
CI AI liON
I ECHNICAL BULLE liN

Bulletin #113

Processing Transactions

Overview

This document is an expansion of material covered in the "Processing Transactions"
section of Chapter 11 of the Lan~age Reference manual. It includes a discussion of
the following topics: file sharing, record locking, file locking, transaction framing, and
multi-user system design. Emphasis is placed on the explanation of related terms,
concepts and keywords. Examples are also provided.

Note: These topics are advanced and presume knowledge of the Clarion language. The
features described in this document require Batch Release 2007 or higher.

Copyright 1989 by Clarion Software Corporation, August Page 1

Bulletin #113 - Processing TransacUons

Processing Transactions
)

System Integrity

A system has integrity when its data records contain valid data and its keys accurately express relationships
between records· and ftles. Systems maintain integrity only through careful up-front design and programming.
The old rule "if anything can go wrong it probably will" must be taken to heart in software design:

• If a data value is important, the entry field edit must exclude bad data.
• If ftles are related, routines must internally verify the relationships.
• If the "master" record must not be deleted while "detail" records still exist, logic must prevent the deletion.
• If data must be secure then passwords and encryption should be used.

Clarion helps programmers by supplying tools that simplify the development of systems with integrity. One
tool in the Clarion programmer's arsenal is support for "transaction logging."

Transactions

A transaction is a single logical event during which more than one record is updated. It can involve several
records in one ftle, or one or more records in more than one ftle. The important characteristic of a
transaction is that all of the ftles and records should be updated together, or none of them should be updated
at all. A failure in the middle of a transaction compromises the integrity of the system.

Transaction logging

Transaction logging is also known as "pre-imaging" or as an implementation of "commit boundaries."
Transaction logging provides a means of undoing a partial transaction. If a transaction is "undone," data is
restored to its original form as if the data has never been updated. During transaction logging. as Clarion
ftles are updated by the ADD, PUT, DELETE, and APPEND statements, the original data and key
information for the affected records is saved in pre-image log ftles. The name of the ftle is saved in a
transaction logout ftle.

If the transaction is successful, it can be "committed." In a Clarion program, when a transaction is
committed, the pre-image logging process ends, and the pre-image log ftles and the transaction logout
ftle are deleted.

If the transaction is unsuccessful, it can be "rolled back.· When a transaction is rolled back, the
information saved in the pre-image log ftles is restored to the data and key ftles, "undoing" all updates,
and resetting the contents of the ftles back to their states at the beginning of the transaction. After the
information has been rolled back, the pre-image log files and the transaction logout ftle are deleted.

Copyright 1989 by Clarion Software Corpo"Uon, August Page 2

Bulletin #113 - Processing Transactions

Pre-image Log Files

A "pre-image log file" contains the image of records and keys as they existed before they were updated.
Language statements do not designate pre-image log files. Pre-image log files are created, accessed, and
deleted automatically by the transaction logging statements: LOGOUT, COMMIT, and ROLLBACK. The
Clarion Sorter, Filer, and Scanner utility programs detect the presence of pre-image log files and inform the
user that a rollback is needed.

In the event of a system failure during a transaction, pre-image log files will exist on disk. IT the Clarion
Sorter, Filer, or Scanner utility programs are run, they will detect the presence of the pre-image log files and
inform the user that a rollback is needed.

A pre-image log file is created for each Clarion file accessed during transaction logging. This file has the
same file specification as the data file with an extension of ".LOG." In other words, it is created in the same
directory as the data file, and with the same name as the data file, but with an extension of ".LOG."

Pre-image log files support a single logical transaction only. IT a transaction logging process begins and a
pre-image log file already exists (it has not been committed or rolled back), the saved information in the
existing pre-image file will be deleted.

The pre-image log files of a transaction maintain the relationship with each other by each naming a common
rue called a "transaction logout rue."

Transaction Logout File

Transaction logout files should not be confused with pre-image log rues. A transaction logout rue is a binary
DOS file which contains a list of the Clarion files accessed during the current transaction. Each Clarion rue
that is pre-imaged will be noted in the transaction log rue. Each pre-image log rue in the transaction
contains the name of the common transaction logout rue. Only one transactiori logout rue can be active at a
time.

To begin transaction logging, a transaction logout rue must be specified by the LOGOUT statement.

LOGOUT Statement

Form: WGOUT (transaction logout file)

LOGOUT initiates transaction logging. During transaction logging, as Clarion rues are updated by the ADD,
PUT, DELETE, and APPEND statements, the original data and key information for the records is saved in
pre-image log files, and the file names are saved in a transaction logout rue.

The transaction logout file parameter is a constant, variable, or expression that specifies a transaction logout
file. This parameter is required. IT no drive or path is specified, the current directory drive and path are
used; there is no default extension. IT the transaction logout rue already exists, the program will halt with the
message: "UNABLE TO LOG TRANSACTION."

