
Clarion Magazine

Clarion Magazine

Home COL Archives

Optimizing DLL Loading - Rebasing Your
DLLs
If you create DLLs with Clarion, then you'll
definitely want to read this series of articles. By
default, Clarion 32 bit DLLs load more slowly than
they need to, and are not sharable between
processes. In this installment Carl Barnes shows
how to easily rebase your own application's DLLs.

Posted Tuesday, November 06, 2001

Checkboxes For Many-to-Many
Relationships
There are a lot of ways to show many-to-many
relationships between two tables, and some take
more work on the part of the user than others.
Dave Harms shows how to create a linking record
between tables with a single mouse click.

Posted Friday, November 09, 2001

The Clarion Challenge - Using C in
Clarion
We've already received a number of entries in our
latest Clarion challenge, which asks you to
integrate some C code into a Clarion application.
Get your entry in now - the deadline is Friday,
November 16th.

Posted Wednesday, November 14, 2001

Checkboxes For Many-to-Many
Relationships: The Source Code
There are a lot of ways to show many-to-many
relationships between two tables, and some take
more work on the part of the user than others. This
week Dave Harms explores the inner workings of a
derived browse class to manage these
relationships.

News

Alison Neal Profiled In INN

Bio

VCRFlash 2.1 Released

The Sylkie Web Site

SealSoft Releases xNotes

Class v1.0

Clarion Photo Gallery

Update

Gitano Software Back

From Vacation

Updates from Gitano

Software Now Available

SysIP Released

ExpressFlash 2 Supports

Outlook 2000

INN Bio Features Richard

Rogers

Icetips Wizards Now

http://www.clarionmag.com/index.html?month=11&year=2001&limit=100&desc=false&pFriendlySession=true (1 of 3) [1/11/02 12:31:47 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/sweeps.html

Clarion Magazine

Posted Thursday, November 15, 2001

Calling By Address, STARTing By Address
What would you do if someone gave you a project
that involved either calling or STARTing a
procedure in a DLL which was loaded dynamically
at runtime, with some procedures using the Pascal
calling convention, some the C calling convention,
and even one procedure with an MDI window that
needed to be started on its own thread? If you're
Jim Kane, you write a class that handles all of this.
Part 1 of 2.

Posted Friday, November 16, 2001

A New Look, And A Topical Index
Clarion Magazine has a new look, and more
importantly, a new topical index, making it easier
than ever to find the articles you're looking for.

Posted Tuesday, November 20, 2001

Calling By Address, STARTing By Address
(Part 2)
What would you do if someone gave you a project
that involved either calling or STARTing a
procedure in a DLL which was loaded dynamically
at runtime, with some procedures using the Pascal
calling convention, some the C calling convention,
and even one procedure with an MDI window that
needed to be started on its own thread? If you're
Jim Kane, you write a class that handles all of this.
Part 2 of 2.

Posted Wednesday, November 21, 2001

Using SQL Server’s Data Transformation
Services (DTS)
In converting an application, changing database
drivers is not the only requirement. You also have
to provide a way to convert existing data. One way
to do this is with Microsoft’s Data Transformation
Services (DTS). In this article, Ayo Ogundahunsi
demonstrates the process using the Inventory
example application.

Posted Tuesday, November 27, 2001

Compatible With C4/C5

EasyExcel Version 1.01.1

ABCFree Templates And

Tools Updated

SealSoft Releases xSearch

Class

Clarion 5.5 SR7 Alpha

Addresses XP Issues

ProDomus Bundle Special

Ends November 15th

Prodomus Free Template

Updated

Beta Testers Wanted

VCRFlash Beta 2 Released

Next Age Imaging

Templates & Windows XP

Parker Profiled At INN

Clarion Third Party Profile

Exchange Updated

Nice Touch Solutions Adds

ClarioNET Support

New G-Cal Build Available

IceTips Report Wizard

Renamed Icetips Reporter

Gitano Software Closed

Nov 7-14, 2001

xDataBackup Manager

v1.2

New SysList Demo

http://www.clarionmag.com/index.html?month=11&year=2001&limit=100&desc=false&pFriendlySession=true (2 of 3) [1/11/02 12:31:47 PM]

Clarion Magazine

The Clarion Advisor: Sizing Windows
Clarion is a great tool for writing custom apps. And
every once in a while, Andrew Guidroz II has a
requirement from a customer for a window that is
as unique as the individual’s desktop. But how to
know what size to make the window?

Posted Wednesday, November 28, 2001

Andy Ireland's COM

Classes

Business Rules Manager

Released

TPS.repair Template Goes

Gold

ProDomus Updates and

Notes

xQuickFilter v2.06

Released

Updated MySQL

Templates

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the

express written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/index.html?month=11&year=2001&limit=100&desc=false&pFriendlySession=true (3 of 3) [1/11/02 12:31:47 PM]

http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Optimizing DLL Loading - Rebasing Your DLLs

Clarion Magazine

Home COL Archives
Topics > Tips/Techniques > DLLs, creating

Optimizing DLL Loading - Rebasing Your DLLs

by Carl Barnes

Published 2001-11-06

If you want your multi-DLL applications to load as quickly as possible, or you want
to share a 32 bit DLL among multiple applications, or you want to have multiple
instances or your applications running, you need to know something about how
Windows allocates memory for DLLs. The key is rebasing, the process by which
Windows moves a DLL from a common and standard base address to unused
memory space. In last week’s installment I described the rebasing process and
explained how the default Clarion approach results in slower-than-necessary load
times and poor memory use. This week I’ll explain how to set a new memory base
for a Clarion DLL.

How to Set the Image Base in Clarion

The base address for a Clarion DLL is specified in the EXP file using the IMAGE_BASE
statement. In a Clarion application you can enter this statement in the global
embed point named 'Before the export list.'. The syntax is "IMAGE_BASE address"
where the address value must be in multiples of 64k (65536). It is best to specify
the value in hexadecimal by placing the letter "h" after the number. This makes it
very easy to know you have a proper address, since 64k is 10000h. You just have
to insure your address ends in four zeros (0000h). An example EXP file with a base
address specified is as follows:

NAME 'REPORTS' GUI

IMAGE_BASE 05100000h

EXPORTS

 REPORTS:INIT@F10ERRORCLASS8INICLASS @?

 REPORTS:KILL@F @?

;Start of Exported Procedures

 CUSTREPORT@F @?

 INVOICEREPORT@F @?

 CUSTINVOICEREPORT@F @?

http://www.clarionmag.com/cmag/v3/v3n11rebase2.html (1 of 11) [1/11/02 12:32:20 PM]

http://www.clarionmag.com/
http://www.developerplus.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=125
http://www.clarionmag.com/cmag/topics.html?categoryid=125&subcategoryid=85
http://www.clarionmag.com/cmag/v3/v3n10rebasing1.html

Optimizing DLL Loading - Rebasing Your DLLs

Determining What Address to Use

Don’t get too worried about picking a bad base address. If the address you pick is
used by another DLL, your DLL will automatically get rebased by the loader, and
you’ll be in the same slow boat you are in now. If the address is illegal (e.g. not on
a 64k boundary) the linker will spot it, display an error and revert to using the
default 00400000h.

There are a number of addresses that are not recommended, and others that are
reserved by Windows and cannot be used. When the loader needs to rebase a DLL
it uses the lowest memory address available. For this reason you should not base
your DLLs at an address below about 0300,0000h. For example, in Figure 2 you’ll
see the AllFiles.DLL was rebased to address 0041,0000h just above the EXE at
0040,0000h. If you use low addresses you run the risk of your DLL conflicting with
other rebased DLLs and just causing more rebasing. The TopSpeed DLLs are also
based in the low address range of 005A,0000h to 0100,0000h, yet another reason
to stay with higher addresses.

I suggest you put your DLLs in the address range 0500,0000h to 0FF0,0000h. In
my experience this range is not normally used. This address space is 175MB in
size, a large amount of space for a single app and easily allowing room for well
over 100 typical DLLs. Figure 1 shows all the address ranges in the 2GB address
space:

Start End Description

0000,0000 0000,FFFF Reserved for Null
Pointer Assignment
Errors

0001,0000 003F,FFFF WinNT – Not
Recommended, used
by loader for rebased
DLLs, Win9x
Reserved

0040,0000 Default EXE load
address

005A,0000 0100,0000 TopSpeed DLLs

http://www.clarionmag.com/cmag/v3/v3n11rebase2.html (2 of 11) [1/11/02 12:32:20 PM]

Optimizing DLL Loading - Rebasing Your DLLs

0100,0000 02FF,FFFF Not Recommended,
used by loader for
rebased DLLs

0300,0000 04FF,FFFF Available for use

0500,0000 0FFF,FFFF Available for use (my
recommended
range)

1000,0000 10FF,FFFF Not Recommended,
default address for
VC DLLs

1100,0000 11FF,FFFF Not Recommended,
default address for
VB DLLs

1200,0000 1FFF,FFFF Available for use

2000,0000 2FFF,FFFF Not Recommended,
used by OCXs

3000,0000 5FFF,FFFF Available for use

6000,0000 69FF,FFFF Recommended by
Microsoft, I would
not recommend this
range since many
MS and other DLLs
use this range

7000,0000 7FFF,FFFF Reserved for
Windows

Figure 1. Address ranges in the 2GB address space.

The single most important thing you should do to assist yourself in picking the
addresses for your DLLs is to run your program and examine it using a process
viewer utility that shows all of the DLLs (modules) that are loaded into your
process. Such a utility will show the address at which each DLL loaded and its size.
(You can also use my CarlBase utility - see below.) You need to analyze this
information to see what address ranges are in use so that you do not reuse them

http://www.clarionmag.com/cmag/v3/v3n11rebase2.html (3 of 11) [1/11/02 12:32:20 PM]

Optimizing DLL Loading - Rebasing Your DLLs

and cause a load conflict.

The memory utility I used for the screen shots in this article came with the Jeffery
Richter book "Programming Applications for Microsoft Windows". This utility is
small, simple and perfect for the job. Its most important feature is that it highlights
DLLs that were rebased by placing their original address in parentheses.
Unfortunately you cannot download this utility; it only comes on the CD included
with the book. The next best choice would be Dependency Walker. It’s a free
download and much more capable. At the end of this article is a list of other free
process viewer utilities you can download.

An example

Figure 2 shows the DLLTutor example and all of the DLLs in its address space. Note
that there are no DLLs loaded into my preferred address range starting at
0500,0000h so that’s a good place to start.

Figure 2. Modules in the DLLTutor Process

The next choice to make is how much space to allow for each DLL. In Figure 1 in
the size column you can see that the Tutor DLLs (AllFiles, Updates and Reports)
have sizes ranging from about 50k to 300k. I suggest you keep it simple and, in
this case, allow 1MB for each DLL. Leaving these large gaps does not consume any
additional memory - it’s just address space, which Windows will map to physical
memory. However, if you fail to leave room for your DLLs to grow in size you risk a
conflict in the future that will cause a rebase. A good rule of thumb is to allow
double the current size of your largest DLL, and put the DLLs on 1MB (00000h)

http://www.clarionmag.com/cmag/v3/v3n11rebase2.html (4 of 11) [1/11/02 12:32:20 PM]

Optimizing DLL Loading - Rebasing Your DLLs

boundaries. The address region is 175MB in size so there is no problem in allowing
some extra space (unless you have a really massive application).

To specify a base address for each DLL in this project I added one of the below
lines to the embed point "Before the export list" for each respective DLL, and then
recompiled.

IMAGE_BASE 05000000h ; AllFiles.DLL

IMAGE_BASE 05100000h ; Reports.DLL

IMAGE_BASE 05200000h ; Updates.DLL

Now when I run DllTutor and examine it under the process viewer I can see that
my DLLs have been placed at the 0500 addresses I specified and are no longer
rebased as indicated previously by the (400000h). Figure 3 is a screen shot of the
recompiled DllTutor’s process information:

Figure 3. DllTutor after rebasing

Notice that there is still a DLL being rebased but it is not my DLL; actually, it
belongs to McAfee VirusScan. I’m not sure how that got injected into my process
but the address in parentheses (10000000) tells me that the programmer failed to
assign the DLL a load address and ended up with the default Visual C++ base
address.

The Debug Advantage

If you do not specify an image base for your DLLs you are screwed when it comes
to debugging a crash where all you have is an address. Enough said? Read on for
more details or skip ahead to the next section.

http://www.clarionmag.com/cmag/v3/v3n11rebase2.html (5 of 11) [1/11/02 12:32:20 PM]

Optimizing DLL Loading - Rebasing Your DLLs

When the linker links your DLL it creates a MAP file that shows procedure and data
names of symbols in the DLL and the address at which the linker placed them. This
is useful for debugging in general, and especially when your App GPFs and Dr.
Watson gives you a crash address. You can look up that crash address in the MAP
and find the procedure. Having solid address information is very useful for
debugging in general, for example when looking at the GPF stack dump and trying
to find a return address. Below is an excerpt of the MAP from the Reports DLL (that
has an image base of 0510,0000h) where you can see the entry address of each
procedure:

5101520 CUSTINVOICEREPORT@F

 5101BA4 INVOICEREPORT@F

 51020A4 CUSTREPORT@F

 5102268 DESTRUCT@F14DLLINITIALIZER

 5102284 CONSTRUCT@F14DLLINITIALIZER

 51022D0 REPORTS:KILL@F

 51022D8 REPORTS:INIT@F10ERRORCLASS8INICLASS

 510300C $LOCALERRORS

 5103618 $LOCALINIMGR

 5103724 $DLLINITIALIZER

 5103728 $GLOBALERRORS

 510372C $INIMGR

If you do not specify an IMAGE_BASE for your DLL then you get the default of
0040,0000h and your MAP is written using this address for every DLL. This makes
the MAP fairly useless for finding the crash address in a process with DLLs since the
DLL will never load at 0040,0000h. Worse, since your DLLs will be rebased to an
address determined by the Windows loader, you will have a difficult (or impossible)
time determining even in which DLL the crash occurred. For the DllTutor example
above a GPF in the address range of 0510,0000h to 051F,FFFFh can be reliably
determined as happening in the Reports DLL.

A Dr. Watson dump will list the module addresses of modules loaded in the address
space but will not show a name unless there are Microsoft debug symbol files
(*.dbg) available. Having predefined your base addresses will make it easier to use
a Dr. Watson dump.

Thirty-second time a template

After doing and redoing my Image Base settings on 16 DLLs about twice I was
getting really tired of opening every App and changing global embeds. It’s a slow
process. I wanted a way to specify all of my addresses for these DLLs in a single
place. So I created an Application Extension template that reads the base address

http://www.clarionmag.com/cmag/v3/v3n11rebase2.html (6 of 11) [1/11/02 12:32:20 PM]

Optimizing DLL Loading - Rebasing Your DLLs

from an INI file and places the proper code in the Before Exports embed. This
template allows me to very rapidly change my mind by editing one file and kicking
off a batch compile using Gordon Smith’s compile manager.

