Empty key ftles contain only a
header. Once you add a key, nodes will be added to the key ftle. The key ftle itself tells you nothing about
the fields that make up the keys. For that, you need to look at the data ftle.

The key ftle is read and written in blocks of 512 bytes. These 512-byte units are referred to as "nodes,~
except when talking about the header. If, for some reason, a node is not full, extra bytes are set to O.

Frrst, the header. Here is how the header is laid out:

struct {
U'\signed long root; /* number of root node */
U'\signed long rn..mkent; /* number of key entries */
U'\S igned long nunnode; /* number of nodes for this index */
U'\signed long lastnod; /* node number of last node */
U'\signed long keyeof; /* record number of end of file */

, U'\signed long keybof; /* record number of beg. of file */
U'\signed long unused; /* first unused node of file */
U'\signed char keytYPi /* type of key */
U'\signed char keynode; /* number of keys per node */
unsigned keylen; /* total length of key entry */
U'\Signed numlvlsi /* number of levels */
char cvoid[477Ji /* reserved space */

>i

The ~cvoid" variable is used to fill the header out to a length of 512 bytes. The only variable in the header
that is not a true numeric value is the "keytyp" variable. It is a bitmap that tells you information about the
key itself. It is defined as follows:

Copyright 1989 by Clarion Software CorporaUon Page 4

Bulletin #118 - Clarion Index and Key Files

struct {
IM'lS igned f typ : 4; /* key or index? */
IM'lS igned dupsw 1·, /* duplicates allowed? */
unsigned 	uprsw 1·, /* upper case onl y? * /
unsigned optsw 1·, /* optionals (blanks or zeroes) */
unsigned locksw 1·, /* locked switch */

>;

For those of you not familiar with C, this structure allows you to address individual bits in a variable. Since
"keytyp" is contained in an 8-bit byte, the above structure is 8 bits in size. The number after the colon is the
number of bits for a variable. So, if you look at "keytyp" as a sequence of 8 bits, 4 bits can be referred to as
"ftyp," 1 bit for "dupsw," 1 bit for "uprsw," 1 bit for "optsw," and 1 bit for "locksw." The 1 bit variabfes can
either have a value of 0 or 1; the 4 bit variable can have the values 00, 01, 10, or 11. Currently, only 00 and
01 are used.

Following the header are the nodes. A total of 13 bytes of each 512 byte node is allocated to a "node
header," which contains links between all of the nodes. Node headers look like this:

struct {
unsigned char keycnt; /* number of keys in this node */
unsigned long flink; /* forward node pointer */
unsigned long blink; /* backwards node pointer */
unsigned long ulink; /* upwards node pointer */

>;

After the node header comes the pointer/key combinations themselves. They look like this:

struct {
unsigned long relrec; _/* record number/node number */
char key[]; /* key value (key size - size of long)*/

>;

The number of pointer/key combinations in a node is determined when the key me is initially created. You
can't have less than 2 pointer/key entries per node; thus, if you have 512 bytes available and you allocate 13
bytes for a node header AND you have to give up 4 bytes for the pointer (relrec) in each pointer/key entry,
that leaves you with a maximum key size of 245 bytes [(512 - 13 (header) - 8 (size of 2 longs)) / 2]. This is
also the method that determines how many pointer/key combinations to put in a node.

Reading a key me is fairly simple. Once you have determined from the header how many pointer/key
entries are irr each node and how long each key is, you perform the following steps:

1) 	 Start at the root node, which is located at offset "root" times 512.

2) 	 Initialize a counter to keep track of what "level" you are at in the key me; set this counter to 1.

3) 	 Look at the pointer/key structures until you fmd a key that is greater than or equal to the key you
are looking for.

4) 	 Once you have found this key, compare the "numlvls" variable to your counter. If they match, you
are at the leaf level; the pointer is an actual record number in your data me; otherwise it is a node
number.