Copyright 1989 by Clarion Software Corporation, August Page 3 ,

Bull.Un #113 - ProcessIng Transactions

Only one transaction can be processed at a time. If transaction logging is already in progress and a
LOGOUT statement is executed, the program will halt with the message: "LOGOUT ALREADY ACTIVE."
The halt will occur even if a different transaction Ipgout file is specified.

If the LOGOUT statement is successful, transaction logging continues until a COMMIT or ROLLBACK
statement is issued.

COMMIT Statement

Form: COMMIT

COMMIT turns off transaction logging and makes a transaction permanent by deleting the pre-image log
files and the transaction log file. An implied COMMIT occurs when the program goes to a normal end of
job, or when a RUN, CHAIN, or CALL statement is executed.

ROLLBACK Statement

Form 1: ROLLBACK (transaction logout file)

Form 2: ROLLBACK

ROLLBACK turns off transaction logging, restores the files updated during the transaction to their original
states, and deletes the transaction log file and the pre-image log files.

During transaction logging, as Clarion files are updated by the ADD, PUT, DELETE, and APPEND
statements, the original data and key information for the records is saved in a pre-image log file for each
data file, and a list of the updated files is kept in the transaction logout me. ROLLBACK refers to the
transaction log me to see which mes have been updated during the transaction, then each pre-image log me
is processed, restoring all updated fues to their condition prior to the LOGOUT statement.

• 	 In Form 1, the transaction logout file parameter is a constant, variable, or expression that specifies a
transaction logout me. This parameter is optional. When it is used and no drive or path is specified, the
current directory drive and path are used. There is no default extension.

• 	 In Form 2, bo transaction logout me is specified. This form presumes transaction logging is active and

uses the current transaction logout me.

- If transaction logging is active, the current transaction logout me specified by LOGOUT is used, even if
ROLLBACK specifies a different transaction logout me.

- If transaction logging is inactive, ROLLBACK must specify a transaction logout file. If the transaction
logout fue does not exist, the ROLLBACK statement is ignored.

In general, Form 1 should be used when transaction logging is not in progress (i.e., at the start of a
program). Form 2 should be used while transaction logging is in progress.

Copyrtght 1989 by Clarion Software CorporaUon, August Page 4

BulleUn "113 - Processing Transactions

If the RECOVER statement has been used to arm a recovery process, an implicit ROLLBACK may be .
executed. If the recovery process is invoked to unlock a locked ftIe, and if transaction logging is not in
progress, and if a pre~image log me exists for that)me, then pre~image data will be rolled back for that me.
Other mes may also be rolled back if the pre~image log me points to a transaction logout me that lists other
meso

Note: Versions of Clarion prior to Batch 2008 may exhibit an error that requires all of the mes named in the
transaction logout me to be open at the time a ROLLBACK is issued.

Are there "windows or vulnerability"?

While transaction logging is active, before a me update is applied, the transaction logout me is updated first,
followed by the pre-image log me, and then the data me. The transaction logout me and the pre-image log
mes are kept logically closed.

During a commit, the transaction logout me is deleted flrst, followed by the pre-image log mes in the same
order in which they were created.

While a transaction is being rolled back, pre-image data is read from the end of a pre-image log me (the last
record updated is rolled back flrst.) After the record is rolled back, the pre-image information for that
record is deleted from the pre-image log ftIe. After all of the records have been rolled back from a given
pre-image log me, ROLLBACK moves to the next pre-image log me listed in the transaction logout me.
When all the records have been rolled back from all of the pre-image log mes, ROLLBACK deletes the
pre-image log mes and the transaction logout me.

All of the steps described on the previous page insure that there are no "windows of vulnerability" while using
transaction logging.

Statement Summary

Only Clarion mes can be pre-imaged and rolled back. DOS mes are not affected by LOGOUT,
ROLLBACK, or COMMIT. During transaction logging, the following statements update Clarion data mes
and their effects can be rolled back:

ADD PUT DELETE APPEND

The following statements will cause an implicit COMMIT:

RETURN (to end the program, or any normal end-of-job)
RUN
CAll
CHAIN

Copyright 1989 by Clarion Software CorppraUon, August Page 5

Bulletin t:113 - Processing Transactions

,

Ctrl-Brk

Note: In batch releases prior to Batch 2008, a Ctr~-Break exit is considered a normal exit. An implicit
COMMIT occurs.

In batch releases 2008 and bigher, Ctrl-Break exit is not considered a normal exit, and an implicit COMMIT
does not occur. It is up to the program to detect the situation and to perform the rollback as needed.

The following statements may be executed within a transaction frame, but the results of their execution are
not rolled back if a ROLLBACK is executed:

OPEN CLOSE SHARE BUFFER

CACHE STREAM FLUSH SET

NEXT PREVIWS GET SKIP

COPY

Note: Version of Clarion prior to Batch 2008 may exhibit an error that requires all of the mes named in the
transaction logout me to be open at the time a ROLLBACK is issued.

The following statements will cause the program to halt with the message "LOGOUT ALREADY ACTIVE"
if executed while transaction logging is active:

LOGruT BUILD PACK EMPTY

CREATE RENAME REMOVE

The RESTART statement may be executed during transaction logging, but the program will halt if the result
is that LOGOUT is executed again while transaction logging is still in progress.

