

A P P E N D I X

A
 A
The Reddick VBA Naming
Conventions, Version 4.0

Appendix A: The Reddick VBA Naming Conventions, Version 4.0

Some of the naming tags, prefixes, and qualifiers described here are derived
from the Leszynski/Reddick naming conventions, Copyright © 1994 Stan Leszynski
and Greg Reddick.

The purpose of the Reddick VBA (RVBA) naming conventions is to provide a
guideline for naming objects in the Microsoft Visual Basic for Applications (VBA)
language. Having conventions is valuable in any programming project. When you
use them, the name of the object conveys information about the meaning of the
object. These conventions provide a way of standardizing what that meaning is
across the programming industry.

VBA is implemented to interact with a host application—for example, Microsoft
Access, Visual Basic, Microsoft Excel, or Microsoft Project. The RVBA conventions
cover all implementations of the VBA language, regardless of the host application.
Note that some of the tags described in this appendix may not necessarily have an
implementation within some particular host program. The word object, in the con-
text of this document, refers to simple variables, as well as to objects presented in
the interface of the VBA host program.

While I’m the editor of these conventions and in 1992 proposed the original conven-
tions for Microsoft Access, they are the work of many people, including Charles Simonyi,
who invented the Hungarian conventions on which these are based; Stan Leszynski, who
co-authored several versions of the conventions; and Paul Litwin, for his contributions
and for getting the conventions in front of the public. Many others, too numerous to
mention, have also contributed to the development of these conventions.

These conventions are intended as a guideline. If you disagree with a particular part,
simply replace that part with what you think works better. However, keep in mind who
will see those changes and place a comment in the header of a module indicating what
changes have been made. The conventions are presented without rationalizations for
how they were derived; you may assume that there are good reasons for the choices that
have been made. Send me any questions or comments about the conventions. (See the
addresses at the end of this document.) Suggestions for future versions are welcome.

Changes to the Conventions

These conventions first appeared in print in the charter issue of Smart Access in
February of 1993. A significantly revised version appeared in the August 1993 issue.

Some of the tags in the version of the conventions presented here have changed from
previous versions. Consider all previous tags to be grandfathered into the conventions—
4

An Introduction to Hungarian

you don’t need to go back and make changes. For new development work, I leave it up
to you to decide whether to use the older tags or the ones suggested here.

An Introduction to Hungarian

The RVBA conventions are based on the Hungarian style, named for the native
country of Charles Simonyi, the inventor of this style of naming objects. The objec-
tive of Hungarian is to convey information about the object concisely and effi-
ciently. Hungarian takes some getting used to, but once adopted, it quickly
becomes second nature. The format of a Hungarian object name is as follows:

[prefixes]tag[BaseName[Suffixes]]

The square brackets indicate optional parts of the object name.

These components have the following meanings:

• Prefixes: Modify the tag to indicate additional information. Prefixes are in all
lowercase letters. They are usually picked from a standardized list of pre-
fixes, given later in this document.

• Tag: Short set of characters, usually mnemonic, that indicates the type of the
object. The tag is in all lowercase letters. It’s usually selected from a standard-
ized list of tags, given later in this document.

• BaseName: One or more words that indicate what the object represents. The
first letter of each word in the base name is capitalized.

• Suffixes: Additional information about the meaning of the base name. The
first letter of each word in the suffix is capitalized. They are usually picked
from a standardized list of suffixes, given later in this document.

Notice that the only required part of the object name is the tag. This may seem
counterintuitive; you may feel that the base name is the most important part of the
object name. However, consider a generic procedure that operates on any form.
The fact that the routine operates on a form is the important thing, not what that
form represents. Because the routine may operate on forms of many different
types, you don’t necessarily need a base name. However, if you have more than
one object of a type referenced in the routine, you must have a base name on all
but one of the object names to differentiate them. Also, unless the routine is
5

Appendix A: The Reddick VBA Naming Conventions, Version 4.0

generic, the base name conveys information about the variable. In most cases a
variable should include a base name.

Tags

You use tags to indicate the datatype of an object, and you construct them using
the techniques described in the following sections.

Variable Tags

Use the tags listed in Table A.1 for VBA datatypes. You can also use a specific tag
instead of “obj” for any datatype defined by the host application or one of its
objects. (See the section “Host Application and Component Extensions to the Con-
ventions” later in this appendix.)