5) 	 Read the record if found in step 4.

Copyright 1989 by Clarion Software, Corporation Page 5

Bulletin f:118 - Clarion Index and Key Flies

6) 	 If the pointer is an actual record number, you have found the record you need to look at in the data
me. If not, go read the node the pointer refers to, increment your level counter, and go back to step
3.

When your level counter is equal to "numlvls; you are at the leaf level of the tree. If the key you are seeking
is not at the leaf level, then your key is not in the key me. An example should help clear up any confusion.
Let's look at a sample key me for a database of state abbreviations. The key is 2 characters long
(STRING(2» and is the standard 2 character state abbreviation. The data me contains the actual state name
that corresponds to the 2 character abbreviation. To make this example use more than one node in a key
me, some fictitious state abbreviations were added. These are the abbreviations AA, BB, CC, DO, etc. and
00, 11, 22,33,44,55,66, n,88, and 99.

Fll'st, here is the header:

00000: 03 00 00 00 570000 00 03 00 00 00 01 000000 j••••w........... j
00010: 4D 000000570000000000000060 53 01 06 ,M•••W••••••• 'S •. I
00020: 00020000000000000000000000000000 , ••••••••••.•.... j
00030: 00000000000000000000000000000000 1••••••.......••• 1
00040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1•••••••••••••••• 1

001FO: 00 00 00 00 00 00 	 00 00 00 00 00 00 00 00 00 00 1•••••••••••••••. 1

Some of the header was omitted because it contains nothing but 00. Here is a breakdown of the fields in the
header:

(0000) root 	 the "root" node of the tree (03 00 00 (0); we have to reverse the order of the words
in long values and also the order of bytes within words, due to the way Intel CPU's
store data. Thus, this is-the value 00 00 00 03. The root node is node number 3.

(0004) numkent 	 the number of key entries in this key me (570000 (0); this key me contains 57
keys, which just happens to be the number of records in the data me. This is only
true if all keys must be unique. If duplicate keys are allowed, the number of keys
may be different from the number of records.

(0008) numnode 	 the number of nodes in this key me (03 00 00 (0); this key me contains a total of 3
nodes.

(OOOC) lastnod • 	 the number of the last node in this key me (01 00 00 (0); this is the "last" node in
the me; however, the last node of the me may only contain part of the leaf level.

(0010) keyeof 	 the record number of the "last" record in the data me (40 00 00 (0); this is the
record number that contains the key of "highest" value; in this case, it is record 40
hex (n decimal), which contains the state abbreviation for state "ZZ."

(0014) keybof 	 the record number of the "fll'st" record in the data me (57 00 00 (0); this is the
record number that contains the key of "lowest" value; in this case, it is record 57
hex (87 decimal), which contains the state abbreviation for state "00."

(0018) unused 	 the number of the fll'st "unused" node in the key me (00 00 00 (0); when a node is
deleted, the deleted nodes are chained together so that all nodes in the key me will
be in use before the key me grows in size. This key me has no deleted nodes, so
this field has a value of O.

Copyrtght 1989 by Clarion Software COrporation Page 6

l

BulleUn #118 - Clarion Index and Key Files

(001C) keytyp 	 the type of key (60); remember, this is a bit map, so we have to break it down .
according to the structure mentioned above: 60 hex = 0110 ()(X)(); the bit map is
flipped, so the "()(X)()" is the "ftyp" value. Since it is 0, it means that this is a key me;
if this were an index me, this field would have a value of 1. The other 4 bits (0110)
correspond directly to the 1 bit fields above: dupsw = 0, uprsw 1, optsw = 1,
loksw = O. This means no duplicates, key is all upper case, key is filled with spaces,
and this file is not locked.

(OOlD) keynode 	 the number of keys per node (53); this is the maximum number of pointer/key
combinations that a node will hold. 53 hex is 83 decimal; 83 times 2 (the length of
each key) + 83 times 4 (the length of the "relptr" pointer with each key) + 13 (the
size of the node header) = 511.