If the RECOVER statement has been used to arm a recovery process, and if the recovery process is invoked
to unlock a locked me, and if transaction logging is not in progress, and if a pre-image log me exists for that
me, then pre-image data will be rolled back for that me and any other me named in the transaction logout
me.

A Simple Example

Consider the following example:

LOGWT('LOGruT.TRN')

ADD (A)

ADD(B)

ADD(C)

Assume files A, B, and C each has one key. After the above statements, the following mes exist on disk:

I A.DAT IB I C.DAT I
I EJ I II A.K01 I C.K01 I
I I !

IB.LOG I8
Copyright 1989 by Clarion Software CorpoAtlon. August Page 6

Bulletin #113 - Processing TransacUons

LOGOUT.TRN is the transaction logout ftle named by the LOGOUT statement. It contains the names of
ftles A, B. and C which were involved in the transaction.

A.LOG. B.LOG. and C.LOG are the pre-image l~ files for files A, B. and C. Each of the pre-image log
files contain images of data file records as they existed before they were updated ..

The following statement completes the transaction:

aN4IT

Mer the COMMIT statement is executed, the following ftles exist on disk:

IA.DAT I
~8

The transaction logout file (LOGOUT.TRN) and the pre-image log ftles (A.LOG. B.LOG, and C.LOG) have
been deleted. Transaction logging is turned off, and the transaction is permanent.

Single-User versus Multi-user

The basic pieces of transaction logging have now been described. Putting the pieces of the puzzle together is
a different matter. There are two different pictures that must be constructed: Rsingle-user" and "multi-user"
applications. Implementing transaction logging with multi-user applications is much more complex than with
single-user applications. so the single-user side will be covered first.

Single-User Transaction Framing

Single-user applications must only guard against failure in the middle of a transaction. There is no conflict
over shared resources as in a multi-user environment. Transaction logging can be implemented by following
a few simple rules or guidelines. (Some of these rules or guidelines will also apply to multi-user.)

Rule Sl: Only use one transaction logout file.

Only one transaction logout ftle can be open at a time, therefore, the best strategy is to only name one
transaction logout file in the course of a program. LOGOUT will halt if logging is already in progress or if it
detects the existence of the named transaction logout ftle. When logging begins, however, an existing
pre-image log file will be created fresh, deleting an existing copy of the fde if one exists. By only naming one
transaction logout file, it will be unlikely that pre-image data will be lost when a rollback was needed.

Rule S2: Begin a program with a ROLLBACK.

If a program halts while transaction logging is in process, the partial transaction needs to be rolled back.
The transaction logout file and pre-image files will exist on disk. 'If an attempt is made to begin logging
again, LOGOUT will halt the program.

Copyright 1989 by Clarion Software CofP?ratlon, August Page 7

Bulletin #113 - ProcessIng TransacUons

There are only two ways to get the program up and running again:

1. Manually delete the transaction logout file.

This gets around the WGOUT halt, but it defeats .the purpose of transaction logging. The integrity of
the data files is now suspect.

2. Rollback the partial transaction.

The ROLLBACK statement can name a transaction logout file. If the transaction logout file exists, the
data is rolled back and the program continues. If the transaction logout file does not exist, the
ROLLBACK statement is ignored. If a single-user program that uses transaction logging begins with a
ROLLBACK statement, it ensures that any partial transaction will be rolled back.

Note: Versions of Clarion prior to Batch 2008 may exhibit an error that requires all of the files named in the
transaction logout file to be open (via OPEN or SHARE) at the time a ROLLBACK is issued.

Rule 83: Keep transaction frames small.

Do not use transaction logging simply as an "oops!" feature. Use logging only around those record updates
that must handled in an "all or none" manner. Transaction logging will cause some degradation in
performance and requires disk space to create the logging files.

Rule S4: Check for errors.

Use the ERROR() or ERRORCODE() function to check for errors after every file update -- especially in
those cases where it seems unlikely that an error would be returned. Checking errors at every opportunity
will catch many program logic errors and help prevent file corruption.

A Single-User Example

The following program fragment shows an example of how a simple transaction involving two files could be
coded. In this example, master records in one file maintain a count and total dollar amount of the related
detail records. When a detail record is added, the master file is updated as well. If the detail record cannot
be added, the master record should not be updated. If the master record cannot be updated, the detail
record must be rolled back.