TA B L E A . 1 Tags for VBA Variables

Tag Object Type

byt Byte

f Boolean

int Integer

lng Long

sng Single

dbl Double

cur Currency

dtm* Date

obj Object

str String

stf String (fixed length)

var Variant

*Prior versions of these naming conventions used the “dat” tag.
6

Tags

Here are several examples:

lngCount
intValue
strInput

You should explicitly declare all variables, each on a line by itself. Don’t use the
old type declaration characters, such as %, &, and $. They are extraneous if you use
the naming conventions, and there’s no character for some of the datatypes, such
as Boolean. You should explicitly declare all variables of type Variant, the default, as
type Variant. For example:

Dim intTotal As Integer
Dim varField As Variant
Dim strName As String

Constant Tags

You should indicate generic constants by using the tag “con”. If you need to dif-
ferentiate one class of constants from another, you can invent a class name, such as
adh (for Access Developer’s Handbook), and append the letter “c” to the class—
for example, adhcPi. You may want to do this if you have some specific component
that has global constants and you want to ensure that they don’t conflict with other
constants. For example:

conPi
adhcError205

Tags for User-Defined Types and Classes

User-defined types and user-created class objects are treated the same because
user-defined types are really a kind of simple user-defined class. These objects
have two components: the class name that defines the structure of the class and a
tag that is used for instances of that class. Choose an appropriate name for the
class. For example, if you had a user-defined class that described a glyph bitmap
created at run time on a form, the class name would be glyph. The tag would be an
abbreviation of glyph—perhaps gph. If you had another class that was a collection
of these objects, it would use glyphs and gphs, respectively. You can treat a form as
a user-defined class with a user interface. For example:

gphGlyph
nclName
7

Appendix A: The Reddick VBA Naming Conventions, Version 4.0

Collection Tags

You treat a collection object with a special tag. You construct the tag using the
datatype of the collection followed by the letter “s”. For example, if you had a col-
lection of Longs, the tag would be lngs. If it were a collection of user-defined types
with the tag gph, the collection would be gphs. Although in theory, a collection can
hold objects of different datatypes, in practice, each of the datatypes in the collec-
tion is the same. If you do want to use different datatypes in a collection, use the
tag objs. For example:

intsEntries
erhsHandler
bscsBaseClass

Constructing Procedures

VBA procedures require you to name various objects: procedure names, labels,
and parameters. These objects are described in the following sections.

Constructing Procedure Names

VBA names event procedures, and you can’t change them. You should use the
capitalization defined by the system. For user-defined procedure names, capitalize
the first letter of each word in the name. For example:

cmdOK_Click
GetTitleBarString
PerformInitialization

Procedures should always have a scope keyword, Public or Private, when they
are declared. For example:

Public Function GetTitleBarString() As String
Private Sub PerformInitialization
8

Prefixes

Naming Parameters

You should prefix all parameters in a procedure call with ByVal or ByRef, even
though ByRef is optional and redundant. Procedure arguments are named the
same as simple variables of the same type, except that arguments passed by refer-
ence use the prefix “r”. For example:

Sub TestValue(ByVal intInput As Integer, _
 ByRef rlngOutput As Long)
Function GetReturnValue(ByVal strKey As String, _
 ByRef rgph As Glyph) As Boolean

Prefixes

Prefixes modify an object tag to indicate more information about an object.

Arrays of Objects Prefix

Arrays of an object type use the prefix “a”. For example:

aintFontSizes
astrNames

Index Prefix

You indicate an index into an array with the prefix “i”, regardless of the datatype
of the index. You may also use the index prefix to index into other enumerated
objects, such as a collection of user-defined classes. For example:

iaintFontSizes
iastrNames
igphsGlyphCollection

Prefixes for Scope and Lifetime

Three levels of scope exist for each variable in VBA: Public, Private, and Local. A
variable also has a lifetime of the current procedure or the length of the program.
You may optionally use the prefixes in Table A.2 to indicate scope and lifetime.
9

Appendix A: The Reddick VBA Naming Conventions, Version 4.0

You also use the “m” and “g” constants with other objects, such as constants, to
indicate their scope. For example:

intLocalVariable
mintPrivateVariable
gintPublicVariable
mconPi

Other Prefixes

Table A.3 lists and describes some other prefixes.

