
ADVANCED PROGRAMMING GUIDE 1

TopSpeed
For IBM Personal Computers and Compatibles

Advanced Programmer’s Guide

TopSpeed Corporation

2 TOPSPEED TECHKIT

Copyright 1990-1991, by TopSpeed Corporation. All rights reserved.

TopSpeed is a registered trademark of TopSpeed Corporation.

Other brand or product names are trademarks or registered trademarks of their respective holders.

Printed in the United Kingdom.

10 9 8 7 6 5 4 3 2 1

ADVANCED PROGRAMMING GUIDE 3

Contents

CHAPTER 1
 INTRODUCTION 8
Knowledge Requirements... 9
Memory Models and Pointer Programming ... 9
Calling Conventions ... 10
Dynamic Link Libraries and the New Executable File Format 11
Typographic Conventions ... 12

CHAPTER 2
 SEGMENT-BASED OVERLAYS 13
Introduction .. 13
Compiling and Running an Overlayed Program .. 14
Design Considerations .. 15
Segment Characteristics and the .EXP File .. 18
Programming for the Overlay Model ... 21
Overlay System API ... 21
C/C++ Language Bindings ... 22
Modula-2 Language Bindings .. 25
Pascal Language Bindings .. 28
Limits and System Requirements ... 34
Multi-thread Programming Using Overlays ... 35
Assembly Language Considerations .. 36

CHAPTER 3
 DYNAMIC LINK LIBRARIES 37
Introduction .. 37
Understanding Dynamic Linking ... 38
Dynamic Linking .. 40
Creating Dynamic Link Libraries ... 42
Creating Programs that use DLLs .. 45
Running Programs that use DLLs .. 47
An Example .. 47
Initialization in a DLL .. 50
Rules and Limitations for DLL Programs .. 51

4 TOPSPEED TECHKIT

Dynamic Link Loader Error Messages .. 52
Distributing DLLs... 52

CHAPTER 4
 WINDOWS PROGRAMMING 53
Making Windows Programs ... 53
Modula-2 Library Extensions ... 60
Library Limitations ... 62
Using Windows Version 2 ... 63
Making Windows DLLs ... 63

CHAPTER 5
 MULTI-LANGUAGE PROGRAMMING 66
Standard Cross Definition Files .. 66
Creating Your Own Cross Definition Files ... 67
Strings ... 68
Enumeration Types ... 69
Calling Conventions ... 69
Naming Conventions .. 70
Library Considerations ... 71
Program Termination .. 73
Modula-2 and Pascal Initialization from C .. 73
Assembly Language Interface .. 75
The JPI Calling Convention .. 76
Examples of the JPI Calling Convention .. 79
Returning Values to TopSpeed High-level Functions ... 80
Functions Returning Floating-point Values .. 81
Register Preservation .. 82
Linkage Names ... 83

CHAPTER 6
 TOPSPEED ASSEMBLER 87
Overview... 87
Tokens ... 90
Syntax ... 92
Assembly Language Considerations .. 94
TopSpeed Assembler Error Messages .. 98

ADVANCED PROGRAMMING GUIDE 5

CHAPTER 7
 POST-MORTEM DEBUGGER 103
Overview... 103
Including the Post-mortem Dump Facility in Your Programs 104
Using VID with a Post-mortem Dump ... 105

CHAPTER 8
 WATCH 107
DOS Function Calls .. 107
Overview... 108
Requirements & Limitations .. 110
Starting Watch .. 110
Using Watch.. 111
The Main Watch Windows ... 114
Suspending Watch .. 118
Watch for OS/2 ... 118

CHAPTER 9
 UTILITY PROGRAMS 120
File Redirection .. 120
TopSpeed Program Profiler .. 121
TopSpeed Module Definition File Generator ... 124
TopSpeed Import Library Generator .. 124
TopSpeed Module Header Utility ... 124
TopSpeed Executable File Compression Utility ... 125
TopSpeed Help File Compiler .. 125

CHAPTER 10
 TSR SUPPORT FOR MODULA-2 PROGRAMMERS 126
Activating a TSR Program.. 127
An Example TSR Program ... 129
Cautions about TSR Programs ... 129
Deactivating a TSR Program .. 130
Terminating TSR Programs .. 131
The TSR Module .. 131
The TSRCALC Program .. 132

6 TOPSPEED TECHKIT

CHAPTER 11
 RS-232 SUPPORT FOR MODULA-2 PROGRAMMERS 133
RS-232 Support .. 133
The rs.def File ... 134
An Example Program ... 139
The RSDEMO Program ... 139

CHAPTER 12
 ADVANCED LIBRARY USAGE 140
Library Initialization and Termination ... 140
The Library and Embedded Systems .. 141
Extending File Handle Limits .. 144
OS/2 Multi-thread Programming.. 145

APPENDIX A
 MEMORY MODELS 146
Introduction .. 146
The 80x86 Architecture — A Design Compromise ... 146
The 8086 Architecture .. 147
Using Memory Models ... 150
The Standard Memory Models ... 152
Mixed Model Programming ... 160

APPENDIX B
 MODULE DEFINITION FILE SYNTAX 168

Syntax of the Module Definition File 168
The NAME Statement .. 169
The LIBRARY Statement... 170
The CODE Statement ... 170
The DATA Statement .. 172
The SEGMENTS Statement ... 174
The STACKSIZE Statement ... 175
The HEAPSIZE Statement ... 175
The EXPORTS Statement .. 175
The PROTMODE Statement .. 176
The REALMODE Statement .. 176
The EXETYPE Statement .. 177

ADVANCED PROGRAMMING GUIDE 7

APPENDIX C
 DOS FUNCTION CALLS 178

APPENDIX D
 8086/8087 INSTRUCTION SETS 196
Architecture .. 196
Memory Addressing ... 198
8086 Instructions .. 199
8086 Operands .. 200
Instruction Opcode Descriptions .. 201
Floating-point (8087) Instructions .. 202
Using Floating-point Instructions ... 206
Floating-point Comparisons and Jumps ... 207

INDEX 208

8 TOPSPEED TECHKIT

This manual describes the programs, files and facilities comprising the
TopSpeed TechKitÔ and provides advanced programming information for
users of the TopSpeed Environment. The TechKitÔ offers tools for full,
professional development with the TopSpeed Environment and any of the
TopSpeed compiler suite:

· Supports large program and data management:

· A Segment-based Swapping Overlay Management System for
DOS, manages programs and data up to 8MB in size.

· Supports Dynamic Link Libraries under both OS/2 and MS-
DOS.

· Supports programming for Microsoft Windows.

· Multilanguage support:

· Documentation for cross-linking programs written in different
languages.

· The TopSpeed Assembler: A full 80x86/80x87 assembly
language, compatible with the TopSpeed multi-language suite.

· Development tools:

· Post-Mortem Debugging - allows you to debug aborted
programs after they crash.

· Watch - allows you to monitor DOS function calls.

· Utility Programs: a Disassembler and a Program Profiler.

· Advanced technical information:

· TSR (Terminate and Stay Resident) support for TopSpeed
Modula-2.

· A description of the procedures for configuring and using your
computer’s RS-232 port for TopSpeed Modula-2.

· Support for embedded systems: an explanation of library
initialization procedures which you will need in order to run in a
non-standard environment.

ADVANCED PROGRAMMING GUIDE 9

· Technical appendices supplementing information contained in
the “TopSpeed Developer’s Guide”, and documenting many
operating system and TopSpeed features you need to know about
in order to write advanced applications.

Knowledge Requirements

The facilities provided by the TopSpeed TechKitÔ are directed at the
advanced programmer. It is therefore assumed that you are familiar with
DOS, and the programming language you are working in. A working
knowledge of the TopSpeed Environment and the information contained in
the “TopSpeed Developer’s Guide” is also assumed.

No further knowledge or resources are assumed for most of the facilities
described in this manual, except for localized knowledge of the area under
consideration. For example, if you are using the Watch facility, we assume
that you are already familiar with interrupts and their use.

The appendices of this manual provide technical information. They are
included as a reference summarizing topics discussed within the main body
of this guide.

You may find it useful to supplement your reading of one chapter by
referring to other chapters and to the technical appendices. For example, a
good understanding of DLLs will help you to understand how to develop
your own overlays. Each chapter suggests any additional chapters which you
may find helpful.

The rest of this chapter explains where to find the more important,
specialized knowledge relevant to some TechKitÔ facilities.

Memory Models and Pointer Programming

The segmented address structure of the Intel 80x86 series of chips and their
associated industry-standard computers is one of the most complex — and
ultimately, perhaps, unnecessary — features, which distinguishes it from the
simpler architectures of many other computers. The 80386 and 80486 chips,
which, in principle, pave the way to a more reliable and simpler program
structure, and the OS/2 and Windows environments, which can make full use
of the virtual address space provided by these chips, have complicated rather
than simplified the job of the programmer, who is obliged to support not only
the new architecture, but many parts of the old one as well.

The net result for the non-Unix PC programmer is that the most difficult and
technically demanding tasks are often associated not with the language, but
with the machine and system-dependent problems of managing the 80x86’s

10 TOPSPEED TECHKIT

tortuous address structure, and the complexities of the operating systems
which sit on top of it.

A certain amount of informal standardization has been reached, if only due
to:

· The basic programming standards imposed by DOS.

· The executable file format DOS demands.

· The object code format demanded by the Microsoft Linker.

Modern PC compilers have built on the conventions established by
Microsoft, but have, by and large, outgrown it, so that different programming
languages differ in many subtle ways in their implementation of memory
models, in their organization of segments and in their treatment of the heap
and the stack.

The information on memory models provided by the “TopSpeed Developer’s
Guide” is adequate for all but the most technical applications. However,
more knowledge is required if you wish to implement your own management
scheme, or write applications which interface with proprietary operating
systems and environments — such as Windows. Appendix A: ‘Memory
models’ supplements the “TopSpeed Developer’s Guide” with information
which is useful, if not essential, for the OS/2 and Windows programmer, and
serves as a reference for the conventions followed by JPI.

Calling Conventions

TopSpeed’s system for passing parameters between functions makes highly
efficient use of the 80x86 registers, and adds substantially to the speed and
compactness of TopSpeed code.

Other language implementations, and operating systems to which your
TopSpeed application must interface, use conventions which are different
from each other and from TopSpeed.

Thus, if you are linking to third party library systems, or using operating
system calls other than via the interface provided by the TopSpeed library,
you must ensure that you use the stack and registers in a way which is
acceptable to the client system.

It is essential that you read the section on ‘The JPI calling convention’ in
Chapter 5 if you are not familiar with the differences between the calling
conventions expected by TopSpeed, and those expected by other systems.

ADVANCED PROGRAMMING GUIDE 11

Dynamic Link Libraries and the New Executable File Format

TopSpeed is unique in providing Dynamic Link Libraries for DOS users.
This manual, therefore, provides the DOS user with a simple account of the
philosophy and techniques associated with DLLs (see Chapter : ‘Dynamic
Link Libraries’). If you are a DOS user and are unfamiliar with OS/2
programming concepts, this will equip you to produce professional DOS
DLLs.

Note: This information is not a substitute for Microsoft’s OS/2
documentation, and if you are an OS/2 user you will probably
find it helpful to supplement your use of this manual by
referring either to the OS/2 documentation or a good OS/2
programmer’s guide.

This section is of general relevance to Chapter : ‘Segment based-Overlays’,
Chapter : ‘Dynamic Link Libraries’ and Chapter : ‘Windows programming’.
All these facilities use the form of executable file and associated conventions
and utilities, known as the New Executable File Format. This format extends
the executable format originally introduced with MS-DOS. The two most
important extensions are:

· Provision of additional information to control segment
reallocation in multi-thread systems, such as OS/2 and Windows.

· Provision of additional linkage information to control late (run-
time) binding of separate segments of an application.

The new executable file format is associated with extra files, which supply
information for linkers and loaders, and utilities for processing these files.

Appendix B: ‘Module Definition File Syntax’ supplies information and
guidance on the use of these facilities, supplementing the material in the
chapters named above.Programming Examples

TopSpeed is a multi-language environment supporting four major languages:
C, C++, Modula-2 and Pascal.

You do not need more than one language to use the TechKitÔ, but you will
find some understanding of the conventions applied by other languages
useful.

Where necessary, this manual supplies programming examples in two
languages. However, for some short programming examples where the
meaning is obvious and repetition would be tedious, this is not done.

The programming examples use Modula-2 and C. It is assumed that you
have sufficient knowledge to convert these examples for Pascal or C++
applications.

12 TOPSPEED TECHKIT

Typographic Conventions

The following typographic conventions are used throughout this manual:

Italics are used for emphasis and to introduce new concepts

Courier is used for program examples and other items which
would appear on the screen

small italics are used in syntax descriptions

When it is necessary to show a combination of keys, the following
convention is used:

Alt-C

This means you should hold down the Alt key and press C.

Where example screen outputs are shown, the illustration is boxed.

ADVANCED PROGRAMMING GUIDE 13

Introduction

TopSpeed’s Segment-based Overlay Management System (OMS) allows you
to write programs of virtually any size (up to 254 segments), which can be
run on any DOS machine. This is achieved by swapping CODE and DATA
segments between the main memory of the machine, and either a hard disk
or EMS (Expanded) Memory. The facility does not require the machine to be
run in protected mode.

Unlike the standard Microsoft DOS Overlay System, TopSpeed OMS frees
main memory to make space for any segments which have to be swapped in,
if necessary writing out changed data to disk or EMS to save it.

TopSpeed OMS also differs from standard overlay management systems in
that, if required, it can operate entirely automatically. There is no
requirement to specify an overlay structure: all you have to do is specify a
special overlay memory model. However, should you want to control the
overlay process in more detail, you can do so.

Controllable Overlays

The simplest way to gain a measure of control over the overlay process is to
flag specified segments as preloaded or discardable. These flags are taken
into account when decisions are made about which segments to swap in and
out.

Full control is available through a range of Overlay Management
Procedures, provided by the overlay Application Programmers Interface
(API), which the program itself may invoke. This means that the selection of
segments to be swapped or discarded can be performed by the application.

You can take control over which parts of the program are placed in which
segment, by means of the call(seg_name)pragma described below. This can
help to cut down on swapping to ensure the most efficient use of CPU time.

14 TOPSPEED TECHKIT

Overlays and Multi-thread Programs

While you are not generally obliged to take control of the overlay process,
there is one case in which it is obligatory - this is when overlays are
combined with multi-thread programs. The restrictions imposed by DOS
make it impossible to guarantee that a segment is inactive under all
conditions. Multi-thread programs must deal with this by marking segments
used by child threads as resident, or by assuming full control of overlays.
This is described in more detail later in this chapter.

OS/2 and Dynamic Linking

The TopSpeed Overlay System is for DOS use only. Under OS/2, overlays
are superfluous, since the system provides comprehensive memory
management in a 4GB virtual address space. However, OS/2 users can
benefit significantly from creating their own Dynamic Link Libraries (see
Chapter : ‘Dynamic Link Libraries’), which facilitate code-sharing and more
economical use of disk space.TopSpeed also provides Dynamic Link
Libraries for DOS, which bring substantial benefits but do not, of course,
facilitate code-sharing since DOS is not a multi-tasking system.

A Note for Windows Programmers

If you wish to develop applications for Microsoft Windows, you should note
that Windows has its own memory management system and its own special
form of Dynamic Link Library. If you are programming for Windows, use
the techniques described in Chapter : ‘Windows Programming’.

Compiling and Running an Overlayed Program

Using the TopSpeed Overlay System is straightforward. All you need to do is
specify a special overlay memory model for your application. This can be
done in two ways from within the TopSpeed Environment, either:

· Edit the project file to include the statement:

or,

· Use the Project Memory model option from the environment
menu to set the model.

The Project System automatically compiles and links your program into an
overlayed .EXE file.

Files Used by the Overlay Linker

The only file, over and above the normal ones, which is required by the
linker in order to create an overlayed program, is an export file with a .EXP

ADVANCED PROGRAMMING GUIDE 15

extension. When TopSpeed is installed, a default export file,
OVERLAY.EXP, is provided. The default redirection files include the
location of this file. You, therefore, do not need to take any special steps,
except to ensure that this file is present and accessible through the
redirection file.

As explained in the next section, you can create your own .EXP file to gain
more control over the overlay process; this must have the same name as your
project file and must be accessible via the redirection file.

For more information on export files see Appendix B: ‘Module Definition
File Syntax’.

Running an Overlayed Program

Overlayed programs may be called just like an ordinary .EXE file. The only
requirements to observe are:

· There must either be expanded memory or disk space available
with sufficient room for swapping.

· The program must be resident on the disk drive from which it
was loaded for the duration of its execution.

Design Considerations

Provided that the above conditions are met, any overlayed program will
always run. However, the design of the program can affect performance if
there are a large number of segments making heavy demands on memory.
You should try to design your program to avoid thrashing — swapping
much-used segments continually in and out of memory. Remember also that
small segments will minimize granularity.

There are several factors to take into account when designing overlayed
programs:

· The program layout and its division into segments. This is
controlled by the organization of the source code into units, or
by using the call(seg_name=><name>) pragma. This forces any
code which follows int

o the segment <name>. It can be used both to break a compilation
unit into parts and to combine code from different compilation
units.

· Whether segments should be labelled as possessing special
properties, such as PRELOAD or DISCARDABLE. This is
controlled by editing a .EXP file as explained below. Interrupt
handlers, for example, should always be in resident segments.

16 TOPSPEED TECHKIT

· Whether to take direct control of the overlay process using the
procedures described in this chapter. This will be necessary
under two circumstances:

· If you need to optimize performance by taking advantage of the
special knowledge that you have about the pattern of
intersegment calls. The TopSpeed system, for example, knows
that you can never edit and compile a program at the same time,
and uses this knowledge to allocate memory more efficiently.

· If you find that you are running out of main memory, due to the
granularity of your segment structure. (This can happen, for
example, when the memory manager swaps out a small segment
but needs to swap in a larger one). Even though a space has been
cleared, it cannot be used because, in general, memory modules
cannot be dynamically relocated in main memory.

Program and Data Layout

The basic unit of memory used by the TopSpeed Overlay System for
swapping is the segment. Entire segments are swapped in and out. Thus, the
key to good design is to keep related parts of the program in the same
segment. Thrashing will be less likely, if the program spends most of its time
moving around within a single segment, with less frequent inter-segment
jumps. The same principles apply to DATA segments, which are demand-
loaded.

The default program layout in the overlay memory model is to place each
compilation unit (Modula-2 module, Pascal unit, C/C++ source file) in a
single segment. A separate DATA segment is created for the static data
declared in each compilation unit.

Points to Note:

The basic principles of good segment layout are:

· Avoid large amounts of static preloaded data.

· Make all intra-segment calls near.

· Avoid using constants in code, unless the segment containing
constant data is resident.

· Use small modules to reduce granularity.

· Put all interrupt handlers in resident segments.

· Do not over-ride the default pragma settings same_ds or
ds_entry.

ADVANCED PROGRAMMING GUIDE 17

The Default Memory Management Algorithm

TopSpeed contains a Default Overlay Algorithm, which is applied if no other
course of action is taken. It is useful to understand how this works,
particularly if you intend to override it.

An overlay program looks like a normal .EXE program to DOS. When you
create an overlay program, the linker places a special loader and its DATA
segment at the start of the program — in low memory — immediately after
the Program Segment Prefix. Any segments marked as PRELOAD are also
loaded. The remaining free memory is shared between the TopSpeed Overlay
Manager and the far heap. Any library functions which return information on
the amount of memory in the far heap will indicate the amount available for
allocation for both overlay code and user data.

Ö---------------------------Ì High Address
° °
° Free Store °
° °
û---------------------------À
° Loader Data °
û---------------------------À
° Loader Code °
û---------------------------À
° PSP °
Û---------------------------ì Low Address

The remaining segments are then loaded as necessary using the following
rules:

· Any CODE segment is loaded whenever a function call is
executed which references that segment, if it is not already
loaded.

· If dynamic data loading is enabled, a static DATA segment is
loaded whenever a CODE segment that refers to it is loaded.

If insufficient memory is available to satisfy a request from user heap
functions or from the TopSpeed Overlay Manager, inactive segments are
unloaded until sufficient space is made available. The algorithm for deciding
which segment to unload is an LRU (Least Recently Used) algorithm.

If there is still insufficient memory, a user memory allocation request fails.
This is handled in the normal manner for the language involved. If the
request was from the TopSpeed Overlay Manager, the process will terminate.
However, the loader may not be able to load the segments needed to execute
the error handler, in which case, the process will terminate immediately.

Expanded memory, if present, is used as a temporary store for CODE
segments and to fixup frequently used segments.

18 TOPSPEED TECHKIT

All inactive segments may be unloaded explicitly by a call to the overlay API
flush function.

Memory Available Functions

Functions that indicate the amount of memory in the far heap, for example:

can sometimes give misleading results in an overlayed program.

In overlay or dynalink models, these functions return the number of bytes
remaining unallocated at the moment of the call. If a following call to a
allocation function fails, the TopSpeed Overlay Manager unloads inactive
CODE and DATA segments, increasing the number of free bytes. Therefore,
a simple call to one of these functions is not a reliable method of determining
how much memory is available.

A simple solution is to call UserFlush before calling Storage.AVAILABLE
for example. This gives an accurate result, but is not optimal.

A better solution is to handle the error return from the allocation function
explicitly:

Modula-2 Set Storage.Check to FALSE and check for NIL.(See the
“Modula-2 Reference”)

C & C++ check for a NULL return value.

Pascal install a heap error handler, returning 1. (See the ‘Pascal
Library Reference’)

Segment Characteristics and the .EXP File

The overlay algorithm can be influenced by providing extra information. You
can specify a segment as;

· discardable

· preloaded.

This is done at link time, by creating a special file with the same name as
your project, and the extension .EXP. This file must be accessible via the
redirection file. If you do not create such a file, the linker will use the default
file OVERLAY.EXP, which is supplied and installed with the TopSpeed
Environment.

ADVANCED PROGRAMMING GUIDE 19

Finding Out Your Segment Name

In order to mark segments with special characteristics, you need to know the
names which have been allotted to these segments. The compiler assigns
names according to the conventions described in Appendix A. If in doubt,
you can list the .MAP file produced by the linker, to find out the names
which have been assigned to the segments you are interested in.

Preloaded and Discardable Segments

The syntax of the .EXP file is described below, and in more detail in
Appendix B.

Preloaded Segments

Segments may be marked as PRELOAD. In this case, they will be loaded
initially and will not be swapped out.

Discardable Segments

Demand-loaded DATA segments which are not required after use can be
marked as DISCARDABLE. This improves program performance since the
segments free swapfile space and other resources.

A good example is a procedure which requires a static buffer. If the buffer is
always re-initialized on entry, there is no reason to preserve its contents
when the procedure is inactive. The buffer’s segment should be marked as
DISCARDABLE.

Note: A segment must not be marked as both PRELOAD and
DISCARDABLE.

Syntax of the .EXP File

The technique and defaults vary depending on whether the segment is a
CODE segment or a DATA segment.

CODE Segments

The default .EXP file used for an overlayed program marks certain segments
as PRELOAD. These are those library segments used by floating point,
interrupt and exception handling code. These must not be changed and you
should not use them. They are:

20 TOPSPEED TECHKIT

You may mark areas of your own code as resident for the following reasons:

· Any segment containing an interrupt handler should remain
resident.

· Any segment containing frequently used code. (Although this
kind of segment is less likely to be loaded, a saving in overhead
can be made if the procedures involved are small).

· Any segment containing code used for handling loader out-of-
memory errors.

The SEGMENTS statement in the following example has been added to the
default .EXP file, and marks modules USER1_TEXT and USER2_TEXT as
PRELOAD and, therefore, resident. These are the modules containing the
code for modules USER1.MOD and USER2.MOD (Modula-2) or
USER1.C(pp) and USER2.C(pp) (C/C++).

DATA PRELOAD

SEGMENTS STACK PRELOAD
 _INIT PRELOAD
 CPROC_TEXT PRELOAD
 PROCESS_TEXT PRELOAD
 PROC_TEXT PRELOAD
 PASPROC_TEXT PRELOAD
 SIG_TEXT PRELOAD
 EMU_TEXT PRELOAD
 MP_CODE PRELOAD
 _DATA PRELOAD

SEGMENTS
 USER1_TEXT PRELOAD
 USER2_TEXT PRELOAD

DATA Segments

The default .EXP file marks all data as PRELOAD. However, DATA
segments may be loaded on demand safely, as long as the addresses of
objects within them are not stored in static data. VAR parameters and pointer
parameters may be used. In general, it is safe to use swappable DATA
segments in Modula-2 and Pascal, but not in C and C++.

ADVANCED PROGRAMMING GUIDE 21

A moveable (swappable) DATA segment will be loaded when first
referenced by a CODE segment, and swapped to disk when no active CODE
segments reference it. If the data is discardable, performance can be
improved by marking the segment as DISCARDABLE.

Note: If a DATA segment is unloaded after a call to
UnLoadModule, its contents are not swapped to disk, and if
the module is reloaded its contents are re-initialized.

For example:

DATA LOADONCALL MOVEABLE
SEGMENTS STACK PRELOD

 _INIT PRELOAD
 CPROC_TEXT PRELOAD
 PROCESS_TEXT PRELOAD
 PROC_TEXT PRELOAD
 PASPROC_TEXT PRELOAD
 SIG_TEXT PRELOAD
 EMU_TEXT PRELOAD
 MP_CODE PRELOAD
 _DATA PRELOAD

All DATA segments, apart from the library segment _DATA, are now
demand-loaded. _DATA must always be marked PRELOAD.

Programming for the Overlay Model

The overlay model is a superset of the multi-thread model, which in turn is a
subset of the extra large model. The characteristics of each of these models is
relevant to the overlay model’s performance.

The extra large model differs from the large model in that it provides
separate DATA and CODE segments for each compilable module, giving you
sufficient control over granularity to create an efficient overlay.

The multi-thread model provides extra resources required to run multi-thread
programs under DOS or OS/2. However, for the reasons explained above, if
multi-thread programs are using overlays, they must take explicit control
over the overlay procedure in order to ensure that a segment which is
referenced by one thread is not swapped out by another.

Overlay System API

22 TOPSPEED TECHKIT

The following library functions are provided to allow direct control over the
overlay process.

Note: In the programming interface below, the parameter SegNo refers to
the segment number, which is obtained from the .MAP file produced by the
linker. The ModName parameter refers not to the name of the compiled
source unit but to the .DLL file — a slight confusion of terminology.

C/C++ Language Bindings

The header file overlay.h contains the declarations of all functions and types.
The Project System will ensure that the correct library containing these
functions is linked.

void SetExitHandler(ExitHandler P);

A function may be installed to enable error handling, allowing you to
manage overlay load failure. The function P is established as the exit handler
to be called, when the TopSpeed Overlay Manager generates an exception
condition.

P is invoked when the overlay handler encounters an error. The name of
the overlay program/module and an error code are passed to the error
handler. The error codes are as follows:

Error code Number

LOADER_ERROR_INVALID_ENTRY 1

LOADER_ERROR_TOO_MANY_MODULES 2

LOADER_ERROR_WRONG_MODULE_VERSION 3

LOADER_ERROR_MODULE_CORRUPT 4

LOADER_ERROR_STACK_CORRUPT 5

LOADER_ERROR_MODULE_NOT_FOUND 6

LOADER_ERROR_FIXUP_INCORRECT 7

LOADER_ERROR_EMS_ERROR 8

LOADER_ERROR_NOT_DLL 9

LOADER_ERROR_STACK_TRACE 10

LOADER_ERROR_MODULE_INIT_FAILED 11

LOADER_ERROR_FILE_NOT_FOUND 12

LOADER_ERROR_OUT_OF_MEMORY 13

LOADER_ERROR_FILE_READ 14

LOADER_ERROR_FILE_WRITE 15

ADVANCED PROGRAMMING GUIDE 23

LOADER_ERROR_STACK_OVERFLOW 16

LOADER_ERROR_CODE_FIXUP 17

LOADER_ERROR_TOO_MANY_SEGMENTS 18

LOADER_ERROR_INVALID_LOAD 19

LOADER_ERROR_CMEM_ERROR 20

LOADER_ERROR_INVALID_IMPORT 21

LOADER_ERROR_NO_ENTRYPOINTS 22

LOADER_ERROR_ILLEGAL_TRANSFORM 23

LOADER_ERROR_SWAP_FILE 24

LOADER_ERROR_ILLEGAL_ADDITIVE 25

The exit handler function should have the form:

An exit handler should be in a resident segment (marked PRELOAD), and
may not call functions in any non-resident segment.

If an error occurs in the TopSpeed Overlay Manager after a call to the exit
handler function, the process will terminate immediately.

void SetMemHandler(MemHandler P);

This function installs an “out-of-memory” handler which is called when a
memory allocation request fails. It is passed the allocation size in bytes. If
the function returns non-zero, the request is retried.

Note: Error and out-of-memory handlers must reside in PRELOAD
segments.

The out-of-memory handler function should have the form:

void UserFlush(void);

The UserFlush function unloads all inactive overlays and DLLs.

unsigned LoadSeg(unsigned SegNo, char *ModName);

The LoadSeg function loads the specified segment from the specified
module. NULL may be passed as the second parameter, signifying the main
module. The return value indicates the status of the operation:

Return value Meaning

0 LOADER_SUCCESS Segment was loaded.

24 TOPSPEED TECHKIT

1 LOADER_FAIL Segment could
not be loaded.

2 LOADER_RESIDENT Segment already
loaded.

4 LOADER_INVALID_SEG Segment number
invalid.

5 LOADER_INVALID_MODULE Module name
invalid.

void UnloadSeg(unsigned SegNo, char *ModName);

The UnloadSeg function unloads the specified segment from the specified
module. NULL may be passed as the second parameter signifying the main
module. A simple program in the overlay model has only a main module.

The return value indicates the status of the operation:

Return value Meaning
0 LOADER_SUCCESS Segment was unloaded.
1 LOADER_FAIL Segment could not be unloaded.
3 LOADER_UNLOADED Segment already unloaded.
4 LOADER_INVALID_SEG Segment number invalid.
5 LOADER_INVALID_MODULE Module name invalid.

void SetMode(unsigned Mode);

Initializes overlay mode. The parameter may be LOADER_MANUAL or
LOADER_AUTO. LOADER_AUTO is the default. If manual operation is
selected, segments are NOT unloaded automatically. See ‘Multi-thread
Programming Using Overlays’, later in this chapter.

unsigned LoadModule (const char *ModName);
void UnLoadModule(const char *ModName);
void * GetProcAddr (unsigned ModNo, const char *ProcName);
void Reset(void)

LoadModule loads the specified module (DLL). A handle is returned. If the
module was not found, 0xFFFF is returned.

GetProcAdr returns the address of the module specified by a handle returned
from LoadModule.

UnLoadModule unloads the specified module.

Reset should be used after a longjmp from an “out-of-memory” handler. The
loader is reset and all inactive segments freed.

ADVANCED PROGRAMMING GUIDE 25

For more information on using DOS DLLs see Chapter : ‘Dynamic Link
Libraries’.

void Terminate(void);

This function calls the TopSpeed Overlay System shutdown procedures. This
function is called by the standard library termination functions exit and _exit,
so does not need to be called explicitly unless a non-standard program
termination is used.

Modula-2 Language Bindings

The definition file, overlay.def, contains the definitions of all functions,
procedures and types. The TopSpeed Project System ensures that the correct
library containing these functions is linked.

Note: the str65 string type must be zero terminated.

PROCEDURE SetExitHandler(P: ExitHandler);

This procedure enables error handling, allowing you to manage an overlay
load failure. The function P is established as the exit handler to be called
when the TopSpeed Overlay Manager generates an exception condition.