PROGRAM

MASTER_FILE FILE,PRE(MST) !MASTER FILE

MASTER.:..KEY KEY(MST :ACCOONT)

MASTER_REC RECORD

ACCOONT DECIMAL(10) !ACCOONT NUMBER

COONT LONG !CURRENT DETAIL COONT

AMOONT DECIMAL(14.2) !CURRENT DETAIL TOTAL AMOONT

DETAIL_FILE FILE,PRE(DTL) !DETAIL FILE

DETAIL_KEY KEY(DTL:ACCOONT,DTL:LINENO)

DETAIl_REC RECORD

Copyright 1989 by Clarion Software CorporatIon, August Page 8

Bulletin .113 - ProcessIng Transacllons

ACCOONT DECIMAL(10) !ACCOONT NUMBER
LINENO LONG !DETAIL LINE NUMBER
ITEM_NO DECIMAL(7) I ITEM NUMBER
QUANTITY LONG !~NTITY ORDERED
AMOONT DECIMAL(9.2) !ORDER AMOONT

CODE

OPEN(MASTER_FILE) !OPEN THE MASTER FILE

IF ERROR() THEN STOP(ERROR(».

OPEN(DETAIL_FILE) !OPEN THE DETAIL FILE

IF ERROR() THEN STOP(ERROR(».

ROLLBACK(ILOGOOT.TRNI) IUNDO DANGLING TRANSACTIONS

!ACCESS A MASTER RECORD
USER ENTERS ACCOONT NUMBER

!ALLOW ENTRY OF INFORMATION FOR NEW DETAIL RECORD
USER ENTERS ITEM NUMBER, QUANTITY, AMOONT
ACCOONT NUMBER OF THE DETAIL IS THE MASTER ACCOONT NUMBER

!NOW ADD A NEW DETAIL RECORD AND UPDATE THE MASTER RECORD

LOGOOT('LOGOOT.TRN') !BEGIN THE TRANSACTION

DTL:LINENO = MST:COONT + 1 !INCREMENT DETAIL LINE NUMBER
ADD(DETAILJILE) !ADD A DETAIL RECORD
IF ERRORO !IF THE ADD FAILED

ROLLBACK I END THE TRANSACTION
ELSE !IF THE ADD WAS SUCCESSFUL

MST:COONT += 1 INCREMENT DETAIL COONT
MST:AMOONT += DTL:AMOONT UPDATE DETAIL AMOONT
PUT(MASTER_FILE) UPDATE MASTER RECORD
IF ERRORO IF THE PUT FAILED

ROLLBACK UNDO THE TRANSACTION
elSE IF THE PUT SUCCEEDED

COMMIT END THE TRANSACTION

Copyright 1989 by Clarion Software Corpqratlon, August Page 9

BulleUn #113 - Processing TransacUons

\.-....../

Multi-user Environments

Clarion defines a "multi-user" environment to be aihardware/software configuration in which multiple Clarion
programs (or multiple copies of a Clarion program) can simultaneously view and change a common set of
Clarion fIles. There are three prime examples of multi-user environments:

1. The most common multi-user environment consists of several PC's (workstations) connected to a Local
Area Network (LAN). The data fIles may reside on the disk drive of a separate computer called a "fIle

server,· or the fIles may be distributed between various "nodes" on the network. Clarion applications

have been successfully implemented with several brands of networks, including Novell, 3-Com, 10-Net,

and Banyan.

2. 	 Multiple Clarion programs can also be run on a single machine with "dumb" terminals. This environment
uses a multi-user operating system to run several programs at once in separate DOS partitions. Clarion
programs for environments of this type have been developed and run under Concurrent-DOS,
PCMOS-386, and Multi-Link.

3. The third example is a hybrid of the previous two. A system of multiple processor (slave) cards plugged
into a server machine has characteristics of both a network and a multi-user environment. The Alloy

system is the best example in this category and Clarion programs work well in this configuration.

Clarion itself makes no distinction between, and provides no specific support for, any of the products
mentioned. The feature of Clarion that allows it to work with all of those products (without specifically
supporting any of them) involves the DOS fIle sharing feature.

DOS File Sharing

DOS versions 3.0 and up allow a fIle to be opened in "shared" mode. A fIle that is shared can be' accessed by
more than one user. The Clarion SHARE statement opens a Clarion fIle in "share" mode with the attributes
of "deny none" and "permit read and write." Multi-user Clarion programs should be able to be written in any
environment that transparently emulates a 3.0 or greater DOS version.

Multi-User Transaction Framing

A multi-user application must guard against more dangerous situations than a single-user application. In
addition to the' possibility of system failure during a transaction, a programmer must also design the system
to deal with conflicts over shared resources. The following rules or guidelines will aid in the design of
multi-user applications using transaction logging.

Rule Ml: Use a UPS (Uninterruptable Power Supply).

The Clarion fIle system keeps the transaction logout fIle and the pre-image log fIles "logically closed." This
means that internal buffers are flushed with every update so that the operating system will keep the data and
the directory on disk current. This feature can also be used optionally with Clarion data fIles.

Flushing mayor may not work, however, when using a network operating system that is emulating DOS.
Some networks have memory caches that are written to disk only periodically, not necessarily when DOS
buffers are flushed. Other networks may flush the data, but may not write out fIle allocation tables. Data
will be written to fIles, but directory information will not be written at the same time.

Copyrtght 1989 by Clarton Software CorporaUon, August Page 10

BulleUn :J113 - ProcessIng Transactions

Therefore, in these cases, do not bother attempting to implement transaction logging without an
uninterruptable power supply. Logging serves no purpose if the log files themselves are not written to disk.