The template also includes some code to protect you from mistakes like assigning
an invalid address or rebasing an EXE. You can rebase an EXE but it’s a bad idea;
EXEs should always be at 40,0000h. You can go as low as 10,0000h under NT but
then your application will not run under 9x.

The template’s INI file is named Rebase.INI by default; you can change its name
and directory. For each DLL in the application include a line in the file with
AppName=BaseAddress. An example of the Rebase.INI file used to make the
DllTutor is shown below:

[rebase]

ALLFILES=05000000h

REPORTS=05100000h

UPDATES=05200000h

Add the Rebase Application Extension template to each App and recompile, and you
are done. If you want to change your mind simply edit the INI file and recompile.
You can switch back to default addresses by deleting the "AppName=" lines and
recompiling. The template will warn you that you have do not have an entry in the
Rebase.INI file for your application unless you include /NoWarn=1 in the [Rebase]
section.

The template is constructed as an #EXTENSION which gathers the user input and
inserts a #GROUP which does the actual work of checking the address and inserting
the line in the EXP. Another option for implementing rebasing is to modify the
template that builds the EXP file (abbldexp.tpw or buildexp.tpw) to insert the
#GROUP. If you do that you will not have to add the extension to each application,
but you will have to migrate your changes to new releases of Clarion (and ensure
the changes still work).

Implementing rebasing step by step

Below is a checklist for implementing rebasing in your project. (This is the hard
way; I’ll describe an easier way in a moment.) To keep things really simple just use
the address range starting at 0500,0000h and allow 4MB per DLL. This will work
great for projects with less than 44 DLLs where each requires less than 4MB to load
(and 4MB is a pretty big DLL).

1. Download a process viewer and install it
2. Download and register the Rebase.TPL included below
3. View your running EXE in a process viewer. If you are using Dependency Walker

http://www.clarionmag.com/cmag/v3/v3n11rebase2.html (7 of 11) [1/11/02 12:32:20 PM]

Optimizing DLL Loading - Rebasing Your DLLs

(Depends) perform a File-Open for your EXE and select Profile-Start Profiling to run
it. If you are running Process Explorer run your EXE, then run PE, select View-DLLs
and find your EXE in the list of processes and click on it.

4. You will need to decide on what address range(s) you will use by looking in the
process viewer to see what addresses are currently in use. You do not want to
conflict with already specified addresses. If you dynamically load DLLs try to get
them all loaded. I suggest using the address range starting at 0500,0000h.

5. Create a Rebase.INI file with AppName= for each App and open it in Notepad or an
editor (I like UltraEdit (www.ultraedit.com). Here’s an easy way to create this file:

a. Open a DOS command prompt in your project directory
b. Type: Dir *.App /on/b > Rebase.INI to create a file with all of your app file name.
c. Edit Rebase.INI created above. Search and Replace ".app" with

"=05000000h". Insert the INI section header "[Rebase]" above the first line.
Delete any Apps which are EXEs.

6. Assign each AppName= a unique load address. You need to look at the process
view to see the size of each DLL and allow space for growth. I would suggest
allowing 4MB (0040,0000h) space per DLL. Using 4MB the first 12 addresses in my
preferred range are: 05000000h, 05400000h, 05800000h, 05C00000h,
06000000h, 06400000h, 06800000h, 06C00000h, 07000000h, 07400000h,

07800000h, 07C00000h

7. Add the Rebase Extension template to each App and compile
8. Repeat step 3 and view your running EXE in a process viewer. Verify that DLLs

loaded at the address you expected.

Implementing rebasing gets easier

After trying out the above method on a few beta readers I found there was some
resistance. "You said this was easy and took just one line of code, but you didn’t
say anything about hexadecimal math!" To make all this address picking easier I
created a utility that does the entire job. Lacking a better name I called it
"CarlBase". (If I was from Louisiana and followed the Cajun Naming Convention I
might have called it "Bouillabase".)

The CarlBase utility does not require you to view your running processes. It works
by reading the PE header information written by the linker for the Windows loader.
In many ways this is a superior approach since it works with dynamically loaded
DLLs and OCXs. All you need to do is place is every DLL or OCX used by your EXE
in a single directory. Typically this is your install directory.

Here are the steps for rebasing with CarlBase:

1. Download the latest CarlBase from www.carlbarnes.com
2. Download the Rebase Template included below
3. Put your EXEs and DLLs in a directory

http://www.clarionmag.com/cmag/v3/v3n11rebase2.html (8 of 11) [1/11/02 12:32:20 PM]

http://www.carlbarnes.com/

Optimizing DLL Loading - Rebasing Your DLLs

4. Run CarlBase and pick the directory that contains all your EXEs, APPs, and OCXs.
Figure 4 shows the DllTutor example.

Figure 4. CarlBase run on the DLLTutor application

1. Remove any DLLs you did not create by clicking on them and pressing delete, or
clicking the Remove button. In Figure 4, the c5xxxxx DLLs should be removed.

2. Press the "Make Rebase Files" button and the screen in Figure 5 will be displayed.

Figure 5. Creating the rebase files

1. On the dialog in Figure 5 you can choose the starting base address, the amount of
growth to allow for and the minimum size to allow. I like to put my DLLs on 1MB
alignment so there is a checkbox for that.

2. Press the "Rebase.INI" button and the CarlBase utility will make that file and display
it in the text box as show above.

3. Press the Copy button, then the Notepad button. In the open Notepad press Paste,
then save the contents to your .App file directory as a text file called Rebase.INI.
(Guess I should add a ‘Save to file’ option.)

4. Add the Rebase global extension template to each application and compile
5. That’s it. You should look at your App in a process viewer to be sure everything

http://www.clarionmag.com/cmag/v3/v3n11rebase2.html (9 of 11) [1/11/02 12:32:20 PM]

Optimizing DLL Loading - Rebasing Your DLLs

loaded correctly.

Summary

The default linking of Clarion DLLs makes every DLL try to load at address
0040,0000h which causes Windows to rebase the DLL. If you take the time to
assign a good base address for the linker, your DLLs will load faster, consume less
memory resources, be sharable with multiple instances, and be easier to debug.
It’s amazing that a single line in the project can do this much.

Download the source

Resources

CarlBase A utility I wrote to help you easily generate
a correct Rebase.TPL file and explore
addresses used by DLLs and OCXs.

Dependency
Walker

Dependency Walker is the best utility for
this job. It shows the original and actual
base address and an immense amount of
other information including a complete tree
of DLL usage dependencies. To get this
information you must open your EXE in DW
then select Start Profiling from the Profile
menu. This utility is part of the Windows
Platform SDK or may be freely downloaded
from http://www.dependencywalker.com/.
This is a must have utility. You can read
about the origins of this utility in this MSDN
article.

Process Explorer A free utility, Process Explorer It shows the
base address at which each DLL was loaded
and size of the DLL. (It defaults to showing
handles so to see DLLs you must select
"View DLLs" from the View menu.) It does
not show the original address specified by
the linker. This tool has many other features
and is only 77K.

http://www.clarionmag.com/cmag/v3/v3n11rebase2.html (10 of 11) [1/11/02 12:32:20 PM]

http://www.clarionmag.com/cmag/v3/files/v3n11rebase.zip
http://www.carlbarnes.com/carlbase.htm
http://www.dependencywalker.com/
http://www.dependencywalker.com/
http://www.dependencywalker.com/
http://www.microsoft.com/msj/defaultframe.asp?page=/msj/0297/hood/hood0297.htm&nav=/msj/0297/newnav.htm
http://www.microsoft.com/msj/defaultframe.asp?page=/msj/0297/hood/hood0297.htm&nav=/msj/0297/newnav.htm
http://www.sysinternals.com/ntw2k/freeware/procexp.shtml

Optimizing DLL Loading - Rebasing Your DLLs

Process Info Process Info is the utility used for the screen
shots in this article and a nice lightweight
utility that clearly identifies the DLLs that
were rebased to a different address. It is
included with the book Programming
Applications for Microsoft Windows by
Jeffery Richter.

PE Explorer PE Explorer is a $69 utility that has a
process viewer, dependency tracer and
many more features like a disassembler. I
have not tried it but the website makes it
look good and you get a 30-day free trial.

SystemWorks According to Mike Pickus, Norton
SystemWorks includes a process viewer.

Carl Barnes is an independent consultant working in the Chicago area. He has been using Clarion since

1990, is a member of Team TopSpeed and a TopSpeed Certified Support Professional. He is the author

of the Clarion utilities CW Assistant and Clarion Source Search.

Reader Comments

Add a comment

Michael Brooks reports that the ClarioNET CLRNT5*S.DLL in...
Absolutely, positively the single most effective technique...
Absolute excellent. This easy to use process even solved my...
Yepeee!!!! A big thank you to Carl. Our application now...
The next article will tell you how to rebase DLLs made by...
Carl: YOU! Are the man!
YES! YES! YES! Thank you!
This is an exceptionally valuable article and the execution...
Viewing rebased DLLs in Process Explorer Carl lists...

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written

consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v3/v3n11rebase2.html (11 of 11) [1/11/02 12:32:20 PM]

http://www.heaventools.com/
http://www.symantec.com/sabu/sysworks/basic/
mailto:carl@carlbarnes.com
http://www.clarionmag.com/cmag/comments.frm?articleID=10949
http://www.clarionmag.com/cmag/discuss.frm?articleID=10949&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10949&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10949&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=10949&position=4
http://www.clarionmag.com/cmag/discuss.frm?articleID=10949&position=5
http://www.clarionmag.com/cmag/discuss.frm?articleID=10949&position=6
http://www.clarionmag.com/cmag/discuss.frm?articleID=10949&position=7
http://www.clarionmag.com/cmag/discuss.frm?articleID=10949&position=8
http://www.clarionmag.com/cmag/discuss.frm?articleID=10949&position=9
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Checkboxes For Many-to-Many Relationships

Clarion Magazine

Home COL Archives
Topics > Forms > Forms - using

Checkboxes For Many-to-Many Relationships

by Dave Harms

Published 2001-11-09

I’m in the process of adding a topical index to Clarion Magazine. That’s fairly
tedious work – it means going to my database of every article published in Clarion
Magazine and Clarion Online (there are over 750) and assigning each article to one
or more categories. I want this process to be as quick and painless as possible.
Ideally I want to show a list of articles on the left, and a list of categories on the
right, and I want to be able to assign an article to a category with a single mouse
click and show that connection with a checkbox.

To some extent it’s possible to do this with the EIP templates. Earlier I
implemented a similar requirement with the approach Pete Halsted outlined in his
EIP checkbox article with acceptable results, except that setting a checkbox took
three mouse clicks: one to select the record, another to enable EIP for that record,
and a third to change the checkbox selection.

To get those three mouse clicks down to one (some days every click counts!) I
wrote a class, and added one line of embed code to my browse window. In this
article I’ll explain how to use that class to easily add this functionality to your own
many-to-many browses.

The sample application

For purposes of discussion, and to avoid having to part with any Clarion Magazine
data, I’ll use a sample application built on the Clarion SCHOOL.DCT. (This is a 5.0b
application, and while there are some differences in the class code used between
5.0b and 5.5, the supplied class will work with both versions.)

My sample application uses four tables (unaltered) from the SCHOOL application:
Courses, Classes, Students, and Enrollments. There are some nine courses in the
Courses table, such as English Composition, Microcomputers, Algebra, and so forth.
Each course is available in one or more classes, and often in two, such as
Mondays/Wednesdays, or Tuesdays/Thursdays. Each student can be enrolled in one

http://www.clarionmag.com/cmag/v3/v3n11checkbox1.html (1 of 7) [1/11/02 12:32:23 PM]

http://www.clarionmag.com/
http://www.developerplus.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=130
http://www.clarionmag.com/cmag/topics.html?categoryid=130&subcategoryid=34
http://www.clarionmag.com/cmag/v1/v1n11checkbox.html

Checkboxes For Many-to-Many Relationships

or more classes, so the many-to-many relationship is between the Students and
Classes tables, and the linking table is called Enrollments.

NOTE: If you’re not familiar with many-to-many relationships, I highly
recommend you read Tom Ruby’s two-part series on the subject.

My sample application is called ENROLL.APP, and is shown in Figure 1. As you can
see, the students are listed on the left side, and the courses are on the right side.
The course browse also has a checkbox in the first column; to create or remove a
student/course link, you just click the checkbox. Whenever you select a new
student, the course list is updated to reflect that students chosen courses.

Figure 1. Managing a many-to-many relationship with one-click checkboxes

When I started writing this code I first created a standalone class to manage the
checkboxes, but I quickly realized that a lot of the behavior I wanted to influence,
and some of the variables I needed to use, were part of the ABC BrowseClass. So
rather than create a separate class, I derived my class from BrowseClass. This
made it possible for me to easily add new behavior to the BrowseClass without
disrupting existing browse behavior.

You only need to embed one line of source code in your application; this code
simply passes references to the derived browse class, including the linking table’s
FileManager object, the linking table’s keys and fields, and a few other required
fields. I’ll explain the internal workings of the derived class next week.

Knowing your left from your right

http://www.clarionmag.com/cmag/v3/v3n11checkbox1.html (2 of 7) [1/11/02 12:32:23 PM]

http://www.clarionmag.com/cmag/search.frm?formID=true&query=%2Bauthor%3Aruby+%2Btitle%3Amany

Checkboxes For Many-to-Many Relationships

Most importantly, if you want to follow along in this article, you need to wrap your
head around my personal concept of "Left" and "Right." In my own little world, the
left table is (naturally) on the left side of the window, and (arbitrarily) does not
have a checkbox indicating a link between the left and right tables. The right table
is (again, naturally) the table on the right side of the window, and (again,
arbitrarily) does have a checkbox which indicates a link between the left and right
tables. Okay, everybody who followed that, raise your right foot. Thank you.

The requirements for my checkbox many-to-many class are as follows:

● When the user selects a different left record, refresh the right table
● When a record on the right table is displayed, look for a linking record that matches

the primary IDs from both left and right tables. If found, display a checked icon,
otherwise display an unchecked icon.

● When the user clicks on a checkbox, either delete an existing linking record, if
present, or create a new linking record, if none is present. Redisplay the row

Several additional requirements logically follow:

● Both the left and right tables need to have a primary key, which is a unique
identifier for each record. This is always a good idea. See Tom Ruby’s article on
Managing Complexity, Part 3 for more on primary keys.

● Both primary key fields will need to be present in their respective browses, which
means they need to be in the displayed fields or in the hot fields list.

● The linking table will need to be in the procedure’s Other Tables list.