(001E) numcmps 	 the number of components in this key (01); this key has only one component.

(00lF) keylen 	 the total length of each key entry (06 00); each pointer /key combination takes up 6
bytes (2 for the key itself, 4 for the pointer).

(0021) numlvls 	 the number of levels in the key me (02 00); this key file has a total of 2 levels.

The rest of the header is filled with O. Next come the nodes. First, node 1:

00200: 53 00 00 00 00 02 00 00 00 03 00 00 00 51 0000 !S .••.••...•••Q •• !

00210: 003434 52 00 00 003535 53 00 00 00 36 36 54 1.44R ••. 55S •••66T,

00220: 000000373755 00000038385600000039 , ... 77U •••88V••• 9,

00230: 3934 00 00 00 41 41 1900000041 48 180000 194 •••AA ••••AK ••• 1

_./ 	 00240: 0041 4C 31 00 00 00 41 52 0700000041 5A 35 ,.AL1 •••AR ••••AZ5
100250: 0000 004242030000 004341 36 00 00 00 43 , ••• 88•••• CA6••• C
100260: 43 2F 00 00 0043 4F 26 00 000043543200 00 IC/ •••co&•••CT2"1

00270: 00 44 43 37 0000 004444 270000004445 38 I.OC7•••001 •••0E81

00280: 00 00 004545390000 0046 46 01 00 00 00 46 1 ••• EE9••. FF ..•• FI

00290: 4C 04 00 00 00 47 41 3A 00 00 00 47 47 380000 IL •.••GA: ••• GG; •• I

002AO: 004848 1A 00 00 00 48 49 2C 00 00 00 49 41 30 I.HH •••• HI, ••• IAOI

00280: 0000004944 3C 00 00 00 49492000000049 1 ••• 10< ••• 11 ••• 1

1002CO: 4C 28 00 00 00 49 	4E 3D 0000 00 4A 4A 3E 00 00 ,L+ ••• IN:••• JJ>"j
00200: 004848 17000000485329 00 00 004859 OF I.KK ••••KS) •••KV.\
002EO: 00 00 00 4C 41 3F 	00 00 00 4C 4C 1F 00000040 I ••• LA? •• LL •••• MI
002FO: 41 1E 00 00 00 4D 	 44 120000004045 1C 00 00 IA •••• MD ••.. ME ••• I
00300: 004D 4940000000 4D 40 21 00000040 4E 23 j.MIQ••• MM! •••MN#,
00310: 000000 4D 4F DE 	 00 00 00 4D 53 100000 00 40 j ••• MO •••. MS ••••M,
00320: 5405 00 00 00 4E 	43 09 00 00 00 4E 44 33 00 00 ,T •••• NC •••• N03 •. j00330: 00 4E 45 24 00 00 00 4E 48 22 00 00 00 4E 4A 15 I.NES...NH" ...NJ'

I00340: 00 00 00 4E 4D 41 00 00 00 4E 4E 10 00 00 00 4E I ••• NMA ••• NN •••• NI

00350: 56 DC 00 00 00 4E 59 130000 00 4F 48 2D 00 00 \V •••• NV ••••OH- ••

I00360: 00 4F 48 42 00 00 00 4F 4F 180000 00 4F 52 08 I.OK8 •••OO ••••OR.1
00370: 00 00 00 50 41 43 	00 00 00 50 50 44 00 00 00 51 I ••• PAC~ ••PPO •••QI
00380: 51 25000000524945000000525206 00 00 IQX•••RIE •••RR"'I
00390: 005343 OA 00 00 00 53 44 46 00 00 00 53 53 02 l.sC••••SOF ••• SS.,
003AO: 000000 54 4E 47000000 54 54 16000000 54 , ••• TNG •••TT •••• T,
00380: 582E 00 00 00 55 	5448 00 00 00 55 55 11 00 00 IX ••••UTH •••UU ••• I
003CO: 005641 DO 00 00 	00 56 54 49 00 00 00 56 56 14 I.VA ••••VTI •••vv.1
00300: 00 00 00 57 41 2A 	 00 00 00 574928 00 00 00 57 , ••• WA* •••WIC •••W,
003EO: 56 4A 00 00 00 57 57 08 00 00 00 57 59 480000 \VJ ••• WW •••• WYK •• j003FO: 00 5858 4C 00 00 00 5959 4D 00 00 00 5A 5A 00 ,.XXL ••• VVM ••• ZZ.,