The exit handler procedure should have the form:

The handler procedure is invoked when the overlay handler encounters an
error. The name of the overlay and an error code are passed to the error
handler. The error codes are as follows:

Error code Number

26 TOPSPEED TECHKIT

LOADER_ERROR_INVALID_ENTRY 1
LOADER_ERROR_TOO_MANY_MODULES 2
LOADER_ERROR_WRONG_MODULE_VERSION 3
LOADER_ERROR_MODULE_CORRUPT 4
LOADER_ERROR_STACK_CORRUPT 5
LOADER_ERROR_MODULE_NOT_FOUND 6
LOADER_ERROR_FIXUP_INCORRECT 7
LOADER_ERROR_EMS_ERROR 8
LOADER_ERROR_NOT_DLL 9
LOADER_ERROR_STACK_TRACE 10
LOADER_ERROR_MODULE_INIT_FAILED 11
LOADER_ERROR_FILE_NOT_FOUND 12
LOADER_ERROR_OUT_OF_MEMORY 13
LOADER_ERROR_FILE_READ 14
LOADER_ERROR_FILE_WRITE 15
LOADER_ERROR_STACK_OVERFLOW 16
LOADER_ERROR_CODE_FIXUP 17
LOADER_ERROR_TOO_MANY_SEGMENTS 18
LOADER_ERROR_INVALID_LOAD 19
LOADER_ERROR_CMEM_ERROR 20
LOADER_ERROR_INVALID_IMPORT 21
LOADER_ERROR_NO_ENTRYPOINTS 22
LOADER_ERROR_ILLEGAL_TRANSFORM 23
LOADER_ERROR_SWAP_FILE 24
LOADER_ERROR_ILLEGAL_ADDITIVE 25

PROCEDURE SetMemHandler(P: MemHandler);

This procedure installs an out-of-memory handler which is called when a
memory allocation request fails. It is passed the allocation size in bytes. If
the function returns non-zero the request is retried.

Note Error and out-of-memory handlers must be in PRELOAD
segments.

The out-of-memory handler procedure should have the form:

PROCEDURE Handler(Size: CARDINAL): CARDINAL;

PROCEDURE UserFlush();

The UserFlush() procedure unloads all inactive overlays and DLLs.

ADVANCED PROGRAMMING GUIDE 27

PROCEDURE LoadSeg(SegNo: CARDINAL; ModName: str65):
CARDINAL;

The LoadSeg function loads the specified segment from the specified
module. The constant MainModule may be passed as the second parameter,
signifying the main module.

The return value indicates the status of the operation:

Return value Meaning
0 LOADER_SUCCESS Segment was loaded.
1 LOADER_FAIL Segment could not be loaded.
2 LOADER_RESIDENT Segment already loaded.
4 LOADER_INVALID_SEG Segment number invalid.
5 LOADER_INVALID_MODULE Module name invalid.

PROCEDURE UnloadSeg(SegNo: CARDINAL; ModName: str65):
CARDINAL;

The unload segment function unloads the specified segment from the
specified module. The constant MainModule may be passed as the second
parameter signifying the main module.

The return value indicates the status of the operation:

Return value Meaning
0 LOADER_SUCCESS Segment was unloaded.
1 LOADER_FAIL Segment could not be unloaded.
3 LOADER_UNLOADED Segment already unloaded.
4 LOADER_INVALID_SEG Segment number invalid.
5 LOADER_INVALID_MODULE Module name invalid.

PROCEDURE SetMode(Mode: CARDINAL);

Initializes overlay mode. The parameter may be LOADER_MANUAL or
LOADER_AUTO. LOADER_AUTO is the default. If manual operation is
selected segments are NOT unloaded automatically. See ‘Multi-thread
Programming Using Overlays’ later in this chapter.

PROCEDURE LoadModule (ModName: str65): CARDINAL;
PROCEDURE UnLoadModule(ModName: str65);
PROCEDURE GetProcAddr (ModNo: CARDINAL; ProcName:

28 TOPSPEED TECHKIT

s t r 6 5) :
 ADDRESS;
PROCEDURE Reset();

LoadModule loads the named module (DLL). A handle is returned. If the
module was not found MAX(CARDINAL) is returned.

GetProcAdr returns the address of the module specified by a handle returned
from LoadModule.

UnLoadModule unloads the specified module.

Reset should be used after a longjmp from an out-of-memory handler. The
loader is reset and all inactive segments freed.

For more information on using DOS DLLs see Chapter 3: ‘Dynamic Link
Libraries’.

PROCEDURE Terminate();

The procedure Terminate() calls the TopSpeed Overlay System shutdown
procedures. This function is called by HALT and does not need to be called
by you unless a non-standard program termination is used.

Pascal Language Bindings

The interface file PasOvl.ITF contains the definitions of all functions,
procedures and types. The TopSpeed Project System ensures that the correct
library containing these functions is linked.

Note: the str65 string type must be zero terminated.

PROCEDURE SetExitHandler(P: ExitHandler);

This procedure enables error handling, allowing you to manage an overlay
load failure. The function P is established as the exit handler to be called
when the TopSpeed Overlay Manager generates an exception condition.

P is invoked when the overlay handler encounters an error. The error
handler is passed the name of the overlay and an error code. The error
codes are as follows:

Error code Number

ADVANCED PROGRAMMING GUIDE 29

LOADER_ERROR_INVALID_ENTRY 1
LOADER_ERROR_TOO_MANY_MODULES 2
LOADER_ERROR_WRONG_MODULE_VERSION 3
LOADER_ERROR_MODULE_CORRUPT 4
LOADER_ERROR_STACK_CORRUPT 5
LOADER_ERROR_MODULE_NOT_FOUND 6
LOADER_ERROR_FIXUP_INCORRECT 7
LOADER_ERROR_EMS_ERROR 8
LOADER_ERROR_NOT_DLL 9
LOADER_ERROR_STACK_TRACE 10
LOADER_ERROR_MODULE_INIT_FAILED 11
LOADER_ERROR_FILE_NOT_FOUND 12
LOADER_ERROR_OUT_OF_MEMORY 13
LOADER_ERROR_FILE_READ 14
LOADER_ERROR_FILE_WRITE 15
LOADER_ERROR_STACK_OVERFLOW 16
LOADER_ERROR_CODE_FIXUP 17
LOADER_ERROR_TOO_MANY_SEGMENTS 18
LOADER_ERROR_INVALID_LOAD 19
LOADER_ERROR_CMEM_ERROR 20
LOADER_ERROR_INVALID_IMPORT 21
LOADER_ERROR_NO_ENTRYPOINTS 22
LOADER_ERROR_ILLEGAL_TRANSFORM 23
LOADER_ERROR_SWAP_FILE 24
LOADER_ERROR_ILLEGAL_ADDITIVE 25

The exit handler procedure should have the form:

This procedure installs an out-of-memory handler which is called when a
memory allocation request fails. It is passed the allocation size in bytes. If
the function returns non-zero the request will be retried.

Note: Error and out-of-memory handlers must reside in PRELOAD
segments.

The out-of-memory handler should have the form:

PROCEDURE UserFlush;

The UserFlush procedure unloads all inactive overlays and DLLs.

30 TOPSPEED TECHKIT

FUNCTION LoadSeg(SegNo: word; ModName: str65): word;

The load segment function loads the specified segment from the specified
module. An empty string may be passed as the second parameter, signifying
the main module.

The return value indicates the status of the operation:

Return value Meaning
0 LOADER_SUCCESS Segment was loaded.
1 LOADER_FAIL Segment could not be loaded.
2 LOADER_RESIDENT Segment already loaded.
4 LOADER_INVALID_SEG Segment number invalid.
5 LOADER_INVALID_MODULE Module name invalid.

FUNCTION UnloadSeg(SegNo: word; ModName: str65): word;

The unload segment function unloads the specified segment from the
specified module. A null string ‘’ may be passed as the second parameter,
signifying the main module.

The return value indicates the status of the operation:

Return value Meaning
0 LOADER_SUCCESS Segment was unloaded.
1 LOADER_FAIL Segment could not be unloaded.
3 LOADER_UNLOADED Segment already unloaded.
4 LOADER_INVALID_SEG Segment number invalid.
5 LOADER_INVALID_MODULE Module name invalid.

PROCEDURE SetMode(Mode: word);

Initializes overlay mode. The parameter may be LOADER_MANUAL or
LOADER_AUTO. LOADER_AUTO is the default. If manual operation is
selected segments are NOT unloaded automatically. See ‘Multi-thread
Programming Using Overlays’ later in this chapter.

FUNCTION LoadModule (ModName: str65): word;
PROCEDURE UnLoadModule(ModName: str65);
FUNCTION GetProcAddr (ModNo: word; ProcName: str65):
a d d r e s s ;
PROCEDURE Reset;

LoadModule loads the specified module (DLL). A handle is returned. If the
module was not found the value maxword is returned.

ADVANCED PROGRAMMING GUIDE 31

GetProcAddr returns the address of the module specified by a handle
returned from LoadModule.

UnLoadModule unloads the specified module.

Reset should be used after a longjmp from an out-of-memory handler. The
loader is reset and all inactive segments freed.

For more information on using DOS DLLs see Chapter 3: ‘Dynamic Link
Libraries’.

PROCEDURE Terminate;

The procedure Terminate calls the TopSpeed Overlay System shutdown
procedures. This function is called by HALT, and does not need to be called
explicitly unless a non-standard program termination is used.

Run-time Errors

The following runtime errors may be reported by the loader:

LOADER_ERROR_INVALID_ENTRY (Code 1)

Invalid entry in the executable file entry table. Indicates invalid file.

Action: Check project files and remake.

LOADER_ERROR_TOO_MANY_MODULES (Code 2)

Too many DLLs in project or loaded by LoadModule.

Action: Re-structure project and remake.

LOADER_ERROR_WRONG_MODULE_VERSION (Code 3)

Wrong version of DLL present.

Action: Remake.

LOADER_ERROR_MODULE_CORRUPT (Code 4)

DLL or executable file is corrupt.

32 TOPSPEED TECHKIT

Action: Remake.

LOADER_ERROR_STACK_CORRUPT (Code 5)

Stack chain used for unloading segments is corrupt.

Action: Check program logic.

LOADER_ERROR_MODULE_NOT_FOUND (Code 6)

Imported DLL cannot be found.

Action: Check file exists and remake if necessary.

LOADER_ERROR_FIXUP_INCORRECT (Code 7)

Internal fixup incorrect.

Action: Report to JPI.

LOADER_ERROR_EMS_ERROR (Code 8)

EMS error.

Action: Check if any other resident processes are using EMS and not
restoring page context.

LOADER_ERROR_NOT_DLL (Code 9)

File loaded was incorrect format.

Action: Remake.

LOADER_ERROR_STACK_TRACE (Code 10)

Debugging version error.

Action: report to TopSpeed.

LOADER_ERROR_MODULE_INIT_FAILED (Code 11)

DLL initialization returned non-zero indicating failure.

Action: Check program logic.

LOADER_ERROR_FILE_NOT_FOUND (Code 12)

Imported DLL cannot be found.

ADVANCED PROGRAMMING GUIDE 33

Action: Check file exists on PATH and remake if necessary.

LOADER_ERROR_OUT_OF_MEMORY (Code 13)

Process out of memory.

LOADER_ERROR_FILE_READ (Code 14)

I/O error on file read.

LOADER_ERROR_FILE_WRITE (Code 15)

I/O error on file write, probably disk full.

LOADER_ERROR_STACK_OVERFLOW (Code 16)

Stack overflow in loader.

Action: increase stack size.

LOADER_ERROR_CODE_FIXUP (Code 17)

Illegal fixup to code segment.

Action: Check const_in_code setting and see Chapter 6: ‘TopSpeed
Assembler’.

LOADER_ERROR_TOO_MANY_SEGMENTS (Code 18)

Too many segments in module.

Action: reduce number of segments by grouping.

LOADER_ERROR_INVALID_LOAD (Code 19)

Internal error.

Action: Report to JPI.

LOADER_ERROR_CMEM_ERROR (Code 20)

Internal error.

Action: Report to TOPSPEED.

LOADER_ERROR_INVALID_IMPORT (Code 21)

Internal error.

34 TOPSPEED TECHKIT

Action: Report to TOPSPEED.

LOADER_ERROR_NO_ENTRYPOINTS (Code 22)

Internal error.

Action: Report to TOPSPEED.

LOADER_ERROR_ILLEGAL_TRANSFORM (Code 23)

Internal error.

Action: Report to TOPSPEED.

LOADER_ERROR_SWAP_FILE (Code 24)

Error reading/writing swap file.

Action: Check free disk space.

LOADER_ERROR_ILLEGAL_ADDITIVE (Code 25)

Internal error.

Action: Report to TOPSPEED.

Limits and System Requirements

The new executable file format used by overlay model programs imposes a
limit of 254 segments on the exported entry points in a module, and 333H on
the number of entry points in any one module. Using the
link_option(pack=>on) pragma reduces the total number of segments in a
module, but increases granularity.

There are also internal limits to the capacity of the loader. The maximum
number of modules in a process is 64, and the maximum number of active
segments is 512.

There is no limit on total code size, apart from the limit on the total number
of segments. Therefore it would be possible to have a single .EXE file
containing up to 16 MB of code.

Preloaded static data and code is limited by available memory.

ADVANCED PROGRAMMING GUIDE 35

The minimum efficient size for a segment is 128 bytes.

The loader uses interrupt 3FH. This must not be used by any other active
process.

Multi-thread Programming Using Overlays

By default, the TopSpeed Overlay Manager provides automatic loading and
unloading of overlayed segments. However, in a multi-thread program, the
restrictions of DOS make it impossible to safely guarantee that a segment is
inactive under all conditions. A conservative approach is possible, but this
would imply that an overlayed program would not run deterministically, i.e.
in memory critical situations the loader could be unable to unload segments,
depending on the exact position at which individual threads had been
preempted. Thus, multi-thread programs should either manage overlays
manually or mark segments used by child threads as resident.

Residency

In a program where the majority of the code executes in the main thread and
any child thread performs a simple task, the best approach may be to use
residency.

If the thread consists of a very simple procedure, such as a monitor, the best
approach may be to mark the segment, and that of any code that it calls, as
resident using PRELOAD.

If more complex threads are used a more practical approach is to mark all
code as PRELOAD. Only those segments you wish to overlay need then be
marked as LOADONCALL. This guarantees that you know exactly which
segments are capable of being demand-loaded and automatically unloaded.
In this case it must be ensured that only one thread uses the demand-loaded
segments.

Manual Segment Unloading

If manual operation is selected using SetMode(LOADER_MANUAL),
segments are loaded automatically on demand, but are not unloaded
automatically. The procedure UserFlush has no effect. Segments may also be
loaded manually. If no memory is available to load a segment, the out-of-
memory handler is called .

Segments can be unloaded by a call to UnloadSeg. At the beginning of the
main procedure of the program, the call to SetMode must be made. This
must happen before the scheduler is started. Segments will be loaded on
demand, but will never be unloaded.

36 TOPSPEED TECHKIT

When you want to free memory by unloading a segment, a call can be made
to UnloadSeg specifying the segment and module. It is up to you to ensure
that the segment is inactive in all threads.

Assembly Language Considerations

When programming in any TopSpeed high level language, specifying the
overlay model ensures that the correct calling and addressing conventions are
used automatically. However, if you are coding sections of your program in
assembler you must ensure that the conventions of the overlay model are
adhered to. The most important points are:

· All far procedures must create a valid stack frame:

· The BP register must be valid at the point of any far call. The
following is therefore illegal:

· The value of CS is only valid in a non-resident segment for the
current call. i.e its value may not be stored in a procedure
variable. Procedure variables must be created as 32-bit pointers.
The following is acceptable:

but the following is illegal:

· Code may be reached via a far jump or a far call. A segment that
is left by a far jump is then inactive and may unloaded.

· SS, BP and SP must not be changed. The library longjump
functions should be used.

· Constants in the current CODE segment may be used. For
example:

· The segment value of a non-preloaded segment may not be
stored, since the segment may relocate. However, the value may
be passed as a parameter since the segment is guaranteed not to
be unloaded while the calling CODE segment is loaded.

ADVANCED PROGRAMMING GUIDE 37

Introduction

Dynamic Link Libraries (DLLs) are a major innovation brought about by the
introduction of OS/2. The TopSpeed TechKitÔ allows you to use DLLs with
MS-DOS.

DLLs allow your applications to share common data and code which is
incorporated into your program at load-time, rather than at link-time, as is
the case with traditional linkers. This has two distinct advantages:

· Disc resources are saved, since it is no longer necessary for each
executable file to contain its own copy of a function.

· Product updates are much easier, since only specific DLLs need
be updated instead of the entire program.

DLLs were introduced into OS/2 for an additional reason — they permit
code to be shared at runtime, saving main memory. Under DOS, this is
impossible. The ability to create large programs using the TopSpeed
Segment-based Overlay System is inherent in using DOS DLLs.

Under TopSpeed, DLLs are created very simply, by using the Project System
and a special memory model known as the dynalink model. This is a superset
of the multi-thread model and, under DOS, a superset of the overlay model.
This means that all the facilities of the TopSpeed Overlay System are
available to DLLs and the programs that use them.

The Advantages of Dynamic Linking

For most applications a large .EXE file is acceptable, since segments will be
demand-loaded. However, if a project is very large and sections of code are
shared, it may be worth making these sections of code DLLs. This reduces
the amount of code on disk and speeds up the program make time

DLLs may also be used to distribute product updates. Rather than supply a
new version of the whole program, separate DLLs may be updated when
necessary.

38 TOPSPEED TECHKIT

Pitfalls of Dynamic Linking and Solutions

There are a number of problems associated with using DLLs. However, they
can be overcome, provided that the following points are noted:

· You must ensure that the interface between the executable file
and the DLL is valid.

· As with all new ideas, there is a penalty to pay; new concepts
need to be understood and appreciated before DLLs can be used
effectively and efficiently. In particular you should master the
use of the module definition file (.EXP) described in Appendix
B. This is a special file, which is used by the linker to establish
the necessary connections between calls to dynamically-linked
functions in the executable file, and their code in the DLL.

· Typesafe linking to DLLs is not possible, as the new executable
file format does not contain fields that can be used to specify the
type and number of parameters to a function call. Special care
must be exercised to use the correct header files in C/C++
programs, .DEF files for Modula-2 programs or .ITF files for
Pascal programs.

· If the DLL standard library is used, the advantages of smart
linking within the library may be reduced, although library
segments will still only be loaded on demand. A custom library
DLL may be created either by removing unwanted modules or
by creating a new module definition file.

Rather than using the library DLLs, it is also possible to link one user DLL in
a project with the overlay library and export the required functions to other
DLLs. The relevant function names must then be listed in the .EXP file.

Understanding Dynamic Linking

The best way to appreciate the advantages that DLLs bring is first to examine
traditional static linking.

Static Llinking

Traditional operating systems expect the program file to contain all the
instructions necessary to run that program. If libraries of procedures are
used, they must be bound with the main program using a linker before the
program can be run. When the libraries change, the program must be re-
linked in order to generate a new run-time version. Each executable program
thus carries with it a copy of some part of the library.

Every time you write a new utility program, even if it is only a few lines
long, it uses facilities from the standard libraries. Each program thus
contains copies of routines extracted from the library. Clearly this is

ADVANCED PROGRAMMING GUIDE 39

inefficient, with many copies of the same code cluttering up your disk. For
example, ten disk utilities would contain ten copies of the disk access
procedures and program startup code from the standard library.

Even overlays cannot really get around this problem, since they cannot
effectively be shared between different applications.

Linking the Traditional Way

Linking is a process by which object modules from both compiled programs
and supplied object libraries are joined together to make stand-alone
executable files. The linker examines the object file produced by the
compiler, and attempts to bind referenced symbols with symbols that are
defined elsewhere.

The operation of a traditional linker can be best visualized by using an
example. Assume that the standard MATH library contains a function
procedure fact. This function calculates the factorial of a number. We can,
therefore, write the Modula-2 program below to generate the factorial of 3.
The fact procedure is defined in the MATH module.

In C the fact function might be in a MATH library and the equivalent
program might be:

These programs could be compiled in the usual way to generate an object
file. This object file contains, amongst other things, an indication that the
program needs to use a procedure called fact, which is stored in the MATH
library module (see figure .1 below).

The compiler identifies two types of symbols in a source program:

· Defined Symbols, which are the names of procedures which you
have defined in your program.

· Referenced Symbols, which are the names of procedures which
your have referenced in your program.

The object file contains explicit information regarding these two types of
symbols. The linker uses this information to build the executable file. This is

40 TOPSPEED TECHKIT

shown in Figure .2. In reality there would be far more references than are
shown in Figure .2, but these have been omitted for the sake of clarity.

The object file created by the compiler must now be passed through the
linker, to allow the referenced symbols to be bound with the appropriate
subroutines from the libraries. As a result, the linker is able to build an
executable file

The executable file thus contains a copy of the compiled version of fact. If, at
a later time, a bug were to be discovered in the library version of fact, you
would have to re-link your program to take this into account. In addition, you
would have to re-link every program that uses fact, as each program contains
a copy of this code.

The other drawback to traditional linking concerns hardware changes. If an
application is written for a machine with a monochrome monitor and is
subsequently updated for a color screen, you must provide either:

· Drivers for a wide range of monitors, or

· A totally new version of the program.

Electing to provide drivers, means that new drivers must be written for each
type of video screen on which the program is to be run. The executable
program then has to contain (or have access to) a large number of different
screen drivers, only one of which is ever used. You must adjust every
application for the current hardware configuration.

Dynamic Linking

Dynamic linking addresses the problems of static linking in two ways;

· late binding

· shared code and data.

Late binding delays the linking of a module’s code until the program is
started. This means that the very latest version of a procedure can be used
and the version is optimized for your present hardware configuration.

Shared code and data allow the operating system to use a machine’s available
memory more efficiently. Only one copy of the procedure needs to be stored
in memory, regardless of the number of programs using it. With the advent of
virtual memory, this technique can greatly reduce the operating system’s
requirement to swap areas of memory to disk. In the case of fact, the

ADVANCED PROGRAMMING GUIDE 41

advantages are negligible, but for other procedures (such as graphics
procedures) the gains can be very considerable.

A dynamic linker works by storing a reference to the external procedure in
the resulting executable code. Like a static linker, it verifies that the external
procedure can be referenced. However, unlike a static linker, it does not store
any code in the file for such a procedure, just a reference to its name. The
burden of adding the code is transferred from the linker to the loader.

The basic MS-DOS loader is quite simple: it reads a file into memory and
runs it. Using DLLs, the loader assumes a new set of responsibilities. The
loader must:

· Read the executable file and look for Dynamic Link references.

· Under OS/2 only, it must also check to see if the Dynamic Link
Modules referenced in the file have already been loaded, since
under OS/2 they can be shared with another application which
may already be in memory.

· For any modules not yet loaded, search the available Dynamic
Link Libraries for the specified modules and load them into
memory.

· Perform any necessary initialization for the modules that have
been loaded.

· Run the program.

While DLLs offer many advantages, it would be extremely inefficient if all
modules were loaded in this manner. Thus, there is still a need for some
static linking when using DLLs. It is your decision whether a particular
module is loaded dynamically or statically; this decision needs to be made on
a case by case basis.

As with any innovation, the use of DLLs imposes some constraints and rules
on the modules that are placed in the Dynamic Link Libraries. You must
carefully consider the requirements of the module being written.

Writing Dynamic Link Library Modules

There are several points which should be taken into consideration, when
writing modules which will be incorporated in a DLL.

There are virtually no programming differences. However, the linkage
process itself, as explained in the preceding section, is slightly more
complex, and you must take certain steps to guarantee its secure operation.

In particular, you should be aware that the linker will create not one but two
files: the .DLL file itself which contains the object code, and an Import
Library with a .LIB extension. This lists the functions which are to be found

42 TOPSPEED TECHKIT

in the .DLL, and is needed when the linker is dealing with a program that
uses the .DLL. It supplies the linker with the information it needs to insert
calls to .DLL modules into the final .EXE file.

Provided that this is correctly specified, the dynamic linker takes care of all
the problems and ensures the correct behavior of the program.

The loader itself has to be able to access the .DLL at run-time, if necessary
via the LIBPATH configuration variable under OS/2 or the PATH
environment variable under DOS.

If the loader cannot find the required DLLs when the program is loaded, an
error is reported and the program aborted. As far as you are concerned, the
use of procedures from Dynamic Link Modules is identical to using any
other procedure. The procedure is called with the required parameters and
returns a value.

The loader takes care of bringing the required code (and possibly data) into
memory at load time. How and when this is done need not be your concern,
unless you want to create your own DLLs.

At a more advanced level, it is possible to use DLLs not only at load time,
but also while the program is running. This feature allows the program to
select the modules required in response to the specific demands of the
operations being carried out.

The above summary of the loading of DLL-dependent programs is a
simplification of the process under OS/2. Under OS/2, DLL modules are
always loaded at run-time, but can be identified either:

· When the program is loaded into memory (Load-time Dynamic
Linking), or:

· While the program is running in response to operational
demands of the program (Run-time Dynamic Linking).

The DOS DLL facility provided with the TopSpeed TechKitÔ also includes
Run-time DLL Loading. See Segment-based overlays API functions,
LoadModule, GetProcAddr.

Creating Dynamic Link Libraries

As long as your source code obeys a few simple rules (discussed below), it is
possible to use exactly the same module for both static and dynamic libraries
under both MS-DOS and OS/2. All the changes are handled through the
project file and TopSpeed’s project facility. The changes to the project file
can be summarized as follows:

· The project must be changed to dos dll (or os2 dll for an OS/2

ADVANCED PROGRAMMING GUIDE 43

Dynamic Link Library).

· The model of the project must be dynalink or overlay for DOS,
and dynalink or mthread for OS/2.

· When creating DLLs, you have the option of linking with the
DLL versions of the standard libraries. This is the most simple
and often most efficient approach. In this case the model
dynalink should be used.

It also possible to make a DLL that links statically with standard libraries,
as long as functions that do not require initialization are used. See Chapter
: ‘Advanced Library Usage.’ In this case the DLL should use mthread
(OS/2) or overlay (DOS) model.

· You must include the DLL startup module initDLL with every
DLL. When using #link this is done automatically. If a
specialized startup is required see the section below on using
initDLL.a.

· A module definition file (.EXP) must be created:

· For OS/2 all that is required is a list of the symbols to be
exported. Under DOS the correct segment attributes must be set.
See ‘Creating Module Definition Files’ below.

· You need only export those symbols you wish the DLL user to
“see”. This allows you to create private procedures in physically
separate source files. Such references are, in static linking terms,
public symbols; in DLL terms they are totally hidden. Only you,
as the DLL creator, are aware of their existence and use.

Note: It is not strictly necessary to create a module definition file, if
you want to export all public symbols from your DLL. The
Project System will create a suitable .LIB file automatically, if
no .EXP file is present. See ‘Using #implib’ later on in this
chapter.

Executing Make with a project file which has been constructed in this
manner produces the functional DLL. The DLL and its interface actually
consists of two files:

· A .LIB file that contains the information necessary for the static
linker to generate the correct information in an .EXE file.

44 TOPSPEED TECHKIT

· A .DLL file which actually contains the code for the DLL
modules and is required at run-time.

As explained below (see Running Programs that Use DLLs later in this
chapter), the DLL needs to be placed so that the run-time loader is able to
find it at run-time.

Changing from DOS DLLs to OS/2 DLLs

If you create an MS-DOS DLL and, later, wish to convert it to an OS/2 DLL,
the only change required, as long as no operating specific features are used,
is to the project file. Simply;

· change dos dll to os2 dll

· run Make.

Creating Module Definition Files

A file with the extension .EXP and the same name as the DLL must be
created. All that is required for an OS/2 DLL is a list of the symbols to be
exported and the entry point number:

Entry point numbers must be listed in numeric order. A shorthand version is
accepted:

Each entry point will automatically be numbered correctly.

A module definition file for a DOS DLL must also contain the correct
SEGMENT statements. The defaults may be copied from overlay.exp:

Any preloaded or discardable segments must also be declared in the .EXP
file.

ADVANCED PROGRAMMING GUIDE 45

A module definition file may be created from an object file by using the
utility TSMKEXP. See Chapter : ‘Utility Programs’ for further information.

For a complete description of the module definition file syntax see Appendix
B.

Multi-thread DLLs

The TopSpeed DLL version of the standard libraries are inherently multi-
threaded; you do not need a separate library to make multi-thread DLLs.

However, under DOS, since the Segment-based Overlay System is used by
DLLs the restrictions on multi-thread programs apply. See Chapter :
‘Segment-based Overlays’ for further details.

Changing DLL Environments

Since all the necessary changes to switch a DLL from MS-DOS to OS/2 are
accomplished through the project file, there is no need for you to maintain
multiple copies of a given source for different environments.

The project files are small and remain so. They are also easy to update. You
would only have to change one source file to maintain a DLL for all
environments. The TopSpeed Project System takes care of all the details and
interdependencies.

Using #implib

The Project System can produce an import library automatically using the
#implib directive. See the “TopSpeed Developer’s Guide” for more
information.

While removing the need to create a module definition file may seem
attractive, control over the DLL interface is lost using this method.

Note: An export list may be created very easily by using TSMKEXP, so the
use of the module definition file should remain the method of choice.

Creating Programs that use DLLs

When switching from static to dynamic linking, your project file must
specify the dynalink model, if the DLL versions of the standard libraries are
to be used, or the mthread model (OS/2) or overlay model (DOS) if the main
program links statically with the standard libraries.

The project file produced using these rules generates an .EXE file that is able
to utilize Dynamic Link Libraries.

46 TOPSPEED TECHKIT

Provided that you follow these guidelines, you need not make any source
code changes.

ADVANCED PROGRAMMING GUIDE 47

Running Programs that use DLLs

When a DLL-based program is run under OS/2, the necessary DLLs must be
available. The configuration variable LIBPATH is used to specify a path (or
paths) to be searched for the appropriate libraries. This is similar to the
PATH environment variable used to locate executable programs.

Under MS-DOS, PATH is used. When your program is run, the overlay
loader searches for the DLLs it requires in the following order:

1. The current working directory.

2. The “home” directory of the program being executed, if different from the
above. The “home” directory of an application is the directory where its .EXE
file resides, which may not be the current working directory. This search can
only be carried out under MS-DOS versions later than 3.00; earlier versions of
MS-DOS did not make the “home” directory known to a program.

3. The directories specified in PATH in the order given. DLLs are satisfied by the
first match found in these places.

If the required DLL cannot be found in any of these places, a DLL run-time
error is reported.

An Example

Since the major consideration for implementing DLLs under TopSpeed is the
correct settings in the .PR file, the examples given here concentrate on the
necessary project file settings. The language source code is largely irrelevant.

Creating the DLL

The source module contains the procedure fibo, which is made available to
programs using the DLL. The DLL is to be called MATHDEMO.

The source file looks like this:

48 TOPSPEED TECHKIT

The C equivalent would be:

/* MATHDEMO.c : Demonstration DLL */

int fibo(int n)
/* Calculate nth Fibonacci no. */

{
switch (n) {

case 1 : return (2);
case 2 : return (3);
default : return (fibo(n-1) + fibo(n-1));

}
}

The associated project file (MATHDEMO.PR), used to create the DLL,
looks like this in DOS:

The associated module definition file looks like this:

ADVANCED PROGRAMMING GUIDE 49

The associated project file (MATHDEMO.PR) used to create the DLL, looks
like this in OS/2:

The associated moduled definition file looks like this:

When you make the project, two files are produced. MATHDEMO.LIB
contains sufficient information to enable the linker to know that the
procedures exist. MATHDEMO.DLL contains the executable version of the
procedures, to be loaded at run-time.

Using the DLL

The following is a short program containing a reference to fibo:

The C equivalent is:

50 TOPSPEED TECHKIT

The associated project file (DLLTEST.PR) could look like this in DOS:

The associated project file (DLLTEST.PR) could look like this in OS/2:

This file uses MATHDEMO.LIB to create DLLTEST.EXE, a program using
Dynamic Link Libraries.

Initialization in a DLL

The initialization procedure for a DLL program is necessarily more complex
than that used by a single .EXE file. This will affect users of object-oriented
language features, particularly C++ users. It is, therefore, helpful to be aware
of the procedure.

Before process startup the initialization code defined in initDLL is called. No
particular ordering is guaranteed under either DOS or OS/2.

Low level, library and static C++ object initialization is carried out first at
process startup. If the process comprises multiple DLLs, all constructors are
executed at this time. The order of initialization between modules is
undefined.

On termination destructors are called in reverse order.

ADVANCED PROGRAMMING GUIDE 51

All Modula-2/Pascal module and static object initialization is then carried
out. If the process comprises multiple DLLs the startup code of all modules
is executed at this time.

Using INITDLL

All the normal initialization mechanisms of Modula-2, Pascal and C++ are
performed automatically, but if some initialization specific to a DLL is
required it may be called from the INITDLL file linked with a DLL.