How to make it work

The cciBrowseClass is fairly easy to use. First, you need to copy the
ccibrows.clw and ccibrows.inc files (available at the bottom of this page) into
your Clarion 5.5 libsrc directory. This class is ABC compatible, so the next time
you open an application (or refresh the class list) Clarion will add it to its list of
available classes and automatically handle any compile/link issues.

You’ll need two browses, one on the left, and one on the right. In the ENROLL
application, the left browse is the student list, and the right browse is the class list.
In the sample application, the left browse already has the student number
displayed, so you don’t need to add this to the hot field list. That’s the only change
you’d possibly have to make to the left browse.

You want the checkbox to be displayed on the right hand browse. Go to local data
and create a BYTE field called InClass. Then from the window bring up the Listbox
Properties for the right hand browse. Populate the InClass field in the first column
of the browse. Set the picture to @p p - Pete Halsted points out that this picture will

http://www.clarionmag.com/cmag/v3/v3n11checkbox1.html (3 of 7) [1/11/02 12:32:23 PM]

http://www.clarionmag.com/cmag/v2/v2n9complexity3.html

Checkboxes For Many-to-Many Relationships

always display a blank space. On the Appearance tab, set the Icon to Normal, as
shown in Figure 2, or Transparent, if you want the highlight bar to include the
icon.

Figure 2. Setting the icon attribute

On the right hand browse you have a few additional changes to make, so if you
haven’t already, bring up the Actions tab for that browse. On the Default Behavior
subtab click on the Reset Fields button. You want to add the left hand browse’s
primary key field to this list, as in Figure 3. Actually any field will do, but you know
already that this field has to be in the list, so it’s a safe bet. Whenever this Reset
Field value changes, the browse will automatically be refreshed, which is what you
want.

http://www.clarionmag.com/cmag/v3/v3n11checkbox1.html (4 of 7) [1/11/02 12:32:23 PM]

Checkboxes For Many-to-Many Relationships

Figure 3. Adding a reset field

As with the left browse, the right browse must either display its primary key field,
or have it in the hot fields list. Figure 4 shows the CLA:ClassNumber in the right
hand browse’s hot fields list.

Figure 4. Adding the right hand primary key field to the hot fields list

Now go to the Icons subtab. Here you’ll specify what icons the browse should use
to display the actual checkbox. Set off.ico as the default icon, and then click on
Insert to add a conditional icon. Figure 5 shows the conditional icon entry dialog
popped up over the icons subtab. You probably don’t have on.ico and off.ico, so
I’ve included them in the downloadable source zip. You can also use any other
icons you wish.

http://www.clarionmag.com/cmag/v3/v3n11checkbox1.html (5 of 7) [1/11/02 12:32:23 PM]

Checkboxes For Many-to-Many Relationships

Figure 5. Setting the conditional icon usage

Next, on the Actions tab for the right browse, go to the Classes subtab, as shown in
Figure 6. Uncheck Use Default ABC:BrowseClass. This will enable the Base Class
drop list. From that list choose cciBrowseClass (it should be at the bottom of the
list). I also recommend you change the object name to something easily
remembered; I used ClassesBrowse.

Figure 6. The right hand table’s Actions/Classes settings

You’re almost done! Next, go to the embeditor and find the Window Manager Init

http://www.clarionmag.com/cmag/v3/v3n11checkbox1.html (6 of 7) [1/11/02 12:32:23 PM]

Checkboxes For Many-to-Many Relationships

method embed. I use an embed near the end, say at the call to PrepareAlerts.
Add the following code:

ClassesBrowse.Init(|

 access:Enrollment, | ! Linking FileManager

 ENR:StuSeq, | ! Linking File key

 ENR:StudentNumber, | ! Linking File left field

 ENR:ClassNumber, | ! Linking file right field

 STU:Number, | ! Left file primary key field

 CLA:ClassNumber, | ! Right file primary key field

 InClass) ! Local used to show icon

You’re done! If you’ve set everything up correctly, you should be able to compile
and run the application, and create many-to-many links simply by clicking on the
checkboxes on the classes browse.

That’s all for this week. Next time I’ll explore the class code and show what’s
happening under the hood.

Download the source

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He

is also co-author with with Ross Santos of Developing Clarion for Windows Applications, published by

SAMS (1995). His most recent book is JSP, Servlets, and MySQL, published by HungryMinds Inc. (2001).

Reader Comments

Add a comment

Example app fixed - the source I originally included with...
One more fix - there was a spurious ApplyFilter method in...
Dave, this is incredibly cool stuff! Not only does it...

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written

consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v3/v3n11checkbox1.html (7 of 7) [1/11/02 12:32:23 PM]

http://www.clarionmag.com/cmag/v3/files/v3n11checkbox.zip
mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html
http://www.clarionmag.com/cmag/comments.frm?articleID=10959
http://www.clarionmag.com/cmag/discuss.frm?articleID=10959&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10959&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10959&position=3
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

The Clarion Challenge - Using C in Clarion

Clarion Magazine

Home COL Archives
Topics > Tips/Techniques > Clarion Challenge

The Clarion Challenge - Using C in Clarion

Published 2001-11-14

You probably know that the Clarion environment includes the TopSpeed C
compiler, which allows you to include C source files with any Clarion
application. But have you ever actually tried using C code in a Clarion
application? If you haven't, now's the time, and if you have, the following
should be even easier.

Here's the challenge: Create a Clarion application (as an APP or source
with PRJ, your choice) which calls a C function. You will pass the C
function two values. The first parameter is a REAL (i.e. 3.14), and the
second is a STRING containing a numeric value (i.e. 4.25). Add the two
values in the C function and return the result as a REAL.

If you have any questions, post them as comments below. Send your
completed applications or projects (with all necessary source) to
editor@clarionmag.com.

Entries will be judged for compactness, elegance, and not least, the
ability to do math.

http://www.clarionmag.com/cmag/v3/v3n11challenge.html (1 of 2) [1/11/02 12:32:25 PM]

http://www.clarionmag.com/
http://etc.kcug.org/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=125
http://www.clarionmag.com/cmag/topics.html?categoryid=125&subcategoryid=86
mailto:editor@clarionmag.com

The Clarion Challenge - Using C in Clarion

Reader Comments

Add a comment

It may make life easier if the challenge specifies a REAL...
I agree with Gordon, in fact the Clarion documentation...
Dam! I just realised that my code was using a *cstring...
It should be a cstring - my apologies.
Changing the requirements at this late date? You're making...
<bg>

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the

express written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v3/v3n11challenge.html (2 of 2) [1/11/02 12:32:25 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10957
http://www.clarionmag.com/cmag/discuss.frm?articleID=10957&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10957&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10957&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=10957&position=4
http://www.clarionmag.com/cmag/discuss.frm?articleID=10957&position=5
http://www.clarionmag.com/cmag/discuss.frm?articleID=10957&position=6
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Checkboxes For Many-to-Many Relationships: The Source Code

Clarion Magazine

Home COL Archives
Topics > Browses > Browses, Using

Checkboxes For Many-to-Many Relationships: The Source Code

by Dave Harms

Published 2001-11-15

Last week I introduced a class called cciBrowseClass, which is derived from the ABC
BrowseClass. I explained how to use this class to add single-click many-to-many
relationships between two tables. This week I’ll look at the internal workings of that
class, and explain how it leverages the power of BrowseClass.

The class declaration

Figure 1 shows the source listing for the cciBrowseClass declaration. This
declaration follows the pattern of the ABC classes. In particular note the
!ABCIncludeFile declaration, which tells the IDE that this class is to be considered
as ABC compatible. When you start Clarion, or refresh the Class list from a class
template dialog within the IDE, Clarion reads all of the .INC files in the libsrc
directory, and parses those beginning with !ABCIncludeFile, adding the class labels
to its internal list of available classes.

Figure 1.

!ABCIncludeFile

OMIT('_EndOfInclude_',_cciBrowsePresent_)

cciBrowsePresent EQUATE(1)

 include('abbrowse.inc')

dataQ queue,type

ID long

OrigValue long

CurrValue long

 end

cciBrowseClass CLASS(BrowseClass),TYPE,

http://www.clarionmag.com/cmag/v3/v3n11checkbox2.html (1 of 12) [1/11/02 12:32:30 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=123
http://www.clarionmag.com/cmag/topics.html?categoryid=123&subcategoryid=28

Checkboxes For Many-to-Many Relationships: The Source Code

 MODULE('ccibrows.clw'),LINK('ccibrows.clw',

 ABCLinkMode),DLL(_ABCDllMode_)

DebugQ &queue

Debug byte(0)

DataQ &DataQ,protected

IconField &byte,protected

RightPrimaryID &long,protected

LinkLeftField &long,protected

LinkRightField &long,protected

LinkKey &key

LeftPrimaryID &long,protected

LinkFM &FileManager,protected

!--- methods ---

ApplyFilter PROCEDURE,VIRTUAL

DebugMsg procedure(String msg)

Init procedure(FileManager LinkFM,

 Key LinkKey,*long LinkLeftField,*long LinkRightField,

 *long LeftPrimaryID,*long RightPrimaryID,*byte IconField)

Kill procedure,virtual

Next PROCEDURE,BYTE,VIRTUAL

RedisplayRecord procedure

SetQueueRecord PROCEDURE,VIRTUAL

TakeEvent PROCEDURE,virtual

 end

EndOfInclude

This declaration must be INCLUDEd before you can use any of the classes. ABC does
this automatically, but its possible to have multiple includes, which would cause
duplicate symbol errors. The OMIT statement prevents the declaration from being
included more than once (in Clarion 5.5 you can also use the ONCE attribute on the
INCLUDE statement to prevent this).

You’ll notice a number of references in the class’s data section. These mainly
reference the table that stores the linking data between the left and right tables (see
Part 1 for a discussion of what I mean by "left" and "right"). There are a few other
data elements for primarily internal use. Figure 2 lists the class’s data.

Figure 2. The cciBrowseClass data elements

Field Description

http://www.clarionmag.com/cmag/v3/v3n11checkbox2.html (2 of 12) [1/11/02 12:32:30 PM]

Checkboxes For Many-to-Many Relationships: The Source Code

DebugQ

A simple queue declaration,
used for some quick and dirty
debugging. Discussed in the
article text.

Debug A byte flag indicating whether
calls to DebugMsg will result in
messages being added to
DebugQ

DataQ An internal queue used to cache
status of the link between two
records (and therefore the icon
to display)

IconField A reference to the local variable
which is displayed as an icon in
the right hand list box

RightPrimaryID A reference to the primary key
field in the right hand table

LinkLeftField A reference to the linking table
field that corresponds to the left
table’s primary key

LinkRightField A reference to the linking table
field that corresponds to the
right table’s primary key

LinkKey A reference to the key that is
used for lookups in the linking
table (it must contain both
LinkLeftField and
LinkRightField)

LeftPrimaryID A reference to the left table’s
primary key field

LinkFM A reference to the linking table’s
file manager

The Init method

Before cciBrowseClass will do any work for you, you need to call its Init method.
This is the only code you actually need to write and embed in the procedure. Here’s

http://www.clarionmag.com/cmag/v3/v3n11checkbox2.html (3 of 12) [1/11/02 12:32:30 PM]

Checkboxes For Many-to-Many Relationships: The Source Code

what I used in the ENROLL application:

ClassesBrowse.Init(|

 access:Enrollment, | ! Linking FileManager

 ENR:StuSeq, | ! Linking File key

 ENR:StudentNumber, | ! Linking File left field

 ENR:ClassNumber, | ! Linking file right field

 CLA:ClassNumber, | ! Right file primary key

 InClass) ! Local used to show icon

Remember that Enrollments is the name of the linking table, and it has both
StudentNumber and ClassNumber fields, to link students with classes. The StuSeq
key contains both these fields; you could also use the SeqStu key which has the
same two fields in reverse order. All you need from this key is a way to retrieve a
single record based on the combination of primary IDs from the left and right tables.
You also pass in the primary key field for the right table. This is the field, not the
value; remember that since the right browse will be displaying the icons, you just
need to know the field to get the value for the currently displayed record. Finally, you
pass the byte variable used to display the checkbox icons in the browse.

Here’s the source for the Init method:

cciBrowseClass.Init procedure(FileManager LinkFM,

 Key LinkKey,*long LinkLeftField,

 *long LinkRightField,*long LeftPrimaryID,

 *long RightPrimaryID,*byte IconField)

ListControl long

 code

 self.LinkFM &= LinkFM

 self.LinkKey &= LinkKey

 self.RightPrimaryID &= RightPrimaryID

 self.LeftPrimaryID &= LeftPrimaryID

 self.LinkLeftField &= LinkLeftField

 self.LinkRightField &= LinkRightField

 self.DataQ &= new DataQ

 self.IconField &= IconField

 self.RetainRow = 1

Most of the Init code involves assigning the passed FileManager, key, and fields to
their respective references. The last line of the method sets the browse’s (remember,
this class is derived from BrowseClass) RetainRow property, which ensures that the
selector bar remains on the line where I’ve just clicked, rather than jumping to the
following line after the icon changes.

http://www.clarionmag.com/cmag/v3/v3n11checkbox2.html (4 of 12) [1/11/02 12:32:30 PM]

Checkboxes For Many-to-Many Relationships: The Source Code

I also create the DataQ queue; that means I also have to be sure I dispose of the
queue when the procedure is done. I do this in the Kill method:

cciBrowseClass.Kill procedure

 code

 free(self.DataQ)

 dispose(self.DataQ)

 parent.kill()

Although I have to add some embed code for a specialized Init method, the Kill
method doesn’t take any special parameters, so I’ve simply overridden the base Kill
method, ensuring that my code will be called automatically by the WindowManager.
That’s because Kill is a virtual method. It already exists in the base class, but
because I’ve added an identical Kill declaration to cciBrowseClass, when I create
an object which is an instance of cciBrowseClass, any code in the base
BrowseClass which calls Kill will call my method instead of its own. For more on
virtual methods see my ABCs of OOP article on the subject
(http://www.clarionmag.com/cmag/v1/v1n5abcsofoop_part3.html).

Of course, any time you override a virtual method you should call the parent method
as well, unless you have a specific reason not to. If I didn’t call the parent Kill
method, all the objects BrowseClass creates wouldn’t be disposed of, and at best I’d
have a memory leak.

I was reminded of the importance of calling the parent method while testing a
procedure which used cciBrowseClass. In an earlier version I’d thought of using the
data cache to store all potential changes, and then writing these changes whenever
the browse’s filter changed. I tried doing this with the ApplyFilter virtual method,
but when I abandoned this approach I made the mistake of commenting out the
method source, including the parent call! What do you suppose happened?

cciBrowseClass.ApplyFilter PROCEDURE

 code

! self.SaveChanges()

! parent.ApplyFilter()

Without the call to the parent ApplyFilter method, the base BrowseClass never got
to execute its own code which set the filter on the browse. As a result, when I set a
filter on that browse, the filter never took effect. Ouch! This problem was present in
the first and second releases of the source code from Part 1, but has now been
corrected.