Copyrtght 1989 by Clarion Software.corporaUon Page 7

Bulletin .118 - Clarion Index and Key Files

Here is a breakdown of the header for node 1:

(0200) keycnt 	 the number of keys in thiS node (53); this is the total number of keys currently
stored in this node. Hex 53 = 83 decimal.

(0201) flink 	 the forward link (00 00 00 00); this is the link to the next node on the same level in
the tree.

(0205) blink 	 the backwards link (02 00 00 00); this is the link to the previous node on the same
level of the tree; in this case, node 2 is on the same level of the tree.

(0209) ulink 	 the upwards link (03 00 00 00); this is the link to the parent node of this node; in
this case, node 3 is the parent of node 1.

Following this header are the pointer/key combinations. Here are the first few in the node:

Offset Pointer Key Actual Value in Dump
====== === =====================
0200 51 44 (51 00 00 00) (34 34)
0213 52 55 (52 00 00 00) (35 35)
0219 53 66 (53 00 00 00) (36 36)
021F 54 77 (54 00 00 00) (37 37)

Next is node 2:

00400: 04 01 00 00 00 00 00 00 00 03 00 00 00 5700 00 !.............w.. j

00410: 003030 4E 00 00 00 31 31 4f 00 00 00323250 ,.00N ••• 110••• 22P,
00420: 00 00 00 33 33 00 00 00 00 00 00 00 00 00 00 00 1 ••• 33 ••••••••••• 1
00430: 000000 00 00 00 00 00 00 00 00 00 00 00 00 00 , •••••••••••••••• ,

005fO: 0000000000 00000000000000000000 00 1•••••••••••••••• 1

Here is a breakdown of node 2:

(0400) keycnt (04) Node 2 only has 4 pointer/key entries.

(0401) flink (01 00 00 00) Node 2 has a forward link to node 1.

(0405) blink (00 00 00 00) Node 2 has no backward link.

(04(lQ) ulink (00 00 00 00) Node 2 has no upward link.

Since node 2 only has 4 pointer/key entries, they are listed in their entirety here:

Offset Pointer Key Actual Value in Dump
====== ======= --- =====================
0400 57 00 (57 00 00 00) (30 30)
0413 4E 11 (4E 00 00 00) (31 31)
0419 4f 22 (4f 00 00 00) (32 32)
041f 50 33 (50 00 00 00) (33 33)

Copyright 1989 by Clarion Software Corporation Page 8

Bulletin :1118 - Clarion Index and Key Flies

And fmally, node 3:

I I00600: 02 00 00 00 00 00 00 00 00 00 00 00 00 02 pO 00 1················1
00610: 00333301 000000 SA SA 00 00 00 00 00'00 00 1·33•••• zz ·······1
00620: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1················1
00630: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1················1
00640: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1················1
00650: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1················1
00660: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 I' ••••••••••••••• I

007FO: 00000000000000000000000000000000 1••.............. 1

Here is a breakdown of node 3:

(0600) keycnt (02) Node 3 only has 2 pointer/key entries.

(0601) flink (00 00 00 00) Node 3 has no forward link.

(0605) blink (00 00 00 00) Node 3 has no backward link.

(0609) ulink (00 00 00 00) Node 3 has no upward link.

