
......-..- BU'LLE liN

Bulletin #117

Clarion Data Files

Overview

This bulletin explains the format of Clarion data files.

CopyrIght 1989 by Clarion Software .corporation Page 1

Bulletin .117 - Clarion Data Files

Clariol1 Data Files

This technical bulletin explains the format of data mes created by Clarion Professional and Personal
Developer (version 2 and above). It will only cover data mes; key and index mes will be covered in a
separate technical bulletin. Use this information carefully because an erroneous change to a data me will
make your me unreadable. It will not cover encryption because if we told you how to un-encrypt a me, other
people would be able to do the same, thus risking the integrity of your data.

Now, just what is in those mes?

When you derme a me with Clarion, you provide a lot of information about your data: information on fields,
keys, indexes, pictures, arrays, etc. When your me is first created, you will have a .DAT me and, optionally,
one or more K??, .In, and .MEM mes (where ?? is a two digit number). The .DAT file contains more than
your data; it also contains information on your keys, fields and their layouts, and many fields that allow
Professional Developer to efficiently use the space on your disk.

Let's look at the .DAT me first. It consists of several sections, some of which are optional. They are:

1. the me header
2. field descriptors
3. key and index descriptors
4. picture descriptors
5. array descriptors
6. your data

The me header and field descriptors are always in the me. The other sections exist only if they are needed.
Obviously, if you don't have any data in the me, then section 6 is not needed.

Let's look at each section individually. To avoid confusion, the picture and array descriptors will be deferred
until later in this bulletin.

1. The file header

The me header consists of 23 fields, many of which tell Professional Developer what else it is going to have
to look for in the rest of the ,OAT me. Here is a C structure that defines the me header:

struct (
unsigned filesig; /* file signature */
unsigned sfatr; /* file attribute and status */
unsigned char I'llIItlkeys;· /* IlI.IIber of keys in file */
unsigned long nunrecs; /* IlI.IIber of records in fi le */
unsig,ned long nunclels; /* IlI.IIber of deleted records */
unsigned nunflds; /* IlI.IIber of fields */
unsigned numpics; /* IlI.IIber of pictures */
unsigned numarrs; /* IlI.IIber of array descriptors */
unsigned reclen; /* record Length (including record header) */
unsigned long offset; /* start of data area */
unsigned long logeof; /* logical end of file */
unsigned long logOOf; /* logical begiming of file */
unsigned long freerec; /* first usable deleted record */
unsigned char recname[121; /* record name without prefix */

Copyright 1989 by Clarion Software Corporation Page 2

Bulletin #117 - Clarion Data Flies

unsigned char memnam[12]; /* memo name without prefix */

unsigned char filpre[3]; /* file name prefix */

unsigned char recpre[3]; /* record name prefix */

unsigned memolen; /* size of memo'*/

uns igned memowi d; /* column width of memo */

unsigned long reserved1; /* reserved */

unsigned long chgtime; /* time of last change */

unsigned long chgdate; /* date of l.ast change */

unsigned reserved2: /* reserved */

):

When looking at a dump of a .DAT file, just remember this: the fields marked MunsignedM(otherwise known
as "unsigned intO) take up two bytes. The "unsigned charM fields take up one byte. The "unsigned long" fields
take up 4 bytes. Also remember that the bytes of unsigned longs and unsigned ints will be reversed on disk,
due to the way the Intel CPUs store their data.

Almost all of the fields in the header are simply numbers or strings. One field, however, is a bit-map. The
file attribute field (sfatr) is a 2-byte field. Currently, only the lower 8 bits are used. The folloWing bits are
either turned on or off, depending on what is currently happening to the fIle. Bit 0 is the low order bit and
bit 15 is the high order bit. If a bit is turned on, then the corresponding condition is true for the fIle:

bit 0 - fIle is locked

bit 1 - file is owned

bit 2 - records are encrypted

bit 3 - memo fIle exists

bit 4 - fIle is compressed

bit 5 - reclaim deleted records

bit 6 - file is read only

bit 7 - fIle may be created

2_ The field descriptors

Following the fIle header are the field descriptors. There are as many field descriptor entries as there are
fields in the fIle. Each field descriptor consists of 8 fields. They are defined as follows:

struct (
unsigned char fldtype; /* type of field */
char fldname[16]; /* name of field */
unsigned foffset; /* offset into record */
unsigned length: /* length of field */
unsigned char decsig; /* significance for decimals */
unsigned char decdec: /* nlI'Itler of decimal places */
uns igned arrnl.llli /* array nlI'Itler */
unsigned picnl.lll: /* picture nlI'Itler */