Almost all of the cciBrowseClass’s code is contained in two methods:
SetQueueRecord, and TakeEvent, both of which are, like Kill, virtual methods.

http://www.clarionmag.com/cmag/v3/v3n11checkbox2.html (5 of 12) [1/11/02 12:32:30 PM]

Checkboxes For Many-to-Many Relationships: The Source Code

The SetQueueRecord method

The SetQueueRecord method is called by the BrowseClass after that class retrieves
each record from the table. Typically you use SetQueueRecord to set up the value of
any local variables which you’re displaying in the browse, and this is also where
browse icons are set. In the ENROLL application, where the first column is set to
show an icon, the AppGen creates the code shown in Figure 2.

Figure 2. The generated SetQueueRecord as seen in the embeditor

The InClass local variable is the one populated in the checkbox column in the right
hand browse; when you set up the icon, you specified that the browse was to display
off.ico by default, and on.ico when InClass was equal to 1. The following is the
generated browse queue definition incorporating the icon field:

Queue:Browse QUEUE

InClass LIKE(InClass)

InClass_Icon SHORT

COU:Description LIKE(COU:Description)

CLA:ScheduledTime LIKE(CLA:ScheduledTime)

CLA:ClassNumber LIKE(CLA:ClassNumber)

COU:Number LIKE(COU:Number)

Mark BYTE

ViewPosition STRING(1024)

 END

The InClass_Icon is an automatically generated, and its this field that determines
which icon will be displayed. The Help states the following about the I (icon) attribute

http://www.clarionmag.com/cmag/v3/v3n11checkbox2.html (6 of 12) [1/11/02 12:32:30 PM]

Checkboxes For Many-to-Many Relationships: The Source Code

in a list box format string:

An I (PROPLIST:Icon) indicates an icon displays in the column, at the left
edge of the column (prepended to the data). An icon number is contained
in a LONG field immediately following the data field in the QUEUE (or
FROM attribute string). The LONG field contains a number that refers to an
entry in a list of icons associated with the LIST control through the
PROP:IconList runtime property. If an asterisk is also specified for color,
this LONG must follow all the color information.

Since you don’t actually want to display the InList variable, you use a picture of @p
p in the list box format string (as explained in Part 1). All that matters here is the
icon. The only missing piece of this puzzle is the assignment of icons to the list box,
and that happens in the WindowManager’s generated Init method:

?List{Prop:IconList,1} = '~off.ico'

?List{Prop:IconList,2} = '~on.ico'

These icons have also been added, by the ABC browse template, to the application’s
project so they can be linked in; the ~ character tells the application to look for the
icons internally, rather than on disk.

As you can see, the InClass variable itself needn’t ever be used – you could just set
the value of the SELF.Q.InClass_Icon field directly. But since everything
downstream of InClass is handled by the templates, it’s just as easy to set the value
of the local variable at the appropriate point, which is in SetQueueRecord.

There are actually three different SetQueueRecord methods involved here. The base
SetQueueRecord is declared as part of BrowseClass. Since you’re using
cciBrowseClass, that class’s SetQueueRecord is next in line, and finally the
application generates another SetQueueRecord as part of the procedure’s generated
source.

Because these are all virtual methods, the "outermost" SetQueueRecord is the one
that will be called first, and it will (or should!) call its parent, and so on. The
sequence of calls is as follows:

1. ClassesBrowse.SetQueueRecord
2. cciBrowseClass.SetQueueRecord
3. BrowseClass.SetQueueRecord

ClassesBrowse looks like this:

ClassesBrowse.SetQueueRecord PROCEDURE

 CODE

http://www.clarionmag.com/cmag/v3/v3n11checkbox2.html (7 of 12) [1/11/02 12:32:30 PM]

Checkboxes For Many-to-Many Relationships: The Source Code

 PARENT.SetQueueRecord()

 IF (InClass=1)

 SELF.Q.InClass_Icon = 2

 ELSE

 SELF.Q.InClass_Icon = 1

 END

The first call is to the parent method, which is cciBrowseClass.SetQueueRecord:

cciBrowseClass.SetQueueRecord PROCEDURE()

 code

 ! Look for the value in the queue

 if self.LeftPrimaryID > 0

 self.DataQ.ID = self.RightPrimaryID

 get(self.DataQ,self.DataQ.ID)

 if errorcode()

 self.LinkLeftField = self.LeftPrimaryID

 self.LinkRightField = self.RightPrimaryID

 if self.LinkFM.Fetch(self.LinkKey)|

 = level:benign

 ! If not found, then get it from the data

 ! file

 self.IconField = 1

 else

 self.IconField = 0

 end

 ! Add this value to the queue

 self.DataQ.ID = self.RightPrimaryID

 self.DataQ.CurrValue = self.IconField

 self.DataQ.OrigValue = self.DataQ.CurrValue

 add(self.DataQ,self.DataQ.ID)

 else

 ! Get the value from the queue

 self.IconField = self.DataQ.CurrValue

 end

 end

 parent.SetQueueRecord()

This method first looks in its internal queue for a record that matches the
combination of left and right table primary key fields. If the value is in the queue,
then the code simply retrieves the value and assigns it to that byte icon field;
otherwise it looks in the linking table for a matching record, and sets the icon field
appropriately. This method then calls the parent SetQueueRecord:

http://www.clarionmag.com/cmag/v3/v3n11checkbox2.html (8 of 12) [1/11/02 12:32:30 PM]

Checkboxes For Many-to-Many Relationships: The Source Code

BrowseClass.SetQueueRecord PROCEDURE

 CODE

 SELF.Fields.AssignLeftToRight

 SELF.ListQueue.SetViewPosition(POSITION(SELF.View))

The "left" and "right" as seen by the BrowseClass are not the same as the "left" and
"right" I’m describing in this series of articles; here they refer to the view and the
queue contents. You really don’t need to worry about this code – I’ve just included it
so you can follow the thread of execution.

After BrowseClass.SetQueueRecord completes, control passes back to
cciBrowseClass.SetQueueRecord, and then immediately back to
ClassesBrowse.SetQueueRecord. Now the InClass variable, which is
self.IconField to the class, has the correct value, and the generated code assigns
the appropriate icon for display.

The TakeEvent method

That’s how to display the icon; to change it, you need to intercept the user clicking
on the browse’s icon field. That’s easiest to do with the TakeEvent method:

cciBrowseClass.TakeEvent PROCEDURE

lc long

 code

 compile('***',_c55_)

 lc = self.ilc.getControl()

 omit('***',_c55_)

 lc = self.ListControl

 if field() = lc and |

 event() = event:Accepted |

 and keycode() = MouseLeft |

 and lc{proplist:mouseuprow} = |

 lc{proplist:mousedownrow} |

 and lc{proplist:mouseupfield} |

 = lc{proplist:mousedownfield} |

 and lc{proplist:mousedownfield} = 1

 ! Get the current record

 self.UpdateViewRecord()

 ! Update the buffer

 self.UpdateBuffer()

 if (self.IconField)

 ! If the link exists, remove it

http://www.clarionmag.com/cmag/v3/v3n11checkbox2.html (9 of 12) [1/11/02 12:32:30 PM]

Checkboxes For Many-to-Many Relationships: The Source Code

 self.LinkLeftField = self.LeftPrimaryID

 self.LinkRightField = self.RightPrimaryID

 if self.LinkFM.Fetch(self.LinkKey) = level:benign

 compile('***',_c55_)

 self.linkFM.DeleteRecord(0)

 omit('***',_c55_)

 delete(self.LinkFM.File)

 end

 else

 ! Create the link

 self.LinkLeftField = self.LeftPrimaryID

 self.LinkRightField = self.RightPrimaryID

 self.LinkFM.TryInsert()

 end

 self.RedisplayRecord()

 end

 parent.TakeEvent()

I ran into a minor difficulty when porting this class from Clarion 5.5 back to 5.0.
There have been some changes in the classes in 5.5, and the way you refer to a
browse’s list control is no longer the same, and 5.5 also added a DeleteRecord to
the file manager. I needed code that would compile under both releases, so I used
COMPILE and OMIT statements to conditionally include/exclude code based on the
version of Clarion.

The first thing TakeRecord needs to do is determine where you’ve clicked on the list
box. It tests to see that the control is the list box, that between the time you clicked
down and then released the mouse button you didn’t change the column or the row,
and that you clicked on the first column of the list box. If all of that matches, then its
okay to go ahead and toggle the link.

The call to UpdateViewRecord regets the data from the database, and the call to
UpdateBuffer ensures that the browse class is working with that data in its queue.
Then its just a matter of creating or deleting the linking record.

Finally, the call to the RedisplayRecord method triggers the display of the new value
as an icon, via a subsequent call to SetQueueRecord. This method just mimics what
happens when you return from an update form.

cciBrowseClass.RedisplayRecord PROCEDURE()

ChangeIt byte(ChangeRecord)

Finished byte(RequestCompleted)

http://www.clarionmag.com/cmag/v3/v3n11checkbox2.html (10 of 12) [1/11/02 12:32:30 PM]

Checkboxes For Many-to-Many Relationships: The Source Code

 code

 self.ResetFromAsk(ChangeIt,Finished)

This class works well for my purposes, but it does have some restrictions. First, it
only responds to single clicks on the icon field. That could be a problem if you want
to prevent the user from inadvertently creating a link, but in my case the speed and
convenience of the single click far outweigh any risk. As well, this class assumes that
you will only put the linking checkbox in column 1. That’s not a bad assumption, but
it may not always be accurate. You could change this column to a class property to
get around that limitation.

Debugging

I haven’t shown any debugging code so far, but if you look at the source in the
downloadable zip you’ll occasionally see something like this:

self.DebugMsg('cciBrowseClass.SetQueueRecord |

 (' & self.IconField & '/' & self.RightPrimaryID & ')')

This code calls the class’s DebugMsg method:

cciBrowseClass.DebugMsg procedure(String msg)

 code

 if self.Debug and ~(self.DebugQ &= null)

 self.DebugQ = msg

 add(self.DebugQ)

 end

All this class does is add a string to a queue, which can be displayed on the
procedure window. To use this debug feature, just create a queue with a single string
field, and populate a list box on your procedure’s window. Set the list box’s FROM
attribute to the queue’s name. After you call the cciBrowseClass’s Init method,
add the following code, substituting your own browse and queue names:

<browse object name>.DebugQ &= <my local debug queue>

In Clarion, you can use a queue’s label for the first field in the queue. That means
that this code:

MyQ = ‘some data’

ADD(MyQ)

is functionally identical to:

MyQ.myField = ‘some data’

http://www.clarionmag.com/cmag/v3/v3n11checkbox2.html (11 of 12) [1/11/02 12:32:30 PM]

Checkboxes For Many-to-Many Relationships: The Source Code

ADD(MyQ)

The cciBrowseClass’s DebugMsg method uses this feature to add messages to the
queue you specify, and which you can display in your own procedure.

Summary

When I started writing what became cciBrowseClass, I began with the idea of a
class that would be an adjunct to the existing ABC BrowseClass. I quickly realized
that much of what I wanted to do would be a lot easier if I just derived my class from
BrowseClass. And in the end, it really didn’t take very much code, or particularly
complicated code, to get the effect that I wanted. The hardest part, as usual, was
figuring out what the BrowseClass was doing in the first place.

Download the source

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He is

also co-author with with Ross Santos of Developing Clarion for Windows Applications, published by SAMS

(1995). His most recent book is JSP, Servlets, and MySQL, published by HungryMinds Inc. (2001).

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v3/v3n11checkbox2.html (12 of 12) [1/11/02 12:32:30 PM]

http://www.clarionmag.com/cmag/v3/files/v3n11checkbox.zip
mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html
http://www.clarionmag.com/cmag/comments.frm?articleID=10969
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Calling By Address, STARTing By Address

Clarion Magazine

Home COL Archives
Topics > Tips/Techniques > DLLs, Loading

Calling By Address, STARTing By Address

by Jim Kane

Published 2001-11-16

Recently a project came along that involved either calling or STARTing a
procedure in a DLL which was loaded dynamically at runtime. Some of
the procedures to be called used the Pascal calling convention, and some
used the C calling convention. This DLL contained an MDI window that
needed to be STARTed, and was a legacy DLL that needed to be run from
an ABC application. Now how is that for a project?

My first thought was scheduling some vacation time in the hopes some
one else would get the project done before I came back. Unfortunately
this was a rush project so any vacation probably would not have been
approved, and since I had already used the "my grandmother died and I
have to go to the funeral in Florida" routine a few times I was stuck!

Normally when I need to call something by address I use a little
TopSpeed C, but that involves typing both a typedef and a prototype for
each function to be called. Likewise I’ve seen a number of compiler tricks
to call by address, but they also involve creating a prototype and
something extra. Being a charter member of the Lazy Programmer’s
Club, and knowing the project at hand involved a sizable number
(hundreds actually) of prototypes, I wanted another option.

What I wanted was a nice simple class that loads a DLL and calls a
procedure in it, without requiring prototypes. The Clarion CALL function
will do that, but it won’t let me pass parameters or get back values. I had
something more like this in mind:

http://www.clarionmag.com/cmag/v3/v3n11byaddress1.html (1 of 7) [1/11/02 12:32:33 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=125
http://www.clarionmag.com/cmag/topics.html?categoryid=125&subcategoryid=104

Calling By Address, STARTing By Address

!1=show debug messages

If ~CallDllCl.Init(‘RPCRT4.DLL’,1)

 If ~CallDllCl.Call(‘UuidCreate’,address(Uuid))

 Message(‘Got the UUID’)

 End

End

CallDllCl.kill()

This example loads a DLL called RPCRT4.DLL and calls its UuidCreate
procedure. The UuidCreate procedure takes one parameter which is
passed by address.

In the downloadable source for this article is a small project that uses the
CallDllCl class to call the UuidCreate function and generate UUIDs.
They come in handy for COM work and for replication where an
autoincremented field alone is not enough. The sample application is
called UUIDGEN; besides UuidCreate it calls a few other functions by
address to display a nicely formatted UUID and/or paste it to the
clipboard. Essentially that is all there is to calling by address using the
CallDllCl class – just call the class’s Init method to load the DLL, call
the DLL functions as desired, then Kill the class.

To meet my other needs I also needed a Ccall method to handle calling
using the C calling convention, and a Start(‘ProcName’) method to
handling starting a DLL procedure containing a MDI window.

Now that I knew where I wanted to go, it was time to quit trying to
escape and get to it! If you’re not particularly interested in how the class
works, you may wish to skip to the section concerning calling Start
dynamically.

