
CL.QJ liON
~. I ECHNIC..o.L BULLE liN

Bulletin #121

Clarion Memos

Overview

This bulletin contains information about Clarion memos and how to work with them in
your applications.

Copyright 1990 by Clarion Software Corporation, February Page 1

Bulletin #121 - Clarion Memos

Clarion Memos

To begin. let's clarify the defInition of a Clarion memo. A memo is a special fIeld that is not declared within
the record structure of a ftle. Therefore, it is not a fIeld within the record. Technically speaking, a memo is
actually another record linked to a Clarion fIle record. Memos are stored in a separate ftle with the same
name as the data ftle with the extension .MEM rather than .DAT (for the data ftle). When a data ftle record
is read into memory, its associated memo is also loaded into memory from the memo ftle.

Memos are called fIelds because they are referenced the same way a fIeld within a record is referenced.
Also, when you create a memo with Designer, you use the same method that you use to create a "regular"
fIeld.

Memos on the Screen

When Designer generates a Form procedure that uses a ftle containing a memo, a TEXT fIeld is used in the
screen structure to input data into the memo. This is not to say that this is the only way to get screen input
into a memo; but by using a TEXT fIeld for a memo, you get basic word processing-type control for entering
data into the memo. The TEXT statement in the screen structure to reference the memo directly could look
like Figure 1.

R(l,/(7,4) TEXT(5,60),USE(TST:MEM01),HUE(15,4),SEL(O,7),LFT

Figure 1.

The use variable TST:MEM01 is a direct reference of the memo for the data ftle with a prefix of TST. The
parameters of the TEXT statement (5 and 60) indicate that the memo on the screen will be 5 rows by 60
columns. The LFT attribute at the end of the TEXT statement indicates word wrapping.

If you want to enter data into the memo without using a TEXT fIeld, you can use a GROUP structure with
the OVER(TST:MEM01) attribute and create a variable for each row of the memo, as shown in Figure 2.

TSTMEM01 FILE,PRE(TST),CREATE,RECLAIM
BY_ACCOUNT KEY(TST:ACCOUNT),NOCASE,OPT
BY_NAME KEY(TST:NAME),DUP,NOCASE,OPT
MEMO1 MEMO(300)
RECORD RECORD
ACCOUNT SHORT
NAME STRING(30)

GROUP,OVER(TST:MEM01)
TST_MEM_R(l,/1 STRING(6D)
TST MEM R0W2 STRING(6D)
TST:MEM)0W3 STRING(6D)
TST MEM R~ STRING(60)
TS(MEM)M STRING(60)

figure 2.

,
Copyright 1990 by Clarion Software CorporatIon, February Page 2

,

Bulletin #121 - Clarion Memos

By using entry fields in the screen structure that USE each variable in the previous group, you can enter data
into the memo. The screen structure could look like Figure 3.

SCREEN SCREEN PRE(SCR),WINDOW(12,74),HUE(15,4)
ROW(1,1) STRING('r-<72J,'),HUE(15,4)
ROW(2,1) REPEAT(10);STRINGC'I<O{72}>I'),HUEC15,4)
ROW(12,1) STRING('L.{72}J'),HUEC1S,4)
ROW(2,31) STRING('UPDATE TSTMEM01')
ROW(4,4) STRING('ACCOUNT:'),HUE(7,4)
ROW(S,4) STRING('NAME :'),HUE(7,4)
ROW(6,4) STRING('MEM01 :'),HUE(7,4)

MESSAGE ROW(3,23) STRING(30),HUE(1S,4)
ENTRY,USE(?fIRST FJELD)

ROW(4,13) ENTRY(SN_4),USE(TST:ACCOUNT),HUE(1S,4),SEL(O,7)
ROW(S,13) ENTRY(Ss30),USE(TST:NAME),HUE(1S,4),SEL(O,7)
ROW(6,13) ENTRY(Ss60),USE(TST_MEM_ROW1),LfT,HUE(1S,4)
ROW (7, 13) ENTRY(Ss60),USE(TST_MEM_ROW2),LfT,HUE(1S,4)
ROW(8,13) ENTRY(Ss60),USE(TST_MEM_R0W3),LFT,HUE(1S,4)
ROW(9,13) ENTRY(Ss60),USE(TST_MEM_R0W4),LfT,HUE(1S,4)
ROW(10,13) ENTRY(Ss60),USE(TST_MEM_ROW5),LFT,HUE(1S,4)

ENTRY,USE(?LAST fiELD)
PAUSE("),USE(?DELETE_FIELD)

FIgure 3.