):

The "fldtype" field tells Professional what type of field this is. The following types are currently used:

1- LONG

2 - REAL

3 - STRING

4 - STRING WITH PICTURE TOKEN

5 - BYTE
6-SHORT

Copyright 1989 by Clarion Soflwara,Corporation Page 3

Bulletin .117 - Clarion Data Files

7wGROUP

8- DECIMAL

3. The key and Index descriptors

H you defined any keys for your me, then the field descriptors will be followed by the key descriptors. Like
the field descriptors, there is one entry in the key descriptors for each key/index you defmed. Key
descriptors are broken up into two parts: keysects and keyparts.

They are defmed as follows:

struet {

unsigned char numcompsi/* number of components for key */

char keynams(16)i /* name of this key */

unsigned char ComptYPi /* type of composite */

unsigned char complen; /* length of composite */

} KEYSECT;

struct {

unsigned char fldtype; /* type of field */

unsigned fLdnUlli /* field number */

unsigned elmoff; /* record offset of this element */

unsigned char elmleni 1* length of element */

} KEYPARTi

There is exactly one KEYSECf for each key/index you define. There is a KEYPART for each field
component in a key or index.

4. The picture descriptors and 5. The array descriptors

We'll defer discussion of these two sections until iater in this technical bulletin ..

6. Your data

Fmally, you get to your data. Each record of your data is preceded by a header. This header is defined as
follows:

struct {

unsigned char rhdi /* record header type and status */

unsigned long rptri /* pointer for next deleted record or memo if active */

}i

"rhd" is a bit field that tells Professional developer the status of this record:

bit 0 - new record

bit 1 wold record

bit 2 - revised record

bit 4 - deleted record

bit 6 - record held

This header is followed by the fields you have defined for your records.

The last section contained quite a bit of information. but not aU of the fields were completely explained.
Let's clear up some confusion and look at an actual Clarion data me.

Copyright 1989 by Clarion Software cO.poratlon Page 4

.,

BulieUn "117 - Clarion Data Flies

For this example, we'll use a simple file. Taken from the EXAMPLES subdirectory of Professional
Developer, it is a small file called PHONEBK. It was defmed in Professional Developer as follows:

FILE, PRE(PHN), RECLAIM, CREATE

PHN:BY NAME KEY(PHN:NAME),DUP,NOCASE

PHN:BY:CIJIIPANY KEY(PHN:CIJIIPANY) ,DUP, NOCASE

RECORD RECORD

NAME STRING(30)

CIJIIPANY STRING(30)

ADDRESS STRING(30)

CITY STRING(28)

STATE STRING(2)

ZIP STRING(6)

PHONE DECIMAL(11)

As you can see, this file has 7 fields, 6 of which are simple strings. Two keys are defmed. Deleted records
will be reclaimed by the system. Both keys are case-insensitive and allow duplicates. This file has no memo
fields, is not enaypted, and has no composite keys. Let's take a look at each section of this file. rlI'St, since
this file only has two records, the next page contains a dump of the entire file:

Copyright 1989 by Clarion Software..corporaUon Page 5

BulleUn :1117 - Clarion Data Flies

...