How the class works

Before you can call a DLL’s methods you have to tell Windows to load the
DLL. That just involves one call to the API LoadLibrary function. The
Init method does this and saves the hDLL or handle to the DLL that
LoadLibrary returns in a class member variable.

callDLLclType.Init Procedure(|

 string pDllPath, byte pDebug=0)

http://www.clarionmag.com/cmag/v3/v3n11byaddress1.html (2 of 7) [1/11/02 12:32:33 PM]

Calling By Address, STARTing By Address

cPath cstring(File:maxfilepath),auto

 Code

 SELF.Debug=pDebug

 cpath=clip(pDllPath)

 SELF.hDLL=loadlibrary(cpath)

 if ~SELF.hDLL then

 SELF.TakeError('LoadLibrary failed for: ' |

 & cpath)

 return return:fatal

 end

 Return Return:benign

Another API call that will get the same type of handle LoadLibrary
returns is GetModuleHandle. If you know the DLL you need to call is in
memory and will not be unloaded, you can call GetModuleHandle instead
of LoadLibrary. However, unlike LoadLibrary, GetModuleHandle does
not increase the reference count on the DLL so it is quite possible for
other code to unload the DLL before you are done with it, resulting in
GPFs. Because of that danger, I do not use GetModuleHandle. If
LoadLibrary finds the requested DLL in memory, it does not load
another copy anyway. In my opinion the potential benefits of
GetModuleHandle are minimal and the dangers real, so I choose not to
use it.

The only other quirk of LoadLibrary is that it is path sensitive. To
explain, if you were to call LoadLibrary(‘C:\path1\myDLL.DLL’)
followed by LoadLibrary(‘C:\path2\myDLL.DLL), two copies of the DLL
would be loaded into memory, even if myDLL.DLL in path1 and path2 was
identical. To avoid that problem, do not specify a path or always specify
the same path to avoid a duplicate, unless for some unusual reason you
really do want two copies of the DLL.

If the DLL isn’t in the specified path, or there was no specified path,
LoadLibrary looks in the directory the program was loaded from, then
the Windows path, the system path, and then the path stored in the
environment. The first DLL found in that search is loaded. If you ever
want to find out what would be loaded (without actually loading the DLL),
or if you just want to know if a DLL of a given name exists anywhere, use
the SearchPath API function. SearchPath can be very handy at times.

http://www.clarionmag.com/cmag/v3/v3n11byaddress1.html (3 of 7) [1/11/02 12:32:33 PM]

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/filesio_13vs.asp

Calling By Address, STARTing By Address

In just about all the classes I write, I add a debug member variable and a
TakeError method. The TakeError code is like this:

CallDllClType.TakeError Procedure(string pError)

 code

 SELF.Errorstr=pError

 If SELF.Debug then message(pError).

 Return

If Debug is non-zero then the message is displayed. I turn debug mode
on or off as needed.

Getting the address for a procedure in a loaded DLL involves just one API
call as well. In addition, I save the address for future use in a queue so it
only has to be looked up once.

CallDllclType.GetAddress Procedure(string procname)

cProcName cstring(80),auto

lpaddress long,auto

 code

 SELF.AddressQ.procname=procname

 get(SELF.AddressQ, SELF.AddressQ.Procname)

 if ~Errorcode() then

 return SELF.AddressQ.lpAddress

 end

 cProcName=clip(procname)

 lpAddress=GetProcAddress(SELF.hDLL,cProcName)

 if lpAddress then

 SELF.AddressQ.procname=procname

 SELF.AddressQ.lpAddress=lpaddress

 add(SELF.AddressQ,SELF.Addressq.procname)

 else

 SELF.TakeError('get adress failed for ' & cProcName)

 Return SELF.eProcFail

 end

 return lpaddress

First the code looks in the AddressQ to see if the address has be looked

http://www.clarionmag.com/cmag/v3/v3n11byaddress1.html (4 of 7) [1/11/02 12:32:33 PM]

Calling By Address, STARTing By Address

up before; if not, it calls GetProcAddress. Be aware that
GetProcAddress is case sensitive so be sure to get the case correct in
the procedure name passed to GetAddress. By the way, the AddressQ is
created in the constructor and disposed in the destructor.

In some cases the error code returned by GetAddress or subsequent
functions to be discussed can become confused with values returned by
the called procedure. For example, many procedures return 0 to indicate
success. If GetAddress returned 0 for failure, things could get confusing.
To prevent this confusion, I defined a member variable eProcFail; this
can be set to any convenient value and it is returned when GetAddress
fails. The default value of eProcFail is 0; this works well for most API
functions, which usually indicate failure by returning 0.

Once the DLL is loaded and you have the function’s address, the only
thing left is to call the function. This is a two step process. The first step
is to put the parameters plus the return address on the stack. The second
step is to jump or transfer control to the address of the function to be
called. Fortunately I found a way to use the TopSpeed calling convention
to my advantage. Here’s an example of calling a function using the Pascal
calling convention with two parameters.

callDLLcltype.call_p2 procedure(|

 string procname, long p1, long p2)

lpaddress long,auto

 code

 lpaddress=SELF.GetAddress(procname)

 if ~lpaddress then Return SELF.eProcFail.

 return callA_p2(lpaddress,0,0,0,p2, p1)

The first two lines get the function’s address (with GetAddress) and
return an error if this fails. The function CallA_p2 uses the Topspeed
calling convention to pass two parameters to the DLL function, but itself
takes five parameters. The first parameter using the TopSpeed calling
convention goes into the EAX register. This means the address to be
called is put into the EAX register. The TopSpeed calling convention puts
the next three parameters into other registers and are not of interest
here. I just pass zero to fill the parameter spots. The next two
parameters go onto the stack right where they are needed. Since the
TopSpeed calling convention puts parameters on the stack in the

http://www.clarionmag.com/cmag/v3/v3n11byaddress1.html (5 of 7) [1/11/02 12:32:33 PM]

Calling By Address, STARTing By Address

opposite order from the Pascal calling convention, the parameters are
reversed (p2 then p1). The TopSpeed Programmer’s Guide has a more
detailed explanation of how the TopSpeed calling convention works, but
this will do for now.

At this point all I need to do is transfer control to the address,
lpAddress, currently in the EAX register. To do that I used one line of
assembler code in a procedure called CallA.A:

segment CallA_Text('CODE',29H)

public CallA:

 jmp eax

The segment line specifies that the following lines contain code (as
opposed to data), and this data is byte aligned, 32 bit, and can be
combined with other code segments. For virtually all purposes
(‘CODE’,29H) works. The public CallA is just a label for the code. The
third line is what transfers control to the address in the EAX register.
Whenever you use this class in your code, just press the project button in
the IDE, highlight the external source branch in the tree and press the
add file button. When prompted for a file name type in Calla.a. That
causes the IDE to call the assembler and assemble that little bit of
assembler code for you when you make the application, or project. You
could also write a template to add it and the class at the same time, but
it never seemed worth the effort to me.

Notice that all of the call methods take only longs as a parameter. This is
not a problem. If you need to pass data by value, whether it be a byte,
short or long, just pass the value in the long. All parameters when put on
the stack are placed as 32 bit (long) values anyway. The stack is one
size, 32 bit, so there is no problem. If you are passing data by address,
for example a CString, or any variable type when a return value is
expected, pass in the variables address (using the Clarion ADDRESS
function). In the UuidCreate function, the UUID group is passed by
address. You must know whether to pass by address or by value. A
wrong choice will result in a GPF most of the time. But on the bright side,
you do not need to type a prototype. Not having to type prototypes is a
good thing! If you do not agree I’ll have no choice but to revoke your
membership in the Lazy Programmer’s Club.

http://www.clarionmag.com/cmag/v3/v3n11byaddress1.html (6 of 7) [1/11/02 12:32:33 PM]

Calling By Address, STARTing By Address

The call methods all assume the DLL’s function is returning a long. If the
function you are calling does not return anything, just ignore the return
value. If the function you are calling returns a byte or short, copy the
long result to a byte or short, or mask off the high order bits with BAND
before using the return result.

Now you know how to call DLL functions using the TopSpeed and Pascal
calling conventions. Next week I’ll show you to use the C calling
convention, and how to START dynamically loaded DLL procedures.

Download the source

Jim Kane was not born any where near a log cabin. In fact he was born in New York City.

After attending college at New York University, he went on to dental school at Harvard

University. Troubled by vast numbers of unpaid bills, he accepted a U.S. Air Force

Scholarship for dental school, and after graduating served in the US Air Force. He is now

retired from the Air Force and writing software for ProDoc Inc., developer of legal document

automation systems. In his spare time, he runs a computer consulting service, Productive

Software Solutions. He is married to the former Jane Callahan of Cando, North Dakota. Jim

and Jane have two children, Thomas and Amy.

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the

express written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v3/v3n11byaddress1.html (7 of 7) [1/11/02 12:32:33 PM]

http://www.clarionmag.com/cmag/v3/files/v3n11byadddress.zip
mailto:jkane@satx.rr.com
http://www.prodoc.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=10970
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

A New Look, And A Topical Index

Clarion Magazine

Home COL Archives
Topics > Non-tech > About ClarionMag

A New Look, And A Topical Index

Published 2001-11-20

This week brings a number of changes to Clarion Magazine. First, there's
the new visual design. The ClarionMag site now makes more extensive
use of style sheets, and will probably look best under IE, although we've
gone to some effort to make things readable with various versions of
Netscape as well.

More importantly, article pages now have navigation aids to help you find
your way around the site. With more than a million words and over 850
articles by scores of authors, ClarionMag.com is an incredible source of
information for Clarion developers. The difficulty is finding the
information you need, when you need it. At the top of each article page
you'll now find a topic list. Click on any link in this list, and you'll be
taken to the topical index, which will show you a list of available
subtopics. Click on a subtopic to get a list of available articles.

As well, each article now also lists related subcategories and articles on
the right side of the page. Let me know if you find these links helpful.
The topical index is under constant revision; if you think an article should
be assigned to or removed from a category, I'd like to hear about.

Although a number of people have tested the new layout, there are still a
few rough edges. If you find something that isn't working properly, email
me. You can also post your comments at the bottom of this page.

Dave Harms

Publisher

http://www.clarionmag.com/cmag/v3/v3n11redesign.html (1 of 2) [1/11/02 12:32:36 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=128
http://www.clarionmag.com/cmag/topics.html?categoryid=128&subcategoryid=94
http://www.clarionmag.com/cmag/topics.html
mailto:editor@clarionmag.com
mailto:editor@clarionmag.com
mailto:editor@clarionmag.com

A New Look, And A Topical Index

Reader Comments

Add a comment

Very COOL look.
Wow! That's a big change! And I'm sure it will continue...
Well done. The topical index really exposes how well...
Thanks, everyone! I'm glad you like the new look, and the...
I cannot read any of the screens in the new web format. ...
Allen, can you be more specific?
Dave, congrats for the new look, it´s very nice and very...
Very cool look and feel, Dave! Anytime you want to...
Wow, thanks Mark! Hang on, where's my rate sheet...
Thanks, Pablo!
The new look is very good, but also very unreadable. I...
This might be obvious to most of you, but it wasnt to me....
I've gone back to fixed fonts - clearly I have a bit more...
Bless your hearts for all this work you've done for us,...
Colour scheme very pleasing to the eye and makes it easy to...

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the

express written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v3/v3n11redesign.html (2 of 2) [1/11/02 12:32:36 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10978
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=4
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=5
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=6
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=7
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=8
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=9
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=10
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=11
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=12
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=13
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=14
http://www.clarionmag.com/cmag/discuss.frm?articleID=10978&position=15
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Calling By Address, STARTing By Address (Part 2)

Clarion Magazine

Home COL Archives
Topics > Tips/Techniques > DLLs, Loading

Calling By Address, STARTing By Address (Part 2)

by Jim Kane

Published 2001-11-21

Last week I introduced a class that you can use to load DLLs at runtime
and call those DLL functions without having to write prototypes. Unlike
the Clarion CALL function, this class lets you pass parameters to those
dynamically loaded DLL functions, and get return values. I showed how to
use that class to call functions with the Topspeed and Pascal calling
conventions. This week I’ll look at the C calling convention, and STARTing
dynamically loaded DLL procedures.

The C calling convention presents more of a challenge; after the
procedure you call returns the parameters (p1 and p2 in last week's
example) are still on the stack and need to be removed. To do that I
wrote another very short assembler piece called FixStack. FixStack
needs to add eight bytes (two parameters, each four bytes) to the stack
pointer; in effect, this removes the two parameters from the stack. The
only complication is the return address for FixStack itself is on the stack
before the parameters to be removed. To get the return address off the
stack, FixStack pops its return address into the ECX register, then moves
the stack pointer the number of bytes specified in EBX and jumps to the
return address. The code is called like this:

callDLLcltype.ccall_p2 procedure(|

 string procname, long p1, long p2)

lpaddress long,auto

 code

 lpaddress=SELF.GetAddress(procname)

 if ~lpaddress then Return SELF.eProcFail.

http://www.clarionmag.com/cmag/v3/v3n11byaddress2.html (1 of 7) [1/11/02 12:32:39 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=125
http://www.clarionmag.com/cmag/topics.html?categoryid=125&subcategoryid=104

Calling By Address, STARTing By Address (Part 2)

 return fixstack(callA_p2(lpaddress,0,0,0,p2, p1),8,0,0)

The return result from CallA_p2 goes in to the EAX register since it is
parameter 1. The number 8 (the number of bytes to remove from the
stack) goes into EBX , and the last two dummy parameters go into ECX
and EDX. By putting the dummy parameters into these registers, the
compiler marks the corresponding registers as dirty and doesn’t mind the
fact that FixStack uses them. The assembler code for FixStack is as
follows:

public FIXSTACK:

 pop ecx

 add esp,ebx

 jmp ecx

None of the sample code with this article uses the C calling convention
but it has been well tested calling some Palm OS functions used in making
Palm Conduits.

STARTing a Procedure

The last challenge I faced was calling a legacy EXE from a ABC program
and starting a MDI window in the legacy app. Here’s what I did. The first
step was to open the legacy app and press the project button. I highlight
the top line of the project and press the Properties button, and changed
the target type from EXE to DLL. Before recompiling, to make life easier, I
went to the procedure I wanted to call and in the prototype entry control
on the procedure properties window I added the ,Name(‘PROCNAME’)
attribute to the prototype line, where PROCNAME was the name of the
procedure as I wanted to call it from the ABC application. That meant I
did not have to deal with case or name mangling. In my sample app, the
procedure is called MdiWindow, with the adjusted prototype as follows::

MdiWindow(string cmdline),name('MDIWINDOW')

Now I recompiled to make the legacy DLL. I did not make anything
external, since this DLL will not share any data with the caller.

