
CLAJ liON
I ECHNICALBULLE liN

Bulletin #116

Adding Hooks To Designer Models

Overview

This bulletin discusses how you can increase the control you have in your Designer
generated code by adding a few simple statements or "hooks" into Designer's model file.
Sample model procedures are provided.

Note: The techniques covered in this bulletin deal primarily with the Batch 2008
NETWORK model file, but they may also be applied to the STANDARD model. This
discussion, dealing with the FORM model procedure, may be used with any of the other
model procedures.

Copyright 1989 by C1arfon Software ColPOraUon. August Page 1

Bulletin #116 - Adding Hooks To DesIgner Models

Adding Hooks To Designer Models

The Designer utility program uses a "model" file to generate code. There are two model files: the
NETWORK model file (for applications used on a network) and the STANDARD model file.

You can gain further control of your programs by adding a few simple statements to the model file. These
statements allow code placed in an "Other" procedure to be executed. These statements are called "hooks."
By placing your "hook" code in an ·Other" procedure, you can change the way a procedure works without
regenerating the entire program. (You can also call a "hook" from the Edit line in an Entry field.)

Assuming that Designer is using the NETWORK model file to generate code, here are two cases where you
would want to create a hook in the NETWORK model:

• 	 Case #1: When deleting a record in one file requires deleting records in other files.
For example, suppose you want to delete a record for an invoice and all its associated
detail file records simultaneously.

• 	 Case #2: When you want to retain the original value or a field so that you can perform calculations
on an updated record. For example, suppose you want to adjust a customer balance for
an invoice change. You need to retain the initial total of the invoice and update the
customer record by the difference between the ·old" total and the "new" total.

To create the hooks for both of these cases, modify the model file using the "@SETUP" keyword wherever a
hook is needed. To identify the hook, set a variable in the model file to the hook number. Then the
@SETUP code is executed. The "hook" numbers are contained in an INCLUDE file called
"HOOKEQU.CIA." Add this INCLUDE file to the include files in the GWBAL model procedure. "-'"

Finally, add a Setup procedure to the FORM that needs the extra hooks. In our example, we would set the
Setup procedure to:

INV_SETUP(H#)iIF H# THEN GOTO PRoe_EXIT.

The hook number is in H# (set by the model file) and is passed as an external to INV SETUP. Passing the
hook number as an external allows INV SETUP to change the H # value. The IF after the call allows
INV SETUP to control whether the FORM should continue or return to the caller. If
INV-SETUP wants to cause the FORM to return, then it simply leaves H# non-zero. If it wants to
continue, it zeroes H #.

The example model procedure shown on the next page contains more hooks than you need to accommodate
the cases listed above, but it demonstrates how to add more hooks if you need them. To summarize, the
process is:

• Add a new equate to the HOOKEQU.CIA file.

• Add the call to @SETUP with H # set to the new hook value.

• Add a new OF to the Setup procedure's CASE statement.

Notice that OFs of unused hook values are commented out in the INV SETUP procedure. This was done to
keep the code as small as possible. If you want to use another existing-hook, remember to un-comment the
OF in the Setup procedure.

Copyright 1989 by Clarion Software Corporation, August Page 2

BulieUn .116 - AddIng Hooks To Designer Models

Set up procedure specified in Desi gner for the FORM:

INV_SETUP(H#)iIF H# THEN GOTO PROC_EXIT.

INCLUDE line for the GLOBAL model pr~edure:

INCLUDE('HOOKEQU.CLA')

The HOOKEQU.CLA include file:

BEGIN EQUATE(01) !BEFORE THE OPEN(SCREEN)