00000: 4333 AO 00 02 02 00 0000000000000700 001C3 •••••••••••••• 1

00010: 00 00 00 89 00 44 01 00000200000001 0000, •••••0•••••••••• ,

00020: 00 00 00 00 00 52 45 43 4F 52 44 20 20 20 20 20, ••••• RECORO I

00030: 20 20 20 20 20 20 20 20 20 20 20 20 20 50 48 4E, PHN,

00040: 2020200000000000 00 0000 9B E4 4F 00 1C, ••••••••••0 •• ,

00050: DO 01 00 00 00 03 50 48 4E 3A 4E 41 40 45 20 20, •••••• PHN:NAME I

00060: 2020202020200000 1E 000000000000 DO, •••••••••• ,

00070: 03 50 48 4E 3A 43 4F 4D 5041 4E 5920 20 20 20,.PHN:COMPANY ,

00080: 20 1E 00 1E 00 00 00 00 00 00 00 03 50 48 4E 3AI ••••••••••• PHN:,

00090: 41 44 44 52 45 53 53 20 20 20 20 20 3C 00 1E 00 ADDRESS <•••

OOOAO: 00 00 00 00 00 00 03 50 48 4E 3A 43 49 54 59 201·······PHN:CITY I

OOOBO: 20202020 20 20 20 SA 00 1C 00 00 00 00 00 00, Z•••••••• ,

oooeO: 00 03 50 48 4E 3A 53 54 41 54 45 20 20 20 20 201" .PHN:STATE I

00000: 20 20 76 00 02 00 00 00 00 00 00 00 03 5048 4E, v••••••••••PHN,

OOOEO: 3A SA 49 50.20 20 20 20 20 20 20 20 20 78 00 O6,:ZlP x •• ,

OOOFO: 00 00 00 00 00 00 00 08 50 48 4E 3A 5048 4F 4E, ••••••••PHN:PHON,

00100: 45 20 20 20 20 20 20 20 7E 00 06 00 OB 00 00 00 E - •••••••

00110: 00 00 01 5048 4E 3A 42 59 SF 4E 41 4D 45 20 201···PHN:BY_NAME
 I
00120: 20202070 1E 03 01 000000 1E 01 5048 4E 3A, P•••••••• PHN:,

00130: 4259 SF 43 4F 40 5041 4E 5920 20 70 1E 03 02 ,BY_COMPANY p ••• ,

00140: 00 1E 00 1E 01 00 00 00 00 4D 61 72 6B 2045 2E, •••••••••Mark E.,

00150: 20 44 61 76 69 64 73 6F 6E 20 20 20 20 20 20 20 Davidson

00160: 20 20 20 20 20 20 20 43 6C 61 72 69 6F 6E 20 53', Clarion sl,

00170: 6F 66 74 77 61 72 65 20 20 20 20 20 20 20 20 20 oftware

00180: 20 20 20 20 20 31 35 30 20 45 2E 20 53 61 6D 70' 150 E. samp'

00190: 6C 65 20 52 6F 61 64 2C 20 53 75 69 74 65 20 321le Road, Suite 21

001AO: 30 30 20 50 6F 6D 70 61 6E 6F 20 42 65 61 63 68,00 Pompano Beach,

. 	001BO: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 46 F
001CO: 4C 33 33 30 36 34 20 00305785 45 55 01 00 001L33064 .0w.Eu ••• 1
00100: 00 00 52 61 79 20 506964 6765 20 20 20 20 20, •• Ray Pidge ,
001EO: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
001FO: 50 72 6F 78 69 6D 69 74 79 20 54 65 63 68 6E 6F,'prOXimity TeChno',
00200: 6C 6F 67 79 20 20 20 20 20 20 20 20 20 20 33 35 logy 35
00210: 31 31 20 4E 45 20 32 32 6E 64 20 41 76 65 6E 75',11 HE 22nd AVenu,'
00220: 65 20 20 20 20 20 20 20 20 20 20 20 46 6F 72 74 e Fort
00230: 20 4C 61 75 64 65 72 64 61 6C 65 20 20 20 20 20' Lauderdale I
00240: 20 20 20 20 20 20 20 20 46 4C 33 33 30 36 33 201 FL33063 !
00250: 003055 66 35 11 ,.0UfS. I

The ftle header is the first part of the ftle. Here is a breakdown of the ftle header, field by field (preceding
each field name is the offset in hexadecimal for this ftle, assuming that the ftle starts at offset 0000; if you are
using Scanner to look at the ftle, add one to each offset as Scanner starts the ftle at offset 0001).

(0000) ftlesig 	 the ftle's signature (4333). This field tells us that this is a ftle created by Professional
Developer version 2. Remember, since the bytes are stored in a reverse order due to the
Intel architecture, this value is actually hex 3343.