Quality power supplies are now available for only a few hundred dollars. Most UPS units can continue
operation through a power outage for at least fifteen minutes. This provides plenty of time for an orderly
shutdown to prevent file corruption.

Rule M2: Use one transaction logout file per union of riles.

This is a qualification of Rule S1 above. This rule is especially important in multi-user applications so that
one user does not destroy the pre-image log files of another user. A1so, this rule is necessary so that when
simultaneous transactions are attempted, programs will wait instead of halting.

This rule has two important implications:

1. A second transaction logout file can be used if (and only if) the files updated in the transaction are
exclusive to that transaction (i.e., they are not involved in any other transaction's set of updated

files).

2. 	 If a set of transactions have some files in common, then all of the transactions must have at least one
file in common.

For example, suppose there are four files: A, B, C, and D. Suppose there are three different transactions
and each involves a different set of files:

Set 1: <A,B,C}

Set 2: {B,C}

Set 3: {A,D}

Set 2 and Set 3 do not have files in common. However, Set 3 does have a file in common with Set 1, namely,
A

If Set 2 and Set 3 use a common transaction logout rue, a halt may occur because the second user cannot
detect that logging is in progress. A program halt will result. To avoid a halt, a second transaction logout
file could be ~ed. However, since Set 3 has a file in common with Set 1, Set 1 and Set 3 must use the same
transaction logout file. A1so, since Set 1 and Set 2 have files in common (B and C), Set 1 and Set 2 must use
the same transaction logout file. Therefore, all three sets must use the same transaction logout file, but this
presents problems for Sets 2 and 3.

The solution to the problem is that the sets must be changed so that they have at least one file in common.
In this case, file A could be added to Set 2. As you will see in Rule M3 below, file A need not actually be
updated in tJ;te transaction, but must be one of the files to be locked.

Copyrtght 1989 by Clarion Software Corpoptlon, August Page 11

BulleUn #113 - Processing TransacUons

Only when there is no overlap of files can a second transaction logout file (as shown here) be used:

User 1 User 2 I User 3) User 4

Transaction Transaction Transaction Transaction

Set 1 (A,B,C) Set 2 (A,B,C) Set 3 (A,D) Set 4 (E,F)

~ r8 rEJ

~ I I D.DAT ~ ~~
8i 	 ['

I ~~
~v-v--v'

LOGOOT 1 • TRN I

Rule M3: Lock files to gain exclusive control.

Clarion multi-user applications use record holding to gain control over records during updates. If transaction
logging is used, file locking must be used around a transaction.

Locking the Clarion files that are to be updated in the transaction prevents two situations:

1. 	 Only one transaction should be processed at a time. The transaction logout file and the pre-image log
files are opened in "exclusive" mode. If another user attempts to begin logging, that user's program will
halt. Locking provides a means of making the program wait, rather than halt.

2. 	 Users should not be able to query data during a transaction. Transaction results are supposed to be "all
or none." Locking a file restricts access during a transaction. Held records can be read by other users,
but not records in a locked file.

Rule M4a: Be careful mixing record holding and file locking.

Some file updates are not really transactions. That is, if only one record in a file is updated, is that a
transaction? Does such an operation require logging? Perhaps not, but a multi-user application requires
exclusive access to the record during an update. This means that the record must, at least, be held. We
know from Rule M3 that file locking needs to be used to secure a transaction. There are some problems
that must be considered, however, if file locking and record holding are to be mixed.

There is nothing to prevent one station from locking a file while another station has a record held in the
same file.

Consider the following situation:

Station "A" holds a record, then Station "B" locks the file. When Station "A" goes to release the held record,
it will have to wait until Station "B" unlocks the flle. If, by chance, Station "B" must also update a situation
called "deadly embrace." (Deadly embrace is also discussed in the section on Rule M7.) Station "A" cannot
release the record because Station "B" has the file locked. Station "B" cannot complete the transaction
because Station "A" has the record held. Deadly embrace can be anticipated, detected, and handled. The
best bet, however, it to avoid it altogether, if possible.

Copyright 1989 by Clarion Software CorpOraUon. August Page 12

Bulletin .113 - Processing TransacUons

Rule M4b: Hold records to be updated berore locking.

Before locking the flies and enabling logging, fiTst ;hold any records that are to be updated. This prevents
another user from gaining exclusive control over the record before the flIe is locked.

There is an important qualification to the rule:

Only one record at a time in a given file can be beld by a given station. If a HOLD/GET operation is
followed by another HOLD/GET to the same flIe, the fiTst held record is released. If multiple records are
to be updated in a flIe, it is not possible to hold all of the records before locking the flIe.

