CLARION
TECHNICAL BULLETIN

Bulletin #116
Adding Hooks To Designer Models

Overview

This bulletin discusses how you can increase the control you have in your Designer-
generated code by adding a few simple statements or "hooks" into Designer’s model file.
Sample model procedures are provided.

Note: The techniques covered in this bulletin deal primarily with the Batch 2008
NETWORK model file, but they may also be applied to the STANDARD model. This

discussion, dealing with the FORM model procedure, may be used with any of the other
model procedures.

Copyright 1989 by Clarfon Software Cotporation, August Page 1

Bulletin #116 - Adding Hooks To Designer Models

Adding Hooks To Designer Models

The Designer utility program uses a "model” file t(; generate code. There are two model files: the
NETWORK model file (for applications used on a network) and the STANDARD model file.

You can gain further control of your programs by adding a few simple statements to the model file. These
statements allow code placed in an "Other" procedure to be executed. These statements are called “hooks."
By placing your "hook" code in an “Other" procedure, you can change the way a procedure works without
regencrating the entire program. (You can also call a "hook” from the Edit line in an Entry field.)

Assuming that Designer is using the NETWORK model file to generate code, here are two cases where you
would want to create a hook in the NETWORK model:

* Case #1: When deleting a record in one file requires deleting records in other files,
For example, suppose you want to delete a record for an invoice and all its associated
detail file records simultaneously.

* Case #2: When you want to retain the original value of a field so that you can perform calculations
on an updated record. For example, supposc you want to adjust a customer balance for
an invoice change. You need to retain the initial total of the invoice and update the
customer record by the difference between the "old" total and the "new” total.

To create the hooks for both of these cases, modify the model file using the “@SETUP" keyword wherever a
hook is needed. To identify the hook, set a variable in the model file to the hook number. Then the
@SETUP code is executed. The "hook” numbers are contained in an INCLUDE file called
"HOOKEQU.CLA." Add this INCLUDE file to the include files in the GLOBAL model procedure.

Finally, add a Setup procedure to the FORM that needs the extra hooks. In our example, we would set the
Setup procedure to:

INV_SETUP(H#);IF H# THEN GOTO PROC_EXIT.

The hook number is in H# (set by the model file) and is passed as an external to INV_SETUP. Passing the
bhook number as an external allows INV SETUP to change the H# value. The IF after the call allows
INV_SETUP to control whether the FORM should continue or return to the caller. If

INV_SETUP wants to cause the FORM to return, then it simply leaves H# non-zero. If it wants to
continue, it zeroes H#.

The example model procedure shown on the next page contains more hooks than you need to accommodate
the cases listed above, but it demonstrates how to add more hooks if you need them. To summarize, the
process is:

* Add a new equate to the HOOKEQU.CLA file.

» Add the call to @SETUP with H# set to the new hook value.

+ Add a new OF to the Setup procedure’s CASE statement.

Notice that OFs of unused hook values are commented out in the INV_SETUP procedure. This was done to

kecp the code as small as possible. If you want to use another existing hook, remember to un-comment the
OF in the Setup procedure.

Copyright 1989 by Clarlon Sotiware Corporation, August Page 2

Bulletin #116 - Adding Hooks To Designer Models

Set up procedure specified in Designer for the FORM:
INV_SETUP(H#);IF H# THEN GOTO PROC_EXIT.

INCLUDE line for the GLOBAL model proéedure:

INCLUDE(* HOOKEQU.CLA®)

The HOCKEQU.CLA include file:
BEGIN EQUATE(01) {BEFORE THE OPEN(SCREEN)
SETUP EQUATE(02) INORMAL SETUP
TOPMAIN EQUATE(O3) 1TOP OF THE MAIN LOOP
BEFACC EQUATE(04) IBEFORE ACCEPT
AFTACC EQUATE(O05) IAFTER ACCEPT
FLOOP EQUATE(06) IBEFORE THE FIELD EDIT LOOP
TOPFLOOP EQUATE(07) ITOP OF THE FIELD EDIT LOOP
FIRSTFLD EQUATE(08) IFIRST_FIELD EDIT
PROCEXIT EQUATE(09) IPROCEDURE EXIT
LASTFLD EQUATE(10) ILAST_FIELD EDIT
BEFPUT EQUATE(11) {BEFORE ADD/PUT/DELETE
AFTPUT EQUATE(12) IAFTER ADD/PUT/DELETE
NEXTFORM EQUATE(13) IBEFORE CALLING QNEXTFORM
DELFLD EQUATE(14) IDELETE_FIELD EDIT
LASTCHNG EQUATE(15) 1IF RECORD HAS CHANGED