SETUP EQUATE(02) , NORMAL SETUP

TOPMAIN EQUATE(03) !TOP OF THE MAIN LOOP

BEFACC EQUATE(04) !BEFORE ACCEPT

AFTACC EQUATE(05) !AFTER ACCEPT

FLOOP EQUATE(06) !BEFORE THE FIELD EDIT LOOP

TOPFLOOP EQUATE(07) ITOP OF THE FIELD EDIT LOOP

FIRSTFLD EQUATE(OB) !FIRST_FIELD EDIT

PROCEXIT EQUATE(09) !PROCEDURE EXIT

LASTFLD EQUATE(10) ILAST_FIELD EDIT

BEFPUT EQUATE(11) !BEFORE ADD/PUT/DELETE

AFTPUT EQUATE(12) !AFTER ADD/PUT/DELETE

NEXT FORM EQUATE(13) !BEFORE CALLING QNEXTFORM

DELFLD EQUATE(14) !DELETE_FIELD EDIT

LASTCHNG EQUATE(15) !IF RECORD HAS CHANGED

FORM model procedure code: (New code marked with !###)

*FORM***
IilPROCNAME PROCEDURE

SCREEN SCREEN 	 PRE(SCR),QSCREENOPT
IilPAINTS
iSTRINGS
QVARIABLES
ENTRY,USE(?FIRST_FIELD)
QFIELDS
QPAUSE
ENTRY,USE(?LAST_FIELD)
PAUSE("),USE(?DELETE_FIELD)

SAVE_RECORD GROUP;BYTE,DIM(SIZE(IiIPRE:RECORD».
SAVE_MEMO GROUPiBYTE,DIM(SIZE(QMEMO».

EJEct

COOE

H#=BEGIN !### !SET HOOK TO BEGIN

iSETUP !### !CALL SET UP

OPEN(SCREEN) !OPEN THE SCREEN

SETCURSOR ITURN OFF ANY CURSOR

SAVE_RECORD • aPRE:RECORD !SAVE THE ORIGINAL

S~VE_MEMO • QMEMO 	 !SAVE THE ORIGINAL

H#=SETUP !### 	 !SET HOOK TO SETUP

IiISETUP !CALL SETUP PROCEDURE
DISPLAY !DISPLAY THE FIELDS
EXECUTE ACTION !SET THE CURRENT RECORD POINTER

POINTER# • 0 NO RECORD FOR ADD
POINTER# =POINTER(IiIFILENAME) ! CURRENT RECORD FOR CHANGE

Copyrtght 1989 by Clarton Software Corporation, August Page 3

Bulletin .116 - Adding Hooks To DesIgner Models

LOOP ILOOP THRU ALL THE FIELDS
H#=TOPMAIN 1### ISET HOOK TO TOPMAIN
iSETUP 1### !CALL SET UP
MEM:MESSAGE =CENTER(MEM:MESSAGE,SIZE(ME~:MESSAGE» !DISPLAY ACTION MESSAGE

iLOOKUPS !DISPLAY FROM OTHER FILES
asHOW !DISPLAY STRING VARIABLES
iCOMPUTE !DISPLAY COMPUTED FIELDS
iRESULT IMOVE RESULTING VALUES
ALERT IRESET ALERTED KEYS
ALERT(ACCEPT KEY) !ALERT SCREEN ACCEPT KEY
ALERT(REJECT:KEY) IALERT SCREEN REJECT KEY
aALERT IALERT HOT KEY
H#=BEFACC 1### !SET HOOK TO BEFACC
asETUP!### ICALL SET UP
ACCEPT !READ A FIELD
H#=AFTACC !### !SET HOOK TO AFTACC
iSETUP!### !CALL SET UP
iCHECKHOT ION HOT KEY, CALL PROCEDURE
IF KEYCOOE() = REJECT_KEY THEN RETURN. IRETURN ON SCREEN REJECT KEY
EXECUTE ACTION ISET ACTION MESSAGE

MEM:MESSAGE = 'Record will be Added'
MEM:MESSAGE = 'Record will be Changed'
MEM:MESSAGE = 'Press Enter to Delete'

EDIT_RANGE' = FIELD()
IF KEYCOOE() = ACCEPT_KEY

ISET ONE FIELD EDIT RANGE
ION SCREEN ACCEPT KEY

UPDATE I MOVE ALL FIELDS FROM SCREEN
EDIT_RANGE' = FIELDS() ! AND EDIT REMAINING FIELDS

H#=FLOOP
asETUP
LOOP FIELD' = FIELD() TO EDIT RANGE'