In this case, Station "B" must fiTst lock the flIe, and then also attempt to hold any record to be updated.
(The hold operation should utilize a time-out and error checking in order to detect the existing hold.) The
purpose of the hold is not to gain exclusive access (the flIe lock should provide this), but to detect records
that might already be held and thus avoid "deadly embrace:

There are two alternate solutions to this problem:

One is to never allow an application to hold a record outside or a transaction rrame. If this is not feasible,
then consider designing the application so that a common "control" flIe is always locked and unlocked around
any flIe updates. By fiTst locking the control flIe before holding a record, the application insures that it will
not conflict with another station. If the control flIe only contains one record, then the same results can be
obtained by holding that one record.

Based on these considerations, the following "alternate" rule should be stated:

Rule M4c: Regard every update as a transaction.

If transaction logging is used in a multi-user situation, treat every update (even those involving only one flIe)
as a transaction. Treat all of the flies in an application as together comprising a database. Only one user at
a time should update the database. Prevent simultaneous updates by holding or locking a shared resource,
such as a control flIe.

If this rule is used, some further thought shows that records never need to be held, and only one flIe ever
needs to be locked.

This rule is not mandatory, but it simplifies the problems of exclusive control on transaction framing and
mixing record liolds with file locks. This may be desirable for some applications. It is certainly easier to
implement. It does, however, impose a single-user processing restriction onto a multi-user situation, and may
have a negative affect on overall system response.

Rule M5: Verify that the held record has not been changed.

Next (also before locking the flies and enabling logging), some situations may require checking to ensure that
another user has not changed a record before it is updated. Save a copy of the record when it is fiTst
accessed before user entry. Then after holding the record, before updating, compare the record to the saved
copy.

Copyright 1989 by Clanon Software Corpol'j'tlon. August Page 13

BulleUn #113 - Processing TransacUons

Rule M6: Establish a fIle update hierarchy.

A hierarchy of access should be established in the;application to provide levels of success in completing the
transaction. This order should be followed wherever possible. Only the programmer can decide the best
order for a given application. This is an area where experience helps. This rule is especially useful when
locking the fIles before beginning to log the transaction. Decide on an order for locking the fIles and
maintain that order.

For example, assume there are four fIles: A, B, C, and D.

- If one transaction involves A, B, and C, then lock the fIles in that order: A, B, then C.

- If a second transaction involves B, C, and D, then lock the fIles in that order: B, C, then D.

Adhering to this rule will help with the next rule.

Rule M7: Detect and avoid "deadly embrace."

Assume Program One locks File A and Program Two locks File B. Then Program One attempts to lock rue
B and waits. Then Program Two attempts to lock File A and waits. Both programs are now frozen, waiting
for the other to release a locked fIle. This situation is called "deadly embrace."

To avoid deadly embrace, use Rule M6 and the time-out parameter on the LOCK statement. Chapter 11 of
the Language Reference manual provides coding examples of this, in the section entitled "Avoiding the
Deadly Embrace."

Rule M8: Understand RECOVER thoroughly before Using it.

File locking is used to ensure that only one transaction can be processed at a time. This fact makes it likely
that eventually a program will fail and leave one or more fIles locked. The only way a program can unlock a
locked fIle is by arming the RECOVER process.

The RECOVER statement arms a recovery process that unlocks fIles or releases records that may have been
left in a locked or held state by system failure. If a language statement is stopped by a locked fIle or held
record and RECOVER is armed, the locked fIle is unlocked or the held record is released.

The RECOVJ?R statement has the following forms:

Form 1: label RECOVER(secomu)

Form 2: label RECOVER()

- In Form 1 of the RECOVER statement, the "seconds" parameter is a numeric constant or variable that
specifies the recovery wait period in seconds. This is the time in seconds after which a fIle or record is
considered to be locked due to system failure, and the recovery process is invoked. If this value is zero,
RECOVER begins immediately. If it is less than zero, RECOVER is ignored.

- Form 2 of RECOVER disarms the recovery process.

For programs that use shared fIles, the recovery wait period should be set greater than the longest duration
of exclusive control --- the longest time it takes any user to update a record, or log a transaction, or the
longest time a fIle can be locked, or a record can be held.

Copyright 1989 by Clarion Software CorporaUon, August Page 14

Bulletin #113 - Processing Transactions

It is possible to wait longer than the recovery period if a file is locked and being updated. Each time actiVity
is detected on the locked file, the recovery wait period is started again.

If the recovery process is invoked to unlock a locked file, and if transaction logging is not in progress, and if
a pre-image log file exists for that file, then pre-image data will be rolled back for that file. Other files may
also be rolled back if the pre-image log file points to a transaction logout file that lists other files.

The RECOVER statement can be issued any number of times, arming or disarming the recovery process, or
changing the recovery wait period. RECOVER does not post any error messages.

If the RECOVER process is called to unlock a file and a pre-image file is detected for that file, a
ROLLBACK is attempted. If logging is in progress, this will result in a program halt. If RECOVER is
avoided, however, this still leaves the problem of recovering locked files.

Probably the best solution is to use RECOVER with a long timeout at the beginning of a program when the
data files are being opened with the SHARE statement. Once all files are opened successfully in shared
mode, then disable the recovery process.