Since node 3 only has 2 pointer/key entries, they are listed in their entirety here:

Offset Pointer Key Actual Value in D~
-----­ ------­ =====================
0600 02 33 (02 00 00 00) (33 33)
0613 01 ZZ (01 00 00 00) (SA SA)

If you visualize this key fIle as a tree, then node 3 is the root node and nodes 1 and 2 are leaves. Since this
key fIle is not very big, it has no interior nodes.

So, how would we go about fmding a key in this key fIle? Let's go through the steps to fmd the key"FL."

1) 	 Read the header of the key fIle; this tells us that the key fIle has 2 levels, a maximum of 53
pointer/key structures per node, and each pointer/key structure takes up 6 bytes in a node.

2) 	 Set our level counter to 1 and read the root node, which happens to be node 3. Node 3 has 2
pointer/key entries.

3) 	 After skipping over the links in the node header, we come to the first pointer/key structure. It has a
key value of "33," which is less than the key value we are looking for. Skip to the next pointer/key
entry.

4) 	 The next pointer/key structure has a key value of "ZZ," which is greater than the key we are looking
for, so we follow the pointer associated with "ZZ." It has a pointer value of 01.

5) 	 Since our level counter is 1 and we know that our key fIle has 2 levels, the pointer value is a pointer
to another node and not a data record. Go read node 1.

6) 	 Increment our level counter to 2. Since the key fIle only has two levels, we know that we are now on
the leaf level with node 1.

Copyright 1989 by Clarion Software Corporation Page 9

Bulletin #118 - Clarion Index and Key Files

7) 	 Start looking at pointer/key structures until we fmd a matching key; if we fmd no matching key, then
the key does not exist in the key rue. In this case, we do fmd it at offset 028B. It has a pointer
value of 1, which is the record number of our data me that has the name of the state with the
abbreviation "FL."

This key rue was fairly simple in nature, since the key is a string of only two characters. Let's take a look at
the other data types and see how they get converted to key values.

Long 	 Long components are split into two "words," each 16 bits long. The order of these bytes are
reversed; then the order of the words within the long are reversed: Example: If you have a
long of the form AABBCCDD, the value is split into AABB CCDD; then the individual
bytes are reversed, giving you BBAA DDCC. After that, you reverse the order of the
words, giving you DDCCBBAA. rmally, toggle the high order bit.

Short 	 Short components are also split into two pieces and flipped; the high order bit is also
toggled. AABB would turn into BBAA.

String 	 Strings are stored as-is, except they are converted to upper case if the key is not case
sensitive.

Picture 	 Same as strings.

Group 	 Same as strings

Byte 	 Stored unchanged.

Decimal 	 Decimal values are handled the following way:

if the high order bit of the decimal value is turned on then flip all the bits in each part of
the decimal else toggle the high order bit. In C, it would look something like this:

/* comp(] is the decimal number */

if (comp[O] &Ox80) {

for (x =0; x < KEYDESC.elmleni ++x) (

comp[x] = -comp[x];

)

) else (

comp[O] 1= oxeo;

)

Real 	 Real values take up 8 bytes; whether or not the value is positive or negative, the order of the
bytes is reversed. If the value of the last byte in the original real value is negative, then the
high order bit of that byte is flipped.

In C, it looks like this:

char *cp1; /* the original real value */

char *cp2; /* the final real value */

cp1 = [address of real value to be converted];

cp1 += 7; /* start at the end of the number */

if (*cp1 < 0) { /* is the end byte negative? */

for (x =1; x <= 8; x++) {

*cp2++ = -*cp1--i

Copyright 1989 by Clarion Software cOrporaUon Page 10

Bulletin #118 - Clarion Index and Key Flies

\

'-' }

} else {
*cp2++ =*cp1-- Ox80;A

for (x =2; x <= 8; x++) {
*cp2++ =-*cp1--;

}
}

Copyright 1989 by Clarion Software c;orporatlon Page 11