H#=TOPFLOOP 1### -
IEDIT FIELDS IN THE EDIT RANGE
ISET HOOK TO TOPFLOOP

GlSETUP 1### 'CALL SET UP
CASE FIELD' IJUMP TO FIELD EDIT ROUTINE
OF ?FIRST_FIELD !FROM THE FIRST FIELD

H#=FIRSTFLD !### ISET HOOK TO FIRSTFLD
QlSETUP I ### I CALL SET UP
IF KEYCOOE() = ESC_KEY THEN RETURN. ! RETURN ON ESC KEY
IF ACTION =3 THEN SELECT(?DELETE_FIELD).! OR CONFIRM FOR DELETE

GlEDITS
OF ?LAST FIELD

H#=LASTFLD 1###
O$ETUP ,###
IF ACTION = 2

HOLD(GlFILENAME)
GET(GlFILENAME,POINTER')
IF ERRORCOOE() = 35

ACTION = 1
ELSIF I

tilMEMO <> SAVE_MEMO OR

!EDIT ROUTINES GO HERE
!FROM THE LAST FIELD
ISET HOOK TO LAST FLD
!CALL SET UP
!IF UPDATING RECORD

HOLD FILE
RE-READ SAME RECORD
IF RECORD ~S DELETED

THEN ADD IT BACK
IF IT HAS BEEN CHANGED

GlPRE:RECORD <> SAVE_RECORD BY ANOTHER STATION
MEM:MESSAGE = 'CHANGED BY ANOTHER STATION' I INFORM USER
SELECT(2) I GO BACK TO FIELD 1
BEEP I SOUND ALARM
RELEASE(GlFILENAME) I RELEASE FILE
SAVE RECORD =GlPRE:RECORD I SAVE RECORD
SAVE)EMO = tilMEMO SAVE MEMO
DISPLAY I DISPLAY THE FIELDS

Copyright 1989 by Clarion Software Corpondlon, August Page 4

Bulletin :1116 - Adding Hooks To Designer Models

H#=LASTCHNG !### !SET HOOK TO LASTCHNG
r.lSETUP !### !CALL SET UP
BREAK ! AND CONTINUE

UPDATE !UPDATE FROM SCREEN TO RECORD
iilRESULT !MOVE RESULTING VALUES

H#=BEFPUT 1### ISET HOOK TO BEFPUT
QSETUP 1### ICALL SET UP
EXECUTE ACTION I UPDATE THE FILE

ADD(r.lFILENAME) I ADD NEW RECORD
PUT(r.lFILENAME) CHANGE EXISTING RECORD
DELETE(r.lFILENAME) DELETE EXISTING RECORD

IF ERROR() THEN STOP(ERROR(». I CHECK FOR UNEXPECTED ERROR
H#=AFTPUT I### ISET HOOI(TO AFTPUT
QSETUP !### ICALL SET UP
PUT(r.lFI LENAME2) I UPDATE SECONDARY FILES
PUT(r.lFILENAME3) I UPDATE SECONDARY FILES
PUT(r.lFILENAME4) I UPDATE SECONDARY FILES
IF ACTION =1 THEN PDINTER# =POINTER(r.lFILENAME). !POINT TO RECORD
SAVE_RECORD = r.lPRE:RECORD I NEW ORIGINAL
SAVE MEMO = IilMEMO ! NEW ORIGINAL
r.lNEXTFORM ! CALL NEXT FORM PROCEDURE
H#=N EXT FORM 1### ISET HOOI(TO NEXT FORM
r.lSETUP 1### 1CALL SET UP
ACTION = 0 1 SET ACTION TO COMPLETE
RETURN 1 AND RETURN TO CALLER

OF ?DELETE_FIELD 1FROM THE DELETE FIELD
H#=DELFLD 1### ISET HOOK TO DELFLD
QSETUP 1### ICALL SET UP
IF KEYCODE() = ENTER_KEY I 1 ON ENTER KEY
OR KEYCODE() =ACCEPT_KEY OR CTRL-ENTER KEY