The rest of the program should use LOCK with a timeout parameter, detect the lock error, and inform the
user to please try again. If problems persist due to a locked file, exit and begin the program again, letting
RECOVER handle the situation.

Rule M9: Be careful beginning a program with a ROLLBACK. .

This is a qualification of Rule S2 above. Users will probably not begin their programs at the same time.
One user might be logging a transaction when the second user begins. If the second user executed a
ROLLBACK, the second user's program will halt. Yet, in the case of a failure, someone must rollback the
failed transaction.

If Rule M8 is followed, the RECOVER process should handle this problem. Another possibility is to use a
shared control file to note how many users are currently active, and then only allow the fITst program to run
to issue the ROLLBACK. This technique is illustrated in the following example.

Note: Versions of Clarion prior to Batch 2008 may exlubit an error that requires all of the files named in the
transaction logout file to be open at the time a ROLLBACK is issued.

Rule MI0: Keep the "windows of exclusive control" small.

This is a version of rule S3. Transaction frames are periods of exclusive control. Records must be held and
files must be locked for only the briefest possible time, or system-wide response will be unacceptable. Only
hold records or lock files around updates. Do not hold records or lock files in field edits. It may seem to be
a less efficient way of coding to retrieve the record twire, but it is necessary in a multi-user situation. A user
must not be allowed to hold a needed record (preventing updates by other users) and then go away on a
lunch break. .

Rule Mll: Check for errors.

Same as Rule S4. Check for errors after every file update -- especially in those cases where it seems unlikely
that an error would be returned. This cannot be over-emphasized. Checking errors at every opportunity will
catch many program logic errors and help prevent file corruption.

Copyright 1989 by Clarion Software Corponilllon, August Page 15

Bulletin #113 - Processing TransacUons

A Mufti-user Example

The following program fragments show the earlier example enhanced for a multi-user environment. This

example shows:

- How RECOVER is used at the start of the program to handle locked ftles.

- How a control ftle is used to see if a program is permitted to execute.

- How that same control ftle is also used to see if this is the first active user and, if so, to execute

ROLLBACK to handle any dangling incomplete transactions.
- How a function is used to do the transaction, with error conditions set by the returned string.
- How records to be updated are held before the ftles are locked.
- How records to be updated are checked to be sure they were not changed by another station.
- How LOCK is used to insure this is the only transaction begin entered.

PROGRAM

CONTROL FILE,PRE(CTL) !CONTROL FILE
CONTROL_REC RECORD
PERMITTED
USERS_ACTIVE

BYTE
SHORT

!PERMISSION SWITCH (NOT ZERO =OK)
IHOW MANY USERS ARE ACTIVE NOW

MASTER FILE FILE,PRE(MST) !MASTER FILE
MASTER:KEY KEY(MST:ACCOUNT)
MASTER_REC RECORD
ACCOUNT DECIMAL(10) !ACCOUNT NUMBER
COUNT LONG !CURRENT DETAIL COUNT
AMOUNT DECIMAL(14.2) !CURRENT DETAIL TOTAL AMOUNT

GROUP ISAVE AREA FOR MASTER RECORD
BYTE,DIM(SIZE(MST:MASTER_REC»

DETAILJILE FILE,PRE(DTL) !DETAIL FILE
DETAIL_KEY KEY(DTL:ACCOUNT,DTL:LINENO)
DETAIL_REC RECORD
ACCOUNT DECIMAL(10) !ACCOUNT NUMBER
LINENO LONG IDETAIL LINE NUMBER
ITEM NO DECIMAL(7) ! ITEM NUMBER
QUANTI1Y LONG !QUANTITY ORDERED
AMOUNT DECIMAL(9.2) IORDER AMOUNT

STRING(50) IERROR MESSAGE

MAP
FUNC(ADD_DETAIL),STRING

CODE

RECOVER(120) !WAIT 2 MINUTES

SHARE(CONTROL) !OPEN CONTROL FILE SHARED

IF ERROR() THEN STOP(ERROR(».

HOLD (CONTROL)

GET(CONTROL,1)

Copyright 1989 by Clarion Software CorporaUon, August Page 16

Bulletin .113 - Processing TransacUons

IF ERROR() THEN STOP(ERROR(».
IF NOT CTL:PERMITTED !IF ZERO, CANNOT ACCESS

RELEASE(CONTROL)
BLANK
SHOW(12,1,'ACCESS IS NOT PERMITTED AT THIS TIME')
SHOW(13,1,'PLEASE TRY AGAIN LATER')
SHOW(14,1,'PRESS ANY KEY TO EXIT')
ASK
RETURN

IF CTL:USERS_ACTIVE = 0 !FIRST USER?
OPEN(MASTER_FILE) !OPEN FILES
IF ERROR() THEN STOP(ERROR(».
OPEN(DETAIL FILE)
IF ERROR() THEN STOP(ERROR(».
ROLLBACK('LOGOUT.TRN') !YES, TRY ROLLBACK
CLOSE(MASTER_FILE) !CLOSE FILES
CLOSE DETAIL_FILE)

CTL:USERS_ACTIVE += 1 !INCREMENT USERS ACTIVE
PUT(CONTROL) !RESTORE CONTROL RECORD
IF ERROR() THEN STOP(ERROR(».