To test, I created an ABC program named Caller.app. On the main
menu, I added an item called ‘Legacy’. In the embed code for when

http://www.clarionmag.com/cmag/v3/v3n11byaddress2.html (2 of 7) [1/11/02 12:32:39 PM]

Calling By Address, STARTing By Address (Part 2)

accepted, for the Legacy menu item, I added this line:

ThreadNumber#=|

 callDLLcl.start('MDIWINDOW',0,'LEGACY DLL')

The first parameter is the procedure name and is case sensitive. Since I
used the Name attribute in the DLL, I know it is upper case without having
to use LibMaker to examine the DLL directly. The 0 means use a default
stack size. The last parameter is a string passed to the procedure. The
class can handle starting a procedure with 0,1,2 or 3 string parameters as
can the underlying Clarion START command.

In the data section I declared the class:

callDLLcl callDLLcltype

In the procedure's Thiswindow.init embed point I added the
initialization code:

X#=CallDLLcl.init('Legacy.DLL',1)

You can add any additional error checking you wish. The ‘1’ turns on
debug messages so if there is an error, a message will be displayed. This
one line loads the legacy DLL into memory. To clean up when the
procedure finishes, I added the following in the embed for the procedure's
ThisWindow.Kill method:

CallDLLcl.kill()

In the global embeds at before global includes I add an include so that
the class would compile:

Include('callDLLcl.inc')

Although normally this class needs its assembler code, but the Start
method doesn’t need any assembler so adding calla.a to the project is
optional.

After compiling, I click the menu item to call the legacy DLL and up it
popped, displaying the passed parameter.

http://www.clarionmag.com/cmag/v3/v3n11byaddress2.html (3 of 7) [1/11/02 12:32:39 PM]

Calling By Address, STARTing By Address (Part 2)

The only code for the Start method is simple and very similar to that for
the call methods:

CallDllClType.Start procedure(String pMdiForm, |

 long StackSize=0,<string pS1>,<String pS2>,<String pS3>)

lpMdiForm long,auto

 code

 lpMdiForm = SELF.GetAddress(pMdiForm)

 if lpMdiForm=SELF.eProcFail then

 SELF.TakeError('Start address resolution failed')

 return 0

 end

 if OMITTED(4) and Omitted(5) and Omitted(6) then

 Return CLASTART(lpMdiForm, Stacksize)

 end

 if ~Omitted(4) and Omitted(5) and Omitted(6) then

 Return CLASTART1(lpMdiForm, StackSize, pS1)

 End

And so on for other parameter configurations. Remember that all class
methods have an implicit first parameter which is the method's class, so
the OMITTED count is one higher than you might think.

As you can see, Start calls getAddress to turn the string parameter
name into a address; if there’s a problem, the code calls TakeError. After
figuring out how many string parameters have been passed it just calls a
variant of the CLASTART library procedure to invoke the Clarion Start
procedure. The prototypes tell the compiler to expect an address rather
than a procedure name:

expect an address rather than a procedure name:

 module('')

 clastart(long lpproc,long pStackSize)|

 ,long,proc,name('CLA$START')

 clastart1(long lpproc,long pStackSize,|

 string param1),long,proc,name('CLA$START1')

 clastart2(long lpproc,long pStackSize,|

 string param1, string param2),long,|

 proc,name('CLA$START2')

http://www.clarionmag.com/cmag/v3/v3n11byaddress2.html (4 of 7) [1/11/02 12:32:39 PM]

Calling By Address, STARTing By Address (Part 2)

 clastart3(long lpproc,long pStackSize,string param1,|

 string param2, string param3),long,|

 proc,name('CLA$START3')

 end

CLA$START is the name exported by the runtime for the Clarion Start
procedure.

I found that in C5B starting a MDI procedure in a dynamically loaded DLL
containing threaded file definitions could cause a GPF when the program
ended; the bug has been fixed in C55. . Alexey Solovjev was kind enough
to trace down the GPF in C5B and said it was in code that checked that all
files were closed. Since it is only a check that is GPFing, as long as you
close all files in your code before the program terminates so the Clarion
runtime does not have to, there does not seem to be a problem.

To get by in C5B I found I could avoid the GPF by not explicitly unloading
the dynamically loaded DLL. As a result the call to CallDllCl.kill is
commented out. The code could be put back in after switching to C55.
When Kill is not explicitly called, windows unloads the DLL for you when
the program terminates. This avoids the GPF. There is no memory leak.
The only potential drawback is you cannot unload the DLL while the
program is still running. I normally leave the DLL loaded anyway, since it
is not particularly convenient to determine when the Started procedure
has ended and unloading the DLL while the code in the DLL is still running
leads to a certain GPF.

Another possible use for these prototypes is that they make it possible to
store the address of a procedure in a long in a queue and start the
corresponding procedure by address rather than using the procedure
name.

The CallDLL class in the download contains a few other features. Perhaps
the most important additional feature is the ability to call a procedure
when the windows API provides the address of a function to call, and I do
not need to load a DLL and determine the address. This is in contrast to
the usual case where I know the name of a DLL and the name of the
procedure in the DLL, and need to load the DLL and then determine the
address of the procedure from the name of the procedure.

http://www.clarionmag.com/cmag/v3/v3n11byaddress2.html (5 of 7) [1/11/02 12:32:39 PM]

Calling By Address, STARTing By Address (Part 2)

This situation occurs, for example, in an ISAPI extension where when IIS
provides the address of several different functions to call. There is no
need to load a DLL or determine the address – it is supplied. To allow for
this possibility, call the init method with a blank DLL name. This causes
the class to set a member variable (IgnoreHDLL) to true. When
IgnoreHDLL is set to true, the class doesn’t try to load or unload a DLL as
it normally would. If I want to call the function I know the address of by
its name, I need to get the address I have into the class’s address queue.
This can be done by calling the addAddress method. Once the class
knows the functions name and its address, any of the normal functions to
call by address such as Call(procedurename,...) can be used to call the
target function using the address the windows API provided.

Lastly, if you obtain the address of a procedure or data variable located in
another DLL using the Clarion Address function, the address returned is
the address of the memory location where the procedure’s or data’s
address is stored and not the data itself. It just takes one line of code to
do a quick memcpy to retrieve the true address. This process is frequently
called dereferencing the variable. The callDLLcl method has a method to
wrap this as well:

DeRefPointer procedure(long lpPointer, *long pDeref)

The parameter lpPointer is typically returned from Address and the
pDeref output variable is the "true" address that should be used with API
calls.

Summary

I think you’ll find this class to be quite useful. It will dynamically load
DLLs at runtime, can handle Clarion (TopSpeed), Pascal, and C calling
conventions, and can also call the Clarion Start function. And, with just a
little assembler magic, it manages all this without requiring you to create
a single procedure prototype.

Download the source

Jim Kane was not born any where near a log cabin. In fact he was born in New York City.

After attending college at New York University, he went on to dental school at Harvard

http://www.clarionmag.com/cmag/v3/v3n11byaddress2.html (6 of 7) [1/11/02 12:32:39 PM]

http://www.clarionmag.com/cmag/v3/files/v3n11byadddress.zip
mailto:jkane@satx.rr.com

Calling By Address, STARTing By Address (Part 2)

University. Troubled by vast numbers of unpaid bills, he accepted a U.S. Air Force

Scholarship for dental school, and after graduating served in the US Air Force. He is now

retired from the Air Force and writing software for ProDoc Inc., developer of legal document

automation systems. In his spare time, he runs a computer consulting service, Productive

Software Solutions. He is married to the former Jane Callahan of Cando, North Dakota. Jim

and Jane have two children, Thomas and Amy.

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the

express written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v3/v3n11byaddress2.html (7 of 7) [1/11/02 12:32:39 PM]

http://www.prodoc.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=10984
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Using SQL Server’s Data Transformation Services (DTS)

Clarion Magazine

Home COL Archives
Topics > Databases > Import/Export

Using SQL Server’s Data Transformation Services (DTS)

by Ayo Ogundahunsi

Published 2001-11-27

In my previous articles I demonstrated how to convert the Inventory application
from TopSpeed file format to a more powerful Database Engine – Microsoft SQL
Server. In converting an application, changing database drivers is not the only
requirement. You also have to provide a way to convert existing data. In most cases,
existing clients are probably running applications using the TopSpeed database
driver, and transition to the upgrade should be easy and accurate.

One way to convert data is to use Microsoft’s Data Transformation Services (DTS).
As the name indicates, DTS transforms data from one form to the other. DTS is a
very powerful and effective tool, and comes bundled with SQL Server versions 7 and
2000. In this article I will demonstrate how to use DTS to move data from the
Inventory example to the converted SQL Server application.

Using DTS

You can use DTS to move data from Data/ODBC Sources to SQL Server and vice
versa. For example, you can move data from an Oracle Database to a Sybase
Database without going through SQL Server at all.

One of the strengths of DTS is its ability to assemble tasks or functions and
connections to heterogeneous systems, and synchronize all these together into what
is called a package. The tasks can be importing or exporting data, or sending an
email as soon as a particular task is completed. The actions, processes, and settings
created for transforming data can be saved in SQL Server as a package, or
externally as a Visual Basic Script (VB Script) that can be run from a Visual Basic
Application.

Improving the database

It’s quite simple to set up DTS to transform the data contained in the four files of the
Inventory application (INVHIST.TPS, PRODUCTS.TPS, VENDORS.TPS, and

http://www.clarionmag.com/cmag/v3/v3n11dts.html (1 of 15) [1/11/02 12:32:44 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=131
http://www.clarionmag.com/cmag/topics.html?categoryid=131&subcategoryid=100
http://www.clarionmag.com/cmag/search.frm?formID=true&query=%2Bauthor%3Aayo+%2Btitle%3Amigrating

Using SQL Server’s Data Transformation Services (DTS)

ZIPCODES.TPS). As usual, I will be using the terms "files" and "tables"
interchangeably, however I will specifically use "files" when I am talking about
TopSpeed data, and "tables" when I am referring to SQL Server data. I will also
introduce some additional tables that will make the Inventory Application’s database
design more practical.

The VENDORS file contains City, State and ZipCode fields. It also contains a field
called ID_ZIPCODES that is to be the linking field with the ZIPCODES files. To follow
normalization rules, and achieve better performance, I will remove the City, State,
and ZipCode fields from the VENDORS files. I’ll also create separate City and State
tables to replace the fields in Vendors, but this data will also be linked to Vendors
via ZipCode. While this is a good idea, understand that if you have to enter data into
another table, say a Customer table you must know the zip code for the customer or
you will not be able to add the record.

The interrelation will now be:

STATE <---->> CITY <---->> ZIPCODES <---->> VENDORS

Every zip code belongs to some city, and each city is in a state, so as long as you
have the zip code stored in the Vendor table you can easily get the rest of the
information. The idea is to try to eliminate redundant or repeated data as much as
possible. This is called Data Normalization. Please read Tom Ruby’s article Five Rules
for Managing Complexity: Part 2 for more information on normalization.

Updating the ZipCodes file

The ZIPCODES file in the original Inventory application contains about 3,924 zip
codes. This is not even half of the zip codes in the United States, but it is possible to
add data from an external table with enough zip codes that gives a realistic figure.
You can download a more accurate zip code file from Steve Parker’s website. This file
contains about 48,254 records.

In Part 2 of this Data Conversion series I’ll show how to import a text file containing
the 50 US states as well as their abbreviations into a SQL Server database, with the
CITY table filled accordingly, and the linking IDs appropriately inserted. For now, I
am going to do a straight import of the four files directly into the SQL Server
backend.

Connecting to data sources

When connecting to a Data source, what readily comes to my mind is Open Data
Base Connectivity (ODBC). I can use ODBC with DTS, but I can also connect to a
data source by using OLE DB Drivers.

Microsoft made some improvements to ODBC by creating what is know as OLE DB

http://www.clarionmag.com/cmag/v3/v3n11dts.html (2 of 15) [1/11/02 12:32:44 PM]

http://www.clarionmag.com/cmag/v2/v2n8complexity2.html
http://www.clarionmag.com/cmag/v2/v2n8complexity2.html
http://www.par2.com/getit/zipcodes.zip

Using SQL Server’s Data Transformation Services (DTS)

which is a way of providing data access at a component level with an interface that is
not restricted to relational data only (as implemented in ODBC), but any other kind
of non-structured data that can include spreadsheets, email, etc. The driver for OLE
DB is know as an OLE DB Provider.

Microsoft ships an OLE DB Provider (Microsoft OLE DB Provider for ODBC) with SQL
Server.

See the following sites for more information on ODBC and OLE DB:

● http://www.microsoft.com/data/oledb/default.htm
● http://www.oledb.com/ole-db/guide.html

Data conversion options

There are two popular ways to convert data from the TopSpeed files to SQL Server
tables. One is by using Data Transformation Services (DTS), and the other is by
adding TopSpeed Data Source as a Linked Server to the SQL Server Environment
(more about this in a future article) using OLE DB. With a linked server, you can
send SQL to the database on the linked server and it will behave as if it were an SQL
Server database. However, the response to SQL requests is not as fast as if an SQL
Server database is being accessed directly. In this article, I will limit my explanation
to DTS.

TopSpeed ODBC Driver

When you install the Enterprise Edition of Clarion, you automatically install the
TopSpeed ODBC Driver (developer version) as well. The developer version of the
driver cannot be deployed with any application; if you want your customers to use it
you need to contact Soft Velocity Sales for ODBC license requirements.

Nevertheless, the developer version is appropriate for the purposes of this article.
Since this is an ODBC driver, the first step is to create a Data Source Name (DSN).

WARNING: It is important to mention here that any attempt to do
anything too complicated with this TopSpeed ODBC Driver freezes my
system. For example when I tried to create a linked server to TopSpeed,
the process froze my SQL Server, and nothing worked until I rebooted the
PC. Probably this is a security feature by SoftVelocity, but it is strange
that I was unable to run my Enterprise Manager after this. Shutting down
the SQL Server service and restarting it did not make any difference
either. I had to restart my PC.

You can add a DSN by using the ODBC Data Source Administrator as shown in Figure
1.

http://www.clarionmag.com/cmag/v3/v3n11dts.html (3 of 15) [1/11/02 12:32:44 PM]

http://www.microsoft.com/data/oledb/default.htm
http://www.oledb.com/ole-db/guide.html

Using SQL Server’s Data Transformation Services (DTS)

Figure 1. Adding a DSN, step 1

Two kinds of the TopSpeed ODBC Driver are usually installed. One is Read-Only.
Either will work for this purpose (See Figure 2).

Figure 2. Adding a DSN, step 2

You then specify the physical location of the TPS data file., as shown in Figure 3.

http://www.clarionmag.com/cmag/v3/v3n11dts.html (4 of 15) [1/11/02 12:32:44 PM]

Using SQL Server’s Data Transformation Services (DTS)

Figure 3. Adding a DSN, step 3

In Figure 3, the %DATE shown in the Date Fields allows you to automatically convert a
Clarion Date field which is defined as a LONG data type to an ODBC date data type.
The same applies to TIME fields.

