
CI liON
I ECHNIC.rO.1 BULLE I IN

Bulletin #112

Clarion Help Files

Copyright 1988

Clarion Software Corporation

overview

This article answers frequently asked questions about
Clarion help files and discusses some of the powerful help
capabilities you can use.

Technical Bulletin #112 - Clarion Help Files

Clarion Help Files

When developing applications, many programmers save making help
windows until the end, and it's not because they're saving the
best for last~

Most programmers spend the bulk of their development time making
sure their program performs properly. Other programmers don't
enjoy "writing," so naturally they squirm at help window time.
Often, the result is slapdash windows that, in the end, aren't
much help at all. But with Clarion's Helper utility, you can
easily and efficiently make help windows, or you can delegate the
task to someone else.

Occasionally, Clarion users have questions about the way "help"
is done. Two frequently asked questions are, "Why is each help
window maintained in a file separate from the program file?" and
"How does help work in my programs?" This article answers these
questions and discusses some of" the powerful help capabilities
you can use to make the help windows task easier for you.

"Why is each help window maintained in a file separate from the
program file?"

Clarion help windows are maintained in separate files for a
number of reasons, including: ­

1. Independent help file development
2. Optimal use of machine resources
3. "Intelligent" help file maintenance
4. Powerful window relationships

First, a separate help file allows you to create and maintain
help screens without having to edit or recompile the Clarion
program. You only need to include program "hooks" into the help
file. rhis way, help window development can be delegated as a
task separate from program development.

And if the development staff doesn't create the help windows, who
will? Perhaps technical writers or the tech support staff.
Technical writers could create help windows that expand upon the
topics" covered in the documentation, thus tying the product and
documentation closer together. The tech support staff could
anticipate where users may have questions. They can create help
windows that deal with complex topics, and therefore reduce the
number of technical support calls they receive.

Since help can be developed independently with the use of other
personnel, product development time can be shortened. Also, the
"outside input" on the product can result in improvements.

Copyright 1988 - Clarion Software Corporation Page 1

TechnicaL Bulletin #112 • Clarion HeLp FiLes

Second, help files are maintained separately to reduce program
resource requirements. Providing help is important, but it
should not overtax the resources that could be better used by the
main program. Including a help window for each field and/or
screen that occurs in a program could require a large amount of
memory. As we all know, memory is a precious commodity and most
programs perform better when more memory is available. Inside
Clarion programs, a minimum amount of space is reserved for
displaying help windows, leaving the remaining memory available
for program use.

Help windows are compressed on disk, and when required, are
expanded for display, thereby providing the optimal use of space
both in memory and on disk. Clarion help files can contain
hundreds of windows and not degrade the program's performance by
using additional memory. This is significant, especially if the
users of these programs become "experts" and rarely access the
help functions.

Third, since help files are compressed, more information
can be stored in the file than just the windows. When a window is
edited, Helper (CHLP.EXE) stores information about how the
characters and attributes were placed on the screen, i.e.
paints, enhanced, reversed, etc. By compressing this information
into the help file, the file size remains small, yet it allows
Helper to be more "intelligent" by "remembering" things about the
windows. Before a help window is finalized, it may be edited a
number of times. The more information that Helper can remember
about the window, the easier it is to change the window later.

The fourth reason for having separate help files is that it
allows the development of complex relationships between windows.
Help windows can be "chained" to a succeeding window or to a
variety of other windows. By allowing the development of menus,
you can make a help file that not only provides context-sensitive
help, but also allows the user to traverse the entire help file
(achieving a hypertext capability).

without Helper, maintaining these window relationships in the
source code of a program would be an almost impossible task.
Adding new or removing old windows would require a tremendous
amount of sorting through source code to repair the
relationships. Using Helper to maintain the help files, however,
simplifies the requirements for altering relationships. Windows
can be added, deleted, moved, or edited without having to change
any soUrce code.

How does help work in my programs?

Understanding how help works in your programs may be easier once

copyright 1988 • Clarion Software Corporation Page 2

Technical Bulletin #112 - Clarion Help Files

you know about the structure of a help file, which looks
something like the diagram shown next.

General structure of a Help File

Signature
~~Window list address

Window header

Window

Window info

Window header

Window

Window info

Window header

Window

Window info

I

IName & address

Name & address

. . . .
Name & address- ­

Section one
File Header

Section two
Windows

Section three
Window List

The structure of a help file can be divided into three general
sections. The first section is the help file header. This
header contains a "signature" that identifies the file as a
Clarion help file, as well as the file offset where the window
list can be found. When the help file is opened, Clarion
validates the signature to ensure that an invalid file is not
used as a help file.

The window list offset is used to find the third section of the
help file. This section contains the names and addresses of all
the windows contained in the file. This list occurs near the end
of the help file after the windows. When a user accesses help
for the first time, the help file is opened, validated, the
window list is read into memory, and then the window is

Copyright 1988 - Clarion Software Corporation Page 3

Technical Bulletin #112 . Clarion Help Files

displayed. Afterward, the list remains in memory so that future
windows can be retrieved without having to re-validate the file
or re-read the window list.

Windows are kept compressed;in the file until a request to
display a window is made. Windows are stored in section two of
the help file. A window entry in the help file consists of some
header information, the window itself, and the information that
Helper remembers about the window. When a request is received to
display a help window, the name is located in the window list
(already in memory), the offset is used to read the window's
information, the window is decompressed, and then displayed on
the screen.

Help windows can be stand-alone, chained to a single window, or
can contain a menu that links to several windows. Once
displayed, a help window waits for the user to press a key that
will remove the window or "call" another window. When a valid
key is found, the window is removed and the original program
screen is restored or another help window is displayed.

If a succeeding window is referenced, the previous window name is
"remembered." Previous windows can be recalled, while inside the
help display function, by pressing the PgUp key. Additionally,
the original help window can be recalled at any time by simply
pressing the Fl key again. The ability to move backwards through
the windows, as well as offering menus to other windows, can
allow a user to peruse as much of the help file as you want.

Note: Since batch release 2004, the Processor (CPRO.EXE) can
overlay a portion of the Helper utility. This allows you to edit
your help windows as your program runs. To activate the help
window editing, press Fl to display the help window that you want
to edit, press Control-Fl, and then you will be able to edit the
help window. This convenient feature allows you to edit the
window '''exactly'' as it appears in your running application.

copyright 1988 . Clarion Software Corporation Page 4

