
Rendering 1

Rendering
As RFB protocol assumes receiving of remote desktop updates as a bunch of 
encoded rectangles, there are 2 options for rendering them:

 Sequential rendering

 Collecting of updates

Sequential Rendering
Every single received update rectangle is rendered on the user screen as it is 
received and decoded. And when the previous rectangle is rendered, then 
processing of the next received update rectangle starts. And so on.

This is the classic option used in the TightVNC Viewer and the only option in 
the Remote Core SDKs version prior v2020.3

Updates Collecting
Working this way the SDK receiving a bunch of updates rectangles is trying 
firstly to decode all of them and save on the internal framebuffer and only 
then render it on the user screen.

In most cases, this approach allows to improve the rendering quality and avoid 
the tearing effect. However, this way also has an obvious flaw. If you have low 
bandwidth, it may cause rendering lags.

To avoid such lags there is an option to set updates flushing timeout. The main 
idea of this timeout is to render all currently decoded rectangles from the 
received bunch on the user screen after the specified timeout is expired since 
the moment of receiving the bunch. It allows to escape the visual lags and 
make the rendering smoother.

Remote Core SDK settings
There are 2 settings to control rendering behavior in this way:

UseUpdatesCollecting - gets or sets the value, which indicates whether 
collecting of the remote framebuffer updates

UpdatesFlushingTimeout - gets or sets the timeout in milliseconds after 
which all collected changes in UpdateCollecting mode will be flushed to 
the UI. Setting it to 0 will disable this timeout.



Rendering 2

Both of the settings are acceptable for low-level ViewerCore component as 
well as for both UI-controls: WPF and WinForms