(0002) sfatr 	 the ftle's attributes (AO 00). This is a bit-field, so let's convert it to binary. Hex OOAO =
10100000 (the top byte is not used). Bits 7 and 5 are turned on. Referring back to the
discussion of the sfatr field, you can see that this means "ftle may be created" and
"reclaim deleted records.·

(0004) numbkeys 	 the number of keys (02). This tells us this ftle has two key fields.

(0005) numrecs 	 the number of records (02 00 00 00). This ftle only has two records.

(0009) numdels 	 the number of deleted records (00 00 00 00). This ftle has no deleted records.

Copyright 1989 by Clarion Software C6rporaUon Page 6

Bulletin 1117 - Clarion Data FIles

(0000) numflds the number of fields defined in this file (0700). This file has a total of 7 fields.

(OOOF) numpics the number of pictures for this file (00 00). This file has no pictures defmed and thus
will not have a picture description section.

(0011) numarrs the number of arrays for this fde (00 00). This me has no arrays defmed and thus will
not have an- array description section.

(0013) reelen the record length, including the header (89 00). Hex 0089 equals 137 decimal. Our
fields take up 132 bytes (30 + 30 + 30 + 28 + 2 + 6 + 6). Clarion's record header
adds 5 bytes to this. Note: the OECIMAL(l1,O) field takes up 6 bytes.

(0015) offset the start of the data area (44 01 00 00). Our data begins 0144 hex bytes into the file.

(0019) logeof the logical end-of-me (02 00 00 00). Our me logically ends at record 2.

(0010) logbof the logical beginning-of-file (01 00 00 00). Our file logically begins at record 1.

(0021) freerec the frrst usable deleted record (00 00 00 00).
field is zero.

Our fde has no deleted records, so this

(0025) recnam the record name without the prefix (52 45 43 4F 52 44 20 20 20 20 20 20 = "RECORO
"). Notice that strings are padded with spaces and have no terminating NULL to

indicate end-of-string.

(0031) memnam 	 the memo name without the prefix (20 20 20 20 20 20 20 20 20 20 20 20). There is no
memo defined for this file, so this field is all blanks.

(0030) filpre 	 the file name prefIX (SO 48 4E = "PHN").

(0040) recpre 	 the record prefix (20 20 20). There is no record prefix, so this field is all blanks.

(0043) memolen 	 the size of the memo me (00 00). This me has no memo field, so this field has a value
ofO.

(0045) memowid 	 the column width of the memo me (00 00).

(0047) reserved1 	 (00 00 00 00). This field is reserved.

(OO4B) chgtime 	 the time of the last change to this me (9B E4 4F 00). 02:32 PM; this is stored in an
"absolute" format, which is explained below.

(004F) chgdate 	 the date of the last change to this me (1C 00 01 00).08/11/89; this is also stored in an
"absolute" format. See below.

(0053) reserved2 	 (00 00). This field is also reserved.

That takes care of the file header. Next comes the field descriptors. There is one entry for each field in the
me.

Copyright 1989 by Clarion Softwar~ Corporation Page 7

Bulletin "117 - Clarion Data Flies -- ..

Here is a breakdown of the fIrst field descriptor:

(0055) fldtype

(0056) fldname

(0066) foffset

(0068) length

(OO6A) decsig

(OO6B) decdec

(006C) arrnum

(OO6E) picnum

the type of this field (03). Ref~rring back to the discussion of the possible fldtype values,
we can see that this is a STRING.

the name of this field (50 48 4E 3A 4E 41 4D 45 20 20 20 20 20 20 20 20 =
"PHN:NAME"). Notice that the field name includes the prefIX and is padded with
spaces.

the offset into each record for this field (00 (0). Since this is the fIrst field in each
record, it has an offset of 0, i.e. it is at the beginning of each record.

the length of the field (1E (0). This is the length of the field (in bytes). Hex 1E = 30
decimal, so this field is 30 bytes long.

the number of decimal places in this field (00). Since this is not a numeric field, this
field is O.

the significance for decimals (00). Since this is not a numeric field, this field is o.

the array number for this field (00 (0). This field is not defmed as an array, so this field
is o.

the picture number for this field (00 (0). No picture number is associated with this field,
so this field is O.