You must use the default file as a template, because the call to InitLink must
be preserved. A call to user code may be added.

A non-zero result must be returned to indicate successful initialization. For
example:

Linking the Initialization File

If you are using a modified version of initDLL.a with the #link directive in
your project file no further action is necessary.

If you wish to use a custom project file using #dolink, your project file must
contain the lines:

Restriction

No library modules or objects will have been initialized when this
initialization code is executed.

Rules and Limitations for DLL Programs

The following restrictions apply whichever source language is used:

· All pointers must be far pointers. Using near pointers for data
pointers causes problems, since the automatic DATA segments
are not combined by the Dynamic Link Loader (unlike with a
static linker). Setting the model to extra large ensures that the
pointer type defaults to far. If you wish to use smaller, 16-bit,
pointers, you will have to use Segment-based Relative Short
Pointers. These are explained in detail in Appendix A: ‘Memory

52 TOPSPEED TECHKIT

models’.

· All the exported procedures in a DLL must be accessed with far
calls (and must, therefore, use far returns).

· Programs must use a far stack and, if present, the ss_in_dgroup
pragma is ignored. This is in line with keeping all pointers as far
pointers. The stack_size pragma, however, may be used
normally to set the size of the stack.

· Data areas can be referenced and defined in both DLL modules
and programs with the one condition that all pointer references
are made using far pointers.

· Under DOS there is a limit to the number of modules (DLLs)
that can be used by a program. This limit is 64 and arises due to
limitations on table space. This limit includes the main process
and any standard library DLLs.

· The restrictions and programming practices specified for the
TopSpeed Segment-based Overlay System must be adhered to
for DOS DLLs and programs that use them.

Library Usage and Restrictions

The following restrictions apply:

· Near heap functions are not available when using dynalink
models.

· The Modula-2/Pascal SetJmp and Longjmp procedures and
LongLabel structure (the setjmp and longjmp functions and the
jmpbuf structure in C) can be used without restriction as long as
the above rules are obeyed.

· atexit can be used to generate exit lists without any new
restrictions.

Dynamic Link Loader Error Messages

For errors under DOS see Chapter : ‘Segment-based Overlays’.

For errors under OS/2 see the appropriate Microsoft documentation.

Distributing DLLs

If you intend to distribute your DLLs to a third party, please read the Licence
Statement which comes with the distribution disks.

ADVANCED PROGRAMMING GUIDE 53

TopSpeed provides a simple method for creating programs and DLLs to run
under Microsoft Windows 3.0.

Writing programs for this environment is not simple, and this manual is not
designed as a tutorial, or as a reference for Windows 3.0 programming.
Before attempting to make your own Windows programs you must be
familiar with the Windows API and operating system.

Making Windows Programs

A number of special considerations must be taken into account when
creating and making Windows programs:

The Project File

The correct project file options must be set:

· system must be set to win, either by editing the project file or by
selecting win from the Project System menu.

· The Project System macro winmath must be set to either emu,
chip or none depending on the expected run-time environment.
This must be done by editing the project file.

· none - no floating point support included. This option should be
selected if your program contains no floating point code.

· emu - floating point emulation. The program will run using a
chip if present, or the Windows emulator if not.

· chip - floating point chip support. The program will only run if a
chip is present.

· The correct memory model must be selected. Small, compact,
medium and large models are supported, although there are
restrictions which apply to the use of compact and large models.

The Project System will automatically select and link the correct libraries.

54 TOPSPEED TECHKIT

The project file below provides an example of a basic Windows project file,
for a program without resources:

The Module Definition File

In order to include the correct information in the .EXE file, the linker
requires a module definition file to be present. This file must have the same
name as the executable file, and the extension .EXP.

The first line of the file should be the NAME statement followed by the
application type. WINDOWAPI must be selected in the following way:

A description statement may be included as a comment, although the
information will not be included in the .EXE file.For example:

The stack and near heap size for a Windows program are not taken from the
settings of the data(stack_size) and data(heap_size) pragmas; they must be
specified in the module definition file using HEAPSIZE and STACKSIZE
statements:

A SEGMENTS statement should specify the default attributes for CODE and
DATA segments. As a default, CODE segments should be marked
PRELOAD MOVEABLE DISCARDABLE. In Small and Medium models,
DATA should be marked PRELOAD MOVEABLE DISCARDABLE. In
Compact and Large models, you must specifiy DATA FIXED. In this case, it
will not be possible to to run multiple instances of your program.

Any CODE or DATA segments which need different attributes to the defaults
specified above, must be specified in a SEGMENTS section. All TopSpeed
programs must have the code section _INIT marked as FIXED:

You can also use this section to mark segments which contain code that is not
always used as LOADONCALL. For example, if all code connected with file
input/output was in CODE segment FILE_TEXT, you might specify the
following:

ADVANCED PROGRAMMING GUIDE 55

Finally, any call-back functions must be listed in the EXPORTS section:

A complete, basic module definition file for small or medium models looks
like this:

For a complete description of the module definition file syntax please refer
to Appendix B.

Program Source - C and C++

The file windows.h must be included by your source file.

Note: It is important that C++ programmers use the copy of windows.h
supplied with TopSpeed to achieve the correct linkage for the Windows API.

The pragma call(windows=>on) must be specified for all functions. This is
set automatically by the Project System when #system win is selected.
Windows call-back procedures must also use the FAR PASCAL calling
convention, and be specified in the EXPORTS section of the .EXP file:

long FAR PASCAL WndProc(HWND, unsigned,
 WORD, LONG);

BOOL FAR PASCAL About(HWND hDlg,
 unsigned message,
 WORD wParam,

 LONG lParam);

Program Source - Modula-2

The Modula-2 programmer must create two source files (.MOD) and a
definition file (.DEF) for a simple Windows program to ensure that the
Modula-2 module initialization mechanism is invoked.

56 TOPSPEED TECHKIT

The first source is the main module, which will always have the same
format:

In the main module the definition for the Windows API must be imported,
with the definition file for the program implementation. The call to
Windows.EntryPoint will invoke the Windows initialization which in turn
calls WinMain, defined in the program implementation.

Since Windows supplies a stack segment, the program stack size must be set
to zero.

The second source file is the actual implementation of the program. All the
Windows functions and the function WinMain must appear in the
corresponding definition module (.DEF file):

The pragma settings in the definition module for the program
implementation are important:

· The Windows call-back functions and WinMain are far call,
stack parameter calling convention.

· The naming convention for the Windows call-back functions and
WinMain is prefix=>windows.

ADVANCED PROGRAMMING GUIDE 57

· Any functions which are not call-back functions (except
WinMain) should have normal JPI calling conventions, with the
exception that pragma call(windows => on) is in force. The
Project System sets this pragma automatically when #system
win is specified.

Note: All the Windows call-back functions (except WinMain) in the
definition file must be exported in the module definition file
(.EXP).

Program Source - Pascal

The Pascal programmer must create two source files (.PAS) and an interface
file (.ITF) for a simple Windows program to ensure that the Pascal module
initialization mechanism is invoked.

The first source is the program, which will always have the same format:

In the program unit the interface file for the Windows API must be imported,
together with the interface file for the actual program implementation. The
call to Windows.EntryPoint will invoke the Windows initialization which in
turn calls WinMain, defined in the program implementation.

Since Windows supplies a stack segment, the program stack size must be set
to zero.

The second source file is the actual implementation of the program. All the
Windows call-back functions and the function WinMain must appear in the
program interface file (.ITF).

58 TOPSPEED TECHKIT

The pragma settings in the interface unit for the program implementation are
important:

· The Windows call-back functions and WinMain are far call,
standard parameter calling convention.

· The naming convention for the Windows call-back functions and
WinMain is prefix=>windows.

· Any functions which are not call-back functions (except
WinMain), should have normal JPI calling conventions, with the
exception that pragma call(windows => on) is in force. The
Project System sets this pragma automatically when #system
win is specified.

Note: All Windows call-back functions (except WinMain) in the
interface unit must be exported in the module definition file
(.EXP).

Memory Management

The segment attributes of static data and code can be controlled with
SEGMENTS statements in the .EXP file. For more details please refer to
Appendix B and the Microsoft Windows Software Development Kit
documentation.

Dynamic Memory

All library functions concerned with memory allocation are mapped to
Windows NearHeap allocation functions. It is recommended that Windows’
memory allocation functions are used directly, rather than the standard
library functions, since space in the near heap is limited, and greater control
can be gained by using the Windows API directly.

ADVANCED PROGRAMMING GUIDE 59

Debugging

TopSpeed’s debugger, VID, does not support debugging under Windows.
However, TopSpeed includes the utility VID2CV which converts VID debug
information to CodeView format.

Two operations are required to produce an executable file that can be
debugged under Windows:

· Full debug information must be generated for the program either
by selecting full from the Project Vid menu, or by editing the
project file and inserting the debug(vid=>full) pragma.

· VID2CV must be run after the program has been linked, using
the following command line:

The Resource Compiler

The TopSpeed TechKitÔ includes the Resource Compiler TSRC.EXE, which,
in conjunction with the TopSpeed Linker, allows resources to be added to
executable programs for use under Microsoft Windows Version 3, without
requiring the use of the Microsoft Windows Software Development Kit. The
TopSpeed Resource Compiler does not work in the same way as the
Microsoft resource compiler, RC.EXE, but it does make use of the same file
formats.

The TopSpeed Resource Compiler processes a resource script file (with a
.RC extension) and produces a compiled resource file (with a .RES
extension) of the same name. This file can then be added to the link list (for
example using #pragma link(myfile.res)), and the TopSpeed Linker will
automatically add the resources to the end of the executable file.

The format for resource information is based on C syntax, so the header file
WINSTYLE.H is provided to supply commonly used definitions for
programmers in all TopSpeed languages.

The configuration file TSPRJ.TXT contains a #declare_compiler command
for the file extension .RC, so that a resource file can be added to a project
simply by including the statement:

in the project file. The TopSpeed Project System will then build the .RES
file, if necessary, and then add it to the link list.

A Windows Program - the Complete Sequence

The steps required to make a Windows executable file are as follows:

1. Create the following files:

60 TOPSPEED TECHKIT

source files
resource (.RC) file
module definition file

2. Within the project file, specify #system win exe, and a suitable #model
command.

3. Compile the source files and resource script file using the #compile project
command.

4. Create the executable file with a #link command. This automatically
includes the program’s resources in the .EXE file.

5. If you intend to debug the program with CodeView, VID2CV should be
executed. This can be done within the project file using a conditional statement
as in the example below:

Modula-2 Library Extensions

Two modules are available to Modula-2 programmers for handling far data in
small and medium models. These modules are intended for handling strings
loaded from resources or provided by Windows. Such strings are not in the
default data segment, and so cannot be handled by the normal FIO and Str
modules in these models.

In other memory models, the standard library modules operate on far data,
and so can be used in all cases.

WinFio

ADVANCED PROGRAMMING GUIDE 61

PROCEDURE RdBin (
F: File;
VAR Buf: ARRAY OF BYTE;
Count: CARDINAL) : CARDINAL;

WinStr

62 TOPSPEED TECHKIT

Library Limitations

There are a number of library limitations which must be considered when
programming for Windows:

C and C++ Language

The following functions may NOT be used:

· All text windowing and console I/O functions. (window.h and
conio.h).

· All file I/O functions that use the predefined streams. In general,
file buffering is not recommended since files should not be left
open for extended periods.

· All process and multi-thread functions (process.h), and delay.

· All bios and dos interface functions not prototyped in bios.h and
dos.h when macro _WINDOWS is defined.

· All memory allocation functions except malloc, calloc and free.

· All mouse interface functions, (mouse.h).

· All graphics functions in graph.h.

Modula-2 Language

The following modules are NOT included in the library when producing a
Windows program:

In addition, the following functions/procedures may NOT be used:

· All file I/O functions that use the predefined streams. In general,

ADVANCED PROGRAMMING GUIDE 63

file buffering is not recommended since files should not be left
open for extended periods.

· Any process control functions in Lib such as Exec, ExecCmd
etc.

· Lib.Delay.

Pascal Language

The following modules are NOT included in the library when producing a
Windows program:

In addition, the following functions/procedures may NOT be used:

· All file I/O functions that use the predefined files. In general, file
buffering is not recommended since files should not be left open
for extended periods.

· Any process control functions in PasDos such as Exec.

Any attempt to use an unsupported feature may cause link or run-time errors.

Using Windows Version 2

The resource compiler from the Windows 2 Software Development Kit must
be used when making programs for Windows 2.

Making Windows DLLs

Before attempting to use DLLs under Windows you must be familiar with
the relevant documentation in the Windows Software Development Kit and
the information provided in Chapter 3: ‘Dynamic Link Libraries’.

The Project File

The DLL project file should select Windows operating system and DLL
filetype:

Any legal Windows memory model may be selected:

The macro winmath must be selected depending on the type of floating point
support required. For example:

64 TOPSPEED TECHKIT

The Project System will automatically select and link with the correct
libraries.

DLL Initialization and Termination

The Project System automatically includes the Windows DLL initialization
file initwDLL. This calls the DLL library main function LIBMAIN which
should be defined in a separate source file and included in the project:

The libmain main function initializes the library on its first invocation:

Although only a C example is given here, full examples of library
initialization and termination functions are provided for each language in the
following modules:

C/C++ LIBMAIN.C
Modula-2 LIBMAIN.MOD, LIBMAIN.DEF

Pascal LIBMAIN.PAS, LIBMAIN.ITF

Module Definition File

There are two extra requirements for a Windows DLL module definition file:

ADVANCED PROGRAMMING GUIDE 65

· The WEP termination function must be exported as well as all
functions or procedures forming the interface.

· DATA must be set to single.

Entry points to a DLL must be declared using the Windows calling
convention.

The following example is a module definition file for a DLL exporting the
function MessagePaint:

A Complete DLL Project File

Although a Windows DLL may use any legal Windows memory model, the
interface must use far data and calls.

66 TOPSPEED TECHKIT

This chapter provides the following information:

· Linking with standard libraries belonging to other languages.

· Creating your own inter-language interface files:

· Type equivalents.

· Calling conventions.

· Naming conventions.

· Library considerations.

· Program startup and termination.

· Interfacing to assembly language.

This chapter cannot be a tutorial for all TopSpeed languages, thus a
knowledge of the languages concerned is assumed.

Standard Cross Definition Files

Cross definition files for all language library interface files are available to
access the library functions of other languages.

These files may be imported or included into program source when it is
written. Inclusion of these files automatically causes the correct libraries to
be linked when you make your program.

For example, calling the function printf (from the TopSpeed C library) from
within a TopSpeed Modula-2 program module, requires you to import the
appropriate definition file, stdio.def:

printf may then be used in the same way as a regular C file.

ADVANCED PROGRAMMING GUIDE 67

Creating Your Own Cross Definition Files

There are three main tasks involved in the creation of an efficient inter-
language interface:

· The translation of the appropriate declarations.

· The setting up the of the necessary calling conventions.

· The setting up the appropriate naming conventions.

The cross-library definition files supplied with your TopSpeed product are
the best illustration of how the various inter-language interfaces should be
declared.

Type Equivalents

The following table lists the type equivalences between the available
TopSpeed language products:

C & C++ Modula-2 Pascal

unsigned char SHORTCARD byte

char CHAR char

unsigned char BOOLEAN boolean

unsigned int CARDINAL word

int INTEGER int16

unsigned short CARDINAL word

short INTEGER int16

unsigned long LONGCARD integer

long LONGINT integer

float REAL shortreal

double LONGREAL real

long double TEMPREAL longreal

void near * NearADDRESS nearaddress

void far * FarADDRESS faraddress

void * ADDRESS address

char * (string) ARRAY OF CHAR string

68 TOPSPEED TECHKIT

Strings

Modula-2 to C

In C, all strings are considered to be zero terminated. However, in Modula-2
strings will be zero terminated unless their length is equal to the size of the
array. It is essential that strings passed from Modula-2 to C are properly zero
terminated. The function Str.StrToC, which is supplied as part of your
TopSpeed product, will create a Modula-2 string compatible with the C
language.

The C language passes strings as a simple pointer to char, with no array size
information. Therefore the call pragma must be used to disable the passing
of the array size when using Modula-2 strings in C programs:

C to Modula-2

Due to the reasons discussed in the previous paragraph, no special translation
is required when passing strings from C to Modula-2. However, the array
size must be passed explicitly:

Pascal to C and Modula-2

In Pascal, the dynamic string type is an array of type char. Element 0 is
recognized as the dynamic length and element 1 as the first element of the
string. The TopSpeed procedure StrToZ will convert a Pascal string to a type
suitable for passing to either C or Modula-2.

When passing a Pascal translated string to Modula-2, a typeless var
parameter must be used, and the pragma call (t_l_size=>on) specified:

When passing a translated Pascal string to C, the typeless var parameter is
used with the pragma call(t_l_size=>off):

C to Pascal

When calling a Pascal function and passing a string, the size of the array
must be passed as a byte before the address of the array, and byte 0 must
contain the dynamic length. The function StrToPas, declared in mlang.h, will
achieve this:

ADVANCED PROGRAMMING GUIDE 69

Modula-2 to Pascal

The Modula-2 string may be translated to Pascal format by employing the
procedure Str.StrToPas.

Although the calling conventions used in the two languages are almost the
same, (a size parameter followed by the address of the array), a type
inconsistency error will occur due to the type of the size parameters
differing. As a result of this, successful passing requires each parameter to be
passed explicitly and the pragma call(o_a_size=>off) to be specified:

Enumeration Types

Enumeration sizes in C/C++ and Modula-2/Pascal are not compatible by
default. C and C++ use a 16-bit type, while Modula-2 and Pascal use an 8-bit
type.

The call data(var_enum_size=>on) pragma must be used in Modula-2 and
Pascal to achieve compatibility.

Calling Conventions

In addition to setting up the string calling conventions mentioned above, the
overall calling convention must be specified, whenever multi-language
programming is employed.

The basic JPI calling convention is consistent between all languages.
However, use of the correct pragma declarations will ensure that an interface
file is valid using the stack frame convention as well.

Modula-2 to C

The following pragmas will define the C or C++ calling convention for a
Modula-2 program:

70 TOPSPEED TECHKIT

C to Modula-2

The following pragma will define the Modula-2 calling convention for any
TopSpeed C or C++ program:

Pascal to C

The following pragma will define the C or C++ calling convention for any
TopSpeed Pascal program:

C to Pascal

The following pragma will define the Pascal calling convention for any
TopSpeed C or C++ program:

Pascal to Modula-2

The following pragma will define the Modula-2 calling convention for any
TopSpeed Pascal program:

Modula-2 to Pascal

The following pragma will define the Pascal calling convention for any
TopSpeed Modula-2 program:

Naming Conventions

To achieve the correct linkage names, the name pragma must also be used.

Modula-2 and Pascal to C

The following pragma will define the C and C++ naming convention for any
programs written using TopSpeed Modula-2 or TopSpeed Pascal:

ADVANCED PROGRAMMING GUIDE 71

C to Modula-2 and Pascal

The following pragma will define the Modula-2 and Pascal naming
convention for any program written using TopSpeed C or C++:

As names in TopSpeed Modula-2 and TopSpeed Pascal are overloaded
between modules, it is often best to include the module prefix in the
identifier:

· Procedure names use $ as a separator.

· Variable names use @ as a separator.

If it can be guaranteed that no name clashes will occur, the module prefix
can be set explicitly in the pragma.

When using TopSpeed C++ the correct linkage specifier must be used:

C++ linkage specifiers for Modula-2 and Pascal may also contain a module
name.

Pascal to Modula-2

The following pragma will define the Modula-2 calling convention for
TopSpeed Pascal programs:

Modula-2 to Pascal

No action is necessary, since the naming conventions are identical apart from
case restrictions.

Library Considerations

There are a number of important considerations which must be taken into
account when preparing multi-language programs:

File handles may be shared between C and Modula-2, as may stream buffer
descriptors.

72 TOPSPEED TECHKIT

File handles of unbuffered files may be freely passed between Modula-2 and
C. However if the Modula-2 File variable refers to a buffered file the stream
pointer (FILE*) variable must be used. See FIO.GetStreamPointer and
FIO.AppendStream in the
”Modula-2 Library Reference”.

Care should be taken that streams or files have the same access and buffering
modes.

The Pascal I/O model is different to that of C and Modula-2 and care should
be taken if predefined I/O streams are shared.

Memory Allocation

All languages in a multi-language program, share the same far and near
heaps. Pointers may be freely exchanged.

Warning:
In Modula-2 the heap overhead is increased from 0 to 2 bytes
per allocation.

Window Modules

The C, C++ and Modula-2 window modules are compatible and handles may
be interchanged freely

The Pascal TurboCrt and C/C++ clipping window modules are compatible.

The Pascal PasWin module is not compatible with either the JPI or clipping
window modules.

Process Modules

The C, C++, Modula-2 and Pascal process multi-thread modules are
compatible.

Program Environment Variables

Any changes made to the environment by the C function putenv will NOT be
reflected in the values returned by the Modula-2 environment functions.

Overall Order of Library Initialization

The initialization of library low level modules, static objects and
Modula-2 and Pascal modules occurs before the execution of the program
starting point - the function main or the main module:

1. Low-level system startup.

2. Library low level initialization.

ADVANCED PROGRAMMING GUIDE 73

3. C++ library static objects.

4. User C++ static objects.

5. Modula-2 and Pascal module and static object initialization code.

Program Termination

On program termination the following procedures are executed:

1. The Modula-2/Pascal terminate chain is executed.

2. Any procedures on the C atexit/onexit stack are executed on a last in
first called basis.

3. Any C++ static destructors are called in the reverse order to that in which the
constructors were called.

4. Low level library cleanup is executed: Files are flushed and closed, then
temporary files are deleted. Interrupt vectors are restored.

If a new process is executed, (using the C exec??? family of functions),
interrupt vectors are restored and open streams are flushed. No user
terminate functions or static destructors are called.

Termination due to Fatal Error

The normal termination procedure is followed and then the ERRORINF.$$$
file is created. If another fatal error occurs during processing of termination
code, the process terminates immediately.

Program Termination under OS/2

The above procedures are followed, apart from in the case of an exception
such as an segment over-run:

· Only user specified termination procedures are executed (those
installed by Terminate or atexit).

· Code should be limited since a recursive error will prevent OS/2
from killing the process.

· By default buffered streams will not be flushed and static C++
destructors will not be called.

Modula-2 and Pascal Initialization from C

Any modules used from within a C compilation unit will NOT be initialized
unless imported by a Modula-2 main module, or one of its imports. If your
main module is in C, then the function InitModules, declared in mlang.h,

74 TOPSPEED TECHKIT

must be called from the function main() before any Modula-2 or Pascal
functions are called.

The function takes a list of one or more module initialization identifier
arrays, terminated by a NULL pointer. For example:

The identifiers for the Pascal and Modula-2 libraries are declared in mlang.h.

Similar declarations should be made for any of your own modules that have
initialization code, i.e. which do not specify module(init_code=>off):

ADVANCED PROGRAMMING GUIDE 75

Assembly Language Interface

Interfacing to assembly language presents its own, special group of problems
and needs:

Standard C

The standard C parameter passing mechanism is summarized as follows:

· Each parameter is pushed on to the stack, starting at the
rightmost parameter.

· The function is called.

· Upon return from the function, the stack is restored to the state it
was before the function call began by the caller.

This mechanism allows C to call the same function with differing numbers of
parameters, for example:

C can do this because the calling program knows how many parameters were
pushed onto the stack and can, therefore, tidy it up afterwards. The function
itself does not have to worry about cleaning up the stack, as long as it has
some way of knowing how many parameters to expect. printf() knows how
many parameters to expect from the format string.

The three main differences in the JPI calling convention are:

· Parameters are passed, as far as possible, in the CPU’s registers.
The stack is only used when the registers are used up.

· Parameters are passed left to right. This is the opposite direction
to standard C.

· The called function restores the stack if parameters have been
pushed.

Standard Pascal and Modula-2

The standard Pascal/Modula-2 parameter passing mechanism is summarized
as follows:

· Each parameter is pushed on to the stack, starting at the leftmost
parameter.

· The procedure is called.

· Upon return from the function, the stack is restored to the state it
was before the function call began by the called procedure.

76 TOPSPEED TECHKIT

The main differences in the JPI calling convention are:

· Parameters are passed, as far as possible, in the CPU’s registers.
The stack is only used when the registers are used up.

The JPI Calling Convention

The JPI calling convention comprises:

Simple Types

· Regardless of the normal calling conventions of the language,
the parameters are processed from left to right and assigned to
registers. 8-bit and 16-bit values are passed in one register. 32-
bit values are passed in register pairs.

· The values are assigned to the 80x86 registers in the following
order:

ax then bx then cx then dx
· When all the default registers have been assigned, the rest of the

parameters (if any) in the same order, left to right, are pushed
onto the stack. It cannot be expressed too strongly that this is the
opposite order to standard C. This means that modules compiled
using other vendor’s compilers will not work with functions
compiled under the JPI calling convention. See ‘Interfacing to
Third Party Code’ in the “TopSpeed Developer’s Guide”.

· If parameters were passed on the stack, the called function pops
the required number of bytes to restore the stack to its original
state.

The following points should be noted:

· 32-bit values are never split between registers and the stack. If
no register pair remains, the entire value is pushed on the stack.

· If a register remains unused and a parameter will fit, even if the
stack has already been used, the register will be used by that
parameter.

· Floating point values are passed in the following registers: st0,
st6, st5, st4, st3. Note that they are stored in the registers, not
pushed onto the coprocessor stack.

· Functions declared with variable parameter lists (e.g, void
func(char * f, ...)) will always use the stack for parameter
passing. This underlines the importance of using function
prototypes to ensure that parameter type checking is enforced. If
TopSpeed C doesn’t know the correct prototype for a function,
the generated calling sequence will be wrong.

ADVANCED PROGRAMMING GUIDE 77

· Structures are always passed on the stack.

Array and String Types

In C and C++ all arrays are passed as an address. Therefore, they will follow
the convention for 16- or 32-bit simple types, depending on the memory
model.

Modula-2

In Modula-2, open arrays are handled internally as two parameters. The
array size is passed first, as a 16-bit value, followed by the address of the
array, as either a 16- or 32-bit value, depending on memory model. An open
array passed by value will be copied by the called procedure.

This convention can be modified by pragmas:

· The call(o_a_copy=>off) pragma prevents the called procedure
making a local copy of the array.

· The call(o_a_size=>off) pragma suppresses the passing of the
array size word.

· The call(ds_eq_ss) pragma overrides the default pointer size
used for the address of the array.

Pascal

In Pascal, dynamic strings are handled internally as two parameters. First the
array size is passed as a 8-bit value, followed by the address of the array, as
either a 16- or 32-bit value, depending on memory model. A string passed by
value will be copied by the called procedure.

Conformant arrays are handled internally as four parameters. First, the array
size, low bound and high bound are passed as 16-bit values (if int16 is used
as the type), in that order. Then the address of the array, as either a 16- or 32-
bit value, depending on memory model. A conformant array passed by value
will be copied by the called procedure.

This convention can be modified by pragmas:

· The call(ds_eq_ss) pragma over-rides the default pointer size
used for the address of the array.

All structured type

value parameters are passed on the stack, with the exception of C++ classes
for which a copy constructor is defined.

78 TOPSPEED TECHKIT

Variable Argument List Functions

If the call(opt_var_arg) pragma is set on (the default), a special calling
convention is used to reduce code size. If this pragma is set off, normal stack
frame parameter passing is used.

The optimized calling convention uses a table of near calls to the actual
function, with a stack pop to allow the function to clear its own stack. The
following example illustrates the technique when defining the function in
assembly language.

Note: The example given is for a function that is far called - for a near
called function, the ret instructions would all be near, and the value of arg1 is
6. The calls to ActualFunction are always near.

When calling an optimized variable argument list function from assembly
language, the correct offset from the public label must be used depending on
the number of words passed as parameters:

ADVANCED PROGRAMMING GUIDE 79

1 word - label + 04H.
2 words - label + 0AH.
3 words - label + 10H.
4 words - label + 16H.
5 words - label + 1CH.
6 words, or more - call label. (The caller must pop the stack in this case).For
example,

Typeless Parameters

In Pascal, typeless parameters are handled internally as two parameters. The
size of the object is passed first as a 16-bit value, then the address of the
object is passed as a 16- or 32-bit value depending on the memory model. If
the parameter is passed by value, the called function will make a local copy
depending on the setting of the call(t_l_copy) pragma.

This convention can be modified by pragmas:

· The call(t_l_size=>on) pragma causes a local copy of a typeless
value parameter to be made.

· The call(t_l_size=>off) pragma suppresses the passing of the
size word.

· The call(ds_eq_ss) pragma over-rides the default pointer size
used for the address of the object.

Examples of the JPI Calling Convention

The examples below illustrate the way that the JPI calling convention works:

A call of the function:

results in the following register and stack configuration:

80 TOPSPEED TECHKIT

 Ö-----------------Ì Ö-----------------Ì
 AX : ° i_1 ° TOP OF STACK : ° l_3 °
 û-----------------À û-----------------À
 BX : ° i_2 ° ° l_2 °
 û-----------------À û-----------------À
 CX : ° ° ° °
 ° l_1 ° ° °
 DX : ° ° ° °
 Û-----------------ì ° °

Note: l_3 is above l_2 on the stack because l_2 is pushed onto the
stack first. This example shows the left to right processing and
the allocation of registers.

The next example shows how TopSpeed generates the calling sequence,
when a register remains after the stack has already been used. The function
call:

results in the following register and stack configuration:

 Ö-----------------Ì Ö-----------------Ì
 AX : ° i_1 ° TOP OF STACK : ° l_2 °
 û-----------------À û-----------------À
 BX : ° ° ° °
 ° l_1 ° ° °
 CX : ° ° ° °
 û-----------------À ° °
 DX : ° i_2 ° ° °
 Û-----------------ì ° °

Note: i_2 is placed in DX and l_2 on the stack. When the compiler
processes l_2 there is no register pair remaining for the long,
32-bit, value l_2, therefore it is pushed on the stack. However,
when the compiler reaches i_2 (a 16-bit value), it puts this
value in DX because this has not already been used.

Thus, the JPI calling convention makes maximum use of the registers of the
80x86 CPU, when passing parameters to a function.

Returning Values to TopSpeed High-level Functions

Values are returned in the 80x86 registers. The general convention is:

· 8-bit and 16-bit values are returned in ax.

· 32-bit values are returned in dx:ax.

ADVANCED PROGRAMMING GUIDE 81

Return Registers for C Objects:

· char and int values are returned in ax.

· long int values are returned in dx:ax.

· near pointer values are returned in ax.

· far pointer values are returned in dx:ax.

Return Registers for Modula-2 Objects:

· CHAR, SHORTCARD, INTEGER and CARDINAL values are
returned in ax.

· LONGINT and LONGCARD values are returned in dx:ax.

· NearADDRESS values are returned in ax.

· FarADDRESS values are returned in dx:ax.

Return Registers for Pascal Objects:

· char, byte, int16 and word values are returned in ax.

· integer values are returned in dx:ax.

· nearaddress values are returned in ax.

· faraddress values are returned in dx:ax.

Functions Returning Floating-point Values

JPI Calling Convention

Floating-point values are returned in the top register of the 80x87 stack. The
following code fragment illustrates the way floating-point values are
returned:

Standard Stack Model

A pointer to a static memory location is returned. This contains the return
value.

82 TOPSPEED TECHKIT

Functions Returning Structures

Functions that return structures are passed, as an implicit first parameter, a
16-bit pointer to a temporary buffer in the stack. The functions declared
parameters follow this.

The called function copies its return value into this buffer. On return, the
caller then copies that return value from the temporary buffer to its final
destination.

Register Preservation

JPI Calling Conventions

Normally, TopSpeed functions explicitly preserve the contents of the
following registers during a function call:

In addition, the ds register is always preserved as it is the pointer to the
current function’s DATA segment. The bp register is also implicitly
preserved as the base pointer for the current function’s local variable work
space. All functions automatically save bp on the stack on entry, and restore
it before they return.

Note: The general purpose registers ax, bx, cx and dx are only preserved
by a function call when they are used neither for passing parameters nor for
returning results.