Understanding DTS

A DTS package contains all the rules required to automate the process of
transforming data from one storage format to another. Note that I didn’t say "from
one SQL backend to another." You can use DTS to transform data from an Excel
spreadsheet to SQL Server or another backend e.g. Oracle, Sybase, DB2, etc, or, to
a flat file system like TopSpeed, dBase, or an ASCII file, and vice versa.

In order to transform data, you need a data connection to the source where data is
coming from as well as the destination where the data is to be converted. Default
connections are available for Microsoft Access, Excel, Paradox, Oracle (using an
ODBC driver for Oracle installed with SQL Server), Text Files, and HTML. Also
available is connection to any ODBC Driver as well as the OLE DB Provider for SQL
Server.

DTS works in the form of a process-flow, and you create this visually. To build this
process-flow diagram, you drop tasks into the designer and connect them together,
as shown in Figure 4.

http://www.clarionmag.com/cmag/v3/v3n11dts.html (5 of 15) [1/11/02 12:32:44 PM]

Using SQL Server’s Data Transformation Services (DTS)

Figure 4. The DTS Designer

Different tasks can be linked together as a chain of events to be executed one after
the other. Some of these tasks are:

● Connecting to an FTP site and transferring files
● Automatically sending an email once a task has been completed
● Running a Microsoft Message Queue Task
● Calling a stored procedure,
● Executing an SQL task,
● Copying a database

A very useful white paper on DTS is available at the MDSN web site. Another site
dedicated solely to DTS is: http://www.sqldts.com/

Creating a package

Within the Microsoft SQL Server Program menu, there is a sub-menu – "Import and
Export Data". This brings up an easy-to-understand wizard that takes you through
the process of setting up the package.

In setting up the package, for the Data Source select "TopSpeed Developer Version,"
and the DSN you just created (see Figure 5).

http://www.clarionmag.com/cmag/v3/v3n11dts.html (6 of 15) [1/11/02 12:32:44 PM]

http://www.microsoft.com/msmq/default.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/techart/dts_overview.htm
http://www.sqldts.com/

Using SQL Server’s Data Transformation Services (DTS)

Figure 5. Choosing a Data Source

After selecting a Data Source Name (DSN), proceed by clicking the Next button. You
do not need to fill the other fields like Username/Password since you didn’t fill these
while creating the data source.

In configuring the destination, select the "Microsoft OLE DB Provider for SQL Server".
Remember not to choose an ODBC connection as this requires creating a DSN entry
for SQL Server, which is unnecessary since the OLE DB driver is adequate, and more
efficient.

http://www.clarionmag.com/cmag/v3/v3n11dts.html (7 of 15) [1/11/02 12:32:44 PM]

Using SQL Server’s Data Transformation Services (DTS)

Figure 6. Choosing a Destination

In choosing a destination, you have to fill in the Username and Password fields. The
database to be selected is the one I described in Part 2 of the article Migrating the
Inventory Example to SQL Server.

The next form on the wizard (see Figure 7) shows how to do a straight copy by
selecting the default radio button (Copy table(s) and view(s) from the source
database), or by writing a SELECT statement to retrieve a specific record set to be
transformed (Use a query to specify the data to transfer).

http://www.clarionmag.com/cmag/v3/v3n11dts.html (8 of 15) [1/11/02 12:32:44 PM]

http://www.clarionmag.com/cmag/v3/v3n8sql2.html
http://www.clarionmag.com/cmag/v3/v3n8sql2.html

Using SQL Server’s Data Transformation Services (DTS)

Figure 7. Specifying Data selection method

The next step is to map fields in the TopSpeed files to tables in SQL Server, as in
Figure 8.

Figure 8. Mapping tables

http://www.clarionmag.com/cmag/v3/v3n11dts.html (9 of 15) [1/11/02 12:32:44 PM]

Using SQL Server’s Data Transformation Services (DTS)

When you click on the ellipsis button in the Transform column as shown in Figure 8,
you can specify how the destination table is used. This means the destination
table(s) can be deleted (DROP in SQL terms) and recreated before fields (called
columns in SQL) and the records (called rows in SQL) are updated sequentially with
data from the TopSpeed files (see Figure 9).

Figure 9. Pre-update Actions

There are different ways a DTS package can be saved. The most ideal way is to save
it in SQL Server, so you can run it at any time via a stored procedure, as in Figure
10.

http://www.clarionmag.com/cmag/v3/v3n11dts.html (10 of 15) [1/11/02 12:32:44 PM]

Using SQL Server’s Data Transformation Services (DTS)

Figure 10. Save and Run

Click on Next to start the transformation process. If all goes smoothly, then a screen
similar to Figure 11 appears.

Figure 11. DTS Completed

We know all does not go smoothly most of the time. When an error happens you can

http://www.clarionmag.com/cmag/v3/v3n11dts.html (11 of 15) [1/11/02 12:32:44 PM]

Using SQL Server’s Data Transformation Services (DTS)

modify the transformation script to suit your environment. In the example the tasks
executed are in this sequence:

1. Save Package (The package is saved in your SQL database) - This is always executed
except when disk space is insufficient, or if you do not have the required database
permission to save DTS packages.

2. Drop Table [Table Name]
3. Create Table [Table Name] – This task might not execute if you do not have the

permission to CREATE tables, or if you have run out of disk space.
4. Copy Data

Note that tasks in 2, 3, and 4 are repetitive for all tables.

Whenever the execution of a task is unsuccessful, you will see a red "x" instead of
the green check mark indicated in the first column. The severity of the failure is
dependent on the kind of task being performed. For example, if (2) is unsuccessful
but (3) and (4) succeed, this could be due to the fact that you checked "Drop and
recreate destination table" as indicated in Figure 9 when the table in non-existent in
the database. It could also be that you do not have the database permission to
DROP tables in which case, you could end up with duplicated data if you really
wanted to start with a blank table before your data is transformed. This applies to
(3) as well.

Figure 12. DROP Error in DTS Package

On the other hand, if (4) does not succeed, then no transformation has been done;
this can happen with data type conversions. See the next section for more on how to

http://www.clarionmag.com/cmag/v3/v3n11dts.html (12 of 15) [1/11/02 12:32:44 PM]

Using SQL Server’s Data Transformation Services (DTS)

resolve this. Another notable cause of failure can come from a column with a unique
index being populated with a duplicate values.

Whenever the status of a task indicates an error, double-clicking on the task will
display the reason for the error.

A VB Script example

When you are transforming data from, for example, a Btrieve file to a SQL Server
table, you are likely to run into Date field conversion problems, in which case DTS
will not transform the data. When this happens, you have to modify the
Transformation script as shown in Figure 13. (Note that this figure is similar to
Figure 9; you get to it by clicking the "Transformations" tab.). Your language of
choice for editing can either be VB Script, or JavaScript.

Figure 13. Modifying column mappings, step 1

If you are converting a file with a structure where date and time information is
stored in two separate fields, it makes sense to merge the fields together and update
the corresponding SQL Server DateTime column.

For example, assume there is another time field called TIME in the INVHIST file; the
line containing the selected text as shown in Figure 13 is:

http://www.clarionmag.com/cmag/v3/v3n11dts.html (13 of 15) [1/11/02 12:32:44 PM]

Using SQL Server’s Data Transformation Services (DTS)

DTSDestination("Date") = DTSSource("Date")

Modifying the script, you will now have:

DTSDestination("Date") = CStr(DTSSource("Date")) +" "

 +CStr(FormatDateTime(DTSSource("Time"),vbShortTime))

I’ve used some VB Script functions (in bold) in order to achieve a SQL DateTime field
format picture. VbShortTime is a Visual Basic constant which allows you to display
time using the 24-hour format (HH:MM).

Figure 14. Modifying column mappings step 2

If you are thinking of doing a lot of your work in DTS, it is a good idea to start
getting familiar with VB Script or JavaScript. You can download the VB Script HTML
Help file from the Microsoft Script Technologies website.

Summary

Converting the Inventory application’s TPS data to a SQL database is quite simple.
Nevertheless, for practical purposes, say deploying an upgrade to an existing site
currently running on TopSpeed files might require some level of automation. For
Visual Basic (VB) applications, a DTS can be saved as a Visual Basic Script (VB

http://www.clarionmag.com/cmag/v3/v3n11dts.html (14 of 15) [1/11/02 12:32:44 PM]

http://www.microsoft.com/msdownload/vbscript/scripting.asp

Using SQL Server’s Data Transformation Services (DTS)

Script). This can be compiled as part of Visual Basic. As usual, the Clarion Language
does not enjoy this luxury, so there is the need to provide a Clarion Application with
an automation feature that can also be integrated into the upgrade. This is possible,
and I will address it in upcoming articles.

Ayo Ogundahunsi presently lives in Henderson, Nevada, about ten minutes from Las Vegas. He works for

Impac Medical Systems Inc., the leading company in cancer therapy software (written in Clarion). Impac

has its headquarters in Mountain View, California. Ayo is married to Ayodola, and they have two boys,

Darren and Joshua.

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v3/v3n11dts.html (15 of 15) [1/11/02 12:32:44 PM]

mailto:ayodele@dolasoft.com
http://www.impac.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=10994
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

The Clarion Advisor: Sizing Windows

Clarion Magazine

Home COL Archives
Topics > Design & Development > User Interface

The Clarion Advisor: Sizing Windows

by Andrew Guidroz II

Published 2001-11-28

Clarion is a great tool for writing custom apps. Every once in a while, I
have a requirement from a customer for a window that is as unique as
the individual’s desktop.

Typically, such a customer wants a procedure to show every piece of
information that will fit. The size and position of this window can vary
depending on the default Windows font on that machine, whether or not
the user hides the taskbar, how many other applications/windows need
to be visible at the same time, and many other factors.

Every app that I deploy contains a procedure I use to get customer
feedback on what size to make such a custom window. I run the
application with the customer present and then resize and position the
window exactly where it is needed, as shown in Figure 1. I jot down the
stats that I see so I know what the window size and position needs to be.

http://www.clarionmag.com/cmag/v3/v3n11resize.html (1 of 3) [1/11/02 12:32:46 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=126
http://www.clarionmag.com/cmag/topics.html?categoryid=126&subcategoryid=83

The Clarion Advisor: Sizing Windows

Figure 1. The resizable window

The code for this procedure is quite simple. I create local variables to
hold the x and y position, length and width, and then in the window’s
TakeEvent method I place the following code:

IF EVENT() = EVENT:Sized OR EVENT() = EVENT:Moved

 Loc:WindowWidth = ThisWindow{PROP:Width}

 Loc:WindowHeight = ThisWindow{PROP:Height}

 Loc:WindowXPos = ThisWindow{PROP:XPos}

 Loc:WindowYPos = ThisWindow{PROP:YPos}

 DISPLAY

END

Make it better!

For highly customized applications, this simple procedure can be a real
timesaver. But it's only the beginning, and I'm sure you can think of
ways to improve this procedure. Post your suggestions as reader
comments, or email them to editor@clarionmag.com.

Download the source

Andrew Guidroz II, when he isn't traveling around the countryside watching his 2001 SEC

http://www.clarionmag.com/cmag/v3/v3n11resize.html (2 of 3) [1/11/02 12:32:46 PM]

mailto:editor@clarionmag.com
http://www.clarionmag.com/cmag/v3/files/v3n11resize.zip

The Clarion Advisor: Sizing Windows

Champion LSU Fighting Tigers, writes software for all facets of the insurance industry. His

famous Cajun cookouts have become a central feature of Clarion conferences throughout

the U.S. Andrew's Cajun website is www.coonass.com.

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the

express written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v3/v3n11resize.html (3 of 3) [1/11/02 12:32:46 PM]

http://www.coonass.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=10995
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Clarion News

Clarion Magazine

Home COL Archives
Topics > News > ClarionMag 2001 News

Clarion News

Published 2001-11-21

Alison Neal Profiled In INN Bio
Alison Neal, a Kiwi Clarion developer and regular on the SoftVelocity
newsgroups, is the subject of this week's INN bio.
Posted Wednesday, November 28, 2001

VCRFlash 2.1 Released
Beta 2.1 of VCRFlash is now available. New features include: option to
automatically save changes when scrolling using the form, or to prompt
the user if they want to save changes; VCR button hot Keys can be
specified in template; compatible with SearchFlash; RTF controls now
updated. New demo available.
Posted Tuesday, November 27, 2001

The Sylkie Web Site
Richard Rogers has moved his web site to dbWired and now has, among
other things, 26 new image sets for splash screens and about boxes, for
a total of 34 sets available. These matched image sets are designed to fit
perfectly into the AppInit template set, but may be used by anyone. You
may not, however, upload them to other sites, or charge a fee for them.
The whole website has been given a facelift and is now open and ready.
Posted Monday, November 26, 2001

SealSoft Releases xNotes Class v1.0
SealSoft's xNotes adds notes and reminders features to your
applications. Features include: easy template implementation; save notes
to file; load notes from file; print notes; customize fonts and colors;
localization with TRN file. xNotes is $49. Demo available.
Posted Monday, November 26, 2001

http://www.clarionmag.com/cmag/news.html?year=2001&month=11&limit=100& (1 of 9) [1/11/02 12:33:06 PM]

http://www.clarionmag.com/
http://etc.kcug.org/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=129
http://www.clarionmag.com/cmag/topics.html?categoryid=129&subcategoryid=140
http://www.icetips.com/
http://www.sterlingdata.com/vcrflash.htm
http://www.sylkie.com/
http://www.seal-soft.com/download.html

Clarion News

Clarion Photo Gallery Update
Mike McLoughlin's Clarion Photo Gallery has three purposes: 1) To put a
face to the people we chat to in newsgroups and on discussion boards; 2)
To help strengthen the sense of community among Clarion developers;
3) To provide a place for developers to indicate they are looking for work.
Posted Thursday, November 22, 2001

Gitano Software Back From Vacation
Jesus Moreno is back in the office and has answered all waiting mail. If
you did not received an answer to your mail, please re-send.
Posted Thursday, November 22, 2001

Updates from Gitano Software Now Available
The following Gitano utilities have been updated and are ready to be
downloaded. Please use the same unlock and password information from
your original registration: gREG - Build compatible. New _run code_
feature after registration; gSEC - F Build compatible. Fixed _BRW0_ bug;
gBUDDY - F Build compatible; gCAL - F Build compatible, and fixed
compatibility with gCalPro. You can now provide a full path for the data
file; gCALC - F Build compatible; gNOTES - F Build compatible; gSREG -
Compatible with all utilities; C55DLLS - F Build DLLs available.
Posted Thursday, November 22, 2001