The entries for fields 2 through 7 follow this one. They are all similar to this one, except that the fldname,
foffset and length fields may have different values. Since field 7 is a DECIMAL, it's fldtype will be 08 and its
length will be its actual length in the file, which is 6 bytes.

Following the field descriptors are the key descriptors. Like the field descriptors, there is one key descriptor
for each key defined for your file. In this case, there are two key descriptors. Here is the breakdown of the
fIrst one (remember that the key descriptors are broken into two sections, KEYSECfS and KEYPARTS):

(0112) numcomps the number of components for this key (01). This key is not a component key (it is

(0113) keynams~

(0123) comptyp

(0124) complen

(0125) fldtype

composed of only one field), so this field has a value of 1.

the name of this key (50 48 4E 3A 42 59 SF 4E 41 4D 45 20 20 20 20 20 =
"PHN:BY NAME"). This is the name of the key, as defmed to Professional. Note that
it is padded with spaces.

the type of the composite key (70). This is a bitfield that tells Professional certain things
about this key. Since this field is only useful if you're going to be processing keys, it will
be skipped. See the technical bulletin on key/index files for more info. Suffice to say
that this field tells Professional that this is a key file (not an index file), duplicate entries
are allowed, and case does not matter in keys.

the length of the composite key (1E). Hex 1E = 30 decimal, which is the length of this
key.

the type of field this key is based on (03). This field uses the same values as defined
above for fldtype in the field descriptor. Referring to that section, you can see that 03
means that this is a STRING.

Copyright 1989 by Clarion Software Corporation Page 8

BulieUn #117 - Clarion Data Flies

(0126) fldnum the field number this key is based on (0100). This key is based on field #1 in the file.

(0128) elmoff the offset into the record fdr the field this key is based on (00 00).
based on the first field in each record, the offset is O.

Since this key is

(012A) elmlen the length of the element in the file this key is based on (IE).

Following this key descriptor is the descriptor for key number 2. It is similar, except for the keynams,
fldnum, and elmoff fields.

Finally, after all this, comes your data. However, Clarion's file system has added 5 bytes to the front of your
records. For this first record, the header looks like this: .

(0144) rhd 	 the record header type and status (01). Recall from the previous discussion of the
header that 01 (binary 00000001) means "new record." Generally, you should not be
concerned with this field unless it is set to "deleted record" or "locked record."

(0145) rptr 	 the pointer to the memo (00 00 00 00). This file has no memos, so this field is set to O.
If this record were deleted, this field would point to the next deleted record.

The record header for record 2 is exactly the same as for record 1. Each field is stored with no separators
between them. STRINGs are padded with spaces out to their maximum defined length. DECIMALs
are stored in a packed BCD-like format, with two digits per byte. Remember our DECIMAL field was
dermed as DECIMAL(11), so it will take up 6 bytes (2 digits per byte, with a half byte of padding since 11
won't divide by 2 evenly). Thus, our DECIMAL field looks like this for the first record:
00 30 57 85 45 55 = 305-785-4555. Even though it would fit in 5 bytes, we have to use 6 because we told
Clarion it would take 11 digits. However, Clarion removes the separators in the number. We simply use a
picture so it will display correctly.

That wasn't too difficult. But wait, you're asking, what about the key files? Unfortunately, even simple key
files are rather hard to explain. Clarion products use a modified version of a B + tree (named after the man
who created them, R. Bayer). Instead of trying to explain exactly how key files work, I'll just cover the
basics.