Standard Stack Model

Only the standard set of registers are preserved:

C Argument Type Promotions

C automatically promotes the type of function arguments in the absence of
other information. For example, if the following example is used without a
prototype for spot():

ADVANCED PROGRAMMING GUIDE 83

then x will be promoted to a double and y to an int before the function is
called. This is discussed more fully in the “TopSpeed C Language
Reference”.

This is a potential source of problems if proper prototyping is not used. In
the above example, spot() would produce erroneous results if it only
expected a float and char as parameters.

Linkage Names

C Language

Unless over-ridden by a name pragma, an underbar is prepended to the
identifier:

becomes

C++ Language

A complex name scrambling algorithm is used to produce unique names. See
the “TopSpeed C++ Language Reference” for further details.

Modula-2

Unless over-ridden by a name pragma, the module name followed by a
separator is prepended to the identifier. If the identifier refers to a procedure
the separator is $, while if it refers to data the separator is @:

becomes

becomes

Pascal

Unless over-ridden by a name pragma, the module name followed by a
separator is prepended to the identifier. The name is also forced to upper
case. If the identifier refers to a procedure the separator is $. If the identifier
refers to data the separator is @:

becomes

becomes

C and C++ Low Level Initialization

The following mechanism is used by the C library and static C++ objects.
The following example illustrates the technique:

84 TOPSPEED TECHKIT

The following points must be noted:

· The segmentation must be followed precisely.

· The priority byte may be altered as follows.

· The default priority is 16. See module(init_prio) pragma in the
“TopSpeed Developer’s Guide”.

· Higher priorities are executed first

· Priorities from 20 upwards are reserved for low-level standard
library initialization.

· The C++ library has priority 22.

· The variable __key_variable must be referenced for the init code
to be linked.

ADVANCED PROGRAMMING GUIDE 85

· The actual user code must preserve all registers corrupted.

· The call to __InitLoop must be executed.

· MAGIC_NUM and other symbols are defined in corelib.inc.

Modula-2 and Pascal Initialization

Modula-2 and Pascal use the same mechanism for initializing static objects
and modules. Dependencies are calculated at run-time, including any
initialization code in imported DLLs. The following rules apply:

· The order of initialization mutually referential modules is
undefined.

· At the end of the chain of the initialization code, the main
module is called.

· Initialization code may be written in assembly language.

A variable length structure is created comprising first, the address of the
actual initialization code, followed by a list of imported module init
structures, and terminated by a word value -1:

segment _TEXT(CODE,28H)
select _TEXT
$init: (* The init code *)
 ... user initialization code
(*%T NearCall*)
ret near 0
(*%E*)
(*%F NearCall*)
ret far 0
(*%E*)

segment _DATA(DATA,00028H) (* the record *)
extrn Str$
extrn Lib$
public Spawn$:
(*%T NearCall*)
dw $init
(*%E*)
(*%F NearCall*)
dd $init
(*%E*)
(*%F SameDS *)
dd Str$
dd Lib$
(*%E *)
(*%T SameDS *)
dw Str$
dw Lib$

86 TOPSPEED TECHKIT

(*%E *)
dw -1

Reserved Segments and Groups

The following segmentation restrictions apply:

· The group DGROUP is reserved and its ordering must not be
altered.

· The following segments are reserved:

Floating Point Code Generation

When using the JPI calling convention, a special mode of floating point
register usage is employed, in which the 80x87 stack operates empty. One
push is allowed to store a register, which is then loaded in to the desired
destination register, emptying the stack.

You should study the disassemblies and the library module CoreMath.a.
However, you may prefer to write code using the usual stack based
technique. In this case, stack model libraries will be required.

ADVANCED PROGRAMMING GUIDE 87

The TopSpeed Assembler is a single-pass assembler used to assemble source
files into .OBJ form. The resulting object files can be linked with programs
written in other TopSpeed languages. The TopSpeed Project System
automatically detects that a particular module is written in assembly
language and invokes the TopSpeed Assembler as required. Assembly
language files are identified by a .A extension on the filename. Thus,
INITDLL.A is the assembly language source code for one part of the
TopSpeed library.

Overview

The TopSpeed Assembler is designed to be simple to use and fast to operate.
The TopSpeed Assembler supports smart linking and interfaces to the other
languages in the TopSpeed family. The TopSpeed assembly language differs
from “standard” 8086 assemblers in a number of ways:

· The lexical structure is derived from Modula-2. In particular, the
Assembler is case sensitive, comments are marked with (* and
*) and hexadecimal constants must be in upper case.

· A semi-colon (;) is used to separate multiple statements on a
line. In fact, a newline and a semi-colon are regarded as identical
by the Assembler.

· There is only one kind of label and there are no data types.
Instead of data types, TopSpeed Assembler uses specifiers. Thus,
the specifiers near, far, byte and word can be used to define the
data type of the operands of an instruction.

· Memory operands and segment overrides must always be
explicitly specified.

· No macros or other complicated features are used.

This chapter describes the assembly language which is recognized by the
TopSpeed Assembler. This chapter does not contain a detailed discussion of
any assembly-level programming. The 8086 and 8087 instruction sets are
described in Appendix D.

The Assembler achieves its high speed by assembling the source file in a
single pass. This means that variables and labels must be defined before they
are used, otherwise the Assembler assumes that the item is to be defined later
in the same segment. If the item is not found there, an error message is
produced.

88 TOPSPEED TECHKIT

Invoking the Assembler

The TopSpeed Project System automatically invokes the Assembler for any
source files in a project with a .A extension. This means that you do not have
to worry about the interdependencies of a project, or how those
interdependencies are maintained.

The Assembler can be invoked from within the TopSpeed Environment by
selecting Compile from the main menu when a .A file is loaded (or by using
the short-cut, Alt-C). Assembly errors are reported in the same way as
compiler errors: the error window is displayed and you can enter corrections.

Program Layout

A TopSpeed Assembler program has the following general layout:

Segments

An 8086 program consists of one or more segments. Each segment contains
either code or data. Every program contains at least one segment: a CODE
segment consisting of the executable code of the program.

Segments are declared using the following syntax:

For example, the statement:

declares a segment called SPOT of the class CODE, with an alignment code
of 28H. The alignment code determines the type of address the segment is to
be located at when the program is linked.

The normal values are:

8H a byte aligned segment. The segment can be loaded at
any address.

48H a word aligned segment. The segment must be loaded at
an even address, with a gap of one byte being left if
necessary.

ADVANCED PROGRAMMING GUIDE 89

68H a paragraph aligned segment. The segment must be
loaded at an address which is exactly divisible by 16. A
gap of up to 15 bytes is left if necessary.

74H a stack segment. This is only used for segments which
are to be used as a stack.

Segments can also be grouped together. Groups must be declared after the
segments they contain, using the following syntax:

For example:

declares a group called G_FOO consisting of the three segments A_FOO,
B_FOO and C_FOO. This must be preceded by the definitions of A_FOO,
B_FOO and C_FOO.

The TopSpeed C compiler generates object files which use the following
segments:

· _TEXT is the segment for executable code.

· _DATA is the segment for initialized data.

· _BSS is the segment for uninitialized data.

In addition, other segment names are used with a standard meaning. For
example, the _INIT segment is used by the C start-up routine to access the
initialization routines for library sub-systems. These segments are reserved.
They must only be used for their allotted purpose(s).

Example : A Simple Function

The following example program returns a global variable in the AX register.
Points to note are the declaration of the DATA and CODE segments of the
program:

The equivalent of this example in ‘C’ would be as follows:

int i = 1;
int p(void) {
 return i;
}

90 TOPSPEED TECHKIT

Tokens

The basic lexical tokens of TopSpeed Assembler are:

Generic Tokens tokens relating to programmer selected items
Keywords tokens relating to the control of the generated code
Instructions tokens that are mnemonics for 8086 instructions

Neither keywords nor instructions can be used for user-defined names.

Generic Tokens

Generic tokens in TopSpeed Assembler are one of the following:

strings are sequences of characters enclosed in single quotation
marks (‘).

numbers are signed decimal integers or hexadecimal numbers;
hexadecimal numbers must start with a digit, all digits
must be in upper-case and it must be suffixed with an H.

names are case-sensitive labels for segments, groups, subrou-
tines and local jump destinations; they must begin with a
letter (or an underscore, $ or @) and may contain letters,
digits, underscores, $ or @. Some legal names are:

registers which are the names of the 8086 registers (ax bx cx dx
sp bp si di al bl cl dl ah bh ch dh es cs ss ds).

Keywords

The TopSpeed Assembler uses a number of keywords:

byte db dd dw dword
end extrn far fixup group
 include log2 module near org
power2 public qword section select
 seg segment st tbyte word

Instructions

The following 8086 instruction mnemonics are recognized by TopSpeed
Assembler:

ADVANCED PROGRAMMING GUIDE 91

Operators

The following operators are defined in TopSpeed Assembler. The operators
are listed in order of precedence (highest precedence first):

power2 power of two

log2 log base 2 (truncated to integer)

/ % * division, modulus, multiplication

+ - addition, subtraction

: segment reference

92 TOPSPEED TECHKIT

~ bitwise not

& bitwise and

| bitwise or

seg segment of address

Operators of equal precedence associate with the expression to their left.

Syntax

This section describes the TopSpeed Assembler assembly language. The
conventions used are as follows:

::= is used to mean “is defined to be”

| is used to mean “or, alternatively”

. is used to terminate a production of the syntax

<> are used to enclose syntax elements

‘’ are used to enclose required typographic symbols

The syntax elements <name>, <string>, <number>, <instruction> and
<register> are not defined here. The interpretation of these elements is
described in the section Tokens earlier in this chapter. The syntax element
<empty> is used to indicate that an alternative to a production may be
omitted entirely.

<compilation> ::=
<globalsdefs> <modhead> <statements> end <entry>

ADVANCED PROGRAMMING GUIDE 93

94 TOPSPEED TECHKIT

<exp> ::=
<number> | (* decimal or hex *)
<name> |
‘~’ <exp> | (* bitwise NOT *)
‘-’ <exp> | (* arithmetic negation *)
<exp> ‘*’ <exp>| (* multiplication *)
<exp> ‘/’ <exp>| (* integer division *)
<exp> ‘%’ <exp>| (* modulus *)
<exp> ‘+’ <exp>| (* addition *)
<exp> ‘-’ <exp>| (* subtraction *)
<exp> ‘&’ <exp>| (* bitwise AND *)
<exp> ‘|’ <exp>| (* bitwise OR *)
‘(‘ <exp> ‘)’|
power2 <exp>| (* 2 ** <exp> *)
log2 <exp> . (* log base 2 of <exp> *)

Assembly Language Considerations

This section groups together a number of points regarding the use of the
TopSpeed Assembler. This section should be used in conjunction with
Appendix D, which contains full details of the 8086 and 8087 instruction
sets.

This chapter describes a number points of interest for the assembly level
programmer, who is used to using other assemblers.

You may find it useful to use the TopSpeed Disassembler TSDA to generate
examples of TopSpeed Assembler from high-level language object files.

The Symbol Table

The TopSpeed Assembler discards the current symbol table every time a new
section is started, except for any global equates which occur before the
module keyword in the source file. This means that symbols may be
redefined. If you redefine a public symbol, the linker issues a warning
message.

If you wish to reference external objects, the extrn keyword should be used,
for example:

To make an object accessible from another module, the name must be
preceded by the public keyword.

ADVANCED PROGRAMMING GUIDE 95

Operand Sizes

In most cases, the operands to an instruction have an implied size (byte,
word, etc). This size can be calculated by the Assembler and requires no
intervention on your part. However, when there is a chance of ambiguity, you
must use a specifier to indicate the size of the operand:

Jumps and Calls

Jumps and calls default to the smallest possible case. Thus, unless a label has
been defined before use, the Assembler assumes that it is a label in the same
segment as the statement referencing it.

Labels should result in a jump of between -128 bytes and +127 bytes in the
output object code. If a jump exceeds this range, a specifier must be added.
For example:

Strings

Single character string constants are treated as numbers by the TopSpeed
Assembler.

The Assembler syntax does not provide a segment override for string
instructions. If you wish to do this, it must be done using the db keyword.
For example:

References

Within TopSpeed Assembler, forward references are assumed for labels that
have not yet been defined. The TopSpeed Assembler assumes that such labels
are in the currently selected segment within the current section.

Within a single section, equated symbols may be redefined; labels, on the
other hand, may not be redefined.

Non-8086 Instructions

The TopSpeed Assembler supports only 8086, 8088, 8087 and 80287
instructions. If you need to use the opcodes specific to the 80286, 80386 or
80387, they must be simulated with the db directive, as described in Strings
above.

96 TOPSPEED TECHKIT

Floating-point Options

The foption mnemonic is used to control floating point emulation and carries
a single argument, as follows:

foption 0 causes floating point emulation.
foption 1 suppresses the generation of emulation fixups.
foption 2 suppresses the generation of fixups and wait instructions.

Unless foption 2 is used, the Assembler generates a wait instruction between
successive floating-point instructions in order to synchronize the 8086 with
the 8087.

Variables and Data

Variables can be defined, and uninitialized data areas reserved, using the
following directives:

db initialize storage as bytes (expects byte or string oper-
ands).

dw initialize storage as words (expects word operands).
org reserve some uninitialized memory of a size equal to the

value of the operand.

File Inclusion

The TopSpeed Assembler has an include directive which allows a header file
to be included. This is used in the library to define commonly used
identifiers:

Conditional Assembly

The TopSpeed Assembler has the ability to conditionally assemble sections
of code based on the value of an identifier. There are three special directives
that mark which blocks to include/exclude. These are:

(*%T <identifier> *)

means process this section only when <identifier>=1
(*%F <identifier> *)

means process this section only when <identifier>=0
(*%E *) means end of conditional section

These directors are commonly used with the return code for a procedure that
is memory model independent:

ADVANCED PROGRAMMING GUIDE 97

Conditional sections can be nested.

For further examples of using conditional assembly, please refer to the file
COREGRAP.A in the \TS\SRC directory. This file is also an excellent
example of assembly language procedures providing memory model and
register passed parameter support.

Predefined Identifiers

The assembler pre-defines a symbol for each #pragma
define(<symbol>=><value>) which is active in the project file at the point
where the #compile occurs. This allows conditional assembly according to
which model has been selected. The value is 1 if the project value is on,
otherwise the value is 0.

Memory Models and Predefined Identifiers

The following identifiers are defined by the Project System, and have the
meaning shown.

_fcall calls and returns are far.

_fptr pointers are 32-bit.

_fdata the ds register not = dgroup on function entry.

_mthread the program is multi-threaded.

_jpicall parameters are passed in registers.

_WINDOWS target system: Windows

_DLL target system: DLL

_WINDLL target system: Windows DLL

_OVL target system: Overlay

_OS2 target system: OS/2

__OS2__ target system: OS/2

__MSDOS__ target system: MSDOS

M_I86xM target is 8086, memory model indicated by x. x may be
S, M, C, L, T, X, O or D.

98 TOPSPEED TECHKIT

Calling Conventions

Your assembly language functions need to follow the TopSpeed calling
conventions if they are to successfully be called from a high-level language.
In particular the bp register must be preserved. Which other registers need to
be preserved will depend on the calling convention being used, which can be
modified with pragmas. In the JPI calling convention, all registers except
those used to pass parameters and return function results must be preserved.

Miscellaneous Points

Other assemblers allow instruction formats such as:

In TopSpeed Assembler, these must be expressed as:

The instructions rep, repne and lock are regarded by the Assembler as
separate instructions. They must be followed by a semi-colon, for example:

Smart Linking

When the TopSpeed linker links your program, it includes only the CODE
and DATA segments which are actually referenced. In the following example
_p and _q are placed in separate segments (of the same name) so that they
will be ‘smart’ linked into the final program:

TopSpeed Assembler Error Messages

This section summarizes the error messages, and their probable causes,
which may be generated by the TopSpeed Assembler.

Bad char in decimal constant

Only digits are allowed in a decimal constant. The following are illegal:

ADVANCED PROGRAMMING GUIDE 99

Bad char in hex constant

The characters making up a hexadecimal constant must be in upper case. For
example:

Bad character

The Assembler has encountered a character which it does not recognize, for
example:

Bad operand for group

The group keyword requires the names of previously defined segments as
operands.

Bad operand for seg operator

The seg operator requires a label as an operand.

Bad operand for select

The select keyword requires a segment name as an operator.

Incorrect operand(s)

The operands to the instruction are of the wrong type. Check Appendix D:
‘8086/8087 Instruction Sets’ for the correct format and type of the operands
for the instruction in question.

Label not in expected segment

The Assembler has detected a forward reference to a label and has assumed
that the label is to be found in the current segment. When the label was
found, it was different segment. For example:

The solution is to move the definition of x to before its reference:

100 TOPSPEED TECHKIT

Mismatched comment

A comment (starting with ‘(*’) has not been terminated before the end of the
file.

Mismatched string constant

A string constant is missing the apostrophe (‘) terminator. For example:

Strings cannot be split across lines; they must be entirely contained on one
program line.

Missing byte/word specifier

The instruction contains an ambiguity about the type of one of the operands.
The Assembler cannot resolve the ambiguity and requires a byte, word or
other specifier.

More than one label in address

An address expression can contain only one label. The following is an error:

No segment defined

At least one segment must be defined in a module before any instruction,
label or data statements.

Not a segment register

A segment override in an expression must be one of the four 8086 segment
registers (cs, ds, es, or ss). For example:

Not an index register

Only the registers bp, bx, di and si can be used as index registers. The
following is therefore an error:

ADVANCED PROGRAMMING GUIDE 101

Operand may not be a label

The operands for arithmetic operators, org and equated symbols, must be
pure numbers. If the Assembler encounters an undefined symbol it assumes
it must be a label. This results in this error message in situations such as:

The solution is to exchange the order of the statements:

Scope table full
Name table full
Too many identifiers

These messages are rarely seen. When they do appear, they indicate that your
program file needs splitting up. Either create more than one module, or
divide the module using the section keyword.

Syntax error

Part of the program does not conform to the syntax. There could be many
reasons for this, for example:

Refer to the syntax description of the Assembler for further information.

Token too big

This error is extremely unlikely. The maximum length of identifiers and
strings is so ridiculously large that this message should not occur. If it does,
you may have to shorten some identifier names.

Undeclared byte operand

A byte operand cannot be a label, so it must be declared before it is used. For
example:

The correct way of using x in this context, is:

Unexpected end of file

An end statement is required at the end of the module.

102 TOPSPEED TECHKIT

Unknown/misspelled instruction mnemonic

The instruction is not known to the assembler. Check the spelling of the
instruction and that you are not using a mnemonic (for example, dq) which is
not supported by the TopSpeed Assembler.

Wrong number of operands

An instruction has too many, or too few, operands. Check Appendix D:
‘8086/8087 Instruction Sets’ for the number and type of the operands for the
instruction in question.

ADVANCED PROGRAMMING GUIDE 103

The TopSpeed Post-Mortem Debugger is an adjunct to the Visual Interactive
Debugger (VID). It allows you to examine a memory image of a program
that is ‘dead’ from either a bug or a user-defined error. The Post-Mortem
Debugger produces an image of the program state at the time a fatal error
occurs. You can then use VID to examine this state in the context of the
source code. Since this Post-Mortem Dump is a static image of the
program’s state at the time the error occurred, the VID facilities which can
be used are restricted.

Overview

The basic concept of a Post-Mortem Dump goes back to the earliest days of
computers, when system errors caused mainframes to produce vast listings
of the “core image” of the computer’s memory. You would then have to wade
patiently through all this paper armed only with a manual of machine-
language opcodes and the ability to do binary, octal or hexadecimal
arithmetic, in an attempt to get the program going again.

To some people this remains the epitome of real programming, but others are
glad that programmers eventually began to create tools to help each other.

Many tools became available to aid programmers in the debugging process.
First came programs which interpreted the memory layout of the dump and
attempted to convert some of the information to assembler-like mnemonics.
Later came programs which enabled this process to be carried out
interactively on a memory image stored on disk. Not only did this mean that
the amount of paper was significantly reduced, but it also eliminated many
simple errors on the part of the programmer analyzing the data.

More recently, fully interactive debuggers have become available, which
allow similar functions to be performed on programs as they are running.
VID is an example of such a development.

The use of such tools can have a significant effect on debugging and error
correction. However, you must usually have a good idea which part of the
program is causing the error. Another problem is that errors can occur in

104 TOPSPEED TECHKIT

programs after they have been released and users are not keen on running
their applications under the somewhat technical eye of programs such as
VID.

Using the Post-mortem Dump involves two steps:

· Adding the appropriate code to your source program and
modifying your project file accordingly.

· Running VID on the resulting dump file (if an error occurs).

All fatal run-time errors, which you have modified your program to
recognize, now cause your program to produce the dump file
PM_DUMP.$$$ before your program terminates.

Including the Post-mortem Dump Facility in Your Programs

The inclusion of facilities for post-mortem debugging involves making small
modifications to your source program and the associated .PR file. It also
requires the use of one extra source file and the inclusion of a definition
module into your program. This section describes the necessary changes in
detail.

C source Code and Project Modifications

In order to use the post-mortem facility, the main file in the project must
import the header file pmd.h:

The file pmd.h declares the relevant external functions and variables.

The post-mortem dump is enabled by inserting the following line into your
main function:

Post-mortem dump may be disabled during execution by resetting the
variable to 0.

The macro UserFatalError(code) is also defined to allow you to terminate the
program and generate a post-mortem dump file. The example below causes
the creation of a dump file and terminates the program with an error code of
14:

To link the required code, the file cpmd.c must be compiled and linked by
inserting the following line into your project file:

ADVANCED PROGRAMMING GUIDE 105

Debug information must be present to allow VID to inspect the contents of
the post-mortem dump file.

Modula-2 Code and Project Modifications

In order to use the post-mortem facility, one module in the project must
import the definition file pmd.def:

The post-mortem dump is enabled during initialization of the PMD module,
but may be disabled by resetting variable includePMD to 0:

The procedure UserFatalError(code) is also defined to allow you to terminate
the program and generate a post-mortem dump file. The example below
causes the creation of a dump file and terminates the program with an error
code of 14:

Debug information must also be present to allow VID to inspect the contents
of the post-mortem dump file.

Pascal Code and Project Modifications

In order to use the post-mortem facility, one module in the project must
import the interface file PasPmd.it:.

The post-mortem dump is enabled during initialization of the PasPmd
module, but may be disabled by resetting variable includePMD to 0:

The procedure UserFatalError(code) is also defined to allow you to terminate
the program and generate a post-mortem dump file. The example below
causes the creation of a dump file and terminates the program with an error
code of 14:

Debug information must also be present to allow VID to inspect the contents
of the post-mortem dump file.

Using VID with a Post-mortem Dump

In order to use VID to examine a post-mortem dump, simply start it with the
following command:

106 TOPSPEED TECHKIT

VID then searches the redirection list looking for the first file called
PM_DUMP.$$$. If it cannot find this file, VID reports the error and
terminates.

If PM_DUMP.$$$ is found somewhere on the redirection list, the file is
loaded into memory, together with the appropriate source(s). You can then
use all the normal VID facilities except, those concerned with changing the
execution path of the program (i.e., setting breakpoints, etc) and actually
running the program.

ADVANCED PROGRAMMING GUIDE 107

Watch is a Terminate and Stay Resident (TSR) program which allows you to
monitor another program’s use of DOS Function Calls. Watch does not
require any extra instructions to be added to your program, and can be used
with any DOS program that uses standard DOS function calls.

Watch may be used to debug programs written in any of the TopSpeed
languages that generate code using DOS int21H services. When you have
finished using Watch, you can easily remove it from memory.

DOS Function Calls

Watch monitors DOS Function Calls. Whenever a program runs under DOS,
there are times when it uses the services offered by the operating system.
(After all, one of the reasons an operating system exists is to provide
common services to application programs.) Examples of some of these
services are:

· A summary of how much memory this machine has.

· Open the file C:\WP\LETTER.DOC.

· Find the first file that matches the wildcard A*.COM.

· Read a line of 80 characters from the keyboard.

· Check the date and time.

You could do all of these directly by addressing your computer hardware.
However, this would take time and knowledge, and would be terribly
complex and worst of all, non-portable.

MS-DOS provides a set of subroutines that provide these services. You can
imagine these subroutines as a built-in software library, heavily optimized
for the hardware on which it is running. A call to one of these DOS services
is known as a DOS function call.

108 TOPSPEED TECHKIT

Function codes

Each function is assigned a number, known as the Function Code. When
your program wishes to perform a DOS function call, it first loads this
function code into the 80x86’s AH register, and then performs an int21H
instruction, which calls the interrupt located at position 21H in the CPU’s
interrupt table. This interrupt table begins at the very bottom of RAM
(address 0000:0000H).

In addition to the function number, certain DOS function calls also require
parameters (for example, the Open File function requires the name of the file
to be opened). These parameters are passed to the function call in a
combination of the other registers of the 80x86 CPU. The particular
combination of registers used and the format of their contents depend on the
function being called. A complete list of all DOS function calls, together
with their input parameters, can be found in Appendix C: ‘DOS Function
Calls’.

As well as input parameters, the DOS functions also need to return a value
(even if this is just to confirm success). This is also performed using the
80x86 CPU registers, primarily the AX register. A number of the functions
indicate status information by setting and resetting the CPU flag registers.
The primary flags which are used are Zero and Carry. The usage of output
registers and flags is fully described in Appendix C: ‘DOS Function Calls’.

Calling DOS Functions

The following fragment of assembly code illustrates how DOS Function
Calls are utilized in a program, regardless of the language in which that
program is written.

This fragment illustrates the information that Watch interprets when you use
it to monitor a call. Watch gives you information about the contents of the
80x86 CPU registers, suitably interpreted for the call that the program is
making. The advantage of this method is that you can see the context of the
call, which, in turn, gives you the context in which an error is occurring.

Overview

Watch is a small program that sits in your computer’s memory and monitors
the DOS functions used by any other programs. You specify the DOS
function calls that you wish to monitor, and, each time one of these functions
is used, a window pops-up detailing exactly the environment in which the

ADVANCED PROGRAMMING GUIDE 109

call is being made. When the service has been completed, Watch displays a
new window detailing the results (if any) which the function is returning to
your program.

For example, when Watch is active and a program performs an int21H
instruction, the following occurs:

1. The AH register is checked to see whether the called function is in the list of
calls you have selected to be monitored.

2. If it is, Watch interprets the 80x86 register contents within the context of the
call and displays a window (known as the before window) detailing the
function called and the environment of the call. If this is not one of the calls
you have selected, Watch takes no action and allows the call to proceed
without hindrance.

3. Watch remains active in this way until you instruct it to restart by pressing the
 key. Control is then passed to the appropriate DOS service.

4. When the service is complete, Watch displays another window (known as the
after window) and interprets the 80x86 register contents in the context of the
returned values from the current DOS function call.

5. Pressing the key again returns control to your program exactly as if
the call had proceeded without Watch’s intervention.

While the before and after windows are active, Watch allows you to examine
the environment of the call in more detail. You can:

· Examine the contents of your Program Segment Prefix (PSP),
including the list of open file handles.

· Examine the contents of the 80x86 CPU’s registers.

· Examine the current list of Memory Control Blocks (MCBs).

· Examine, using a formatted display, the contents of a File
Control Block (FCB).

· Examine the contents of an I/O buffer (a record) that is being
read or written.

Monitoring Errors

In addition to simply monitoring the progress of DOS function calls, Watch
allows you to monitor their failure. “Fail” means any DOS function that
returns a result indicating failure, or that is likely to result in an
“Abort, Retry or Ignore?” prompt.

Watch can help in diagnosing the source of these errors, by displaying an
explanation of the cause and allowing the environment of the error to be
examined when the error actually occurs.

110 TOPSPEED TECHKIT

Requirements & Limitations

Watch is a powerful and useful program, but it requires that your computer,
operating system and programs obey the rules. The requirements to run
Watch are:

· Watch requires an IBM PC, XT, AT, PS/2 or closely compatible
computer with a monochrome or color monitor (CGA, EGA or
VGA).

· Watch does not run in graphics mode; it can only be used to
debug programs (or portions of programs) where the computer is
in text mode. This limitation only applies when the messages are
being displayed on the screen; messages can also be sent to the
printer or to a file.

· Watch can only monitor activities that properly use DOS
function calls. Watch cannot be used to monitor a program if the
program uses the computer’s hardware directly (for example,
writing directly to screen memory or explicitly using hard-disk
controller registers).

Starting Watch

Watch can be started by typing the following command at the prompt:

Watch is then loaded into memory, and you are presented with the initial
menu and information screen. From this screen, you can select the function
calls you wish to monitor and start the monitoring process. Full details of
this main menu are given in the section ‘Using Watch’, below.

Once Watch has been installed, it remains in your computer’s memory until
you explicitly remove it. Once Watch has started monitoring function calls it
continues to do so until you either unload it from memory or switch off the
monitoring. The monitoring can be switched back on again at a later time to
allow you to continue with your debugging.

Running More Than One Copy of Watch

You can only run one copy of Watch at a time. When you attempt to load the
program a second time, Watch detects that a copy of itself has already been
loaded. If the loaded copy is not monitoring any function calls, the main
menu appears in the normal way. If, on the other hand, you are currently
monitoring a set of function calls, a special menu is displayed:

This menu has three options:

ADVANCED PROGRAMMING GUIDE 111

U - Unload Watch

When this option is chosen, the current monitoring session is terminated, and
the monitoring file (if any) is closed. Watch is unloaded from memory if, and
only if, it is the last program loaded. You cannot unload Watch if another
program, which was loaded later, is still in memory; this would leave a
“hole” in the MS-DOS memory map.

S - Show Monitored Functions

Selecting this option causes Watch to display a box containing a list of the
functions currently being monitored. Press any key to return to the menu.

Q - Quit

Selecting this option returns you to the DOS command line without affecting
the behavior of Watch.

Starting Watch with Parameters

As you become more familiar with Watch you will begin to learn the
function numbers for individual functions. You can then set up the
monitoring conditions, automatically, when you start Watch. This is done by
specifying the codes as parameters on the command line. For example:

This command causes Watch to monitor the calls 06H (Direct Console I/O),
09H (Display String) and 0DH (Disk Reset).

Each code on the command line must be a two-digit hexadecimal number
(i.e., you must type 03 and not 3). You can set up to 45 DOS function calls at
any one time.

Using Watch

This section describes the Watch menus, options and related displays. The
interface is simple, complete and powerful. It is designed to provide the
maximum, manageable amount of information on your screen at a single
time.

The fastest way to find out how Watch works is to use it to monitor a mature
program. One course of action is to monitor some of the disk and/or
character I/O functions while using the DOS command line. As well as
demonstrating Watch, this gives some useful insights into the processes
within COMMAND.COM when you type a command at the DOS prompt.

112 TOPSPEED TECHKIT

The Main Menu

Once you have started Watch, you are presented with a screen showing the
Main Menu and a box listing the DOS function calls that are being
monitored. This box is initially empty.

You can select an option from this menu in one of two ways, either:

· By moving the Item Highlighting Bar using the arrow keys,
pressing RETURN to select the option, or:

· By typing the highlighted letter. In the case of the main menu the
highlighted letters are: I, A, E, D, S and Q.

Most of these options pop-up another menu offering a further selection of
options. The details of each Main Menu option are as follows:

I - Include an Entire Category

Within Watch, the DOS function calls have been grouped into 14 categories.
Each of these categories covers a related group of functions, for example,
Disk I/O or Character I/O. These groupings simplify the process of selecting
the functions you wish to monitor by allowing functionally related calls to be
accessed with a single keystroke.

The categories are displayed in a menu that pops-up when you select the I
option. Each of the 14 categories are letter coded; A through N. To select a
category, simply type the appropriate letter. A 15th category,
Functions that Fail, is also available. This allows you to monitor only those
functions that do not complete correctly. Most programs make many calls to
DOS; hopefully your programs only contain one or two that do not work
correctly. Watch allows you to ignore those DOS function calls where DOS
is not reporting any error.

Note: The menu box is only 10 lines long, but there are 15 options. This
means that you must scroll the menu up and down to display all the options.
You can do this by using the cursor keys. You can also use PgUp to display
the first 10 lines of the menu, or PgDn to display the last 10 lines

The list of DOS Function Call categories is:

A Character I/O

B Disk-level Services

C Directories

D Open/Create Files

E Close Files

ADVANCED PROGRAMMING GUIDE 113

F Read Files

G Write Files

H Find Files

I Delete/Rename/File-mode

J Date/Time

K Misc. DOS Services

L Program Start/End

M Memory Allocation

N Network Services

O Functions that Fail

The DOS function calls belonging to whichever category you select are
added to the displayed list. You can choose as many categories as you like.
Once you have finished selecting categories, press Esc to return to the main
menu.