FORM model procedure code: (New code marked with 1###)

* Fm"*****t*******i******k**‘k**********************************ﬁ********i*t****

SFROCNAME PROCEDURE

SCREEN SCREEN PRE(SCR),&SCREENOPT
APAINTS
ASTRINGS
AVARIABLES
ENTRY,USE(?FIRST_FIELD)
AFIELDS
aPAUSE
ENTRY ,USE(?LAST_FIELD)
PAUSE(* '3 ,USE(?DELETE_FIELD)

SAVE_RECORD GROUP;BYTE,DIM(SIZE(QPRE:RECORD)).
SAVE_MEMO GROUP ; BYTE ,DIM(SIZE(SMEMO)).

EJECY

CODE

H#=BEGIN VR ISET HOOK TO BEGIN

SSETUP Vi 1CALL SET UP

OPEN(SCREEN) 10PEN THE SCREEN

SETCURSOR ITURN OFF ANY CURSOR

SAVE_RECORD = @PRE:RECORD ISAVE THE ORIGINAL

SAVE_MEMO = QOMEMO ISAVE THE ORIGINAL

H#=SETUP Vi ISET HOOK TO SETUP

asETUP ICALL SETUP PROCEDURE

DISPLAY IDISPLAY THE FIELDS

EXECUTE ACTION ISET THE CURRENT RECORD POINTER
POINTER# = 0 ! NO RECORD FOR ADD
POINTER# = POINTER(SFILENAME) ! CURRENT RECORD FOR CHANGE

Copyright 1989 by Clarlon Software Corporation, August Page 3

Bulletin #116 - Adding Hooks To Designer Models

LooP
HA=TOPMAIN Vit
QsSETUP k.

1LOOP THRU ALL THE FIELDS
ISET HOOK TO TOPMAIN
ICALL SET UP

MEM:MESSAGE = CENTER(HEH:HESSAGE,SIZE(HEQ:MESSAGE)) IDISPLAY ACTION MESSAGE

BLOOKUPS
ASHOM
ACOMPUTE
SRESULT
ALERT
ALERT(ACCEPT_KEY)
ALERT(REJECT_KEY)

GALERT

H#=BEFACC 1
asETUP B
ACCEPT

H#=AFTACC Vit
QSETUP Vbt
SCHECKHOT

1F KEYCODE() = REJECT_KEY THEM RETURN.

EXECUTE ACTION
MEM:MESSAGE
MEM :MESSAGE
MEM:MESSAGE

‘Record will be Added!
'Record will be Changed!
'Press Enter to Delete!

nHH

EDIT_RANGE# = FIELD()

IF KEYCODE() = ACCEPT_KEY
UPDATE
EDIT_RANGE# = FIELDS()

H#=FLOOP
@SETUP
LOOP FIELD# = FIELD{) TO EDIT_RANGE#
HE=TOPFLOOP it
ASETUP 1}
CASE FIELD#
OF ?FIRST_FIELD
H#=FIRSTFLD 1###
WSETUP {
IF KEYCODE() = ESC_KEY THEN RETURN.

IDISPLAY FROM OTHER FILES
IDISPLAY STRING VARIABLES
IDISPLAY COMPUTED FIELDS
IMOVE RESULTING VALUES
{RESET ALERTED KEYS
tALERT SCREEN ACCEPT KEY
{ALERT SCREEN REJECT KEY
TALERT HOT KEY
ISET HOOK TO BEFACC
ICALL SET uP
{READ A FIELD
ISET HOOK TO AFTACC
ICALL SET UP
1ON HOT KEY, CALL PROCEDURE
TRETURN ON SCREEN REJECT KEY
ISET ACTION MESSAGE
1
!