Here are two examples:

cstrArray
hwndForm

TA B L E A . 2 Prefixes for Scope and Lifetime

Prefix Object Type

(none) Local variable, procedure-level lifetime

s Local variable, program-level lifetime (static variable)

m Private (module) variable, program-level lifetime

g Public (global) variable, program-level lifetime

TA B L E A . 3 Other Commonly Used Prefixes

Prefix Object Type

c Count of some object type

h Handle to a Windows object

r Parameter passed by reference
10

Host Application and Component Extensions to the Conventions

Suffixes

Suffixes modify the base name of an object, indicating additional information
about a variable. You’ll likely create your own suffixes that are specific to your
development work. Table A.4 lists some generic VBA suffixes.

Here are some examples:

iastrNamesMin
iastrNamesMax
iaintFontSizesFirst
igphsGlyphCollectionLast
lngCustomerIdCnt
varOrderIdCnt

Host Application and Component

Extensions to the Conventions

Each host application for VBA, as well as each component that can be installed, has
a set of objects it can use. This section defines tags for the objects in the various host
applications and components. Future versions of the conventions will include tags for
other VBA hosts and components.

TA B L E A . 4 Commonly Used Suffixes

Suffix Object Type

Min The absolute first element in an array or other kind of list

First The first element to be used in an array or list during the current operation

Last The last element to be used in an array or list during the current operation

Lim The upper limit of elements to be used in an array or list. Lim isn’t a valid index. Generally,
Lim equals Last + 1

Max The absolutely last element in an array or other kind of list

Cnt Used with database elements to indicate that the item is a counter. Counter fields are
incremented by the system and are numbers of either type Long or type ReplicationId.
11

Appendix A: The Reddick VBA Naming Conventions, Version 4.0

Access 97, Version 8.0 Objects

Table A.5 lists Access object variable tags. Besides being used in code to refer to
these object types, these same tags are used to name these kinds of objects in the
form and report designers.

TA B L E A . 5 Access Object Variable Tags

Tag Object Type

app Application

bof BoundObjectFrame

chk CheckBox

cbo ComboBox

cmd CommandButton

ctl Control

ctls Controls

ocx CustomControl

dcm DoCmd

frm Form

frms Forms

grl GroupLevel

hlk Hyperlink

img Image

lbl Label

lin Line

lst ListBox

bas (or mdl) Module

bass (or mdls) Modules

ole ObjectFrame
12

Host Application and Component Extensions to the Conventions

Here are some examples:

txtName
lblInput

For OLE/ActiveX custom controls, you can use the tag OCX, as specified in Table A.5,
or more specific object tags if they have been specified for the control.

Tag Object Type

opt OptionButton

fra OptionGroup (frame)

pge Page of Tab Control

pges Pages (of Tab Control)

brk PageBreak

pal PaletteButton

prps Properties

shp Rectangle (shape)

ref Reference

refs References

rpt Report

rpts Reports

scr Screen

sec Section

sfr SubForm

srp SubReport

tab Tab Control

txt TextBox

tgl ToggleButton

TA B L E A . 5 Access Object Variable Tags (continued)
13

Appendix A: The Reddick VBA Naming Conventions, Version 4.0

DAO 3.5 Objects

DAO is the programmatic interface to the Jet database engine shared by Access,
VB, and VC++. The tags for DAO 3.5 objects are shown in Table A.6.

TA B L E A . 6 DAO 3.5 Object Tags

Tag Object Type

cnx Connection

cnxs Connections

cnt Container

cnts Containers

db Database

dbs Databases

dbe DBEngine

doc Document

docs Documents

err Error

errs Errors

fld Field

flds Fields

grp Group

grps Groups

idx Index

idxs Indexes

prm Parameter

prms Parameters

prp Property

prps Properties

qry (or qdf) QueryDef
14

Host Application and Component Extensions to the Conventions

Here are some examples:

rstCustomers
idxPrimaryKey

Table A.7 lists the tags used to identify types of objects in a database.

Tag Object Type

qrys (or qdfs) QueryDefs

rst Recordset

rsts Recordsets

rel Relation

rels Relations

tbl (or tdf) TableDef

tbls (or tdfs) TableDefs

usr User

usrs Users

wrk Workspace

wrks Workspaces

TA B L E A . 7 Access Database Window Object Tags

Tag Object Type

cls Class Module

tbl Table

qry Query

frm Form

rpt Report

mcr Macro

bas (or mdl) Module

TA B L E A . 6 DAO 3.5 Object Tags (continued)
15

Appendix A: The Reddick VBA Naming Conventions, Version 4.0

If you wish, you can use more exact tags or suffixes to identify the purpose and
type of a database object. If you use the suffix, use the tag from Table A.7 to indicate
the type. Use either the tag or the suffix found along with the more general tag, but
not both. The tags and suffixes are shown in Table A.8.