When you select a category, the screen is updated to show the list of
functions you have chosen.

A - Add a Single Function

The use of categories is an advantage only when you are unsure as to which
specific DOS function calls are causing the problem. Eventually, you should
be able to narrow down your search to one or two calls.

Selecting this option pops-up a scrollable menu of all the DOS function
calls, given in order of the function call number as listed in Appendix C. For
each function call you wish to monitor, move the highlighted area over the
function and press RETURN. When you have finished adding items, press
Esc to return to the main menu.

E - Exclude an Entire Category

Selecting this option displays the same list of categories as the
Include an entire category option.

For each category you wish to remove from your list, select the category by
pressing the identifying letter. Again the list can be scrolled by using PgUp,
PgDn and the cursor keys. Press the Esc key to return to the main menu.

114 TOPSPEED TECHKIT

Note: This function has no effect if there are no function calls in the list.

D - Delete a Single Function

Individual DOS Function Calls can be removed from the list by selecting this
option. A scrollable list pops-up, as with the Add a single function option. To
remove a call, select the function(s) you wish to remove and press RETURN.
Pressing Esc returns you to the main menu.

As with the Exclude an entire category option, this option has no effect if
there are no calls in your selection list.

S - Start Monitoring

Selecting this option starts the Watch monitor of the selected function calls.
An Output Options menu appears asking you to specify where you want the
messages to be displayed:

If you choose to send messages to your screen, the debugging information is
displayed in a pop-up window. To continue running the program, you must
then press a key. Displaying the results in this way, allows you to alter the
current Watch configuration and examine the current environment of the
monitored program.

If you choose to send messages to the printer or to a file, the before and after
window information is written out as each DOS function call occurs. When
using these methods, you have no opportunity to carry out interactive
investigations as each call occurs.

Selecting the Send to file option prompts you for a filename. This file is then
created in the current working directory (not in the directory where Watch
was located). This file remains open until the current Watch session is
completed, i.e., until Watch is unloaded from memory.

Q - Quit (Without Monitoring)

This option allows you to exit Watch without starting a monitor. The list of
function calls to monitor is abandoned; you must reassign them before you
can begin another monitoring session.

The Main Watch Windows

The Before Window

The Before Window is displayed before a DOS function is called. It describes
the settings of the calling registers, showing the function being called and the
time since Watch was loaded.

ADVANCED PROGRAMMING GUIDE 115

In the example below, the function which is being monitored is 0AH
(Buffered Input). The parameters for function code 0AH are being passed in
DS:DX. This contains the address of the buffer to be used for the input (DS
has the segment; DX the offset). The first byte of the buffer is initialized to
the size of the buffer (in this case 80H, 128 bytes). The second byte is
reserved for the return (see below) of the actual number of characters
received into the buffer. Below that is an image of the current buffer’s
contents (in this case, it is empty). Along the bottom of the window are listed
the keys that are active. Pressing SPACE causes execution of the DOS
function call to continue. The displays provided by the other keys are
described in the following section.

The After Window

The After Window is displayed once the DOS function call is complete. The
display is very similar to the before window.

The example below shows the after window of the previous example. The
characters ‘d’ ‘i’ and ‘r’ have been typed on the keyboard, followed by the
pressing of the RETURN key. The window looks like this:

The second byte of the buffer now has the value 03h, indicating that three
characters are now in the buffer. The display shows those three characters. It
also notes that the function completed successfully. The listed keys produce
the same displays as they do in the before window, but with the information
updated as necessary.

The Supplementary Windows

This section describes the supplementary windows available through the
options displayed on the before and after windows.

F1 - Register Contents Display Window

Pressing F1 from either the before or after window clears the window and
displays the complete contents of the 80x86 CPU registers at the time the call
was made.

Note: The contents of the registers are in hexadecimal and Watch makes no
attempt to interpret them. Of course, some registers have meaning in terms
of the call (in our example DS and DX are significant), while others simply
contain “rubbish” or “nonsense” values. They may represent something in
terms of your program, but this will depend on the source language, the
compiler and the execution environment.

The diagram below shows a typical display:

The fields of the display are:

116 TOPSPEED TECHKIT

Event Count shows the number of DOS function calls made in this
Watch session.

CS:IP shows the current CODE Segment and Instruction
Pointer addresses.

Immediately below these two fields the other CPU registers are listed.

Flags shows the uninterpreted state of the 80x86 flag register.

A full explanation of the 80x86’s register architecture can be found in
Chapter : ‘TopSpeed Assembler’ of this manual.

Pressing RETURN, returns you to the before or after window.

F2 - Program Segment Prefix (PSP) Windows

Pressing F2 from either the before or after window clears the window and
displays the first of four sets of information about the program’s Program
Segment Prefix (PSP).

Every MS-DOS program has a PSP, which is an area of memory
immediately before the program. The PSP contains two default File Control
Blocks (FCBs), an image of the command line used to start the program, a
table for referencing the first 20 open file handles and other miscellaneous
information regarding the program. The following diagram is an example of
the first display:

The display shows:

Process ID MS-DOS assigns a sixteen-bit number (the Process ID)
to every program that is run; this is the Process ID
assigned to the program you are investigating.

Top of Memory
shows the last memory location used by the program
under investigation.

Terminate the address of the subroutine to which control will be
passed when this program finishes.

Ctrl-Brk the address of the subroutine to which control will be
passed when the Ctrl-Break key combination is pressed.

Crit Err the address of the subroutine to which control will be
passed if a critical error occurs.

Parent PSP the address of the Program Segment Prefix of the
process which started the current program. In the case of
programs started from the command line, this is the PSP
of COMMAND.COM, but any program can be the
parent process of another program.

ADVANCED PROGRAMMING GUIDE 117

Environ the address of the current environment variable block,
which is the area of memory where MS-DOS environ-
ment variables (such as PROMPT and PATH) are stored.

Pressing RETURN displays the first File Control Block (FCB). The two FCB
displays are identical in format, but normally differ in their contents. The
following example shows the first FCB:

In this example, the FCB is not in use and contains “rubbish” values. This is
not unusual, since not all programs use the default FCBs in the PSP when
accessing files. Pressing RETURN displays the second FCB for this
program. Pressing RETURN again displays the File Handle Table:

This display shows the status of the first twenty file handles used by the
program. Unless something unusual happens, the first five (0 - 4), are always
open. These correspond to stdin, stdout, stderr, stdprn and stdaux. The
remaining handles are available to the program.

Pressing RETURN displays the final screen about the PSP; an image of the
command line parameters to the program. A typical display may look like
this:

This display shows the contents of the command line buffer in hexadecimal
on the left and in character form on the right. Notice that it is possible for the
buffer to be filled with garbage. In this particular example, only the first 14
or so bytes are of any interest to the program.

Pressing RETURN returns you to the before or after window.

F3 - Memory Control Blocks Window

DOS keeps track of the memory occupied by each loaded program. This is
the purpose of the Memory Control Block (MCB) table. Pressing F3 from
either the before or after window displays the current MCB.Using this table,
you can see what programs are loaded, in what order, and how much
memory they are using. A typical display might be:

For each memory block allocated, the table shows where the memory block
starts, the address of the PSP of the program that owns that block and, if
possible, the name or pathname of the program. Also shown is the size of the
allocated block in bytes.

Pressing RETURN continues the list - if there are more entries to list - or
returns you to the before or after window from which you began.

F4 - Currently Monitored Functions Window

The final display available from the before or after windows is a list of the
DOS functions that Watch is currently monitoring. This display is obtained

118 TOPSPEED TECHKIT

by pressing F4 from either window. The DOS function calls are listed by
number; Appendix C contains a reference of the numbers and their
associated functions.

A typical display might have the following form:

Using this screen, you can modify the functions being monitored. Press F1 to
add a new DOS function call to the list; press F2 to delete one. You are then
asked to supply the function code you wish to add or delete. Type this in
hexadecimal, and press RETURN. The display is updated to show your
modified selection list. Simply press RETURN to go back to the before or
after window from where you started.

Suspending Watch

While Watch is active you can suspend it at any time by pressing Alt-
Backspace. Pressing Alt-Backspace again re-starts Watch using the same
DOS function call list for monitoring.

This facility is particularly useful if you want to re-compile your program. A
compiler performs a large number of DOS function calls and Watch would, if
not switched off, explain each one to you.

Watch for OS/2

The OS/2 version of Watch is very similar to the DOS version in its user
interface. An initial menu allows the programmer to choose OS/2 Kernel
API calls to be watched; they can be chosen individually or by category.
Once the API calls are selected, an output medium is selected (screen-only,
printer, or disk file). The target program is then executed as a child process
of OS/2 Watch.

When a selected API call is made by the application program, both a before
and after picture of the API call are shown. (If ‘Calls That Fail’ is chosen,
only an after picture of the call is shown.)

At each before or after pop-up, the programmer can optionally look at the
Global Information Segment, the Local Information Segment, and, if
appropriate, a memory area associated with the API call (such as a Read
Buffer). Also, the list of currently-watched API calls can be modified mid-
stream. Finally, if desired, the process can be terminated.

Of course, OS/2 Watch (unlike the DOS version) is not a TSR. It runs the
target program as a child process, and is invoked like this:

ADVANCED PROGRAMMING GUIDE 119

As OS/2 Watch can not intercept “Int 21h”, and is unable to rename/replace
DOSCALLS.DLL, it modifies the executable file to point to a special .DLL
file (WATCHDOS.DLL), that contains code to show the parameters to each
of the selected API calls. When OS/2 Watch finishes, it restores the
DOSCALLS.DLL entry in the target executable. However, be aware - if the
program aborts, it is sometimes possible that the WATCHDOS.DLL entry
may get left inside the executable file. For this reason, you should make a
practice of making a copy of the target executable file for OS/2 Watch
purposes (or re-linking it after a session with OS/2 Watch).

120 TOPSPEED TECHKIT

This chapter describes the utility programs distributed with the TopSpeed
TechKitÔ. These programs are the TopSpeed Disassembler (TSDA), the
TopSpeed Profiler (TSPROF), the TopSpeed Module Utilities (TSMKEXP,
TSIMPLIB and TSEXEMOD), the TopSpeed Help File Compiler
(TSMKHELP) and the TopSpeed Executable File Compression Utility
(TSCRUNCH).

File Redirection

All TopSpeed utilities use file redirection to locate their source and target
files. See the “ TopSpeed User’s Guide” and the “TopSpeed Developer’s
Guide” for details of file redirection.

The TopSpeed Disassembler

The TopSpeed Disassembler (TSDA) produces an assembler listing from
object (.OBJ) files. The listing is compatible with the TopSpeed Assembler
and may be used to recover “lost” assembly language source files.

The Disassembler is invoked from the command line with the following
form:

If you do not specify an extension to the file name, .OBJ is assumed. TSDA
issues an error message if it cannot find the file. Directories specified in the
default redirection file will be searched.

The Disassembler has a source line include facility. If an object file contains
line number information, the disassembler will insert the lines from the
source file into the output. This makes it much easier to determine which
code has been produced from which source line.

To produce an object file containing source line information, the pragma
debug(line_num=>on) or the command line option /b must be specified
when the object file is compiled. In addition, the object file must be
compiled with either minimum or full debug information. This can be done

ADVANCED PROGRAMMING GUIDE 121

in two ways, either by using the pragma debug(vid=>min) or
debug(vid=>full), or by using the command-line option /v1 or /v2.

Note: If you are disassembling object files for the purpose of comparing
the quality of generated code, you must specify (vid=>off). If full debug is
specified, the code which is generated is considerably less efficient. This is
because values are kept in memory rather than registers, so that VID can read
and/or modify them. If minimum debug is specified, the code which is
generated is close to the quality of the code generated without debug
information. However, certain optimizations concerning the re-ordering of
jumps, are not performed. This is because the correlation between machine
code and source code lines would become obscured to the point where VID
could not operate.

The assembly listing is directed to standard output, which defaults to the
terminal screen. If you wish to redirect the output to a file for later editing,
you should use the MS-DOS redirection facility. For example:

This command disassembles the object file myprog.obj and produces a
TopSpeed Assembler listing in the file myprog.a.

The Disassembler can be put to good use in tracking down problems in
object files produced by other compilers. You can use the Disassembler to
correct these problems and use your favorite utilities with TopSpeed. You
may even wish to use it to examine and compare the relative efficiency of the
code generated by various compilers.

TopSpeed Program Profiler

The TopSpeed Program Profiler (TSPROF) allows you to create an execution
profile of your program. This execution profile shows the frequency with
which different parts of your program are actively being executed. With this
information, you can direct your attention to improving of your application
in the areas where it is most effective.

TSPROF loads and runs your program and produces a file containing an
analysis of what happened while it was running. In order to achieve this you
need to generate a .MAP file when you make your program. You should also
set the line number option (#pragma debug(line_num=>on) when compiling
all modules that are required to be profiled (see the “TopSpeed Developer’s
Guide” for details).

TSPROF operates by sampling your program about 1000 times a second, and
by determining the point the program has reached every time it takes a
sample.

122 TOPSPEED TECHKIT

The information produced by TSPROF can be generated in two formats. The
default format produces a list showing the count of the number samples for
each function called by the program. The second format, which requires the /
L option, produces a list showing the line number the program had reached
at the time of the sampling.

If TSPROF cannot identify the line number or the function, it prints the word
Unknown. If the memory area sampled is outside your program, TSPROF
prints, where possible, the owning program’s name.

The syntax for using TSPROF is:

The following options are defined:

/O followed by the name of a file. This option changes the
name of the file where the profile is produced. The
default is <progname>.PRF.

/L causes TSPROF to generate a profile based on the source
file’s line numbers. If this option is not used then the
profile is based on the functions called. In order to use
this option you must have compiled the program’s
modules to include the line number information.

An Example

This example shows a profile of the sieve program. Having generated a
.MAP file at link-time and compiled the program with line numbers, the
following command line can be used to profile its execution:

This results in the following display on the screen:

TopSpeed Profiler Version 3.00
Copyright (C) 1988 Jensen & Partners International
Reading mapfile SIEVE.MAP
Starting profile, Output file SIEVE.PRF
50 iterations

1899 primes
C>_

The first four lines are printed by TSPROF, the others by sieve.

The file SIEVE.PRF contains the following information:

ADVANCED PROGRAMMING GUIDE 123

The information is shown in two forms:

· The first list shows the sampling information ordered by
memory location. The total number of samples for each area are
shown (together with the location in the program) and the
percentage of the total that this sample represents. Percentages
less that 1% are not shown.

· The second list shows the list sorted by descending order of
frequency. This makes it easy to see the most “popular” lines of
your program.

TSPROF runs under MS-DOS only. It does not run under OS/2
nor does it run in the DOS Compatibility Box under OS/2.
TSPROF needs to be able to successfully commandeer the MS-
DOS timer interrupts to ensure that sampling functions correctly.
OS/2 disapproves of this so much that TSPROF causes an OS/2
system to “hang” if you attempt to run it, even in the DOS

124 TOPSPEED TECHKIT

compatibility box.

TopSpeed Module Definition File Generator

The program TSMKEXP can be used to generate an export list from either
an object or library file:

Directories listed in the default redirection file will be searched.

TSMKEXP will output a file containing an export list of all the public
symbols from the binary object or library file in the following form:

Note: When making DOS DLLs a default segmentation setup must
be included in the file. See Chapter 2: ‘Segment-based
Overlays’ for more information.

TopSpeed Import Library Generator

The program TSIMPLIB can be used to generate an import library from a
module definition file:

Directories listed in the default redirection file will be searched.

See Appendix B: ‘Module Definition File Syntax’ for more information.

TopSpeed Module Header Utility

The program TSEXEMOD can be used to modify the header and segment
information in a new format executable file (.EXE or .DLL), using the
information in a module definition file:

Directories listed in the default redirection file will be searched.

See Appendix B: ‘Module Definition File Syntax’ for more information.

ADVANCED PROGRAMMING GUIDE 125

TopSpeed Executable File Compression Utility

The TSCRUNCH program is is a utility to compress .EXE files to the
minimum possible size under DOS. The executable file is compressed using
LWZ compression techniques and then has a small loader/expander added to
the startup code. This form of compression can reduce the exe file by up to
50% of its original size.

To use TSCRUNCH just type the following at the DOS prompt:

For example:

This will create a new executable file (providing the compression is
worthwhile) and create a backup of the uncompressed file with the extension
.EXB.

It should be noted that compression of an exe file will cause the loading time
to greatly increase, so it is best used on .EXE files that are either infrequently
used or where the loading time is not significant.

Note: TSCRUNCH cannot be used for overlay or dynalink model
programs, nor for Windows or OS/2 programs. TSCRUNCH cannot be used
for files containing VID or CodeView debug information.

TopSpeed Help File Compiler

You can use TSMKHELP to make your own help files for use within the
TopSpeed environment. Help files are compressed files with the extension
.HLP and are generated from specially formatted text files (with the
extension .HTX). To run TSMKHELP just type the following at the DOS
prompt:

and <helpname>.HTX will be read and <helpname>.HLP generated.

The file TSMAIN.HTX is supplied as an example .HTX file which allows
you to re-make the ‘root’ TopSpeed help file. The format of the .HTX file is
described in the supplied file TSMKHELP.DOC.

126 TOPSPEED TECHKIT

The TopSpeed TechKitÔ contains all the definition and implementation files
you need to create a Terminate and Stay Resident (TSR) module in Modula-
2. This module enables you to create memory resident programs. When first
run, these programs execute, terminate and then remain in memory - as an
extension to the part of DOS that remains resident - in an inactive state until
invoked through a special “HotKey” sequence.

Most TSR programs, and all those written using this module, go through the
following steps when run:

· The interrupt services table is redefined so that the entry for the
keyboard interrupt points to a short routine. This routine
compares your keystrokes to the hot-key sequence and activates
the program when a match occurs. Where no match occurs the
keystrokes are passed directly on to DOS.

· The size of the routine to remain resident is derived, along with
any stack and heap space needed. This figure (rounded up to the
nearest paragraph) is used when calling DOS to terminate and
keep the program.

· DOS function 31H is called, requesting termination of the
current program, freeing all memory other than the required
resident portion.

The code for a TSR program remains resident in a portion of working
memory, until the HotKey is pressed. At this point the program is activated
and carries out its task. The program then suspends itself (until the next
HotKey press) and execution continues in the program that had been
interrupted.

Once a TSR has been correctly installed, the memory organization of your
PC looks similar to this:

ADVANCED PROGRAMMING GUIDE 127

To help you to understand how a TSR module works, the source code is
provided with your software in the file TSR.MOD. However, be careful if
you intend to modify it.

Note: When writing TSR programs you must ensure that the model is
defined as mthread. The reason for this is that the TopSpeed TSR module
uses the Modula-2 Transfer facility to activate TSRs; this facility is available
only with this model.

Activating a TSR Program

The HotKey which activates the TSR program is usually a combination of
one or more shifted keys (Ctrl, Alt, RShift, and LShift). The normal keys may
also be used in combination with the shift keys.

When a shift key is pressed, a bit is set to ON in a status mask at a particular
address. Where a program requires a further key to be pressed, this returns a
scan value associated with that key. This combination of status mask and
scan values constitutes the HotKey to activate the TSR program.

In the TopSpeed TSR module, the status mask bits are represented in the
following set:

Only the first four keys specified in a KBFlagSet are available for use in
HotKeys built with the TSR module.

Note: When writing a TSR program, you must specify the mask and scan
values to make up your HotKey. These values are passed as parameters to the
procedure Install, which is contained in the TSR module.

Installing a TSR Program

Before you can activate a TSR program, you must install it in memory. The
Install procedure does this for you.

The declaration of Install is as follows:

P must be a global procedure. It is called whenever the
TSR program is activated.

128 TOPSPEED TECHKIT

KBF is a set of shift keys which should be pressed for the
HotKey.

Scan is the additional scan code. (Table 4-1 shows the scan
codes for the IBM-PC.) If zero is specified for Scan,
then only the shift keys need to be pressed.

heapsize is the minimum amount of heap your program requires
(in paragraphs).

For example, Install could be called as follows:

This call specifies:

· The TSR program is activated by pressing Ctrl-LShift-A.

· The program needs 4K of heap space (16 * 256).

· When activated, the program calls the procedure TheAction to
perform the allotted task.

Install does not complete until the TSR is de-installed (that is, the program is
unloaded from memory).

Scan Codes for the IBM PC

ADVANCED PROGRAMMING GUIDE 129

An Example TSR Program

The following listing contains a very simple TSR program. This program
writes “Hello” whenever Ctrl-LShift-A is pressed:

Cautions about TSR Programs

Great care must be taken when writing TSR programs. You must remember
that DOS and the BIOS are not re-entrant; they only have one set of
variables. This means that if a program has just called MS-DOS, and your
TSR pops-up and tries to use the same MS-DOS variables, the result may
become rather confused, and the system will probably crash.

The TopSpeed TSR module avoids this by limiting your TSR to (safely)
calling interrupt 21H functions 01H to 0CH only.

Other considerations that you must take into account when creating TSR
programs are:

· You cannot use DOS functions below 0EH. This includes
IO.RdKey and IO.KeyPressed.

· You cannot use the scheduler provided in the TopSpeed Process
module.

· TSRs must be created with the multi-thread model.

· You must ensure that sufficient heap and stack space has been
allocated (see below for how to do this).

· You should switch-off run-time checking. If a run-time error
does occur, the machine will require a hard reset.

· If you plan to use more than one TSR at any one time, they may
clash and require loading in a particular order. You may need to
experiment with this.

· When a TSR program starts to work, it does not check to see
what is displayed on the screen before starting to write. This

130 TOPSPEED TECHKIT

may corrupt the screen. To avoid this, a window should be
opened to house the TSR program’s input and output.

· A good programming point - if you intend to write a TSR
program, ensure that it is well behaved towards system calls,
interrupts and resources. This minimizes clashing with other
programs.

TSRCALC.MOD provides a more complete example of a TSR program.
This program makes use of a window for calculations.

Note: The window is defined in the main TSRCALC program, not in the
procedure RunCalc (this executes when the TSR program is activated).
RunCalc simply uses the window for its screen I/O.

If insufficient heapspace is allocated (i.e., the heapspace parameter is too
small) you will prevent the program from being loaded. The following error
message is produced:

 not enough storage

It may require some trial and error until you find a heapspace that is small
enough not to steal unnecessary memory, but large enough to handle your
TSR program safely.

The size of the heap before the call to TSR.Install is not relevant, since the
remaining heapspace is freed by the TSR.Install procedure.

The stack can be set using a compiler pragma, in this case:

This should be located in the main module and allocates n bytes for the
program’s stack.

The TSR program should not be run from inside the TopSpeed Environment.
When control is returned to the environment, the storage where the TSR
program is located is reclaimed, which crashes your machine.

Deactivating a TSR Program

When the TSR program has finished its execution cycle, it must return
control back to the interrupted program. This deactivation process stops the
TSR program but does not remove it from memory. Rather, the program is
suspended until it is activated again.

The example above deactivates itself immediately after writing “Hello” on
the screen. You need not do anything for this to happen. Other programs (for

ADVANCED PROGRAMMING GUIDE 131

example TSRCALC) continue to run until you indicate that you have
finished. Generally, pressing Esc accomplishes this.

Terminating TSR Programs

It is also possible to terminate a TSR program, which removes it from
memory. Unlike deactivation, which just suspends the program, termination
actually frees the memory in which the program had been residing.

To terminate a TSR program, you must call Deinstall or HALT. Such a call
restores all interrupt traps, and frees the memory that had been allocated to
that TSR program. To accomplish this, simply include the following
statement at the appropriate point in your program:

It is very important to terminate TSR programs in the correct order in a
stack-like fashion. That is, the last TSR program installed must be the first
one to be terminated. Ordinarily, you must be at the command prompt to
Deinstall your TSR programs. Thus, if a program is still active, it must be
terminated first.

Note: The simple TSR program used earlier does not call Deinstall. This
means that the program remains resident until you reboot. Other programs
allow you to terminate them. For example, pressing Alt-X while TSRCALC
is active terminates the program. Pressing Alt-X produces a call to Deinstall.

If your TSR program cannot guarantee (to itself) that it is the last program in
the memory, then it may be wise to prevent yourself from being able to
terminate the program.

The TSR Module

The TSR module is interesting for several reasons. It represents a good
example of the advantages of keeping procedures and data hidden, within an
implementation module.

The definition part of the module is quite sparse. There are only two
procedures which are defined, these are Install and Deinstall. The only data
structure is the KBFlagSet. This module is very easy to read and understand.

The implementation module, on the other hand, contains 15 procedures and
several other data structures, as well as numerous constants. Setting up a
TSR program can be quite messy, but this is hidden in the implementation
module.

The TSR module is also useful as an introduction to handling interrupts and
manipulating storage in a DOS environment.

132 TOPSPEED TECHKIT

The TSRCALC Program

The sample TSR program, TSRCALC, is a simple, four function calculator
for integer computations. Once you have compiled the calculator, you can
install it by typing:

Once installed, you can activate the calculator by pressing Alt-Z.

When you activate the calculator, the program opens a small window in the
center of the screen. Any numbers that you enter are echoed in the window;
operators are not. You can do your computations in base 2, 10, or 16. Check
the source code for the RunCalc procedure for more information on what
TSRCALC allows you to do.

When you have finished using TSRCALC for a session, press Esc to suspend
it. To remove TSRCALC completely, press Alt-X while TSRCALC is
activated.

ADVANCED PROGRAMMING GUIDE 133

RS-232 Support

The TopSpeed Modula-2 rs module provides the procedures and data
structures that you need to make use of your computer’s RS-232 serial
communications port. The module definition contains several procedures for
configuring, using and monitoring this port. You can use either
communications port 1 or 2.

Serial communication generally takes place asynchronously, that is, one
event dictates the timing of another. This is in contrast with synchronous
communications (usually used for communications to mainframes and some
LANs) in which each event occurs at a certain time, normally dictated by a
clock pulse.

Rather than tying up the computer waiting for an asynchronous event to
occur, communications programs are usually ‘interrupt-driven’ - that is, they
act upon an interrupt from the port. The serial port hardware generates an
interrupt whenever data has arrived at the input buffer or has been correctly
sent.

An alternative method of operation is for the communications program to
continuously check the input buffer, to see if anything has arrived. This
method is called polling and is not used in this module, since it is really only
suitable for slow data rates.

This means that interrupts play an important role in the process. Interrupts
are particularly important when multiple processes are running at the same
time. In this case, interrupts are used not only to coordinate the scheduling of
processes, but also to control the use of buffers and storage.

For example, a communications program might disable certain types of
interrupts until the entire contents of a buffer were transmitted. This would
prevent another process from inadvertently destroying the integrity of a
packet of information, by writing between elements of the packet.

134 TOPSPEED TECHKIT

The rs module works by installing new interrupt handlers that signal the
status of the serial port, i.e. whether data can be sent, has arrived or if it is
empty or full.

The rs module is designed to handle communication ports 1 and 2 on your
computer. However, the source can easily be modified to provide support for
ports 3 to 8, if necessary.

To correctly drive COM1 or COM2 you must know the interrupts they use
and the port addresses they occupy. These are:

Port Interrupt Address

COM1 4 3F8H

COM2 3 2F8H

It is useful to know that the computer’s BIOS provides a call to access
COM1 and COM2 in the form of int 14H. However, this is far too slow for
any reasonable speed of communications (1200 baud and over). When you
need speed, use the rs module.

The rs.def File

The definition part of the TopSpeed rs module defines two data types:

pt the parity being used
wl the number of data bits being used in the transmission

These are used by a number of the procedures in the module.

Initializing the Port

The rs module uses two separate procedures to set up the hardware to allow
proper use of the port.

The Install Procedure

The Install procedure installs the appropriate interrupt handlers for the
specified port. This procedure must be called before any of the other rs
procedures can be called.

The declaration of this procedure is as follows:

where Port is the number of the port to be initialized. For example:

ADVANCED PROGRAMMING GUIDE 135

This program statement installs the necessary interrupt handlers, to allow a
user to work with the second communications port, COM2:

The Install2 Procedure

The Install2 procedure is a secondary installation routine in which the
interrupt to be handled must be specified (using the Intr argument). This is
mainly to allow programs to access communication ports other than COM1
and COM2 (or any other non-standard serial port).

The declaration of this procedure is as follows:

For example, on a number of machines COM3 and COM4 can be used as
follows:

For COM3:

and for COM4:

The Init Procedure

This procedure initializes the port specified by Install and sets the port
parameters according to the specified settings passed as arguments.

The declaration of this procedure is as follows:

The parameters have the following ranges:

Baud the baud rate, this can be up to 115,200 on fast ma-
chines.

WordLength specifies the number of databits in each packet. This
must be between 5 and 8 bits.

Parity specifies the parity checking (if any) to be used. This
may be: None, Even, Odd, Mark or Space.

OneStopBit a BOOLEAN switch, either one stop bit or none.
HandShake a BOOLEAN switch setting CTS handshaking on or off.

The BOOLEAN values define whether each packet ends with a single stop
bit, and whether the two computers are to use handshaking to coordinate

136 TOPSPEED TECHKIT

their communications. (The handshaking used is hardware-based, using the
RS-232 CTS line.)

For example, the following statement initializes communication at 1200
baud, using seven data bits and one stop bit, with even parity, and
handshaking:

Keeping Track of Buffers

Buffers are set-up to handle the received and transmitted data. These are
initially set to 256 bytes in length, but can be increased by modifying value
of BufferSize in RS.MOD. There are three procedures supplied which enable
you to determine information about the state of the buffers used in receiving
or sending information.

The RxCount Procedure

This procedure returns the number of bytes in the receiving buffer. This
procedure is declared as follows:

For example:

The TxCount Procedure

This procedure returns the number of bytes still to be sent, i.e. those
remaining in the transmitting buffer. This procedure is declared as follows:

For example:

The TxFree Procedure

This procedure returns the number of bytes free in the transmitting buffer.
This buffer is particularly important in a program which uses the RS-232
interface to transmit packages of information, so that you can ensure that a
package is not split up during the transmission process. This procedure is
declared as follows:

For example:

ADVANCED PROGRAMMING GUIDE 137

Sending and Receiving Data

The two procedures that actually exchange information with other programs
are Send and Receive. Both procedures have a length parameter, which
specifies the number of bytes to send or receive.

Information about the number of elements in the buffer is important when
using these procedures. For example, if the length parameter specifies that
more bytes are to be sent than are free in the transmitting buffer, then the
system may do a Busy Wait, thereby tying up the system, unless preventative
actions are taken. The same thing would happen if a call to Receive expects
to receive more bytes than are in the receiving buffer.

The Send Procedure

This procedure sends a specified number of bytes to the port being used. The
information being sent is held in a specified buffer. This procedure is
declared as follows:

where Buf is the name of the buffer and Len is the length in bytes.

For example:

sends 200 bytes, taken from the array XBuff. These bytes are sent to
whichever port (1 or 2) is being used.

The Receive Procedure

This procedure receives a specified number of bytes through the port being
used. The information being received is stored in a specified buffer. This
procedure is declared as follows:

For example:

receives 200 bytes, and stores them in the array XBuff.

138 TOPSPEED TECHKIT

Sending and Checking for Breaks

The following procedures allow you to send a break signal from one
computer to the other, and to test whether a break signal has been received
by your computer.

The Break Procedure

This procedure sends a break signal lasting of a defined period in
milliseconds.

This procedure is declared as follows:

PROCEDURE Break (Time : CARDINAL);

For example:

Break (500);

sends a break signal for 0.5 seconds.

This should only be done when the send buffer is empty, which can be
established with a call like:

WHILE TXCount()#0 DO END;
Break (500);

The BreakTest Procedure

This procedure returns TRUE if a break signal has been received, and
FALSE otherwise. This procedure is declared as follows:

PROCEDURE BreakTest(): BOOLEAN;

ADVANCED PROGRAMMING GUIDE 139

An Example Program

The following, short program demonstrates the instructions outlined above.
This example initializes COM1 to communicate at 1200 bits per second, and
will display everything received until any key is pressed.