SELECT(1LAST_FIELD) DELETE THE RECORD
ELSE OTHERWISE

BEEP BEEP AND ASK AGAIN

PROC_EXIT

H#=PROCEXIT !### ISET HOOK TO PROCEXIT

QSETUP 1### !CALL SET UP

RETURN

Copyright 1989 by Clarion Software Co~. August Page 5

Bulldn #116 - Adding Hooks To Designer Models

The following is a separate procedure named 8S an "Other" in Designer
and is not part of the model file. This code actually does the
hook processing. It cases off of the passed parameter to get to the
correct hook code.

The following is INV_SETUP:

!!!!!!IIIII! I!I!!!!!!!!!!!!!!!!!!!! I!!!!!!!! I!!!!!! I! !!!!!!I!!!!!! I!!!!

! Module:INVSETUP.CLA
!
! ! II ! ! ! II ! ! II " ! ! I ! ! II II II ! ! II II ! II III! ! II! II II II !! ! II 1111 ! ! II ! II III! II

INV_SETUP PROCEDURE(H) !SETUP PROCEDURE FOR INVOICE
H EXTERNAL

CODE

CASE H
!EDIT CODE CAN GO HERE - TO KEEP ALL THE COOE IN ONE PLACE
ITELL DESIGNER THAT THE EDIT PROCEDURE FOR THE FIELD NEEDING THE EDIT
!IS INV SETUP(1000).
I OF 1000

OF BEGIN
OF SETUP
OROF LASTCHNG

OLD TOTS =INV:TOTAL
OF TOPMAIN
OF BEFACC
OF AFTACC
OF FLOOP
OF TOPFLOOP
OF FIRSTFLD
OF PROCEXIT
OF LASTFLD
OF BEFPUT 	 !if Me get here the record is the same

las when the procedure started and it
Iis in memory and held and ready to go

CUS:NUMBER lit INV:CUSTOMER ISET CUSTOMER NUMBER
HOLD (CUSTOMER) !GET THE CUSTOMER RECORD
GET(CUSTOMER,CUS:CUST_KEY) !WITH EXCLUSIVE ACCESS

~ I F NOT ERRORO IIF THERE IS NO ERROR
CASE ACTION
OF 2 !REVISE ION A CHANGE SUBTRACT BEFORE AMOUNT

CUS:BALANCE -= OLDTOTS !THEN FALL INTO ADD TO ADD IN NEW AMOUNT
OROF 1 !ADD !ON AN ADD ADD THE AMOUNT

CUS:BALANCE += INV:TOTAL
OF 3 !DELETE ION A DELETE SUBTRACT THE AMOUNT

CUS: BALANCE INV:TOTAL

PUT(CUSTOMER) 	 !PUT THE RECORD BACK
IF ERRORO !IF THERE WAS AN ERROR

RELEASE(CUSTOMER) !RELEASE THE HOLD
LOOPiSTOP(ERROR(». ITHIS SHOULD NEVER HAPPEN

IF ACTION 3 IDELETING INVOICE !ON A DELETElit

!GO GET RID OF TRANS FOR ORDER

Copyright 1989 by ClarIon Software Corporation, August Page 6

Bulletin #116 - Adding Hooks To Designer Models

TRA:INVOICE = INV:NUMBER !SET INVOICE NUMBER
SET(TRA: INV_KEY,TRA: INV_KEY)
IF NOT ERROR() !WHILE WE HAVE THE RIGHT RECORDS

LOOP UNTIL EOF(TRANS)
HOLD(TRANS)
NEXT(TRANS)
IF ERROR() OR TRA:INVOICE NOT = INV:NUMBER THEN BREAK.
DELETE(TRANS) !DELETE THEM

IF ERROR() THEN RELEASE(TRANS).

OF AFTPUT
OF NEXTFORM
OF DELFLD

H = 0
RETURN

Copyrtght 1989 by Clarion Software Corporation, August Page 7