§

ISET ONE FIELD EDIT RANGE
TON SCREEN ACCEPT KEY
{ MOVE ALL FIELDS FROM SCREEN

t AND EDIT REMAINING FIELDS
!

TEDIT FIELDS IN THE EDIT RANGE
ISET HOOK TO TOPFLOOP

TCALL SET UP

tJUMP TO FIELD EDIT ROUTINE
{FROM THE FIRST FIELD

ISET HOOK TO FIRSTFLD

ICALL SET UP

! RETURN ON ESC KEY

IF ACTION = 3 THEN SELECT(?DELETE_FIELD).! OR CONFIRM FOR DELETE

REDITS
OF ?LAST_FIELD
H#=LASTFLD 1###
ABETUP Vi
IF ACTION = 2
HOLD(AF ILENAME)
GET(AF ILENAME, POINTER#)
IF ERRORCODE() = 35
ACTION = 1
ELSIF |
GMEMO <> SAVE_MEMO OR |

QPRE:RECORD <> SAVE_RECORD

YEDIT ROUTINES GO HERE
IFROM THE LAST FIELD

ISET HOOK TO LASTFLD
1CALL SET uP

Y1F UPDATING RECORD

¥ HOLD FILE

t RE-READ SAME RECORD

t IF RECORD WAS DELETED
! THEN ADD 1T BACK

! IF IT HAS BEEN CHANGED
!

' BY ANOTHER STATION

MEM:MESSAGE = 'CHANGED BY ANOTHER STATION' !INFORM USER

SELECT(2)

BEEP

RELEASE(F ILENAME)
SAVE_RECORD = @PRE :RECORD
SAVE_MEMO = GMEMO
DISPLAY

! GO BACK TO FIELD 1
SOUND ALARM
RELEASE FILE

SAVE RECORD

SAVE MEMO

DISPLAY THE FIELDS

Copyright 1988 by Clarion Software Corporation, August Page 4

()

Bulletin #116 - Adding Hooks To Designer Models

H#=LASTCHNG !###

ISET HOOK TO LASTCHNG
fCALL SET UP
! AND CONTINUE

IUPDATE FROM SCREEN TO RECORD
IMOVE RESULTING VALUES

1SET HOOK 7O BEFPUT

YCALL SET UP

! UPDATE THE FILE

! ADD NEW RECORD

! CHANGE EXISTING RECORD
! DELETE EXISTING RECORD

! CHECK FOR UNEXPECTED ERROR
ISET HOOK TO AFTPUT

TCALL SET UP

! UPDATE SECONDARY FILES

! UPDATE SECONDARY FILES

I UPDATE SECONDARY FILES

IF ACTION = 1 THEN POINTER# = POINTER(IFILENAME). IPOINT TO RECORD

QSETUP Vi
BREAK

UPDATE

SRESULT
H#=BEFPUT Vi
asETUP Vi
EXECUTE ACTION

ADD(@FILENAME)

PUT(RFILENAME)

DELETE(RFILENAME)
IF ERROR() THEN STOP(ERROR()).
HA#=AFTPUT L
BSETUP Vi
PUT(QFILENAME2)
PUT(QF I LENAME3)
PUT(QFILENAME4)
SAVE_RECORD = @PRE:RECORD
SAVE_MEMO = GNEMO
SNEXTFORM
H#=NEXTFORM i
ASETUP i
ACTION = 0
RETURN

OF ?DELETE_FIELD

H#=DELFLD Vi
@SETUP P

IF KEYCODE() = ENTER KEY |
OR KEYCODE() = ACCEPT_KEY
SELECT(?LAST_FIELD)

ELSE
BEEP
PROC_EXIT
H#=PROCEXIT Vi
RSETUP v
RETURN

! NEW ORIGINAL

! NEW ORIGINAL

§ CALL NEXT FORM PROCEDURE
ISET HOOK TO NEXTFORM

ICALL SET UP

! SET ACTION TO COMPLETE

I AND RETURN TO CALLER

{FROM THE DELETE FIELD
ISET HOOK TO DELFLD
ICALL SET UP

! ON ENTER KEY

I OR CTRL-ENTER KEY

! DELETE THE RECORD
| OTHERWISE

! BEEP AND ASK AGAIN

ISET HOOK TO PROCEXIT
1CALL SET UP

Copyright 1989 by Clarion Software corp9raﬂon, August Pages5

Bulletin #116 - Adding Hooks To Designer Models

.