The program then sends a break signal.

The RSDEMO Program

The RSDEMO program included in your TechKitÔ is a simple driver for the
RS-232 port. The program uses the rs module.

RSDEMO can dial a number for you, and can send the appropriate string to
start communications with another computer. Once communications have
been established, the program transmits anything you type at the keyboard,
until you press F2. The program hangs up when you press this key.

In its supplied form, the program does relatively little checking and
safeguarding. You may wish to make the program more sophisticated and
robust.

140 TOPSPEED TECHKIT

Library Initialization and Termination

Overall Order of Library Initialization

The initialization of library low level modules, static objects and Modula-2
(and Pascal) modules occurs before the execution of the program starting
point - the function main or the main module:

1. Low-level system startup.

2. Library low level initialization.

3. C++ library static objects.

4. User C++ static objects.

5. Modula-2 and Pascal module and static object initialization code.

Program Termination

On program termination the following procedures are executed:

1. The Modula-2/Pascal terminate chain is executed.

2. Any procedures on the C atexit/onexit stack are executed on a last in
first called basis.

3. Any C++ static destructors are called in the reverse order to that in which the
constructors were called.

4. Low level library cleanup is executed: Files are flushed and closed, then
temporary files are deleted. Interrupt vectors are restored.

If a new process is executed (using the C exec??? family of functions)
interrupt vectors are restored and open streams are flushed. No user
terminate functions or static destructors are called.

ADVANCED PROGRAMMING GUIDE 141

Termination due to Fatal Error

The normal termination procedure is followed and then the ERRORINF.$$$
file is created. If another fatal error occurs during processing of termination
code the process terminates immediately.

Program Termination under OS/2

The above procedures are followed unless an exception, such as a segment
over-run, occurs.

· Only user specified termination procedures are executed (those
installed by Terminate or atexit).

· Code should be limited since a recursive error will prevent OS/2
from killing the process.

· By default buffered streams will not be flushed and static C++
destructors will not be called.

Note: For information concerning creating initialization code in
assembler see Chapter : ‘Multi-language Programming’.

The Library and Embedded Systems

Embedded system users will not be able to use the standard TopSpeed startup
code, or all of the modules and functions that comprise the standard libraries.
The following section gives a broad indication of the approach that an
embedded systems programmer should take.

Startup

The startup file INITESYS.A should be used in place of INITEXE.A. This
file should be used as a basis for program startup; individual library files
may be linked as required.

Linking Library Files

The module CoreRtl should be used to provide support for compiler
generated calls and Modula-2/Pascal initialization. The choice of other
modules used depends on the exact nature of the run-time environment.

C Library Considerations

Using the C run-time library in an uninitialized state the following groups of
functions and variables are not available or are subject to restrictions:

· Command line arguments. The global variables _argc and _argv
are not available.

142 TOPSPEED TECHKIT

· Post-mortem dump: not available.

· Signal handling. The functions abort, signal and raise are not
available.

· The program timer. The functions clock (time.h) and delay
(stdlib.h) are not available.

· File IO.

· All functions using FILE structures are not available, but the
string formatting functions such as sscanf and sprintf may be
used subject to the restrictions below.

· The standard files stdin, stdout, stderr, stdprn and stdaux are not
available except to those low level I/O functions with preceding
underbars (for example, _read, _write etc) which do not use the
file descriptor table.

· All functions using file handles may be used on files other than
the predefined handles. For example open, close, read, write etc.

· Process sub-system. Multi-thread programs may not be used
(process.h). Child processes may not be spawned using exec??,
spawn?? and system.

· Floating point. Floating point can be present, but the exception
handling mechanism will not be initialized causing library math
functions to behave incorrectly. It is therefore not advisable to
use floating point functions.

· Memory allocation. Neither the far or near heap functions are
available.

· Text windows. Window functions (window.h) may not be used.

· Graphics. Graphics functions (graph.h) may not be used.

· Environment strings. The local C environment is not available so
functions putenv, getenv and searchenv may not be used.

· String handling. strdup may not be used since it calls malloc.

· Console I/O. All console I/O functions can be used, but not in
conjunction with either the JPI window or clipping window
libraries.

· Numeric Conversion functions may be used except for those
having real numbers as in or out parameters. sscanf and sprintf
may be used if the %g|e|f format specifiers are avoided.

· The functions qsort or hqsort may not be used.

ADVANCED PROGRAMMING GUIDE 143

· Functions that generate software interrupts (not int86), or use
self modifying code may not be used.

Modula-2 Library Considerations

The following groups of functions and variables are not available or are
subject to restrictions:

· Command line arguments. ParamStr and ParamCount are not
available.

· Post-mortem dump. Not available.

· Program timer. The function Lib.Delay is not available.

· FIO. All functions using file handles may be used on files other
than the predefined handles: StandardInput etc.

· Process sub-system. Multi-thread programs may not be used
(process.def). Child processes may not be spawned using
Lib.Exec etc.

· Floating point. Floating point can be present, but the exception
handling mechanism will not be initialized causing library math
functions to behave incorrectly. It is therefore not advisable to
use floating point functions.

· Memory allocation. Neither the far or near heap functions are
available. Sub allocation functions may be used.

· Text Windows. Window functions (window.def) may not be
used.

· Graphics. Graphics functions (graph.def) may not be used.

· Environment strings. Not available.

· IO. All console I/O functions can be used, but not in conjunction
with the window module.

· Functions that generate software interrupts (not MsDos), or use
self-modifying code are not available.

Pascal Library Considerations

The following groups of functions and variables are not available or are
subject to restrictions:

· Command line arguments. ParamStr and ParamCount are not
available.

· Post-mortem dump. Not available.

· Program timer. The function PasDos.Delay is not available.

· File variables may be used other than the predefined _input and
_output.

144 TOPSPEED TECHKIT

· Process sub-system. Multi-thread programs may not be used
(PasProc.itf). Child processes may not be spawned using
PasDos.Exec etc.

· Floating point. Floating point can be present, but the exception
handling mechanism will not be initialized causing library math
functions to behave incorrectly. It is therefore not advisable to
use floating point functions.

· Memory allocation. Neither the far or near heap functions are
available. Sub-allocation functions may be used.

· Text Windows. Window functions (PasWin.itf) may not be used.

· Environment strings. Not available.

· TurboCrt. Not Available.

· Functions that generate software interrupts (not MsDos), or use
self modifying code are not available.

Extending File Handle Limits

SourceKit Users

The file CoreFile.a may be edited to select the desired number of handles.
Change the macro OPEN_MAX to the required total, including predefined
handles.

Now remake the libraries or include the file corefile in your project to over-
ride the default (this will generate linker warnings).

Header files may be changed to reflect the increased number:

C change OPEN_MAX, SYS_OPEN, and FOPEN_MAX
in stdio.h.

Modula-2 change MaxOpenFiles in FIO.DEF.

Standard Edition Users

Select the appropriate corefile.XXX interface file for your language and edit
as instructed in that file.

Extending Threads Limits

To change the number of threads supported by the library the file corelib.inc
must be edited, changing the definition of MAXTHREAD to the desired
number.

In the appropriate header file for each language (process.h, process.def or
process.itf) you must change MaxProcess to reflect this number.

ADVANCED PROGRAMMING GUIDE 145

The affected libraries must then be remade.

OS/2 Multi-thread Programming

Under OS/2 three layers of multi-thread programming exist:

· The top layer comprises the JPI process module. All library
modules and floating point are supported, plus portability is
possible to DOS.

· The middle layer involves using _beginthread and _endthread.
(In Modula-2 and Pascal these are available in CoreProc). All
library modules and floating point are supported, but portability
to DOS is lost. Using this interface it is possible to determine the
thread number of a child thread.

· The lowest layer is the OS/2 API. Using
DOSCREATETHREAD does not initialize the library, floating
point emulator and stack checking mechanism. Only those
library functions that do not require locking or floating point
may be used (for example string functions).

146 TOPSPEED TECHKIT

Introduction

In any computer system above a minimum level of complexity, applications
do not use the addresses they are given to access memory directly. First they
are translated to a new location in system memory. This is at the heart of a
modern operating system’s ability to handle several users, to swap tasks in
and out of fast memory, and to protect user programs against each other

This means there is always a distinction to be made between the user address
space, sometimes called the virtual address space, and the system address
space, sometimes called absolute address space. Generally speaking, the
more complex the system, the more important this distinction becomes.

TopSpeed compilers run on the industry standard 80x86 family of
microprocessors, which have a unique segmented architecture with a wide
range of address modes. The compiler offers a full range of features to take
advantage of the choice this offers and to optimize your program’s use of
memory and time, even on the most advanced operating systems now in use
on the 80x86 range.

The 80x86 Architecture — A Design Compromise

The 80x86 architecture arises from a conflict between two design goals.
Early microprocessors catered for compact programs which used memory
efficiently. But as programs got bigger and memory got cheaper, it became
both desirable and feasible to provide a large address space.

The 80x86 family offers both 16- and 32-bit memory addresses, and nine
address registers which can be used in 36 different combinations. In addition
the 80286, 80386 and 80486 processors offer two address modes known as
real and protected. Data and program can therefore be organized and
referenced using a variety of different addressing schemes or memory
models, each with its own advantages and drawbacks.

ADVANCED PROGRAMMING GUIDE 147

As a program writer you face a choice: if you want small, fast programs you
must restrict what they can do and the size of the objects they can handle. If
you opt to remove these restrictions you will pay a price in efficiency. When
choosing a memory model, you must try to strike the appropriate balance
between these objectives.

Modern high-level languages, which are designed to be machine-
independent, do not possess inbuilt program constructs to deal with this
embarrassing wealth of address modes. For languages and programs which
do not use pointers, this is not a major problem. But Pascal, C, Modula-2 and
C++ offer extensive and at times exotic pointer facilities, which are almost
indispensable to modern object-oriented approaches.

TopSpeed Language Extensions for Memory Models

TopSpeed therefore provides a comprehensive and uniform set of language
extensions to deal with the 80x86 address structure, so that programmers can
profit from the choices offered by industry standard machines. This makes it
the ideal tool for object-oriented programming and multi-tasking systems.

The Standard Memory Models

You do not have to familiarize yourself with these different memory models
to write working programs. TopSpeed has default standard models which
cater for the most common situations. For the great majority of applications,
all you have to do is choose the correct standard model and the TopSpeed
system will do the rest for you.

Customizing Memory Models

If you wish to go into more detail, TopSpeed gives you full control and
complete flexibility. It allows you to define customized memory models — a
unique and powerful feature.

Finally, TopSpeed permits Mixed Model Programming in which you adopt a
standard or custom model that provides the segment organization and default
address mechanism, but override the addressing default for selected objects
— for example, in a small application with a data space which is small
except for one or two large objects that need to be placed in far memory.

The 8086 Architecture

Address architecture is easier to understand by studying how it evolved from
the original 8088 and 8086 system. This will provide you with an insight into
the reasons for using different memory models, and how to get the most
efficient results from TopSpeed compilers.

148 TOPSPEED TECHKIT

Segments, Addresses and Registers

The Intel 8088 and 8086 processors, which were used in the early, ‘standard’
PCs, in PC XTs and are still used in many laptops, have 20-bit address buses.
This means that they can address up to one megabyte of memory. However,
the processor registers only have 16 bits, so an absolute address requires two
registers. Intel solved this problem by dividing the memory into 64K byte
chunks called segments. These can begin anywhere in memory and be of any
size under 64K bytes; they can even overlap.

Usually, a segment begins on a paragraph boundary (an address at a 16-byte
boundary) so that a single register can hold its address. This segment address
is held in one of the following four segment registers:

CS the Code Segment register, addresses the segment
containing the program code.

DS the Data Segment register, addresses the segment
holding the program’s global data.

SS the Stack Segment register, addresses the segment
holding the stack.

ES the Extra Segment register, is used for extra data ad-
dressing, for example, for writing to video memory.

If a program has more than one CODE or DATA segment, the contents of the
CS and DS registers will change during the execution of the program.

The segment registers do not form the complete picture since you need to
address bytes within the segment. Intel termed this form of address the offset
within the segment. You use the processor’s other registers to hold the offset.

Five of the most important registers are:

SP the Stack Pointer register, points to the top of the stack.
BP the Base Pointer register, is used to address automatic

variables, parameters being passed to called functions,
and return addresses from the stack.

SI the Source Index register, is used for copying strings and
pointer indexing.

DI the Destination Index register, is also used for copying
strings and pointer indexing.

IP the Instruction Pointer register, points to the next instruc-
tion within the CODE segment.

The 8086 also has four general-purpose 16-bit registers. You can use each
register as two 8-bit registers. For example, you can split the AX register into
AH (A High) and AL (A Low) registers.

The four registers are:

ADVANCED PROGRAMMING GUIDE 149

AX often used as an Accumulator.
BX often used to hold a Base address.
CX often used for Counting.
DX often used for Data.

Address Calculation

You usually refer to an absolute address with a segment:offset pair,
commonly written with a colon (‘:’) between them.

For example,

You calculate an absolute address by multiplying the segment register by 16
(shift left by four) and adding the offset address. For example, given
CS=1234 and IP=3456, the absolute address is 1234*16+3456 = 23400.

Real and Protected Modes

The 80286 processor and its successors, the 80386 and 80486 processors,
can run in real and protected modes. DOS uses real mode addressing
regardless of the machine processor. In real mode, the processor can only
address one megabyte of the possible 16M bytes attached to the processor.

OS/2 currently uses 286 protected mode on the 80286, 80386 and 80486
processors. Protected mode addressing still uses two registers to obtain an
absolute address with the offset address; this is the same as in real mode.
However, in protected mode, the segment registers do not contain the
paragraph addresses of segments in memory. Instead, they contain selectors,
which are indexes into memory tables holding segment descriptors. A
descriptor contains the 24-bit memory address of the segment, as well as
protection flags and segment size.

The addressing mode is transparent to the programmer because you still use
a segment:offset pair for addressing. The ability of the processor to protect
one program from overwriting other programs requires that pointers cannot
point at absolute addresses. If you try to do this, OS/2 gives you a general
protection (GP) fault.

Near and Far Pointers

When describing the segment registers, we mentioned that when a program
has more than one CODE or DATA segment, the contents of the CS or DS
register will change during program execution. This is what using memory
models is all about; loading the segment registers as infrequently as possible,
while ensuring that they have the correct segment addresses in them at all
times.

150 TOPSPEED TECHKIT

There are two general types of pointer corresponding to two solutions to this
problem. The most general pointer is a four-byte object consisting of a
segment:offset pair. This is dereferenced by loading the two segment bytes
into a segment register, the two offset bytes into a general register, and then
accessing the data via the registers. This kind of pointer is called a far
pointer.

This is unnecessarily complex if the program has less than 64K bytes of code
or data. A two-byte pointer, holding only an offset address, can then be used.

In this case the CS, DS and SS registers need only be set at the beginning of
the program, and offset addresses, relative to one of these registers, are used
to access code and data. A pointer, therefore, only needs to be an offset
address and is called a near pointer.

With far pointers the program can have multiple segments, thereby enlarging
it. The segment register contents change according to which data or function
is in use.

The overhead of changing the segment registers makes near pointers to data
and functions produce quicker and smaller code. Experienced programmers
use near pointers as much as possible.

This applies to both real and protected modes but especially in protected
mode. The overhead introduced by the protection checking in protected
mode makes loading segment registers particularly slow.

Using Memory Models

TopSpeed offers several methods of controlling pointer size, but the easiest
and safest is to use the correct memory model. A memory model sets
defaults for address handling which apply uniformly to all pointers,
minimizing the risk of error arising from different pointer representations. A
further advantage of using a memory model is that it cuts down the number
of non-standard constructs in your program, making it more portable.

TopSpeed’s standard memory models are described below. You should use
the smallest memory model that suits the size of your program.
Unfortunately, changing models in mid-development can cause many
problems, so it’s best to err on the large side.

ADVANCED PROGRAMMING GUIDE 151

Linking with Memory Models:
Segment Registers, Classes and Groups

A memory model serves many useful purposes. First of all, it decides when
to use near pointers and when to use far ones. It also tells the linker how to
lay out your program and data in your address space.

The underlying aim is to reset segment registers as infrequently as possible.
An ideal program would set up its CS, DS and SS registers once only, on
entry, and then reference everything relative to one or other of them. Then it
would only need to load offset registers to calculate addresses. One of the
linker’s jobs is to organize your memory so that your program can get as
close as possible to this theoretical ideal.

TopSpeed produces object files in a format which assists the linker to
achieve this. It communicates with the linker using the object-language
constructs segment, group and class developed by Intel, the designers of the
80x86 family. Group and class classifications help the linker ‘bunch’ items
in chunks of less than 64K which can all be addressed using a single segment
register. The system can be summarized as follows:

· An item is a fundamental, indivisible unit of code or data,
sometimes called a logical segment. In this manual we will use
the more current term, object. Some confusion with object code
may result; where the context doesn’t resolve it we talk of data
objects.

· A segment is a collection of objects whose total size is less than
64K bytes; a segment has a name. Any object belongs to only
one segment.

· A group is a collection of segments whose total size is less than
64K bytes; a group also has a name. Any segment belongs to at
most one group, but need not belong to any.

· Segments may be qualified by a named class. Classes are used to
specify preference when arranging the objects: objects with the
same class name are placed adjacent to each other; within a
class, objects from the same segment are placed adjacent to each
other.

Classes take precedence, so if two objects have the same segment name but
different class names, they are not even considered to belong to the same
segment.

If these conventions are observed, the linker ensures that you can address all
the objects in a given segment or group without having to reload a segment
register.

152 TOPSPEED TECHKIT

Default Segment Register Assignments

We are nearly ready to tackle the standard memory models. It remains only
to explain the default segment register assignments.

Intel’s design imposes a standard segment register usage which is nearly
always adhered to.

· The program or code is always addressed relative to CS, the
CODE segment register. ‘Near’ jumps (within a single CODE
segment) do not change it; ‘far’ jumps (between segments)
change CS to point at the beginning of the segment being
jumped into. All CODE segments are of class CODE.

· All global objects which do not require a separate segment of
their own, are put in a single group called DGROUP. The DATA
segment register DS points at this on entry to the program, and
in all models except extra large, remains pointing there.

· The stack is always addressed relative to SS, the stack segment
register. It always points to the start of the stack. In the smaller
memory models the stack is in DGROUP; if it is too big for this,
it has a separate segment.

The Standard Memory Models

TopSpeed compilers provide six standard memory models. The small
memory model is the default memory model. Use the Project Memory
models menu to change memory models.

The following table summarizes the standard memory models:

Model Small Compact Medium Large XLarge

Code size 64Kb 64Kb 1Mb* 1Mb* 1Mb*
Data size 64Kb 1Mb* 64Kb 1Mb* 1Mb*
Code pointers near near far far far
Data pointers near far near far far

* 16Mb under OS/2.

· Each memory model has its own library, which is automatically
linked in when using the project facility.

· The multi-thread model is the extra large model with support for
the reentrant library.

· The overlay model is the multi-thread model plus segment-based
overlaying.

· The dynalink model is the multi-thread model plus dynamic

ADVANCED PROGRAMMING GUIDE 153

linking. Under DOS it also includes segment-based overlays.

These models are described in detail below. On the left side of each diagram
you will find a diagram of your program’s address space, subdivided into
segments. Each fresh segment begins with the segment name and class, in
the format:

To the right of the diagram you will find an explanation of the segment and
pointer registers used to access the segment. For further information on the
standard JPI memory models please refer to the “TopSpeed Developer’s
Guide”. The information in this manual includes a discussion of mixed-
model programming.

Small Memory Model

The small memory model is the most efficient, which is why it is the default.
It contains one CODE segment of up to 64Kb and one DATA segment of up
to 64Kb. The stack, global data and heap all use the default DATA segment.
Code and data pointers are near pointers, and all addresses are therefore 16-
bit. Unoccupied address space outside the CODE and DATA segments is
organized as a heap, and can only be reached by creating explicit far pointers
to it (see ‘Mixed Model Programming’, later on in this chapter).The
following diagram illustrates the small memory model:

The CS register addresses the _TEXT segment. DGROUP, HEAP and
STACK are all addressed through DS and SS. They may be up to 64Kb in
total.

Large Memory Model

The large memory model can have multiple CODE segments and multiple
DATA segments. All pointers are far pointers. There is one default DATA
segment for all objects except for those larger than the threshold. The
threshold is 32Kb by default and data objects greater than this have their own

154 TOPSPEED TECHKIT

segments. Data objects smaller than the threshold go into the default DATA
segment to aid performance.

· No single data object may exceed 64Kb.

· No single source file may produce more than 64Kb of code.

· The sum of all data objects below the threshold must not exceed
64Kb.

The following diagram illustrates the large memory model:

Each source file produces a CODE segment named <file-name>_TEXT,
where file-name is the name of the object module. Data objects less than the
threshold go into the default DATA segment in DGROUP. Data objects
greater than the threshold go into their own segments named <object-
name>_BSS or <object-name>_DATA, where object-name is the name of
the data object. _BSS contains the uninitialized data objects and _DATA the
initialized data objects. The DGROUP and HEAP together must not exceed
64Kb in total. The near HEAP is only created when necessary.

Medium Memory Model

The medium memory model is like a large model for code with a small
model for data. Like the small memory model, it is limited to 64Kb of data,
but multiple CODE segments are allowed. It is used for large programs that
do not have a large data space. Data pointers are near pointers, but code

ADVANCED PROGRAMMING GUIDE 155

pointers are far pointers. As with the small model, DGROUP, the HEAP and
the STACK are all addressed via DS or SS, and must fit into 64K:

Compact Memory Model

The compact memory model is like a small model for code with a large
model for data. It is limited to 64Kb of code but may have multiple DATA
segments. It is used for smaller programs that address a lot of data. There is
one default DATA segment for all data objects, but, like the large memory
model, large objects can be placed in separate segments. Code pointers are
near but data pointers are far.

156 TOPSPEED TECHKIT

Extra Large Memory Model

The extra large memory model is an extension of the large model, in which
each file has a data segment of its own.

Low address

The extra large memory model is usually used when the large model is not
adequate, because the total amount of data and constant items less than the
threshold exceeds 64Kb.

Data objects smaller than the threshold go into the file’s segment. Data
objects greater than the threshold go into their own segments. The DS
register is always loaded on entry to a function.

The multi-thread, overlay and dynalink memory models are all based upon
the extra large memory model, and use the same conventions for code and
data layout.

ADVANCED PROGRAMMING GUIDE 157

Multi-thread Memory Model

The multi-thread memory model has the same memory layout as the extra
large model, but has its own reentrant library. You should use the multi-
thread model when writing multi-threading programs using the JPI time-
sliced process scheduler or in OS/2.

Overlay Memory Model

The overlay memory model must be selected to build programs that use the
TopSpeed Overlay Management System. Like the dynalink and multi-thread
memory models, it uses the same conventions as the
extra large memory model for segment layout, naming and pointers, but
invokes additional pragmas and linker options to construct an overlay
program.

The overlay memory model is a superset of the multi-thread memory model.
This memory model is only available for DOS programs and DLLs - under
OS/2 it is not required.Dynalink Memory Model

The dynalink memory model is specified in order to use the dynamically-
linked versions of the standard TopSpeed libraries. For OS/2 programs, the
dynalink model is equivalent to the multi-thread model in all other respects,
while for DOS programs it is equivalent to the overlay model.

The dynalink memory model may be specified when creating a DOS or OS/2
DLL, if it is required that the DLL should not contain code from the standard
TopSpeed libraries. In this case, the DLL versions of these libraries will be
used. A program using a DLL created this way would normally also be made
using dynalink model.

Alternatively, a DLL may be constructed which does not make use of the
TopSpeed libraries in their DLL form. In this case, the DLL should be built
using the multi-thread (for OS/2) or overlay (for DOS) memory model. A
program that used such a DLL would normally be made using the same
memory model.

Strictly-speaking, the dynalink memory model is not a memory model, since
it uses exactly the same segment organization and address system as the
extra large memory model. However to all intents and purposes it appears to
the programmer as a distinct memory model, since what it actually does is
select a consistent set of pragmas which ensures that the segment
organization, calling convention and addressing system work together
correctly for interfacing to dynamically-loaded segments.

158 TOPSPEED TECHKIT

Selecting Memory Models

The standard and best way to select a memory model is from the TopSpeed
Environment using the Project Memory model menu option. This will
automatically insert the correct pragma into your project.

Selecting a Memory Model from the Command Line

You can select a memory model from the command line using the /mX
switch, where X is one of the following:

s Small Model

m Medium Model

c Compact Model

l Large Model

x eXtra Large Model

t multi-Thread Model

o Overlay model

d Dynalink model

If your choice of memory model is incompatible with the size and number of
your data and code objects (for example, if you use a small model but supply
data objects totalling more than 64K), the linker will signal an error.

Choosing How to Pass Parameters

By default, TopSpeed uses a register-based calling convention, where
function parameters are passed in registers wherever possible, in order to
speed up program execution. If you require the more usual convention of
passing all parameters on the stack (for example, to interface to some
external library), you should specify this in the #model command in your
project file. This can be achieved using the Project Project options (J)
Calling convention menu command.

Changing the calling convention in this way will cause stack-based
parameters to be used throughout your program, and will require an
alternative set of libraries to be linked. The TopSpeed system is supplied
with stack-based libraries for the large memory model only, but if you have
purchased the library source code, a set of stack-based libraries may be
constructed for any memory model.

ADVANCED PROGRAMMING GUIDE 159

An alternative approach is to use the stack-based calling convention only for
certain procedures, by means of pragmas or special keywords at the
declaration of those procedures.

160 TOPSPEED TECHKIT

Mixed Model Programming

Though it is easiest to work with the most appropriate standard memory
model, this may not give the most efficient code. For example, if a program
only needs one CODE and one DATA segment, then the small memory
model should be chosen; but if this program wants access to an absolute
address outside its own segment it will need a far pointer.

This problem could be solved by using the compact model. But it brings an
unnecessary overhead, since it will use far pointers for all data objects even
when they could be accessed without resetting any segment registers. This is
where Mixed Model Programming becomes useful. It lets you use a far
pointer to access the far segment, while using near pointers for all other data.

Mixed model programming is most often used with the small memory
model, providing near pointers as default. The compiler is then told to use far
pointers for specified data objects.

There are two ways to do this. You can use non-standard pointer declarations
which explicitly designate a given pointer as near, far or huge; or you can use
pragmas which override the model’s defaults for a specific part of the
program.

Near and Far Pointer Declarations

The syntax for these is slightly different for C/C++ and for Pascal/Modula-2.
However the underlying concept, and the implementation, are identical.

In all languages, the crucial construct is a modification to the pointer type so
that it can be qualified as near or far. In C and C++, you are provided with
near and far keywords, which qualify other declarators. These keywords
always modify the object to the immediate right. For example:

TopSpeed Modula-2 and Pascal provide three generic pointer types. In
Modula-2 they are defined in the SYSTEM module. In Pascal they are part
of the language. Consider the following declarations:

These declare three pointers, x, y, and z, y, will be a two-byte near pointer,
whatever memory model the program is compiled with. z will always be a
four-byte far pointer of the form segment:offset. x will be NearADDRESS or

ADVANCED PROGRAMMING GUIDE 161

a FarADDRESS depending on the memory model (or pragmas) used when
the program is compiled.

Near and Far Arrays

In C/C++ arrays are treated as pointers. You can therefore declare a far array,
which may affect how data is allocated. In all memory models where data
objects are placed in a default DATA segment, the keyword far will place the
object in its own separate DATA segment. For example:

In all memory models where data objects are placed in multiple DATA
segments, the keyword near will force the object into the current default
DATA segment. For example:

You can address an object in the default DATA segment with a near pointer,
for example:

You can address an object in any DATA segment with a far pointer, for
example:

Modula-2 and Pascal possess no equivalent construct, although the same
effect may be achieved by using pragmas. See the “TopSpeed Developer’s
Guide” for further details.

Functions

C and C++ also offer an extra degree of control over function referencing.

You can call a function in the same segment as the calling function with a
near call, because there is no need to reload the segment register. If you tell
the compiler that a function is a near one, it will be use a near call regardless
of the memory model. To do this you must prototype it as a near function.

The syntax is:

A function that is in a different segment from the calling function must be
invoked through a far call. Such a function must be prototyped and defined
using the far keyword when the memory model is small or compact. For
example:

162 TOPSPEED TECHKIT

You can declare function pointers using near and far keywords to produce
16- and 32-bit pointers, respectively. For example:

If you prototype a function with a formal parameter of type far pointer, and
actually pass a near pointer, C automatically converts the near pointer to a far
pointer. You should, however, use a type cast to document the conversion.

Modula-2 and Pascal possess no equivalent construct although the same
effect may be achieved by using pragmas. See the “TopSpeed Developer’s
Guide” for further details.

Pointer Pitfalls

In both C/C++ and Modula-2/Pascal you should always take care when
doing pointer arithmetic, since there are several pitfalls.

The most important arises when you add or subtract from a pointer. You have
to be careful that its value does not exceed 65535 or go lower than 0. This
causes segment wrap-around and creates difficult-to-find bugs. For example,
if you add 3 to 65535 (the largest amount that can be held in a 16-bit
register), the result will be 3 and not 65538. The segment part of the pointer
will not change.

Far pointer comparison may cause problems after pointer arithmetic, if you
have two pointers derived in two entirely different ways, so that their
segment parts are not the same. This is because two far pointers can point to
the same location in memory, yet appear to have different addresses.

To illustrate the second point consider the segment:offset pairs:

They both point to the same address (under DOS). In spite of this, if you
compare them using:

or, in Modula-2:

the result would be FALSE. This is because the two pointers are compared as
if they were 32-bit integers.

ADVANCED PROGRAMMING GUIDE 163

A further problem arises if you use operators such as < or >. Only the offset
part of the address is used to make the comparison.

In protected mode these problems become more complex still, because the
segment register is itself only an index into a memory table.

Huge Pointers in C and C++

A huge pointer is declared using the keyword huge in the same way as the
near and far keywords. For example,

declares a huge pointer.

No memory model allows data objects greater than 64Kb. However, you can
allocate data objects greater than 64Kb with the halloc(size) function. These
objects must be accessed through huge pointers. For example:

A more complete example is:

Note: huge pointers may only be used to point at objects or arrays of
objects where their size is a power of two (i.e. 1, 2, 4, 8, 16, 32, 64 bytes
etc.). This is because TopSpeed does not normalize huge pointers, so that
objects of other sizes might straddle a segment boundary.

The global variable _hugeshift is available for incrementing or decrementing
a huge pointer’s segment value. Using this variable guarantees portability
between DOS and OS/2.

164 TOPSPEED TECHKIT

Pointing to Absolute Addresses

In a DOS program, it is possible to initialize a far pointer to point to an
absolute address. The following example program demonstrates how you can
initialize a pointer to point to the PC’s monochrome memory buffer at
segment address 0xB0000, offset 0.

In Modula-2 (under DOS only) variables can be declared at a specified
address:

An alternative way of writing the pointer declaration in C++ is to use a
relative pointer, which forces a pointer to use a given variable to preload the
segment register. For example:

instead of:

This new syntax means that ptr is a near pointer but using segment <seg>
instead of DS to calculate its address. TopSpeed C will load the segment
register from <seg> each time you de-reference ptr, so seg can be updated if
necessary.

ADVANCED PROGRAMMING GUIDE 165

Pragmas

Mixed model programming has traditionally been achieved using the
keywords near and far. These keywords are not in the ANSI standard and are
not portable to other environments, such as UNIX. Pragmas provide a more
portable method of using mixed models as well as providing greater control
over calling and segmentation. A full list of pragmas is given in the
“TopSpeed Developer’s Guide”.

You can use the data(seg_name) pragma to determine the size of data
pointers and the location of data. For example, you can place a data object in
the default data segment like this:

or in Modula-2:

The pragmas save and restore localize the effects of the seg_name pragma.
The data pragma allows you to select the segment for the object. Selecting
NULL for the segment name places NearArray in the default DATA segment
_DATA.

You can place a data object in a separate segment:

This places the data object in a separate segment called FARARRAY_DATA.