Key and Index flies

Key files and Index files are read and written in blocks of 512 bytes. A key,fIle has a 512 byte header that
contains information about the structure of the key file itself. Following this header are a series of 512 byte
nodes, which allow your programs to process a data file in key order. Even though the header of the key file
occupies 512 bytes, currently only 35 bytes are used. The header of a key is laid out like this:

struct {
U'lSigned long rooti /* number of root node */
U'lStgned long nunkenti /* number of key entries */
uns igned long numodei /* number of nodes for this index */
U'lSigned long lastnod; /* node number of last node */
unsigned long keyeofi /* record # of end of file */
U'lS igned long keybof; /* record # of beginning of file */
U'lSigned long unused; /* first unused node of fi Le */
unsigned char keytypi /* type of key */
unsigned char keynodei /* # of keys per node * /
U'lSigned char IU1ICllfISi /* # of components of key */
unsigned keyleni /* total length of key entry */

Copyright 1989 by Clarion Software Corporation Page 9

Bulletin 1:117 - Clarion Data Flies

unsigned numlvls; /* number of levels */

char cvoid[4m; /* reserved space */

};

As mentioned above, it is not a good idea to go messing around with key meso If you absolutely need to
know how key mes are laid out, you'll probably have to delve into the technical bulletin that concerns how
key/index mes work. .

Another aspect of key mes that makes them difficult is the way Clarion stores the actual keys themselves.
The keys are kept in a truly "sortable" order. This involves a lot of byte and bit flipping.

If you want to read a data base in a certain order, you could use Sorter to sort the me before reading it.

Dates and nmes In the header

As mentioned previously, the dates and times in the header are stored in an "absolute" format. Here's how
(in Clarion) to convert an absolute date and time to a more readable number.

First, the time:

Given an absolute time (abstim):

IF abstime < 1 OR abstime > 8640000

THEN

STOP ! abstime is invalid

ELSE

abstime = abstime - 1

hour = abstime / 360000

abstime =abstime X 360000

minute:: abstime / 6000

abstime = abstime X 6000

seconds:: abstime / 100

hundreds :: abstime % 100

The above algorithm assumes integer arithmetic; abstime is stored in a "long integer" field, which occupies 4
bytes. Here is an example:

Let's take the time from the me header mentioned above. The "time of last change" for the file is hex 9B E4
4F 00. F"U'st, reverse the order of the bytes (remember that bytes are stored low-byte, then
high byte; in a long integer, the bytes of the integer are also flipped), which gives us hex 00 4F E4 9B.

i. Start with the hex value 00 4F E4 9B.
2. Convert this to decimal, giving us 5235867.
3. Compute 5235867 /360000 = 14 with a remainder of 195867. 14 is the hour.
4. Compute 195867/6000 = 32 with a remainder of 3867. 32 is the minute.
5. Compute 3867 / 100 = 38 with a remainder of 67. 38 is the seconds; 67 is the hundredths of seconds.

Thus the time is 14:32:38.67, which is why the description above resulted in 2:32 PM as the last time of
change for the me.

r

Copyright 1989 by Clarion Software CorporaUon Page 10

http:14:32:38.67

Bulletin #117 - Clarion Data Files

Dates are a little more involved. Given an absolute ~te (absday):

IF absday <= 3 OR absday > 109211

THEN

STOP I absday is invalid

ELSE

I F absday > 36527

THEN

absday = absday - 3

ELSE

absday = absday - 4

year = (1801 + (4 * (absday I 1461»)

absday ,. absday X 1461

IF absday 1= 1460

THEN

year" year + (absday I 365)

day =absday X 365

ELSE

year = year + 3

day = 365

IF year < 100

THEN

year =year + 1900

IF year X 4 = 0 AND year 1= 1900

THEN

number_of_days_in_February =29

ELSE

number_of_days_in_February = 28

LOOP i = 1 TO 12 BY 1

day =day - number_of_davs_in_month_i

If day < 0

THEN

day =day + number_of_days_in_month_i + 1
BREAK

month = i
end if

That's certainly more complicated than the time. The 'number of days in month i' is a nonsense variable
equal to the number of days in a particular month i, with i running from l-(January) to 12 (December).
Let's go throUgh an example, again from the fIle header shown above. The date for this fIle is, again, a "long
integer: stored on disk as hexadecimallC OD 01 00. Reversing the order of the bytes gives us 00 01 OD 1C
hex.