SHARE(MASTER_FILE) !OPEN MASTER FILE SHARED
IF ERROR() THEN STOP(ERROR(».

SHARE(DETAIL_FILE) !OPEN DETAIL FILE SHARED
IF ERROR() THEN STOP(ERROR(».

RECOVER !DISARM RECOVER PROCESS

!ACCESS A MASTER RECORD
USER ENTERS ACCOUNT NUMBER
THEN RETRIEVE AND SAVE THE MASTER RECORD

GET(MASTER_FILE,MST:MASTER_KEY) !RETRIEVE MASTER RECORD
IF NOT ERRORO

SAVE_MAST = MST:MASTER_REC !SAVE FOR LATER CHECK

!ALLOW ENTRY OF INFORMATION FOR NEW DETAIL RECORD
USER ENTERS ITEM NUMBER, QUANTITY, AMOUNT
ACCOUNT NUMBER OF THE DETAIL IS THE MASTER ACCOUNT NUMBER

!CALL THE FUNCTION TO DO THE TRANSACTION

ERR_MSG = ADD_DETAIL() !GENERATE TRANSACTION
IF ERR_MSG !IF TRANSACTION FAILED

! SHOW MESSAGE TO USER

!***************************
!* ADD A NEW DETAIL RECORD *
!***************************

ADD_DETAIL FUNCTION
CODE

!GET EXCLUSIVE CONTROL

Copyright 1989 by Clarion Software Corporation. August Page 17 ,

BulieUn '1113 - Processing TransacUons

HOLD(MASTER_FILE,10) !OF THE MASTER RECORD
GET(MASTER_FI LE,MST:MASTER_KEY) !~AIT UP TO 10 SECS
IF ERRORCODE() = 43 ! I F ALREADY HELD

RETURN('PLEASE TRY AGAIN')) ! RETURN ERROR MESSAGE

IF ERROR() THEN RETURN(ERROR(». !ANY OTHER ERROR

IF MST:MASTER_REC <> SAVE_MAST !CHANGED BY OTHER STATION?
RELEASE(MASTER_FILE)
RETURN('CHANGED BY ANOTHER STATION')

UPDATE !RE-UPDATE THE MASTER
!RECORD FROM THE SCREEN

!N~ GET EXCLUSIVE CONTROL OF THE MASTER FILE

LOCK(MASTER_FILE,10) !~IT UP TO 10 SECS
IF ERRORO !IF UNABLE TO LOCK MASTER

RELEASE(MASTER_FILE) RELEASE HELD RECORD
RETURN('PLEASE TRY AGAIN') ! RETURN ERROR MESSAGE

!N~ GET EXCLUSIVE CONTROL OF THE DETAIL FILE

LOCK(DETAIL_FILE,10) !~AIT UP TO 10 SECS
IF ERRORO !IF UNABLE TO LOCK DETAIL

UNLOCK(MASTER_FILE) UNLOCK MASTER FILE
RELEASE(MASTER_FILE) RELEASE HELD MASTER REC
RETURN('PLEASE TRY AGAIN') RETURN ERROR MESSAGE

!N~ BEGIN THE TRANSACTION

LOGOUT('LOGOUT.TRN') IINITIATE TRANSACTION LOGGING

DTL:LINENO =MST:COUNT + 1 !SET A NE~ DETAIL LINE NUMBER

ADD(DETAIL_FILE) !ADD A DETAIL RECORD
IF ERROR() !IF UNABLE TO ADD DETAIL

ROLLBACK I END THE TRANSACTION
UNLOCK(DETAIL_FILE) , UNLOCK DETAIL FILE
UNLOCK(MASTER_FILE) I UNLOCK MASTER FILE
RELEASE(MASTER_FILE) , RELEASE HELD RECORD
RETURN('UNABLE TO ADD DETAIL RECORD')

ELSE
MST:COUNT += 1 !UPDATE DETAIL COUNT
MST:AMOUNT += DTL:AMOUNT , AND ORDER AMOUNT
PUT(MASTER_FILE) , IN MASTER RECORD
IF ERROR() 'IF UNABLE TO PUT MASTER

ROLLBACK , UNDO THE TRANSACTION
UNLOCK(DETAIL_FILE) , UNLOCK DETAIL FILE
UNLOCK(MASTER_FILE) , UNLOCK MASTER FILE
RELEASE(MASTER_FILE) ! RELEASE HELD RECORD
RETURN('UNABLE TO ADD DETAIL RECORD')

ELSE ITRANSACTION SUCCESSFUL
COMMIT !END THE TRANSACTION
UNLOCK(DETAIL_FILE) !UNLOCK DETAIL FILE
UNLOCK(MASTER_FILE) IUNLOCK MASTER FILE
RETURN(") !EMPTY STRING MEANS O.K.

Copyright 1989 by Clarion Software CorpolJdlon, August Page 18