You can declare data pointers to be near or far pointer using pragmas. The
following example shows you how to declare a near pointer:

or in Modula-2:

This example shows you how to declare a far pointer:

166 TOPSPEED TECHKIT

or in Modula-2:

You can use the call pragma to determine whether a function call is a near or
a far call. The following example shows you how to declare a near function:

or in Modula-2:

The call pragma in this example has two parts. The first part, seg_name, tells
TopSpeed to use the default CODE segment, _TEXT. The second part forces
NearFunc to be called near. A near function does not necessarily have to be
in the segment named _TEXT, but it must be in the same segment as the
calling function.

The following example shows you how to declare a far function:

The seg_name part of the call pragma places the function FarFunc in a
CODE segment named FARSEG_TEXT. TopSpeed C calls FarFunc using
far calls because near_call is off.

You can also determine the size of function pointers using the call pragma.
For example, to declare a near pointer:

or,

ADVANCED PROGRAMMING GUIDE 167

You should be careful when prototyping functions with different pointer
sizes using pragmas. For example, using keywords near and far you could
declare:

However, the call(near_call) pragma affects both the type of call used for the
function and the size of any parameters which are themselves pointers to
functions. To achieve control over the parameter pointer sizes, types should
be predefined for the parameters. For example:

Changing the Global Threshold

The compact, large, extra large and multi-thread memory models place
objects larger than the threshold in a separate segment. The default threshold
value is 32Kb. However, this value won’t suit you if, for example, your
program has three data objects of size 30Kb. These data objects will all be
placed in a single segment, which will then exceed 64Kb, causing an error at
link time. To overcome this, you need to alter the threshold size to below
30Kb. The threshold is controlled using the data(threshold) pragma. This
pragma may be specified in a project file to change the threshold globally in
a project, or it may be specified in a source file so that only certain data
objects are affected.

168 TOPSPEED TECHKIT

A module definition file describes the name, attributes, exports, and other
characteristics of an application or library for DOS (using the TopSpeed
Overlay System), OS/2 or Microsoft Windows. This file is required for
Windows applications and libraries, and is also required for overlay
programs and dynamic-link libraries that run under DOS and OS/2.

A module definition file contains one or more statements. Each statement
defines an attribute of the executable file, such as its module name, the
attributes of program segments, and the numbers and names of exported
symbols. The statements and the attributes they define are listed below:

Statement Attribute

NAME Names application

LIBRARY Names dynamic-link library

CODE Gives default attributes for CODE segments

DATA Gives default attributes for DATA segments

SEGMENTS Gives attributes for specific segments

STACKSIZE Specifies local stack size in bytes

EXPORTS Defines exported functions

HEAPSIZE Specifies local heap size

PROTMODE Flags file as protected mode only

REALMODE Flags file as real mode only

EXETYPE Identifies operating system

ADVANCED PROGRAMMING GUIDE 169

The following rules govern the use of these statements in a module definition
file:

· If you use either a NAME or a LIBRARY statement, it must
precede all other statements in the module definition file.

· You can include source-level comments in the module definition
file, by beginning a line with a semicolon(;). The utilities ignore
each such comment line.

· Module definition keywords (such as NAME, LIBRARY, and
SEGMENTS) must be entered in uppercase letters.

The following example gives module definitions for a dynamic-link library:

LIBRARY MyDLL
; Sample export file

EXPORTS
Func1 @1
Var1 @2
Func2 @3
Func3 @4
Func4 @5

The NAME Statement

The NAME statement identifies the file as an executable application (rather
than a DLL) and optionally defines the name and application type.

Syntax

If appname is given, it becomes the name of the application as it is known by
the operating system. If no appname is given, the name of the executable file
- with the extension removed - becomes the name of the application.

The apptype field is used to control the program’s behavior under Windows
and Presentation Manager (PM). This information is kept in the executable-
file header. You do not need to use this field unless you may be using your
application in a Windows or PM environment. The apptype field may have
one of the following values:

Keyword Meaning

WINDOWAPI Windows or PM application. The application uses the
API provided by Windows or PM and must be executed
in the Windows or PM environment.

WINDOWCOMPAT

170 TOPSPEED TECHKIT

Window-compatible application. The application can run
full-screen or inside a Windows or PM window.

NOTWINDOWCOMPAT
Application can only run full-screen.

If the NAME statement is included in the module-definition file, then the
LIBRARY statement cannot appear.

If neither a NAME statement nor a LIBRARY statement appears in a
module-definition file, NAME is assumed.

The following example assigns the name wdemo to the application being
defined:

The LIBRARY Statement

The LIBRARY statement identifies the file as a dynamic-link library. The
name of the library, and the type of library module initialization required,
may also be specified.

Syntax

If libraryname is specified, it becomes the name of the library as it is known
by the operating system. This name can be any valid file name. If no
libraryname is given, the name of the executable file - with the extension
removed - becomes the name of the library.

The initialization field is optional and can have one of the two values listed
below. If neither is given, then the initialization default is INITINSTANCE.

Keyword Meaning

INITGLOBAL The library-initialization routine is called only when the
library module is initially loaded into memory.

INITINSTANCE The library-initialization routine is called each time a
new process gains access to the library.

If the LIBRARY statement is included in a module definition file, then the
NAME statement cannot appear.

The following example assigns the name mydll to the dynamic-link module
being defined, and specifies that library initialization is performed each time
a new process gains access to myDLL:

The CODE Statement

ADVANCED PROGRAMMING GUIDE 171

The CODE statement defines the default attributes for CODE segments
within the application or library.

Syntax:

Each attribute specified must correspond to one of the following attribute
fields. Each field can appear at most one time, and order is not significant.
The attribute fields are presented below, along with legal values. In each
case, the default value is listed last. The last three fields have no effect on
OS/2 code segments and are included for use with Microsoft Windows.

Field Values

load PRELOAD, LOADONCALL

executeonly EXECUTEONLY, EXECUTEREAD

iopl IOPL, NOIOPL

conforming CONFORMING, NONCONFORMING

shared SHARED, NONSHARED

moveable MOVEABLE, FIXED

discard NONDISCARDABLE, DISCARDABLE

The load field determines when a code segment is to be loaded. This field
contains one of the following keywords:

Keyword Meaning

PRELOAD The segment is loaded automatically, at the beginning of
the program, and, when using the TopSpeed Overlay
System, will not be swapped out.

LOADONCALL The segment is not loaded until accessed (default).

The executeonly field determines whether a code segment can be read as well
as executed. This field contains one of the following keywords:

Keyword Meaning

EXECUTEONLY The segment can only be executed.

EXECUTEREAD The segment can be both executed and read (default).

The iopl field determines whether or not a segment has I/O privilege (that is,
whether it can access the hardware directly). This field contains one of the
following keywords:

Keyword Meaning

IOPL The CODE segment has I/O privilege.

NOIOPL The CODE segment does not have I/O privilege (de-

172 TOPSPEED TECHKIT

fault).

The conforming field specifies whether or not a code segment is a 286
conforming segment. The concept of a conforming segment deals with
privilege level (the range of instructions that the process can execute) and is
relevant only to users writing device drivers and system-level code. A
conforming segment can be called from either Ring 2 or Ring 3, and the
segment executes at the caller’s privilege level. This field contains one of the
following keywords: CONFORMING or NONCONFORMING (the default).

The shared field determines whether all instances of the program can share a
given code segment. This field is ignored by OS/2, but is provided for use
with real-mode Windows. Under OS/2, all code segments are shared. The
shared field contains one of the following keywords: SHARED or
NONSHARED (the default).

The moveable field determines whether a segment can be moved around in
memory. This field is ignored by OS/2, but is provided for use with real-
mode Windows. Under OS/2, all segments are movable. The moveable field
contains one of the following keywords: MOVEABLE or FIXED (the default
for Windows).

The discard field determines whether a segment can be swapped out to disk
by the operating system when not currently needed. This attribute is ignored
by OS/2, but is provided for use with real-mode Windows. Under OS/2, all
segments can be swapped as needed. The discard field contains one of the
following keywords: DISCARDABLE or NONDISCARDABLE (the default
for Windows).

The following example sets defaults for the module’s code segments, so that
they are not loaded until accessed and so that they have I/O hardware
privilege:

CODE LOADONCALL IOPL

The DATA Statement

The DATA statement defines the default attributes for the DATA segments
within the application or library.

Syntax:

Each attribute must correspond to one of the following attribute fields. Each
field can appear at most once, and order is not significant. The attribute fields
are listed below, along with the legal values for each field. In each case, the
default value is listed last. The last two fields have no effect on OS/2 DATA
segments, but are included for use with Microsoft Windows.

ADVANCED PROGRAMMING GUIDE 173

Field Values

load PRELOAD, LOADONCALL

readonly READONLY, READWRITE

instance NONE, SINGLE, MULTIPLE

shared SHARED, NONSHARED

moveable MOVEABLE, FIXED

discard DISCARDABLE, NONDISCARDABLE

The load field determines when a segment will be loaded. This field contains
one of the following keywords:

Keyword Meaning

PRELOAD The segment is loaded when the program begins execu-
tion and, when using the TopSpeed Overlay System, will
not be swapped out.

LOADONCALL The segment is not loaded until it is accessed (default).

The readonly field determines the access rights to a DATA segment. This
field contains one of the following keywords:

Keyword Meaning

READONLY The segment can only be read.

READWRITE The segment can be both read and written to (default).

The instance field affects the sharing attributes of the automatic DATA
segment, which is the physical segment represented by the group name
DGROUP. (This segment group makes up the physical segment which
contains the local stack and heap of the application.) This field contains one
of the following keywords:

Keyword Meaning

NONE No automatic DATA segment is created.

SINGLE A single automatic DATA segment is shared by all
instances of the module. In this case, the module is said
to have “solo” data. This keyword is the default for
dynamic-link libraries.

MULTIPLE The automatic DATA segment is copied for each in-
stance of the module. In this case, the module is said to
have “instance” data. This keyword is the default for
applications.

The shared field determines whether all instances of the program can share a
READWRITE DATA segment.

The moveable field determines whether a segment can be moved around in
memory. This field is ignored by OS/2, but is provided for use with real-

174 TOPSPEED TECHKIT

mode Windows. Under OS/2, all segments are moveable. This field contains
one of the following keywords: MOVABLE or FIXED (the default for
Windows).

The optional discard field determines whether a segment can be swapped out
to disk by the operating system, when not currently needed. This attribute is
ignored by OS/2, but is provided for use with real-mode Windows and the
TopSpeed Overlay System. Under OS/2 systems, all segments can be
swapped as needed. This field contains one of the following keywords:
DISCARDABLE or NONDISCARDABLE (the default for Windows).

Warning:
Care should be taken not to specify contradictory segment
attributes.

The following example defines the default attributes for DATA segments so
that they are loaded only when accessed, and cannot be shared by more than
one copy of the program:

By default, the DATA segment can be read and written, and the automatic
DATA segment is copied for each instance of the module.

The SEGMENTS Statement

The SEGMENTS statement defines the attributes of one or more individual
segments in the application or library on a segment-by-segment basis. The
attributes specified by this statement override defaults set in CODE and
DATA statements.

Syntax:

SEGMENTS
segmentdefinitions

The SEGMENTS keyword marks the beginning of the segment definitions.
This keyword can be followed by one or more segment definitions, each on a
separate line. The syntax for each segment definition is as follows:

Each segment definition begins with a segment name, which can be placed in
optional single quotation marks (‘). The quotation marks are required if the
segment name conflicts with a module definition keyword, such as CODE or
DATA.

The CLASS keyword specifies the class of the segment. The single quotation
marks (‘) are required around classname. If you do not use the CLASS
argument, the class is assumed to be CODE.

ADVANCED PROGRAMMING GUIDE 175

Each attribute must correspond to one of the attribute fields described for the
CODE and DATA statements above. Each field can appear at most once, and
order is not significant.

The following example specifies segments named pr1_TEXT, pr2_TEXT
and pr3_TEXT. Each segment is given different attributes.

The STACKSIZE Statement

The STACKSIZE statement specifies the stack size for a Windows or
Presentation Manager program only.

Syntax:

The number must be an integer. The number is considered to be in decimal
format by default, but you can use C notation to specify hexadecimal or
octal.

The following example allocates 4096 bytes of local stack space:

The HEAPSIZE Statement

The HEAPSIZE statement defines the size of the application’s local heap, in
bytes. This value affects the size of the automatic DATA segment.

Syntax:

The bytes field is an integer number, which is considered decimal by default.
However, hexadecimal and octal numbers can be entered by using C
notation. For example:

The EXPORTS Statement

The EXPORTS statement defines the names and attributes of the functions
exported to other modules, and of the functions that run with I/O privilege.
The term “export” refers to the process of making a function available to
other run-time modules. By default, functions are hidden from other modules
at run time.

176 TOPSPEED TECHKIT

Syntax:

EXPORTS
exportdefinitions

The EXPORTS keyword marks the beginning of the export definitions. It
may be followed by up to 3072 export definitions, each on a separate line.
You need to give an export definition for each dynamic-link routine that you
want to make available to other modules. The syntax for an export definition
is as follows:

The entryname specification defines the function name as it is known to
other modules.

The ordinal field (introduced by the @ character) defines the function’s
ordinal position within the module-definition table. The numbers must either
be in sequence or use the ? character.

The pwords field specifies the total size of the function’s parameters, as
measured in words (the total number of bytes divided by two). This field is
required only if the function executes with I/O privilege. When a function
with I/O privilege is called, OS/2 consults the pwords field to determine how
many words to copy from the caller’s stack to the I/O-privileged function’s
stack.

The optional keyword NODATA is ignored by OS/2, but is provided for use
by real-mode Windows.

The EXPORTS statement is meaningful for functions within dynamic-link
libraries, functions which execute with I/O privilege, and call back functions
in Windows programs.

For example:

The PROTMODE Statement

This statement is ignored.

The REALMODE Statement

This statement is ignored.

ADVANCED PROGRAMMING GUIDE 177

The EXETYPE Statement

The EXETYPE statement specifies in which operating system the
application (or dynamic-link library) is to run. This statement is optional and
provides an additional degree of protection against the program being run in
an incorrect operating system.

Syntax:

The effect of EXETYPE is simply to set bits in the header which identify
operating system type. The operating system loaders may or may not check
these bits. When writing programs for Microsoft Windows, EXETYPE
WINDOWS must be specified.

178 TOPSPEED TECHKIT

This appendix lists the DOS function call numbers and names, and gives a
brief description of their parameters and return values as used by the Watch
program (see Chapter : ‘Watch’). It is not a tutorial in the use of the function
calls - there are many excellent technical reference books giving a complete
background to these functions.

The functions are listed in order of their function number. This is the
function code that is loaded into the AH register before the int 21H
instruction is issued by the calling program. The exceptions are the
NETBIOS calls 5E??H and 5F??H; they have the full contents of the AX
register listed. For further details of how DOS function calls are used in MS-
DOS programs, see Chapter : ‘Watch’.

00h : PROGRAM TERMINATE

INPUT CS contains the segment of PSP to terminate.
OUTPUT None.

01h : WAIT FOR KEYBOARD INPUT

INPUT None.

OUTPUT AL contains the character from stdin.

02h : DISPLAY OUTPUT

INPUT DL contains the character to write to stdout.
OUTPUT None.

03h : AUXILIARY INPUT

INPUT None.
OUTPUT AL contains the character from stdaux.

04h : AUXILIARY OUTPUT

INPUT DL contains the character to write to stdaux.
OUTPUT None.

ADVANCED PROGRAMMING GUIDE 179

05h : PRINTER OUTPUT

INPUT DL contains character to write to stdprn.
OUTPUT None.

06h : DIRECT CONSOLE I/O

INPUT If DL is not FFh then the DL is treated as a character and
written directly to the console, otherwise direct console
input is made from the console.

OUTPUT None for direct console output. For direct console input
the Zero Flag (ZF) indicates the input status:

= 1 no character available
= 0 AL contains character from stdin

07h : DIRECT CONSOLE I/O; NO ECHO

INPUT None.
OUTPUT AL contains the character, which has not been echoed.

08h : CONSOLE INPUT; NO ECHO

INPUT None.
OUTPUT AL contains the next character from stdin.

09h : DISPLAY STRING

INPUT DS:DX contains the address of a string which is termi-
nated with a $ (which is not displayed on the console).

OUTPUT None.

0Ah : BUFFERED KEYBOARD INPUT

INPUT DS:DX is the address of an input buffer:
1st byte: length of buffer.
 Remainder: undefined.

The buffer should have enough room to hold the maximum expected
message plus 2 bytes. The carriage return is not stored in the buffer.

OUTPUT DS:DX still contains the address of the input buffer, but
the buffer now contains:

1st byte: length of buffer
2nd byte: number of bytes entered
Remainder: the bytes entered.

0Bh : STDIN STATUS

INPUT None.

OUTPUT AL indicates the status of stdin:
= FFh character available
!=FFh no character available.

180 TOPSPEED TECHKIT

0Ch : CLEAR KEYBOARD; INVOKE FUNCTION

INPUT AL contains a function number (01h, 06h, 07h, 08h,
or 0Ah) to be called after the keyboard buffer has been
cleared, other registers as defined for that function
number.

OUTPUT As defined for the function number that it was called
with.

0Dh : DISK RESET

INPUT None.
OUTPUT None.

0Eh : SELECT DISK DRIVE

INPUT DL: drive to select (A = 0, B = 1, etc.).
OUTPUT AL contains value of LASTDRIVE - set in

CONFIG.SYS (default E).

0Fh : (FCB) OPEN FILE

INPUT DS:DX contains address of unopened FCB containing
the filename.

OUTPUT Status is returned in AL:
= 00h file was opened OK
= FFh an error occurred.

10h : (FCB) CLOSE FILE

INPUT DS:DX contains the address of an open FCB.

OUTPUT Status is returned in AL:
= 00h file closed
= FFh file not closed.

11h : (FCB) FIND FIRST

INPUT DS:DX contains the address of an FCB which is not
used for an open file. The file name can contain either a
full file name or can contain the ? wild card.

OUTPUT Status is returned in AL:
= 00h match was found
= FFh no match was found.

12h : (FCB) FIND NEXT

INPUT DS:DX contains the address of an FCB which has
previously been used by a function 11h call (see above).

OUTPUT Status is returned in AL:
00h match was found
FFh no match found.

ADVANCED PROGRAMMING GUIDE 181

13h : (FCB) DELETE FILE

INPUT DS:DX contains the address of an FCB which is not
being used by an open file. The file name should be set
to the file the program wishes to delete.

OUTPUT Status is returned in AL:
= 00h file was deleted
= FFh file not deleted.

14h : (FCB) SEQUENTIAL READ

INPUT DS:DX contains the address of an FCB for a file which
has been opened.

OUTPUT Status is returned in AL:
= 0 read successful
= 1 file already at EOF
= 2 DTA too small
= 3 partial read; at EOF.

15h : (FCB) SEQUENTIAL WRITE

INPUT DS:DX contains the address of an FCB for a file which
has been opened.

OUTPUT Status is returned in AL:
= 0 write successful
= 1 disk full
= 2 DTA too small.

16h : (FCB) CREATE FILE

INPUT DS:DX contains the address of an FCB which is not in
use by an open file. The file name should be set to the
file the program wishes to create.

OUTPUT Status is returned in AL:
= 00h file was created
= FFh file not created.

17h : (FCB) RENAME FILE

INPUT DS:DX contains the address of FCB suitably modified.

OUTPUT Status is returned in AL:
 = 00h file was renamed
 = FFh file not renamed.

19h : GET CURRENT DISK

INPUT None.
OUTPUT AL contains a number indicating the current drive.

(A: = 0, B: = 1, etc.).

182 TOPSPEED TECHKIT

1Ah : SET DISK TRANSFER AREA (DTA)

INPUT DS:DX address of the new DTA.
OUTPUT None.

1Bh : GET ALLOCATION DATA

INPUT None.

OUTPUT Default drive data:
DS:BX address of media descriptor byte.
DX number of clusters
CX bytes per sector
AL sectors per cluster.

1Ch : GET ALLOCATION DATA FOR DISK

INPUT DL contains a number of the drive.
(current drive = 0, A = 1, B = 1, etc.).

OUTPUT Specified drive data:
DS:BX address of media descriptor byte
DX number of clusters
CX bytes per sector
AL sectors per cluster.

21h : (FCB) RANDOM READ

INPUT DS:DX contains the address of an FCB for a file which
has been opened

OUTPUT Status is returned in AL:
= 0 read successful
= 1 file already at EOF
= 2 DTA too small
= 3 partial read; at EOF.

22h : (FCB) RANDOM WRITE

INPUT DS:DX contains the address of an FCB for a file which
has been opened.

OUTPUT Status is returned in AL:
= 0 write successful
= 1 disk full
= 2 DTA too small.

ADVANCED PROGRAMMING GUIDE 183

23h : (FCB) GET FILE SIZE

INPUT DS:DX contains the address of an FCB which is not
being used by an open file. The file name should be set
to the file of interest.

OUTPUT: Status is returned in AL:
= 00h OK
= FFh file not found

If the call is successful the Random Record Field of the FCB contains the
size of the file.

24h : (FCB) SET RELATIVE RECORD FIELD

INPUT DS:DX contains the address of an FCB for a file which
has been opened.

OUTPUT None.

25h : SET INTERRUPT VECTOR

INPUT AL contains the interrupt number
DS:DX contains the address of the new interrupt han-
dler.

OUTPUT None.

26h : CREATE PROGRAM SEGMENT PREFIX

INPUT DX segment address for the new PSP area (i.e. the new
PSP is at DX:0000).

OUTPUT None.

27h : (FCB) RANDOM BLOCK READ

INPUT DS:DX contains the address of an FCB for a file which
has been successfully opened.

OUTPUT Status is returned in AL:
= 0 read successfu.
= 1 file already at EOF
= 2 DTA too small
= 3 partial read; at EOF.

CX is set to the number of records read.

184 TOPSPEED TECHKIT

28h : (FCB) RANDOM BLOCK WRITE

INPUT DS:DX contains the address of an FCB for a file which
has been successfully opened
CX should be set to the number of records to write.

OUTPUT Status is returned in AL:
= 0 write successful
= 1 disk full
= 2 DTA too small

CX is set to the number of records actually written.

29h : (FCB) PARSE FILENAME

INPUT DS:SI contains the address of command line buffer.
AL contains the parsing instructions which are bit-
significant:

Bit 7 -Ì
Bit 6 û- Reserved
Bit 5 °
Bit 4 -ì
Bit 3 Set extension
Bit 2 Set file name
Bit 1 Set Drive ID byte
Bit 0 Strip off leading spaces

OUTPUT ES:DI contains the address of newly-created FCB.
DS:SI contains the address of first character after the
parsed filename.
Status is returned in AL:

= 00h Full file name found
= 01h Wildcards (‘*’ or ‘?’) found
= FFh Drive letter invalid

2Ah : GET DATE

INPUT None.
OUTPUT DH month (Jan = 1, Dec = 12).

DL day (1 - 31).
CX year.
AL day of week (Sunday = 0).

2Bh : SET DATE

INPUT DH month (Jan = 1, Dec = 12).
DL day (1-31).
CX year.

OUTPUT Status returned in AL:
= 00h date was set
= FFh date not valid (not set)

ADVANCED PROGRAMMING GUIDE 185

2Ch : GET TIME

INPUT None.
OUTPUT CH hour (0-23).

CL minutes (0-59).
DH seconds (0-59).
DL hundredths (0-99).

2Dh : SET TIME

INPUT CH hour (0-23).
CL minutes (0-59).
DH seconds (0-59).
DL hundredths (0-99).

OUTPUT Status in AL:
= 00h time was set
= FFh time not valid (not set)

2Eh : SET VERIFY ON/OFF

INPUT Parameter in AL:
= 0 set verify off
= 1 set verify on

OUTPUT None.

2Fh : GET DISK TRANSFER AREA

INPUT None.
OUTPUT ES:BX contains the address of the current DTA.

30h : GET DOS VERSION

INPUT None.
OUTPUT AL major version number.

AH minor version number.

31h : TERMINATE, BUT STAY RESIDENT

INPUT AL return code.
DX number of paragraphs to retain.

OUTPUT None.

33h : SET/GET CTRL-BREAK

INPUT AL = 0 get Ctrl-Brk setting.
AL = 1 set Ctrl-Brk by value in DL.
AL = 0 set BREAK off.
AL = 1 set BREAK on.

OUTPUT New/Current Value of Ctrl-Brk setting is returned in DL.
= 0 BREAK is off
= 1 BREAK is on

186 TOPSPEED TECHKIT

34h : GET IN-DOS FLAG

INPUT None.
OUTPUT ES:BX contains the address of the In-DOS flag.

35h : GET INTERRUPT VECTOR

INPUT AL interrupt number.
OUTPUT ES:BX current address of interrupt handler.

36h : GET DISK FREE SPACE

INPUT DL drive number.
(current drive = 0, A = 1, B = 2, etc.).

OUTPUT If AX contains FFFFh the drive number was invalid.
Otherwise:
AX sectors per cluster
DX total clusters
BX free clusters
CX bytes per sector

38h : SET COUNTRY INFORMATION

INPUT DX must be FFFFh.
The country code is passed in AL or BX, depending on
the value of AL.

= FFh country code in BX
!= FFh country code in AL

OUTPUT If Carry flag is set them AX contains an error code.

38h : GET COUNTRY INFORMATION

INPUT DS:DX contains the address of a buffer to hold the
country information. The country information retrieved
depends on the settings of AL.

= 00h get current country
= FFh get for country code in BX
!= FFh get for country code in AL

OUTPUT If Carry flag is set then AX contains an error code,
otherwise BX contains the country code and the buffer
DS:DX is updated with the country-specific information.

39h : CREATE SUB-DIRECTORY

INPUT DS:DX contains the address of an ASCIIZ sub-direc-
tory name string.

OUTPUT If Carry flag is set then AX contains an error code.

ADVANCED PROGRAMMING GUIDE 187

3Ah : REMOVE SUB-DIRECTORY

INPUT DS:DX contains the address of an ASCIIZ sub-direc-
tory name string.

OUTPUT If Carry flag is set then AX contains an error code.

3Bh : CHANGE SUB-DIRECTORY

INPUT DS:DX contains the address of an ASCIIZ sub-direc-
tory name string.

OUTPUT If Carry flag is set then AX contains an error code.

3Ch : CREATE FILE

INPUT DS:DX contains the address of an ASCIIZ file name
string.

OUTPUT If Carry flag is set then AX contains an error code,
otherwise AX contains a file handle for the open, newly-
created, file.

3Dh : OPEN FILE

INPUT DS:DX contains address of an ASCIIZ file name string
AL contains the access/sharing mode bit mask.

OUTPUT If Carry flag is set then AX contains an error code,
otherwise AX contains a file handle for the open file.

3Eh : CLOSE FILE

INPUT BX contains the file handle to close.
OUTPUT If Carry flag is set then AX contains the error code.

3Fh : READ FILE

INPUT BX file handle.
CX number of bytes to read.
DS:DX address of I/O buffer.

OUTPUT If Carry flag is set then AX contains an error code,
otherwise AX contains the actual bytes read.

40h : WRITE FILE

INPUT BX file handle.
CX number of bytes to write.
DS:DX address of I/O buffer.

OUTPUT If Carry flag is set then AX contains an error code,
otherwise AX contains the actual bytes written.

188 TOPSPEED TECHKIT

41h : DELETE FILE

INPUT DS:DX contains the address of an ASCIIZ file name
string.

OUTPUT If Carry flag is set then AX contains an error code.

42h : SEEK

INPUT AL contains a value indicating the origin to use when
performing the seek.

= 0 from beginning of file
= 1 from current position
= 2 from end of file

CX:DX contains a long int indicating the number of
bytes to move.
BX contains the file handle.

OUTPUT If Carry flag is set then AX contains an error code,
otherwise DX:AX contains a long int indicating the new
file position.

43h : GET/SET FILE MODE

INPUT DS:DX contains the address of an ASCIIZ file name
string. AL determines the sub-function performed:

= 0 get file mode
= 1 set file mode

If the file mode is to be set then CX contains the new file
mode.

OUTPUT If Carry flag is set then AX contains an error code,
otherwise CX contains the new/current file mode bits.

ADVANCED PROGRAMMING GUIDE 189

44h : I/O CONTROL

INPUT AL contains the sub-function code:
00h get device information
01h set device information
02h read character device
03h write to char device
04h read block device
05h write to block device
06h get input status
07h get output status
08h is device changeable?
09h is network device?
0Ah is network handle?
0Bh set sharing retry/count
0Ch character generic IOCTL
0Dh block generic IOCTL
0Eh get logical drive
0Fh set logical drive

The other registers must be set as necessary for the sub-
function.

OUTPUT Depends on the sub-function.

45h : DUPLICATE HANDLE

INPUT BX existing file handle.
OUTPUT If Carry flag is set then AX contains an error code,

otherwise AX contains the duplicate handle.

46h : FORCE DUPLICATE HANDLE

INPUT BX existing file handle.
CX desired duplicate handle.

OUTPUT If Carry flag is set then AX contains an error code.

47h : GET CURRENT SUB-DIRECTORY

INPUT DS:SI contains the address of 64-byte buffer to hold
the directory path. DL contains the drive number (current
drive = 0, A = 1, B = 2, etc.).

OUTPUT If Carry flag is set then AX contains an error code,
otherwise the buffer pointed to by DS:SI contains full
pathname.

48h : ALLOCATE MEMORY

INPUT BX contains the number paragraphs to allocate.
OUTPUT If Carry flag is set then AX contains an error code and

BX contains the size of largest free memory block.
Otherwise, AX is the segment address of the allocated
block (i.e. AX:0000 is the start of the block).

190 TOPSPEED TECHKIT

49h : FREE ALLOCATED MEMORY

INPUT ES contains the segment address of the block to be freed
(i.e. ES:0000 is the start of the block).

OUTPUT If Carry flag is set then AX contains an error code.

4Ah : MODIFY ALLOCATED MEMORY

INPUT ES contains the segment address of the block to be
modified (i.e. ES:0000 is the start of the block) and BX
contains the new size in paragraphs.

OUTPUT If Carry flag is set then AX contains an error code
otherwise BX contains the maximum size for the block.

4Bh : LOAD/EXECUTE PROGRAM

INPUT DS:DX contains the address of an ASCIIZ file name
string for the executable file. AL contains the sub-
function code.

= 0 load and execute
= 3 load as overlay

ES:BX contains the address of the parameter block
which has the structure:
For AL = 0:

WORD segment of environment
DWORD address of command line
DWORD address of 1st FCB
DWORD address of 2nd FCB

For AL = 3:
WORD segment at which to load
WORD relocation factor

OUTPUT If Carry flag is set then AX contains an error code
NOTE: On return from LOAD AND EXECUTE all
registers are destroyed.

4Ch : TERMINATE PROGRAM

INPUT AL contains return code (ERRORLEVEL).
OUTPUT None.

4Dh : GET TERMINATION CODE

INPUT None.

OUTPUT AH contains a number indicating the type of the termi-
nation:

= 0 normal
= 1 Ctrl-Break
= 2 Critical error
= 3 TSR via function 31h

AL contains the return code of the process
(ERRORLEVEL).

ADVANCED PROGRAMMING GUIDE 191

4Eh : FIND FIRST MATCHING FILE

INPUT DS:DX contains the address of an ASCIIZ file name
string, possibly containing ‘*’ and/or ‘?’ wildcard chars.
CX contains the file attribute word to use in the search.

OUTPUT If Carry flag is set then AX contains an error code,
otherwise the DTA is set with the return result:

21 bytes reserved
1 byte file attributes
1 WORD file’s time
1 WORD file’s date
1 DWORD file’s size
13 bytes filename

4Fh : FIND NEXT FILE

INPUT None, but DTA must still be set from the previous call to
FIND FIRST or FIND NEXT.

OUTPUT Same as for FIND FIRST.

52h : GET DOS VARIABLES

INPUT None.
OUTPUT ES:BX contains address of pointers to DOS variables.

54h : GET VERIFY STATUS

INPUT None.

OUTPUT Setting is in AL:
= 0 VERIFY is OFF
= 1 VERIFY is ON

56h : RENAME FILE

INPUT DS:DX contains address of an ASCIIZ file name to be
renamed
ES:DI contains address of an ASCIIZ file name which
is the new name for the file.

OUTPUT If Carry flag is set then AX contains an error code.

57h : GET/SET FILE DATE/TIME

INPUT BX contains open file handle.
AL is set to sub-function code:

= 0 get file date/time
= 1 set file date/time

CX contains new file time (if AL = 1).
DX contains new file date (if AL = 1).