1. 	 Start with the hex value 00 01 OD 1C.
2. 	 Convert this to decimal, giving us 68892.
3. 	 68892 is > 36527, so subtract 3, giving us 68889.
4. 	 Compute (1801 + (4 • (68889/1461»), giving 1989. 1989 is the year.
5. 	 Compute 68889 % 1461, giving 222.
6. 	 222 is != 1460, so compute 222/365, giving O. Add 0 to 1989 (the year).
7. 	 Compute 222 % 365, giving 222. This is the day.
8. 	 1989 % 4 is != 0, so this date is not in a leap year. This means that February has 28 days.
9. 	 Start our loop from 1 to 12, subtracting the number of days in each month from 'day' until 'day' drops

below 0 (the value of i in the far right column is the current value of our loop variable).

Copyright 1989 by Clarion Software Corporation Page 11

Bulletin #117 - Clarion Data Flies

January: day:; day - 31, giving 191. (i = 1)

February: day = day - 28, giving 163.(i = 2)

March: day = day - 31, giving 132. (i 3)

April: day = day - 30, giving 102. (i = 4)

May: day = day - 31, giving 71. (i = 5)

June: day = day - 30, giving 41. (i = 6)

July: day = day - 31, giving 10. (i = 7)

August: day = day - 31, giving -21. (i:; 8)

10. Compute day = day + 31 + 1, giving 11. This is the actual day of the month. Since the loop

terminated at i :; 8, we know 8 is the month number. Thus, our date is 08/11/89.

Several items were left out of the prior discussion, in order to keep confusion to a minimum. Picture
descriptors, array descriptors, composite keys, and memo fields were not covered at all. Let's take a look at
each of these and see how they affect our file layout.

Composite Keys

Recall from the discussion above that key descriptors are made up of two parts: KEYSECTs and
KEYPARTs. The example above had one of each. When a composite key is used, there is still only one
KEYSECT in the key descriptors, but there will be one KEYPART for each field that makes up the
component key. For example, if you have a key that is composed of the PHN:NAME and PHN:COMPANY
fields, your key descriptor would have three pieces, not two. You would still have a KEYSECT, but the
Mnumcomps" field would have a value of 2. The "complen" field would be equal to the sum of the lengths of
the PHN:NAME and PHN:COMPANY fields.

Next, you would have two KEYPARTs, one for the NAME field and one for the COMPANY field. The
only difficulty with handling composite keys is that you have to read more than one field from each record in
order to build your key.

Picture Descriptors

If you have assigned a picture to a field in your database, then a picture descriptor will be created for that
field. Picture descriptors follow the key descriptors in your file. They are laid out like this:

struct {

unsigned piclen:

char picstr[256]:

};

"piclen" contains the actual length of the picture since "picstr" (like all of the other strings in data files) is not
null-terminated. If a picture descriptor has been created, the number associated with that particular picture
descriptor will be placed in the. "picnum" field in the field descriptor associated with that picture. Picture
descriptor ntnnbering starts at 1. Thus, if you are reading the field descriptors and the "picnum" field is not
zero, you need to remember to look for the picture descriptor. This is due to the picture descriptor taking
space in the file before the actual data records occur.

Copyright 1989 by Qarion Software CQrporation Page 12

Bulletin #117 - Clanon Data Flies

Array descriptors

Array descriptors look like this:

struct {

unsigned nuRdim; /* dims for current field */

unsigned totdimi /* total number of dims for field */

unsigned elmsiz: /* total size of current field */

struct {

unsigned maxdim: /* number of dims for array part */

unsigned lendim: /* length of field */

} ARRPART[sizeof(ARRPART)*totdiRa;

} ARRDESC;

Although this looks complicated, it really isn't. Each array descriptor consists of the "numdim," "totdim," and
the "elmsiz" fields, followed by one or more "ARRPART" structures. There is one "ARRPART" for each
dimension in the array.

Let's take the simplest case first. A single array causes one array descriptor to be created. Assuming the
allocation STRING(10),DIM(3), the following array descriptor would be created:

struct {

unsigned numdim = 1;

unsigned totdim =1;

unsigned elmsiz = 30:

struct {

unsigned maxdim = 3;

unsigned lendim = 10;

};

};

"numdim" and "totdim" tell you whether or not this descriptor is part of another array. If they are equal, then
this array descriptor stands by itself. 'elmsiz" is the total size of the elements of this array. "maxdim" tells
you the highest value allowed as the dimension. "lendim" is the length of each dimension. Thus, this array
has 3 "elements", each of which is 10 bytes, giving an element size of 30. There is only one ARRPART
structure since this array only has one dimension (3). To make this more complicated, let's add a group
specifier.