TA B L E A . 8 Specific Object Tags and Suffixes for Access Database Window Objects

Tag Suffix Object Type

tlkp Lookup Table (lookup)

qsel (none) Query (select)

qapp Append Query (append)

qxtb XTab Query (crosstab)

qddl DDL Query (DDL)

qdel Delete Query (delete)

qflt Filter Query (filter)

qlkp Lookup Query (lookup)

qmak MakeTable Query (make table)

qspt PassThru Query (SQL pass-through)

qtot Totals Query (totals)

quni Union Query (union)

qupd Update Query (update)

fdlg Dlg Form (dialog)

fmnu Mnu Form (menu)

fmsg Msg Form (message)

fsfr SubForm Form (subform)

rsrp SubReport Form (subreport)

mmnu Mnu Macro (menu)
16

Host Application and Component Extensions to the Conventions

Here are some examples:

tblValidNamesLookup
tlkpValidNames
fmsgError
mmnuFileMnu

When naming objects in a database, don’t use spaces. Instead, capitalize the first
letter of each word. For example, instead of Quarterly Sales Values Table, use
tblQuarterlySalesValues.

There is strong debate over whether fields in a table should have tags. Whether
you use them is up to you. However, if you do use them, use the tags from Table A.9.

TA B L E A . 9 Field Tags (If You Decide to Use Them)

Tag Object Type

bin Binary

byt Byte

guid Globally unique identified (GUID) used for replication AutoIncrement fields

lng Autoincrementing (either sequential or random) Long (used with the suffix Cnt)

cur Currency

dat Date/time

dbl Double

int Integer

lng Long

mem Memo

ole OLE

sng Single

str Text

f Yes/No
17

Appendix A: The Reddick VBA Naming Conventions, Version 4.0

Microsoft Office 8.0 Objects

Table A.10 lists the tags for Microsoft Office 8.0 objects.

TA B L E A . 10 Microsoft Office 8.0 Object Tags

Tag Object Type

ast Assistant

bln Balloon

chk BalloonCheckbox

chks BaloonCheckboxes

lbl BalloonLabel

lbls BalloonLabels

cbr CommandBar

cbrs CommandBars

cmd CommandBarButton

cbo CommandBarComboBox

ctl CommandBarControl

ctls CommandBarControls

cbp CommandBarPopup

dcp DocumentProperty

dcps DocumentProperties

sch FileSearch

ffl FoundFiles

prt PropertyTest
18

Summary

Summary

Using a naming convention requires a considerable initial effort on your part. It
also requires that you conform to rules specified by other parties, which is difficult
for many programmers. The payoff comes when either you or another program-
mer has to revisit your code at a later time. Using the conventions makes your code
more readable and maintainable.

A later version of these conventions that includes updated tags for Visual
Basic 5.0 will made be available electronically. This update should be
available at several Web sites, including the MCW Technologies site at
http://www.mcwtech.com.

Greg Reddick is the President of Gregory Reddick & Associates, a con-
sulting company specializing in software development in Microsoft
Access, VB, and C/C++. He worked for four years on the Access devel-
opment team at Microsoft. He was a coauthor of the two previous edi-
tions of this book published by Sybex. He can be reached at 71501,2564
on CompuServe or 71501.2564@compuserve.com from the Internet.

NOTE

NOTE
19

	The Reddick VBA Naming Conventions, Version 4.0
	Changes to the Conventions
	An Introduction to Hungarian
	Tags
	Variable Tags
	Constant Tags
	Tags for User-Defined Types and Classes
	Collection Tags

	Constructing Procedures
	Constructing Procedure Names
	Naming Parameters

	Prefixes
	Arrays of Objects Prefix
	Index Prefix
	Prefixes for Scope and Lifetime
	Other Prefixes

	Suffixes
	Host Application and Component Extensions to the C...
	Access 97, Version 8.0 Objects
	DAO 3.5 Objects
	Microsoft Office 8.0 Objects

	Summary