Unfortunately, when you use the previous technique (with entry fields), you lose the basic word prooessing
type control over the memo. The previous example references the memo in 60 character strings and treats
each string like a separate field. This is one way of using groups to manipulate memos. Another way to use
groups is to make a memo for a me actually look like multiple memos. We will use the previous me
definition with a different size memo and different group structure to illustrate this technique. The file
structure and group structure would now look like Figure 4.

TSTMEM01 FILE,PRE(TST),CREATE,RECLAIM
BY_ACCOUNT KEY(TST:ACCOUNT),NOCASE,OPT
BY_NAME KEY(TST:NAME),DUP,NOCASE,OPT
MEM01 MEMO(S40)
RECORD RECORD
ACCOUNT SHORT
NAME ~STRING(30)

GROUP,OVER(TST:MEM01)
TST MEM ROW1 STRJNG(180)
TST=MEM=ROW2 STRI NG(180)
TST_MEM_R0W3 STRING(180)

Figure 4.

The screen structure would now use the variables in the previous group structure with TEXT fields to
emulate the three memos. The screen structure could look like Figure 5.

Copyright 1990 by Clarion Software CorpQraUon, February Page 3

BulieUn #121 - Clarion Memos

SCREEN SCREEN WINDOW(18,74),PRE(SCR),HUE(15,4)
ROW(1.,1) STRING('r-<72J,'),HUE(15,4)
ROW(2,1) REPEAT(16);STRING('I<O{72}>I'),HUE(15,4)
ROW(18,1) STRING('L.{72}1'),HUE(15:4)
ROW(2,31) STRING('UPDATE TSTMEM01')
ROWa,4) STRING('MEM01 :'),HUE(7,4)
ROW(11,4) STRING('MEM02 :'),HUE(7,4)
ROW(15,4) STRING('MEM03 : '),HUEe7,4)

MESSAGE ROW(3,23) STRING(30),HUE(15,4)
COL(53) ENTRY,USE(?FIRST FIELD)
ROW(4,4) STRING('ACCOUNT:'),HUE(7,4)
COL(13) ENTRY(QN_4),USE(TST:ACCOUNT),HUE(15,4),SEL(O,7)
ROW(5,4) STRING('NAME :'),HUE(7,4)
COL(13) ENTRY(QS30),USE(TST:NAME),HUE(15,4),SEL(O,7)
ROWa,13) TEXT(3,60),USE(TST_MEM_ROW1),LFT
ROW(11,13) TEXT(3,60),USE(TST_MEM_ROW2),LFT
ROW(15,13) TEXT(3,60),USE(TST_MEM_R0W3),LFT
ROWe10,73) ENTRY,USE(?LAST_FIELD)
COl(73) PAUSE("),USE(?DELETE_FIELD)

figure 5.

Now, as far as the user is concerned, there are three separate memos on the screen.

Note: If you have defined a memo's capacity for data entry with a certain row and column configuration, and
data has been entered into the memo using that configuration, the modification of the rows and
columns configuration on the entry screen will alter the appearance of the data in the memo when re
displayed for update. The reason for this is that when each row is adjusted for word wrapping, spaces
are added to the end of the row. Since a soft return is not at the end of the row, when the memo is ~
loaded into the new row and column configuration, there is no way to know where the current row
ends and the next row begins.

Printing Memos

For an example of how to print memos, we will use the me structure in Figure 2. The memo in that me has
a length of 300. Let's assume that the data was entered into this memo using a TEXT(5,60) screen field.
This is important because if the TEXT field was TEXT(6,50) we would defme the variable that redefmes the
memo differently. To make the printed output look exactly as it did when it was entered into the memo
through the kEXT field, we defme a variable with the same dimensions as the TEXT field, as in F'lgure 6.

MEMO_DETAIL STRING(60),DIM(5),OVER(TST:MEM01)

figure 6.

The report structure in Ftgure 7 defaults to printing to LPTl. The MEMLIN variable is where each row of
the memo will be loaded to print. The DETcrL variable will hold the two control characters for carriage
return and line feed.

REPORT REPORT

DETAIL DETAIL

MEMLIN STRING(80)

DETen STRING(2)

Figure 7.