GROUP,DIM(5)

STRING(10),DIM(3)

This will cause two array descriptors to be created; one for the group and one fur the array itself. One is
created for the group because the group itself has a dimension. The first one (for the group) looks like this:

struct {

uns igned nuRd i m = 1;

unsigned totdim = 1;

unsigned elmsiz =150; /* 5 * 30 */

struct {

unsi gned maxdim = 5;

unsigned lendim =30;

};

};

The group has one dimension (5), with each element being 30 bytes, giving a total length of 150 bytes.
Following this is a second array descriptor, this one being for the string itself.

Copyrtght 1989 by Clarion Software CorporaUon Page 13

Bulletin #117 - Clarton Data Flies

struet {

uns i gned l'Il.m::U m = 1;

unsigned totdim =2;

unsigned elmsiz =30;

struet {

unsigned maxdim = 5;

unsigned lendim =30;

>;

struet (

unsigned maxdim =3;

unsigned lendim = 10;

>;
>;

Notice that this array descriptor has two ARRPARTs. One covers the array of 5 that is the group itself; the
second one covers the array of strings. Here's one more example. Let's get more complicated.

GROOP,DIM(5)

STRING(10),DIM(3,6)

We will still have only two array descriptors. Again, the first one is for the group itself:

struet {

unsigned numdim =1:

unsigned totdim =1;

unsigned elmsiz =900; /* 3 * 6 * 10 * 5 */

struet {

unsigned maxdim = 5;

unsigned lendim = 180; /* 3 * 6 * 10 */

>;

>;

Following this is the array descriptor for the strings themselves:

struet {

unsigned numdim =2;

unsigned totdim =3;

unsigned elmsiz =180; /* 3 * 6 * 10 */

struet {

unsigned maxdim =5;

unsigned lendim = 180;

>;

struet {

uns1gned maxdim =3;

unsigned lendim =60:

>:
struet {

unsigned maxdim =6;

unsigned lendim =10;

>:
>:

Array descriptors, like picture descriptors, are numbered. The array descriptors occur following the picture
descriptors. If an array descriptor has been created for a field, the number assigned to the array descriptor
will be in the ~armum" field of the corresponding field descriptor.

Copyright 1989 by Clarton Software Corporation Page 14

Bulletin #117 - Clarion Data Ales

Memo fields

Memo fields are unique in that they are stored it}. a separate file from your data. If there is a memo file
associated with a data base, then the "memnam" field of the data base header will have the name of the
memo field; the "memolen" and "memowid" will have the length and width of the memo field itself.

If a record in your data base has a memo associated with it, the "rptr" field in the header that occurs prior to
each record will have a value. With this value, you can calculate the offset you need to go to in the memo
file in order to read the memo itself. Given "rptr", the formula:

offset = «rptr - 1) * 256) + 6

yields the offset itself.

The memo file consists of a 6 byte header, followed by 256 byte memo blocks. The header looks like this:

struct {
U'lS i gned mems i 9 = 0x334O; 1* memo fit e signature *1
U'lsigned long firstdel; 1* first deleted memo block *1

>;

Memo blocks look like this:

struct {
U'lsigned long nxtblk; 1* next block for this memo *1
char memo[2521; 1* memo text *1

>;

Thus, you read the memo file in 256 byte chunks. Take the value of "rptr" and calculate the offset into the
memo file. Go to that offset and read 256 bytes. The fIrst four bytes will either point to the next 256 byte
chunk you need to read or will be zero, indicating that there are no more blocks for this memo. The
remaining 252 bytes are plain text.

Conclusion

Don't be scared away by the complexity of Clarion data base files. With this technical bulletin, you should be
able to read most any data base, unless it is encrypted or compressed. Our format contains many parts, each
serving a specific purpose. So go ahead, explore away!

Copyright 1989 by Clarion Software ,Corporation Page 1S