SysIP Released
SysIP is a new product from solid.software. This is another wrapper class
for the win32 API common controls. SysIP is a wrapper for the so-called
IP address control, which you are most likely to know from the network
control panel. There are some advantages over using a standard entry
control when using specialized IP address controls:You're able to limit
each of the four fields to a certain address or address range (i.e. subnet
masks); Users will be able to jump from field to field by pressing
ctrl+right or ctrl+left; Ability to use standard Windows "look and feel"
inside your applications. You can use SysIP without writing a single line
of code. SysIP also provides embed points for event handling, just like
the standard Clarion templates. The SysIP runtime library also contains
helper functions to convert IP addresses between the different formats:
LONG, 4 BYTES and STRING. SysIP works with Clarion 5 and Clarion 5.5,
ABC and legacy templates are supported, 32bit only. Comes as a .LIB
and a .DLL version, supporting standalone and local runtime libraries.

http://www.clarionmag.com/cmag/news.html?year=2001&month=11&limit=100& (2 of 9) [1/11/02 12:33:06 PM]

http://www.sterlingdata.com/gallery.htm
http://www.gitanosoftware.com/
http://www.gitanosoftware.com/
http://www.solidsoftware.de/sysip.htm

Clarion News

Also ships with a documentation in html help format; email support and
updates are free. SysIP is now also included in SysPack, together with
SysAni, SysHotKey, SysTrack, SysList and SysProgress.
Posted Thursday, November 22, 2001

ExpressFlash 2 Supports Outlook 2000
Version 2.0 of ExpressFlash has just been released and now includes
compatibility with Outlook 2000 as well as Outlook Express. Use
ExpressFlash to link your Clarion apps to incoming email. Updated demo
available.
Posted Thursday, November 22, 2001

INN Bio Features Richard Rogers
This week's featured developer bio at INN is Richard Rogers. He's been a
logger, a soda jerk, a bosun's mate, and now... He's one of the Clarion
crazies.
Posted Wednesday, November 21, 2001

Icetips Wizards Now Compatible With C4/C5
Icetips Software has released an updated version of Icetips Wizards,
Standard Edition. There aren't really any bug fixes in this release because
no bugs have been reported since the last build of the initial release. The
major new feature is that the wizards now work with both Clarion4 and
Clarion5. Because of the way wizards were set up in Clarion4 and
Clarion5, one line in the browse, update and report procedure templates
needs to be modified to make the browse, form and report wizards 100%
compatible with C4 and C5. Icetips Software will do this editing, free of
charge, for those who don't feel up to it. Icetips Wizards Professional
Edition will be available for distribution by late December. It will include
support for various third party tools, direct integration with the Icetips
Reporter and a lot of new features.
Posted Monday, November 19, 2001

EasyExcel Version 1.01.1
Ingasoftplus has released a patch for the EasyExcel Class Libraries and
Code Templates. This patch includes a fix to large cell ranges, and
requires that you have installed EasyExcel 1.01. Registered users can
download a password protected setup for this patch. After installation you
must recompile all applications which use EasyExcel.
Posted Monday, November 19, 2001

http://www.clarionmag.com/cmag/news.html?year=2001&month=11&limit=100& (3 of 9) [1/11/02 12:33:06 PM]

http://www.sterlingdata.com/xflash.htm
http://www.icetips.com/
http://www.icetips.com/wizards
http://www.ingasoftplus.com/

Clarion News

ABCFree Templates And Tools Updated
The freeware ABCFree Templates and Tools have been updated. Version
2.34 changes include: new template to add generic CTRL+F (Find)
support to all browses in a procedure or application; drag and drop re-
ordering support to move up/down in a browse; dropped support for
Catalyst Sockettools.
Posted Monday, November 19, 2001

SealSoft Releases xSearch Class
SealSoft has released xSearch, a class and control template for searching
through all string fields of main and related files. Many-to-one and one-to-
many relations are supported. xSearch also includes tagging features and
a report extension to allow printing of tagged records. Demo available.
QBE is scheduled for release 1.1.
Posted Monday, November 19, 2001

Clarion 5.5 SR7 Alpha Addresses XP Issues
Microsoft Europe has confirmed unexpected behavior under XP for
programs running correctly under previous Window versions. It is
confirmed that the most likely cause for the loss of backward
compatibility are changes in the XP system loader. C55F had been
assumed as our last C55 build, but to provide a solution for the XP
compatibility problem SoftVelocity has prepared an update. This build has
passed initial testing of the reported problems, but is being released in
alpha format while testing continues.
Posted Monday, November 19, 2001

ProDomus Bundle Special Ends November 15th
ProDomus is offering s 30% discount on selected packages through
November 15th. The PD International Pack (savings of $344) includes:
PD Translator Plus Enterprise Edition ($899); PD 1-Touch Date, Time,
and Scheduling Tools less Appointment Class ($150); PD Worldwide
Address Formats ($99). Total before discount is $1148, after discount
price is $804. A second special package offers savings on ProDomus' two
most popular tools, PD Lookups and PD Date Tools. The fully
internationalized Date Tools automatically populates a calendar button
for every date entry, adds scrolling to both spin and entry controls, and
incorporates range limits defined in the dictionary. It provides many
functions and templates for handling dates, holidays, and time. Calendars

http://www.clarionmag.com/cmag/news.html?year=2001&month=11&limit=100& (4 of 9) [1/11/02 12:33:06 PM]

http://www.authord.com/Clarion
http://www.seal-soft.com/download.html
http://www.softvelocity.com/login/login.htm
http://www.prodomus.com/

Clarion News

automatically translate month and day names and calculate week of the
year according to the user's locale or any specified locale supported by
Windows. PD Lookup Date Pack includes: PD Better Lookups ($99) and
PD 1-Touch Date, Time, and Scheduling Tools less Appointment Class
($150). Regular price is $249, discounted price is $174.
Posted Tuesday, November 13, 2001

Prodomus Free Template Updated
An updated version of the PD Class Removal Template for C55 is now
available.
Posted Tuesday, November 13, 2001

Beta Testers Wanted
Beta testers wanted for Clarion shareware calendar/diary system. Active
beta testers will be rewarded.
Posted Friday, November 09, 2001

VCRFlash Beta 2 Released
Sterling Data's VCRFlash is now in Beta 2. VCRFlash places VCR buttons
on your standard forms and allows scrolling through the file without
returning to the browse. No changes needed to your existing update
forms - just drop the VCR buttons straight on to them. New in Beta 2:
insert button; search button; a form can be called from many browses;
some small cosmetic changes. New demo available. The price will be
increasing from $99 to $149 when the templates go gold at the end of
this month.
Posted Thursday, November 08, 2001

Next Age Imaging Templates & Windows XP
Next Age has confirmed that Windows XP does not include the Imaging
for Windows Application that has been included with every version of
windows since Win 95B. This means the imaging OCX's need for the
Imaging Templates are not included. According to the newest company to
own the product (EiStream), you must purchase Imaging for Windows
PRO in order to have the imaging function with Windows XP. For more
information on this please see the EiStream web site.
Posted Thursday, November 08, 2001

Parker Profiled At INN
In the second of an ongoing series, the Icetips News Network is very

http://www.clarionmag.com/cmag/news.html?year=2001&month=11&limit=100& (5 of 9) [1/11/02 12:33:06 PM]

http://www.prodomus.com/
http://www.vizacc.com/i_prod_vizdiary.php
http://www.sterlingdata.com/vcrflash.htm
http://www.thenextage.com/tools.htm
http://www.eistream.com/support_pro/technotes/pro_011019001.htm
http://www.icetips.com/

Clarion News

pleased to present an interview with Steve Parker. One of the more well-
known guys in our Clarion world, he may have helped you solve a
problem once or twice. Now you can see what he thinks of Clarion,
business, and life.
Posted Thursday, November 08, 2001

Clarion Third Party Profile Exchange Updated
An update to the Clarion Third Party Profile Exchange is now available.
Click on Profile Exchanges, then click on Clarion 3rd Party Online Profiles.
Posted Thursday, November 08, 2001

Nice Touch Solutions Adds ClarioNET Support
By popular demand, Nice Touch Solutions, Inc. is pleased to announce
support for ClarioNET in it's line of third party products. Support for
Query Wizard, Report Wizard and View Wizard is currently available.
Query Wizard and Report Wizard offer the same full functionality as their
desktop counterparts. View Wizard has a few limitations we hope to
overcome as soon as possible. Support is currently provided for Clarion
5.5 applications using ClarioNET 1.1. ClarioNET support is offered as an
add-on to your existing product license and is priced as follows: Query
Wizard $79; Report Wizard $69; View Wizard $69.
Posted Tuesday, November 06, 2001

New G-Cal Build Available
A new build for G-Cal is now available. The gsDATEPLUS and
gsBUSINESSPLUS functions now accept a new parameter: 1 = days, 2 =
weeks, 3 = months, 4 = years.
Posted Tuesday, November 06, 2001

IceTips Report Wizard Renamed Icetips Reporter
As there is already a product called Report Wizard (from Nice Touch
Solutions), Icetips Software has renamed its reporting wizard product to
Icetips Reporter. Version 1.002 is now available.
Posted Tuesday, November 06, 2001

Gitano Software Closed Nov 7-14, 2001
Gitano Software will be closed from November 7-14, 2001. All
support/sales/etc will be handled as soon as the office opens on the 15th.
Posted Tuesday, November 06, 2001

http://www.clarionmag.com/cmag/news.html?year=2001&month=11&limit=100& (6 of 9) [1/11/02 12:33:06 PM]

http://www.encouragersoftware.com/
http://www.clariontools.com/
http://www.gitanosoftware.com/download.htm
http://www.icetips.com/
http://www.gitanosoftware.com/

Clarion News

xDataBackup Manager v1.2
SealSoft has released xDataBackup Manager 1.2. This release includes
automatic deleting of old archives. New demo and docs available now,
new install will be available shortly.
Posted Tuesday, November 06, 2001

New SysList Demo
A new SysList demo is now available from solid.software. The demo now
contains a procedure that shows how to display a list of files with their
associated icons (just like Explorer). SysList is a wrapper class for the list
view common control, available for Clarion 5 and Clarion 5.5 (ABC and
Legacy, 32bit only). Features include: large icon, small icons, list and
report view modes; clickable headers; drag-and-drop reordering of
columns; grid-lines (in report view); flat scrollbars; label-editing; single
or multiple item selection; checkboxes; callback procedures for event
handling; hot-tracking; background image; draggable items, and more.
Cost is $99 at ClarionShop, email support and updates included.
Posted Tuesday, November 06, 2001

Andy Ireland's COM Classes
Andy Ireland has posted a copy of his soon-to-be open source COM
classes. This is code under development, copyright of Plugware
Solutions.com Ltd and may only be used for your own applications. They
may not be distributed or copied in any way nor can they be used in any
third party product.
Posted Friday, November 02, 2001

Business Rules Manager Released
Riebens Business Rules Manager has been released. This product allows
you to create and manage your business rules, and also create the
Clarion code to implement the rules, for import into your application.
Features include: import the Project dictionary into the business rules
application for use during business rules definition; create multiple
Clarion source code for each business rule defined; export business rule
Clarion Source code; link the business rules source code into applications
without having to write a single line of code; if business rules change, the
rule change is automatically reflected next time the application is
compiled; works for all versions of Clarion for Windows, 16 & 32 bit and
both ABC & Legacy. Available from www.clarionshop.com.

http://www.clarionmag.com/cmag/news.html?year=2001&month=11&limit=100& (7 of 9) [1/11/02 12:33:06 PM]

http://www.seal-soft.com/download.html
http://www.solidsoftware.de/syslist.htm
news://news.softvelocity.com/3be1434e@news.softvelocity.com
http://www.riebens.co.za/brules.htm

Clarion News

Posted Thursday, November 01, 2001

TPS.repair Template Goes Gold
The TPS.repair Template gold release is now available at
www.clarionshop.com for US$ 50. This template set generates one-click
file repair and maintenance functionality for .TPS-files. Supports Clarion
version 5.5; a 30 days free trial version is available. The release for
Clarion versions 4 and 5 is delayed because of licensing issues regarding
the redistribution of SoftVelocity's TPSFIX utility."
Posted Thursday, November 01, 2001

ProDomus Updates and Notes
Several ProDomus products have recently been updated. The Translator
Plus language dictionary now contains over 23,000 phrases in 10
languages. Some languages include translations for popular third party
tools such as CPCS reports and ToolCraft's Query Wizard. Many thanks to
users who have contributed translation files. The Translation Assistant
also now includes a dictionary synchronization process allowing the user
to selectively override any conflicting translations found in the dictionary
and translation files. The Source Extraction Utility has been modified to
parse default cell tools tips added in C55f. It also allows you to exclude
any specified attributes that you don't want added to a translation file
such as help items or icons. New templates provide multi-language
translation for CPCS Reports and template code to modify Query Wizard
templates to do the same. These tools otherwise require separate
compiles for each language - a common third party tool limitation.
Another class revision allows users to edit and change translations at run
time - you can see the change while in the application. ClarioNet Support
has been added to C55 versions of PD Better Lookups, PD 1-Touch Date
Tools, and PD Translator Plus. Translator Plus code is provided to change
the client's international environment when doing international
applications.
Posted Thursday, November 01, 2001

xQuickFilter v2.06 Released
SealSoft's xQuickFilter now supports ClarioNET, allowing you to add quick
filters to your web applications. You can also now display in the status
line the current level of enclosure of a filter.
Posted Thursday, November 01, 2001

http://www.clarionmag.com/cmag/news.html?year=2001&month=11&limit=100& (8 of 9) [1/11/02 12:33:06 PM]

http://www.informatik-consulting.de/DL/Templates_en.html
http://www.prodomus.com/
http://www.seal-soft.com/download.html

Clarion News

Updated MySQL Templates
Roberto Artigas has posted an updated version of his DCT to MySQL
templates, including a variation by Lee White.
Posted Thursday, November 01, 2001

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the

express written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/news.html?year=2001&month=11&limit=100& (9 of 9) [1/11/02 12:33:06 PM]

news://news.softvelocity.com/3bde9095@news.softvelocity.com
http://www.clarionmag.com/cmag/comments.frm?articleID=10979
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

	clarionmag.com
	Clarion Magazine
	Optimizing DLL Loading - Rebasing Your DLLs
	Checkboxes For Many-to-Many Relationships
	The Clarion Challenge - Using C in Clarion
	Checkboxes For Many-to-Many Relationships: The Source Code
	Calling By Address, STARTing By Address
	A New Look, And A Topical Index
	Calling By Address, STARTing By Address (Part 2)
	Using SQL Server’s Data Transformation Services (DTS)
	The Clarion Advisor: Sizing Windows
	Clarion News