Copyright 1990 by Clarion Software Corporation, February Page 4

Bulletin .121 • Clarion Memos

•

The code used to print the memo is shown in Figure 8:

LOOP UNTIL EOF(TSTMEM01) BEGIN LOOP
/

TO READ TSTMEM01 FILE
NEXT(TSTMEM01) RETRIEVE RECORD FROM FILE
DETCTL = 1<13,10>' LOAD CARRIAGE RETURN/LINE FEED
LOOP X, = 1 TO 5 BY 1 BEGIN LOOP TO PRINT EACH MEMO

MEMLIN = MEMO_DETAIL[X#] I LOAD X, ROW OF MEMO INTO MEML I N
PRINT(DETAIL) PRINT MEMO ROW THAT WAS LOADED

MEMLIN = ALL(' ',LEN(MEMLIN» LOAD SPACES INTO MEMLIN
DETCTL = , <12>' ! LOAD FORM FEED INTO CONTROL VARIABLE
PRINT(DETAIL) ! SET PRINTER TO NEXT PAGE

Figure 8.

Obviously, this is not all the code required to print the memo, but it is an example of the main logic to
accomplish our task. The previous example could also be output to a ftle or different device by using the
DEVICE attribute on the report structure.

Writing Memos to a DOS Rle

Clarion supports three types of DOS ftles: binary, comma-delimited, and ASCII ftles. A full explanation of
the different types of DOS fdes can be found in the Language Reference manual under DOS fdes. In this
example, we will show you how to write memos to comma-delimited and binary DOS ftles. For a DOS
ASCII ftle, just change the COMMA attribute on the DOS structure to ASCII. For the first example, we will
again use the fde in Figure 2. The DOS fde structure for our comma-delimited example can be seen in
Figure 9.

DOSFIL DOS,PRE(DOS),COMMA
RECORD RECORD
DOSGRP GROUP
MEMDET1 STRING(60)
MEMDET2 STRING(60)
MEMDET3 STRING(60)
MEMDET4 STRING(60)
MEMDET5 STRING(60)

Figure 9.

Let's again assume that the data was entered into this memo using a TEXT(5,60) screen field. In the
comma-delimited format, each field defined within the group in Figure 9 will be surrounded by quotes and
comma-delimited. This seems to go against the rules of groups because they are treated like one continuous
character field, but that is how comma-delimited ftles work when using groups in Clarion. You will notice
that there is a field in the group for each row in the memo. This is done to keep the format of the memo
the same. Remember that because the data was entered using a TEXT(5,60) screen field, the only way to
keep that format is to reference the memo by each row .

Copyright 1990 by Clarion Software Col'P9ratlon, February Page 5 L

BulleUn '121 - Clarion Memos

An example of the main logic used to load the comma-delimited file could be:

CREATE (TSTDOS1) I CREATE DOS FILE
OPEN (TSTMEM01) I OPEN CLARION FILE
SET(TSTMEM01) I START AT THE BEGINNING OF THE FILE
LOOP UNTI L EOF(TSTMEM01) I LOOP UNTIL 'END OF TSTMEM01 FILE

NEXT(TSTMEM01) ! GET THE NEXT RECORD
DOS:DOSGRP =TST:MEM01 ! SET DOS FILE GROUP = CLARION MEMO
ADD (TSTDOS1) ! ADD RECORD TO DOS FILE

For the second example of writing memos to a binary DOS file, we will use the file in Figure 2 again. The
DOS file structure for our binary file can be seen in Figure 10.

DOSFIL -oOS,PRE(DOS)

RECORD RECORD

DOSGRP GROUP

MENDET STRING(60),DIM(5)

Figure 10.

We will use the same guidelines as in our fast example. The binary file will contain only the data that was in
our memos and each binary record will be 300 characters long. The code for this example is the same as the
comma-delimited example, except that the DOS file structure (by not specifying any format) defaults to
binary format. As you can see, there is a difference in the way the group structure is defmed in the two
previous DOS file structures. This is because you cannot use the DIM() dimension attribute in a comma
delimited DOS file structure in Clarion.

Appending Memos

For this example of manipulating memos, let's assume we have tw~ data files and each file contains memos.
We will make a third data file that contains memos and.cceate the memos for the third file by combining
each of the memos from our first two files. F'JgUl"e 11 illustrates our fast two files.

FILE1 FILE,PRE(FI1),CREATE,RECLAIM
BY_ACCOUNT KEY(FI1:ACCOUNT),NOCASE,OPT
BY_NAME KEY(FI1:NAME),DUP,NOCASE,OPT
MEM01 MEMO(300)
RECORD RECORD
ACCOUNT SHORT
NAME STRING(30)

FILE2 FILE,PRE(FI2),CREATE,RECLAIM
BY_ACCOUNT KEY(FI2:ACCOUNT),NOCASE,OPT
BY;...NAME KEY(FI2:NAME),DUP,NOCASE,OPT
MEM01 MEMO(200)
RECORD RECORD
ACCOUNT SHORT
NAME STRING(30)

Figure 11.