OUTPUT If Carry flag is set then AX contains an error code,
otherwise, if AL was 0 on entry:

CX file time
DX file date

192 TOPSPEED TECHKIT

59h : GET EXTENDED ERROR

INPUT BX must be 0.
OUTPUT AX extended error code.

BH error class.
BL suggested action.
CH locus.
NOTE: CL, DX, SI, DI, ES, and DS are destroyed by
this function!

5Ah : CREATE UNIQUE FILE

INPUT DS:DX contains the address of an ASCIIZ drive/path
string, ending with ‘\’.
CX contains file attributes.

OUTPUT If Carry flag is set then AX contains an error code,
otherwise DS:DX contains the address of a string
containing the unique file name and AX contains the
open file handle for that file.

5Bh : CREATE NEW FILE

INPUT DS:DX contains the address of an ASCIIZ file name
string and CX contains file attributes.

OUTPUT If Carry flag is set then AX contains an error code,
otherwise, AX contains the file handle of the newly
created, and opened, file.

5Ch : LOCK/UNLOCK FILE BYTES

INPUT AL contains sub-function code:
= 0 lock bytes
= 1 unlock bytes

BX contains file handle.
CX:DX contains the position in the file that the region begins
SI:DI contains the size of region in bytes.

OUTPUT If Carry flag is set then AX contains an error code.

5E00h : GET MACHINE NAME

INPUT DS:DX is the address of a 16-byte buffer.
OUTPUT If Carry flag is set then AX contains an error code.

Otherwise if CH is 0, then the machine name/number is
undefined. Otherwise, the buffer contains machine name
and CL contains the NETBIOS machine number.

ADVANCED PROGRAMMING GUIDE 193

5E02h : SET PRINTER SETUP STRING

INPUT BX contains the redirection list index.
CX contains length of the string (max. 64 bytes).
DS:SI contains address of setup string.

OUTPUT If Carry flag is set then AX contains an error code.

5E03h : GET PRINTER SETUP STRING

INPUT BX contains the redirection list index.
ES:DI contains address of a 64-byte buffer.

OUTPUT If Carry flag is set then AX contains an error code.
Otherwise, CX contains the length of the setup string,
and the buffer pointed to by ES:DI contains the set-up
string.

5F02h : GET REDIRECTION LIST ENTRY

 INPUT BX contains redirection index (0-based).
DS:SI contains address of 128-byte buffer (for local
name).
ES:DI contains address of 128-byte buffer (for network
name).

OUTPUT If Carry flag is set then AX contains an error code.
Otherwise:
BH device status in low-order bit.

= 0 device valid
= 1 device invalid

BL device type.
CX stored parameter value.
DS:SI buffer set to ASCIIZ local name.
ES:DI buffer set to ASCIIZ network name.

NOTE: The contents of DX and BP are destroyed by this
function.

5F03h : REDIRECT DEVICE

INPUT BL contains the device type:
03 printer device
04 file device

CX must be 0.
DS:SI points to an ASCIIZ local name.
ES:DI points to an ASCIIZ network name.

OUTPUT If Carry flag is set then AX contains an error code.

194 TOPSPEED TECHKIT

5F04h : CANCEL REDIRECTION

INPUT DS:SI points to ASCIIZ local name.
OUTPUT If Carry flag is set then AX contains an error code.

60h : EXPAND PATH

INPUT DS:SI points to an ASCIIZ path string to be expanded.
OUTPUT ES:DI contains the address of the expanded path or

filename.

62h : GET PROGRAM SEGMENT PREFIX

INPUT None.
OUTPUT BX contains the segment address of the caller’s PSP (i.e.

BX:0000 is the address of PSP).

65h : GET EXTENDED COUNTRY

INPUT AL contains the ID for the information required.
BX contains the code page number or FFFFh if the
global page is required.
DX contains the country code or FFFFh for the current
country.
ES:DI points to a buffer to contain the requested
information and CX contains the size of this buffer.

OUTPUT If Carry flag is set then AX contains an error code.
Otherwise CX contains the length of the returned infor-
mation which is placed in the buffer pointed to by
ES:DI.

66h : GET/SET GLOBAL CODE PAGE

INPUT AL specifies the sub-function to be performed:
= 1 get page
= 2 set page

If AL = 2, then BX must be set to the code page you
wish to set.

OUTPUT If Carry flag is set then AX contains an error code.
Otherwise, if Al was set to 1 on entry:

BX active code page
DX system code page

67h : SET HANDLE COUNT

INPUT BX contains number of open handles to allow.
OUTPUT If Carry flag is set then AX contains an error code.

ADVANCED PROGRAMMING GUIDE 195

68h : FLUSH FILE

INPUT BX contains open file handle.
OUTPUT If Carry flag is set then AX contains an error code.

196 TOPSPEED TECHKIT

This appendix describes the architecture and instruction set of the 8086 CPU
and the 8087 floating-point co-processor. Individual technicalities of these
sets are not discussed here; these can be found in, for example, Intel’s 80286
and 80287 Programmer’s Reference Manual.

Architecture

The 8086 CPU (and the 80286 and 80386) contains fourteen 16-bit registers.
These registers can be logically split into three main groups:

Data group consisting of four registers, each 16-bits wide. These are
ax, bx, cx and dx. These can each be used as either a
single 16-bit register or as two 8-bit registers. When
used as 8-bit registers, the two parts are referenced as
either the upper half (h) or the lower half (l). The upper
8-bit registers are ah, bh, ch and dh. The lower 8-bit
registers are al, bl, cl and dl. The Data Group is used for
arithmetic and logical operations.

Pointer and index groups
consisting of sp, bp, ip, si and di. These are all 16-bit
registers and generally addresses or address offsets.

Segment group consisting for four 16-bit segment registers, cs, ds, ss
and es. On the 8086 (and the 80286 and 80386 in real
mode) these registers are combined with other 16-bit
values to obtain (at least) 20-bit wide addresses.

In protected mode on the 80286 and 80386, the segment
registers contain selectors which are used by the CPU as
indexes into descriptor tables. These tables contain,
among other things, the actual address components.
These address components are combined with the other
16-bit offset values (possibly 32-bit on the 80386) to
obtain a 24-bit address (32-bits on the 80386).

ADVANCED PROGRAMMING GUIDE 197

Abbreviation Meaning

Segment registers
cs Code Segment register

ss Stack Segment register

ds Data Segment register

es Extra Segment register

Data registers
ax The AX data register (the “accumulator”)

bx The BX data register

cx The CX data register

dx The DX data register

Pointer and index registers
sp Stack Pointer

bp Base Pointer

si Source Index register

di Destination Index register

ip Instruction Pointer

Flag register
fl Flag Register

The fourteenth register, fl, is the Flag Register. This is treated as 16
1-bit flags, of which only nine are actually used by the 8086 CPU. Table D.2
shows the physical layout of the flag register. The flags themselves are
described below. The term “set” means the flag is on (i.e., equal to 1);
“cleared” means the flag is off (i.e., set to 0).

Layout of Flags Register (— means the bit is not used)

Table D.2 Flags Register

OF Overflow flag: This is set when a signed arithmetic
overflow occurs, that is, when a result exceeds the
capacity of the destination.

DF Direction flag: The setting of this flag determines the
direction of data transfer. When the flag is set, the string
operations which use si and di, decrement these registers
in each iteration of the string instruction. When this flag
is cleared, si and di are incremented in each iteration of

198 TOPSPEED TECHKIT

the string instruction.

IF Interrupt enable flag: Hardware interrupts can only
occur when this flag is set.

TF Trap flag: When this flag is set, the program single-
steps, executing a single instruction. It is for use by
debuggers, such as TopSpeed’s Visual Interactive
Debugger.

SF Sign flag: This flag is set if the most significant bit of the
result of an instruction is also set. Since negative num-
bers are represented in two’s compliment form, this flag
is set when the result is negative. If the result is positive,
the flag is cleared.

ZF Zero flag: This flag is set when the result of the instruc-
tion is zero. If the result is non-zero, the flag is cleared.

AF Auxiliary flag: This flag is set by certain instructions
when an internal carry has occurred between the lower
and upper halves of a byte. If this does not occur, then
the flag is cleared. It is not usually useful.

PF Parity flag: This flag is set when the total number of bits
in the result is an even number (even parity). If the
number of bits is odd (odd parity) this flag is cleared.

CF Carry flag: This flag is set if the instruction required an
arithmetic carry or borrow in the most significant bit. If
this did not occur, the flag is cleared. If unsigned arith-
metic is being used, the setting of the carry flag indicates
whether or not unsigned overflow occurred.

OF, SF, ZF, AF, PF and CF are set by the arithmetic and logical operations:
· If OF is set it indicates a signed overflow.

· ZF is set if the result is zero overflow otherwise it is cleared.

· If CF is set it indicates an unsigned overflow.

Note: inc and dec do not alter CF.

Data transfers such as mov, push and pop do not alter the flags. For further
information about the setting of particular flags by particular instructions,
please refer to the Intel documentation. However, this information is not
normally required.

Memory Addressing

The segment registers (cs, ds, ss and es) act as base pointers for memory
addresses. Every memory access made by a program is relative to one of
these registers. The byte (or word) to be accessed has an address which is
calculated by the following formula:

ADVANCED PROGRAMMING GUIDE 199

This gives a 20-bit physical address on the 8086. This allows up to 1
megabyte of addressable memory on the 8086 processor. Jump addresses are
usually relative to the current cs (CODE segment) register value; data is
usually relative to the current ds (DATA segment) register value.

If you require a different segment register to address a particular memory
item, the segment override syntax should be used:

When any byte is addressed, be it code or data, a segment register is used by
the processor. The instruction normally dictates which register is to be used,
however, you can define a specific register using the procedure described
above.

8086 Instructions

Instructions are fetched from memory at the address currently pointed to by
cs:[ip].

After an instruction has been fetched (but before it is executed), the ip
register is updated to point to the next instruction. Except for this automatic
updating of the next instruction pointer, the only other instructions which
affect the cs and ip registers are:

An 8086 instruction has the following general format:

The specifier, operand1 and operand2 elements are optional. Their presence
or absence depends upon the format for a particular instruction.

The specifier is used to dictate the size of the operands to which the
instruction is to be applied. It is used when more than one data size is
possible for an instruction and the size is not implied by a register operand.
For example, using al implies a byte operand; using ax could apply to both
word and byte operands.

The specifiers are:

byte 1 byte
word 2 bytes

200 TOPSPEED TECHKIT

dword 4 bytes
qword 8 bytes (floating-point only)
tbyte 10 bytes (floating-point only)
near 2 bytes (for jump, call and return instructions)
far 4 bytes (for jump, call and return instructions)

8086 Operands

The operand to an 8086 instruction may be one of the following:

· A general register (ax, bx, cx, dx, sp, bp, si, di, al, bl, cl, dl, ah,
bh, ch or dh).

· A segment register (cs, ss, ds or es).

· A constant (either a number or a label).

· A memory operand.

These operand types are known, respectively, as R, S, C and M. Table D.3
shows the possible combinations of these types which can occur in 8086
instructions.

Note: the order in which the operand types are given is significant. The
combination MC is allowed but the combination CM is not.

Abbreviation Description

Zero Operands
- No operand required

One Operand
R General register
S Segment register
C Constant
M Memory

Two Operands

RR Two general registers
RS General register;Segment register
RC General register;Constant
RM General register;Memory
SR Segment register;General register
SM Segment register;Memory
MS Memory; Segment register
MR Memory; General register
MC Memory; Constant
CR Constant; General register

Table D.3 Allowed 8086 operand combinations

ADVANCED PROGRAMMING GUIDE 201

A memory operand is specified by an optional segment override followed by
a list of 16-bit offsets, each enclosed in square brackets. A segment override
is the name of a segment register followed by a colon. For example:

When no segment override is given, ds is used as the segment, unless one of
the offsets is the bp register. In this case, the ss register is used as the default
segment.Offsets may be labels, numbers or the index registers bx, bp, si or
di. There are eight allowed combinations of these index registers:

All other combinations are illegal. However, index registers can be used
with labels and numbers to produce such expressions as:

Instruction Opcode Descriptions

Table D.4, below, summarizes the 8086 instruction set. The instructions are
listed in alphabetical order with the following information:

· The opcode mnemonic.

· The possible specifiers which can be used with the instruction.

· The possible operand combinations (see Table D.3) allowed for
this instruction.

· A description of the instruction in C-like terms.

The following notation is used in the table to explain actions not easily
described:

push(x) means sp := sp + 2; ss:[sp] = x

pop(x) means x = ss:[sp]; sp = sp - 2

next(x,i) means IF (DF) THEN x := x - 1 ELSE x := x + 1

rol(x,y) means rotate x leftwards by y bits

ror(x,y) means rotate x rightwards by y bits

sar(x,y) means shift x right y bits, preserving the sign of x

? = means discard the result

Instructions which discard their results are generally executed for their effect
on the flag register. In addition the following points should be noted:

202 TOPSPEED TECHKIT

· ‘op1’ and ‘op2’ stand for the first and second operands,
respectively.

· Where the specifiers are given as near and far, the cs register is
only involved in the far case.

· The notation ‘a:b...’ should be interpreted to mean one of the
following:

· A segment override if ‘a’ is a segment register.

· A 32-bit value if ‘a’ is dx.

· A sequence of items in memory with ‘a’ as the high address and
with the addresses decreasing as you move along the list.

Comparisons and Jumps

After the comparison instruction:

the following interpretation of the jump instruction are valid:

If unsigned arithmetic is being carried out, then the following can be used:

On the other hand, if signed arithmetic is being used:

Floating-point (8087) Instructions

The 8086 is rather limited when it comes to mathematical operations on
anything other than small integers. The 8087 floating-point co-processor
extends the abilities of the 8086 to include operations on floating-point
numbers up to an accuracy of about 18 decimal digits. In addition, the
TopSpeed libraries include emulation of the 8087’s floating point
instructions, so you can write assembly language programs including 8087
instructions even if you do not have such a piece of hardware on your
computer.

The 8087 has a stack-based architecture with eight 10-byte registers. These
are accessed relative to an internal pointer, st, which is updated by some
operations. The 8087 registers are referred to by the mnemonics st(0), st(1)

ADVANCED PROGRAMMING GUIDE 203

.... st(6), st(7). The first two, st(0) and st(1), have a special status, as can be
seen from Table D.7.

In addition to these registers, the 8087 has another 7 registers shown in Table
D.5.

Abbreviation Description

CW Control Word
SW Status Word
TW Tag Word
IPL Instruction Pointer Low (for the 8087)
IPH Instruction Pointer High (for the 8087)
DPL Data Pointer Low
DPH Data Pointer High

Table D.5 8087 Registers

Generally, these registers are of little interest, and are not discussed here.
The only exception is SW, the Status Word, which must be transferred to the
8086’s flag register (fl) in order to determine the results of the 8087’s
comparison instructions.

Table D.6 (overleaf) shows the possible operands for the 8087 instructions.

Abbreviation Description

Zero Operands
- No operand required

One Operand
T Stack top (st(0))
R Any floating-point register (st(0) ... st(7))
M Memory

Two Operands
TM st(0); Memory
MT Memory; st(0)
TR st(0); Any floating-point register
RT Any floating-point register; st(0)
T2 st(1); st(0)
2T st(0); st(1)

Table D.6 8087 Operand Combinations

Table D.7 lists the floating-point instructions in much the same way as Table
B.4 does for the normal 8086 instructions. However, the following points
should be noted:

204 TOPSPEED TECHKIT

· ‘push’ means —st.

· ‘pop’ means ++st.

· The operand combinations allowed are those listed in Table D.6.

· The specifiers can now include qword, dword and tbyte.

· The operator ‘**’ is used to mean ‘raise to the power of’.

Opcode Specifiers Operands Description

ADVANCED PROGRAMMING GUIDE 205

Opcode Specifiers Operands Description

206 TOPSPEED TECHKIT

Opcode Specifiers Operands Description

Table D.7 8087 Opcodes

Using Floating-point Instructions

To illustrate the use of floating-point instructions, and to amplify on the use
of the foption keyword, here is a simple example which adds two integers:

Notice the syntax and specifiers which are used in this example. If you
examine the resulting code with DEBUG or the TopSpeed Disassembler, the
object code generated will take the following form:

ADVANCED PROGRAMMING GUIDE 207

Note: The WAIT instructions are inserted by the assembler in order
to synchronize the 8087 and the 8086. This is required because
the 8086 and the 8087 are executing instructions in parallel. If
you use foption 2, the wait states are suppressed.

Floating-point Comparisons and Jumps

In order to load the 8086’s flag register with the results of a floating-point
comparison on the 8087, the following sequence of operations must be
carried out:

The following jump instructions are now valid:

Note: The jumps associated with floating-point arithmetic are those
normally used with unsigned arithmetic. This can cause
problems for those unexperienced in 8087 programming, as
the expectation is that the signed jump instructions should be
used.

208 TOPSPEED TECHKIT

Symbols

.A files
definition 87

.EXP files 14, 41

.OBJ files
from Assembler 87

8086 instructions 199
comparisons and jumps 202
format 199
memory addressing 198
opcode descriptions 201
operand combinations 200
operands 200
registers 90, 109, 115, 196
specifiers 199

8087 instructions 95
comparisons and jumps 207
floating point 202
memory addressing 198
opcodes 204
operand combinations 203
operands 203
registers 203
syntax 206

A

absolute address space 146
addresses 148
API calls 118
arrays

far 161
assembler

8087 support 95
calling conventions 98
comments 87
conditional assembly 96
considerations 94
data and variables 96
differences from standard 87
error messages 98
examples 89
file inclusion 96
floating point options 96
forward references 95
generic tokens 90

instructions 90
invoking 88
jumps and calls 91, 95
keywords 90
labels 87
lexical structure 87
macros, lack of 87
non-8086 instructions 95
operands 94
operators 91
predefined identifiers 97
programming style 88
segment alignment 88
single pass 87, 95
smart linking 98
strings 95
symbol table 94
syntax 92
tokens 90
use of semi-colon 87
use with project system 87, 88

assembly language
argument promotion 82
conventions 75
floating point code 86
floating point return values 81
initialization code 83
jpi calling convention 76
linkage 83
register preservation 82
return values 80
standard C 75
standard Pascal/Modula-2 75
typeless parameters 79
variable argument functions 77

auxilliary flag 198

B

Break procedure 138
BreakTest procedure 138

C

C argument types 82
call pragma 68, 166
call(seg_name) 13, 166
calling conventions 10, 98

JPI 79
jpi 86
jpi parameter passing 76

carry flag 198

ADVANCED PROGRAMMING GUIDE 209

checking for breaks 138
classes 151
CODE 170
CODE segment 19
Communications 133
compact model 53, 54, 160, 167
conditional assembly 96
Control-Break 116
conventions

typographic 12
cross definition files

creating your own 67
standard 66

customizing memory models 147

D

DATA 172
data group 196
data pragma 165
data registers 196
DATA segment 21, 88
data threshold 167
deactivating a TSR program 130
debugging

windows 59
define pragma 97
direction flag 197
disassembler 94, 120

and 8087 instructions 206
invoking 120
redirecting output to a file 121
source line include facility 120
syntax 120

DISCARDABLE 174
discardable segments 19
Displaying the contents of registers 115
DLLs 11

advantages of use 36, 37
changing environments 45
converting 44
creating 37, 42, 47
dynalink model 37
dynamic linking 40
error messages 52
example 47
import library 41
initialization procedure 50
late binding 40
LIBPATH configuration variable 42
library restrictions 52
licence statement 52

load-time dynamic linking 42
loader 41
Module definition file 41
module definition file 38, 43, 44
multi-thread programming 45
OS/2 users 14
PATH environment variable 42
pitfalls 38
programs using 45
restrictions of use 51
rules of use 41, 42, 49
run-time dynamic linking 42
running programs with 47
segment-based relative short pointers 51
shared data and code 40
start up module initdll 43
static linking 38
using implib 45
using initdll 51
Windows 63
Windows project file 63

DOS Function Calls
categories of 112
monitored by Watch 111

DOS function calls
adding to Watch 117
categories of 112
definition 107
programs not using 110
removing from Watch 117
return values 108
use of int 21H 109
used by Watch 107

dynalink model 18, 37, 52, 152, 157
dynamic link libraries

See, DLLs 36
dynamic linking 42, 45

overlays 14
dynamic loader 42

E

embedded systems 145
C library restrictions 141
Modula-2 library restrictions 143
Pascal library restrictions 143

environment variables
address of 116
LIBPATH 42, 47
PATH 42

error messages
assembler 98

210 TOPSPEED TECHKIT

dynamic link libraries 52
executable file compression utility 125
EXECUTEONLY 171
EXECUTEREAD 171
EXETYPE 168, 177
EXPORTS 175
extra large model 52, 152, 157, 167

F

far arrays 161
far pointers 160
FCB 116

displayed in Watch 109, 117
File Control Blocks

See FCB 116
See, FCB 109

file handles
standard 117

file redirection 120
FIXED 172, 173
flag register 196

layout 197
flags

auxilliary 198
carry 198
direction 197
interrupt enable 198
overflow 197
parity 198
sign 198
trap 198
zero 179, 198

floating point code generation 86
floating point instructions 202

comparisons and jumps 207
syntax 206

floating point options 96
floating point return values 81
function calls 107
function return values 82

G

generic tokens 90
GetProcAddr

C/C++ 24
Pascal 30

groups 151
data 196
pointer and index 196
segment 196

H

HEAPSIZE 175
help file compiler 125
Hotkey sequences 127
HotKeys 126
huge pointers 163

I

I/O 133
I/O buffer

examining under Watch 109
IBM scan codes 128
implib 45
import library generator 41, 124
increasing file handle limit 144

SourceKit 144
increasing thread limit 144
Init procedure 135
initdll 43
INITGLOBAL 170
initialization 145

DLLs 50
INITINSTANCE 170
Install procedure 134
Install2 procedure 135
instruction mnemonics 90
interrupt enable flag 198
interrupt services table 126
interrupts 108

J

JPI calling conventions 69, 86
examples 79

JPI process module 145

L

large model 53, 153, 158
late binding 40
leaving Watch 114
LIBPATH configuration variable 42
LIBRARY 170
library

embedded systems 141
multi-language 71

library initialization procedures 140
library restrictions

embedded systems 141, 143
library termination procedures 140
linking

ADVANCED PROGRAMMING GUIDE 211

defined symbols 39
referenced symbols 39
smart 98
static 38
traditional method 39

load-time dynamic linking 42
LoadModule

Pascal 30
LOADONCALL 171, 173
LoadSeg

C/C++ 23
Modula-2 27
Pascal 30

M

medium model 53, 60, 154
memory addressing 198
Memory Control Blocks

See, Watch, Memory Control Blocks 109
memory models 9

8086 architecture 146
absolute address space 146
address calculation 149
chip architecture 147
classes 151
compact 53, 54, 160, 167
customizing 147
dynalink 18, 37, 52, 152, 157
extra large 152, 153
functions 161
groups 151
huge pointers 163
language extensions 147
large 53, 153, 158
linking 151
medium 53, 60
mixed model programming 160
multi-thread 37, 129, 152, 157, 167
overlay 152, 157
pointers 149, 160, 163
pointing to absolute addresses 164
pragmas 165
prototyping functions 167
registers 147
segment wrap-around 162
selection of 158
small model 152, 153, 154
standard model 147
threshold 167
using 150
virtual address space 146

mixed model programming 160
module definition file 14, 20, 41

automatic generation 124
CODE statement 170
CONFORMING 172
creating for DLLs 44
DATA statement 172
DLLs 38, 43
example program 169
EXETYPE statement 177
EXPORTS statement 175
HEAPSIZE statement 54, 175
INITGLOBAL 170
INITINSTANCE 170
LIBRARY statement 170
NAME statement 169
NONCONFORMING 172
NOTWINDOWCOMPAT 169
PROTMODE statement 176
REALMODE statement 176
SEGMENTS statement 54, 174
STACKSIZE statement 175
syntax 19, 168
TSEXEMOD 124
TSIMPLIB 124
TSMKEXP 45
TSMKEXP syntax 44
WINDOWAPI 169
WINDOWCOMPAT 169
Windows 54, 64

module header utility 124
monitoring errors with Watch 109
monitoring incomplete function calls 112
multi-language programming

calling conventions 69
cross definition file 66
enumeration types 69
libraries 71
naming conventions 70
types 67

multi-thread DLLs 45
multi-thread model 37, 129, 152, 157
multi-thread programming

DLLs 45
OS/2 considerations 145
overlays 35
using OS/2 API 145

N

NAME 169
naming conventions

212 TOPSPEED TECHKIT

multi-language 70
near arrays 161
near pointers 160
near_ptr pragma 165
new executable file format 34
NONDISCARDABLE 172, 174
NOTWINDOWCOMPAT 169

O

open file function 108
operands 94
operating system

calls 107
services 107

operators 91
OS/2

API 145
loader 41
multi-thread programming 145

overflow flag 197
overlay management procedures 13
overlay management system 13
overlay model 13, 14, 16, 18, 21, 36, 152, 157
overlays

addressing conventions 36
allocation function failure 18
API flush function 17
assembly language 36
calling conventions 36
compiling and running 14
controlling 13
dynamic linking 14
EXP files 18
layout 16
limitations 34
manual operation 35
memory available functions 18
memory management 17
module name 22
multi thread programming 14, 35
new executable file format 34
residency 35
run-time errors 31
running a program 15
segment number 22
segmentation 15
system requirements 34

P

parity flag 198

PASPMD.ITF 105
PATH environment variable 42
PMD.DEF 105
PMD.H 104
pointer and index groups 196
pointer and index registers 196
pointers 163

absolute addresses 164
declaration of 160
far 149, 160
huge 163
near 149, 160
pitfalls 162
relative 164

ports
RS-232 133

Post-Mortem Debugger
use with VID 103

Post-mortem Debugger 104, 105
source code changes 104, 105

pragmas
call 68
data 165
define 97
restore 165, 166
save 166

PRELOAD 173
process scheduler 129

use with TSR module 129
program initialization 140
program profiler 121

format 121
options 122
SIEVE.PRF 122
syntax 122

Program Segment Prefix
See PSP 116

program termination 140
programming style

in assembler 88
project files

DLLs 42, 44, 45, 47, 51
post-mortem dump 104
predefined identifiers 97
Windows 53, 59, 60, 63, 65

protected mode 149
PROTMODE 176
prototyping functions 167
PSP 17

contents of 116
displayed in Watch 109
examining using Watch 116

ADVANCED PROGRAMMING GUIDE 213

explanation 116
File Control Blocks 116
parent 116
Watch display 116

R

real mode 149
real programming 103
REALMODE 168, 176
Receive procedure 137
receiving data 137
registers 147, 148

8087 203
address calculation 149
code segment 148
data segment 148
default assignments 152
extra segment 148
flag 196
layout of flag register 197
preservation 82
segment 196
stack segment 148

relative pointers 164
reserved segments and groups 86
restore pragma 75, 165, 166
return values

from assembler functions 80
from C functions 80

rs module 133, 139
Break procedure 138
BreakTest procedure 138
checking for breaks 138
example program 139
Init procedure 135
Install procedure 134
Install2 procedure 135
interrupts 134
port addresses 134
Receive procedure 137
receiving data 137
RS.DEF file 134
RxCount procedure 136
Send procedure 137
sending breaks 138
sending data 137
setting up the environment 134
TxCount procedure 136
Txfree procedure 136

RS-232 133
RS-232 ports 133

RS.DEF file 134
RSDEMO program 139
run-time dynamic linking 42
RxCount procedure 136

S

save pragma 165, 166
scan codes 128
scan values 127
scrolling menus 112
segment group 196
segment registers 148, 149, 196
segment-based relative short pointers 51
segment/offset pair 160
SEGMENTS 174
segments 148

alignment of 88
CODE 88
DATA 21, 88
discardable 13
groups of 89
preloaded 13
reserved 86
standard 89

selecting memory models 158
Send procedure 137
sending breaks 138
sending data 137
serial communications 133
SetExitHandler

C/C++ 22
Modula-2 25
Pascal 28

SetMemHandler
C/C++ 23
Modula-2 26
Pascal 29

SetMode
C/C++ 24
Modula-2 27
Pascal 30

shift keys
effects of 127

Sieve program
SIEVE.PRF 122

sign flag 198
simple types 76
small model 152, 153, 154
smart linking 98
SourceKit 144
stack pointer register 148

214 TOPSPEED TECHKIT

STACKSIZE 175
standard memory models 147
starting a TSR program 127
starting Watch with parameters 111
static linking 38, 40, 45

example 39
status mask 127
strings

multi-language 68
suspending Watch 118
symbol Table 94
symbols

defined 39
Referenced 39

T

TDSA 120
and 8087 instructions 206

Terminate
C/C++ 25
Modula-2 28
Pascal 31

Terminate and Stay Resident
See, TSR 107

terminating a TSR program 131
tracking communications buffers 136
trap flag 198
TSASM

See, assembler 87
TSCRUNCH 125
TSDA 94
TSEXEMOD 124
TSIMPLIB 124
TSMKEXP 124
TSMKHELP 125
TSPRJ.TXT 59
TSPROF 121

format 121
options 122
SIEVE.PRF 122
syntax 122

TSR 126
TSR installation procedure 127
TSR Module

writing programs 126
TSR module 127

actions of 126
activating a program 127
advantages of use 131
affecting Watch 111
cautions 129

deactivating a program 130
Deinstall 131
example program 129
IBM scan codes 128
implementation module 131
Install 131
installation of 127
limits 129
loading order 129
memory organization 126
memory requirements 126
model definition 127
necessary heapspace 130
operation summary 126
rules 129
scan codes 128
scan values 127
setting the stack 130
source code 126
terminating programs 131
termination order 131
transfer facility 127
TSR.MOD 126
TSRCALC program 132
TSRCALC.MOD 130
use of multiple programs 129
use with the process scheduler 129
using display windows 129
using runtime checking 129
Watch 107
within TopSpeed 130

TSR.MOD 126
TSRCALC program 131, 132
TSRCALC.MOD 130
TxCount procedure 136
TxFree procedure 136
typeless parameters 79
types

enumeration 69
simple 76

U

UnloadModule
C/C++ 24
Pascal 30

UnloadSeg
C/C++ 24
Modula-2 27
Pascal 30

UserFlush
C/C++ 23

ADVANCED PROGRAMMING GUIDE 215

Modula-2 26
Pascal 29

V

variable argument list functions 78
virtual address space 146
virtual memory 40
Visual Interactive Debugger (VID) 103, 105

W

Watch 107
A option 113
adding a single function 113, 117
after window 109, 115
API calls 118
before window 109, 114
categories menu 112
check menu 110
command line parameters 111
compatible languages 107
continuing the program 109
Ctrl-Brk 116
D option 114
displaying monitored functions 111
DOS function codes 117
E option 113
environment variable block 116
excluding categories 113
exiting 114
FCB 117
File Control Blocks 109
file handles 117
for OS/2 users 118
functions of 109
global information segment 118
graphics mode 110
hardware requirements 110
I option 112
I/O buffer 109
including a category 112
interpreting register contents 115
leaving the category selection menu 113
limitations 110
listing the monitored calls 117
local information segment 118
maximum number of parameters 111
Memory Control Blocks 109, 117
menu highlighting bar 112
menus 111
monitoring errors 109

operational summary 108
parameter format 111
parent PSP 116
printing your results 114
programs not using DOS function calls 110
PSP 116
removing a single function 114, 117
removing categories 113
returning to DOS 111
running multiple copies 110
saving your results to a file 114
scrolling the menus 112
selecting the output 114
starting 110
starting to monitor 114
starting with parameters 111
suspending 118
unloading from memory 110, 111
Using PgUp and PgDn 112
windows 108

WINDOWAPI 169
WINDOWCOMPAT 169
Windows

C library limitations 62
calling convention for C 55
calling convention Modula-2 56
calling convention Pascal 58
debugging 59
DLL initialization and termination 64
DLLs 63
dynamic memory 58
example module definition file 65
Modula-2 library 62
Modula-2 library extensions 60
module definition file 54, 64
naming convention Modula-2 56
naming convention Pascal 58
Pascal library 63
program sequence 59
program source 55
project files 53, 59, 60
stack_size pragma 56
using version 2 63
winmath 53

winmath 53
WINSTYLE.H 59

Z

zero flag 108, 179, 198