ARRRRRRERERETATFRARRRFAARA SRR AR AR TR R kR h ki ddkdbhdkdd ki kkkdkhkkhkhiidk _/
The following is a separate procedure named as an "Other” in Designer
and is not part of the model file. This code actually does the
hook processing. 1t cases off of the passed parameter to get to the
correct hook code.
A e ittt vk ook ke g ok o e o o e g g e o s e o sk e s i e o o v ol e e o 3 e ol ke ol s e Sl S s e s ok sk e ke o ol e sk e e e ik de e ok
The following is INV_SETUP:
R RN RN R RN R RN R TR NN N RN RNy RN NN RN RN AR NN ANTNEEY
i
t Module: INVSETUP.CLA
'
(AR R R R R R N NN N R R R R R R R R R RN RN NN R R R R R RN R R R S RN NN N AR R R RN N
INV_SETUP PROCEDURE(H) 1SETUP PROCEDURE FOR INVOICE
H EXTERNAL
CODE
CASE H
{EDIT CODE CAN GO HERE - TO KEEP ALL THE CODE IN ONE PLACE
{TELL DESIGNER THAT THE EDIT PROCEDURE FOR THE FIELD NEEDING THE EDIT
LIS INV_SETUP(1000).
i OF 1000
1 OF BEGIN
OF SETUP
OROF LASTCHNG
OLDTOTS = INV:TOTAL P
I OF TOPMAIN
! OF BEFACC N
I OF AFTACC
t OF FLOOP
I OF TOPFLOOP
! OF FIRSTFLD
{ OF PROCEXIT
I OF LASTFLD
OF BEFPUT Iif we get here the record is the same
fas when the procedure started and it
tis in memory and held and ready to go
CUS:NUMBER = INV:CUSTOMER 1SET CUSTOMER NUMBER
HOLD (CUSTOMER) 1GET THE CUSTOMER RECORD
GET(CUSTOMER, CUS:CUST_KEY) INITH EXCLUSIVE ACCESS
“ IF NOT ERROR() I1F THERE IS NO ERROR
CASE ACTION
OF 2 IREVISE 1ON A CHANGE SUBTRACT BEFORE AMOUNT
CUS:BALANCE -= OLDTOTS 1THEN FALL INTO ADD TO ADD IN NEW AMOUNT
OROF 1 1ADD ION AN ADD ADD THE AMOUNT
CUS:BALANCE += INV:TOTAL
OF 3 IDELETE ION A DELETE SUBTRACT THE AMOUNT
CUS:BALANCE -= INV:TOTAL
PUT(CUSTOMER) tPUT THE RECORD BACK
IF ERROR() 1IF THERE WAS AN ERROR
RELEASE(CUSTOMER) IRELEASE THE HOLD
LOOP ; STOP(ERROR()). ITHIS SHOULD NEVER HAPPEN
IF ACTION = 3 IDELETING INVOICE ION A DELETE
1GO GET RID OF TRANS FOR ORDER
S’

Copyright 1989 by Clarlon Software Corporation, August Page 6

Bulletin #116 - Adding Hooks To Deslgner Models

TRA:INVOICE = INV:NUMBER ¥SET INVOICE NUMBER
SET(TRA:INV_KEY,TRA:INV_KEY)
IF NOT ERROR() IWHILE WE HAVE THE RIGHT RECORDS
LOOP UNTIL EOF(TRANS)
HOLD(TRANS) ’
NEXT(TRANS)
IF ERROR() OR TRA:INVOICE NOT = INV:NUMBER THEN BREAK.
DELETE(TRANS) IDELETE THEM

IF ERROR() THEN RELEASE(TRANS).

) OF AFTPUT

! OF NEXTFORM

! OF DELFLD
H=0
RETURN

Copyright 1989 by Clarion Software Corporation, August Page 7