Copyright 1990 by Clarion Software CorporaUon, February Page 6

BulieUn .121 - Clarion Memos

You will notice that the size of the memo is different for the two ftles. We have done this to illustrate a
point about referencing memos by rows. In order,to keep the format of the memos when they were entered
into the two ftles, we will need to find out what the row and column combinations were for both of our ftles.
For FILEt, the memos were entered using a TEXT field of 5 rows by 60 columns. For FILE2, the memos
were entered using a TEXT field of 4 rows by 50 columns. To determine the best size for our memo in our
third ftle, we will take the larger of the two column sizes and multiply that by the total number of rows for
the two memos (60 x (5 + 4». We now know that we need a memo size of 540. The row and column
confIgUration for our new memo is 9 rows by 60 columns. When the FILE2 memo is appended to the FILEt
memo, the rows of the FILE2 memo will be padded with spaces in the new FILEJ memo in order to keep
the original format of the FILE2 memo. The new ftle could look like the one shown in Ftgure t2

FIlE3 FIlE,PRE(FI3),CREATE,REClAIM
BY_ACCOONT KEY(FI3:ACCOONT),NOCASE,OPT
BY_NAME KEY(FI3:NAME),DUP,NOCASE,OPT
MEM01 MEMO(540)
RECORD RECORD
ACCOONT SHORT
NAME STRING(30)

Figure 12.

We now need to create three group structures for our ftles so that we can reference each of the memos by
their respective rows, as shown in Figure 13.

GROOP,PRE(GP1),OVER(FI1:MEM01)
WORKMEM STRING(60),DIM(5)

GROOP,PRE(GP2),OVER(FI2:MEM01)
WORKMEM STRING(50),DIM(4)

GROOP,PRE(GP3),OVER(FI3:MEM01)
WORKMEM STRING(60),DIM(9)

figure 13.

Copyrtght 1990 by ClarIon Software Corporation. February Page 7

BulleUn #121 - ClarIon Memos

The code for this example could be as follows:

OPEN(FILEn
OPEN(FILE2)
CREATE(FILE3)
SET(FI1:BY ACCOUNT)
LOOP UNTIL-EOF(FILE1)

NEXT(FI LEn
FI3:RECORD = FI1:RECORD
LOADREST# =0
Z# =1
LOOP A# =5 TO 1 BY -1

IF GP1 :WORKMEM [A#] > I OR II

LOADREST#
GP3:WORKMEM[A#] = GP1 :WORKMEM[A#]
I F -LOADREST#

LOADREST# =1
Z# =A# + 1

FI2:ACOUNT = FI1:ACCOUNT
GET(FILE2,FI2:BY~CCOUNT)

IF -ERRORCOOEO

LOOP B# = 1 TO 4 BY 1

IF GP2:WORKMEM[B#] > I
I

GP3:WORKMEM [Z#] = GP2:WORKMEM [B#]
Z# += 1

ADD(FILE3)

Agure 14.

OPEN FILE1
OPEN FILE2
CREATE FILE3
SET TO BEGINNING OF FILE1
LOOP UNTIL END OF FILE1
GET NEXT RECORD FOR FILE1
LOAD RECORD INFO FROM FILE1

SET FILE3 INDEX TO ROW TO 1
LOOP THRU ROWS OF FI1:MEM01
IF ROW HAS DATA IN IT OR
LOAD REST OF ROWS

SET ROW FOR FILE2 MEMO LOAD

SET FILE2 ACCOUNT FOR GET
GET MATCHING ACCOUNT
IF NO ERROR LOAD FILE2 MEMO
LOOP THRU ROWS OF FI2:MEM01
IF ROW HAS DATA IN IT

BUMP INDEX INTO FILE3 MEMO

ADD NEW RECORD TO FILE3

While this is not all of the required code to accomplish this task, it is an example of the main logic.

Searching a memo with INSTRING

You can use iNSTRING to search through memos to fmd a substring. The second parameter in the
Reference Manual indicates that you can only pass a string to INSTRING. But you can pass a direct
reference to a memo or even a group that contains multiple string(255) references in it. Try it!

Copyright 1990 by Clarion Software ~on, February Page 8

