
User’s
Guide

CLARION 5

2 CLARION 5 USER’S GUIDE

COPYRIGHT 1994, 1995, 1996, 1997, 1998, 1999 by TopSpeed Corporation
All rights reserved.

This publication is protected by copyright and all rights are reserved by TopSpeed Corporation.
It may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any
electronic medium or machine-readable form without prior consent, in writing, from TopSpeed
Corporation.

This publication supports Clarion 5. It is possible that it may contain technical or typographical
errors. TopSpeed Corporation provides this publication “as is,” without warranty of any kind,
either expressed or implied.

TopSpeed Corporation
150 East Sample Road
Pompano Beach, Florida 33064
(954) 785-4555

Trademark Acknowledgements:

TopSpeed is a registered trademark of TopSpeed Corporation.
Btrieve is a registered trademark of Pervasive Software.
Microsoft Windows and Visual Basic are registered trademarks of Microsoft Corporation.
All other products and company names are trademarks of their respective owners.

Printed in the United States of America (0699)

CONTENTS 3

CONTENTS 3

FOREWORD 15
Documentation Conventions 16

Typeface Conventions... 16
Keyboard Conventions.. 16
Other Conventions .. 16

1 - CLARION’S DEVELOPMENT ENVIRONMENT 17
Overview 18

Applications and Projects ... 18

Basic Environment Commands 19
File Commands ... 19
Application and Project Commands—The Project Menu 20
Run Configuration .. 22
Debug Configuration .. 22
Application Only Commands—The Project Menu .. 22

Configuring the Environment 23

Helper (Object) Program Registration 24
Database Driver Registry .. 24
VBX Custom Control Registry... 26

Search Paths—the Redirection File 28
Redirection File Syntax .. 28
Redirection Macros .. 28
Redirection File Sections.. 29

2 - DICTIONARY EDITOR 31
About This Chapter 32

About the Data Dictionary 33
Benefits of Using a Data Dictionary .. 33
Dictionary Editor Functions ... 33
Two Entries to theDictionary Editor ... 34

CONTENTS

4 CLARION 5 USER’S GUIDE

Designing Your Dictionary and Your Database 36
Normalization ... 36
Keys .. 37
Relational Operations ... 38
The Dictionary Editor ... 39

Creating a Data Dictionary 40

Opening the Dictionary Editor 43

Adding Files to the Dictionary 45
Quick Load ... 45
Importing File Definitions .. 46
File Properties ... 46

Adding File Aliases to the Dictionary 52
Why Use Aliases... 52
The File Alias Dialog.. 52

Adding or Modifying Fields 55
Defining Field Properties ... 56
Choosing a Datatype... 70

Adding or Modifying Keys 72
Setting Key Properties .. 74
Key Component Fields ... 77

Adding or Modifying Relationships 78
Setting Referential Integrity Constraints .. 79

Managing Your Dictionary 81
Copying And Pasting .. 81
Dictionary Revisions .. 82

Configuring the Dictionary Editor 83

3 - APPLICATION GENERATOR 87
About This Chapter 88

Creating the Application (.APP) File 89

Global Application Settings 92
Global Template Settings.. 92
Global Data and Variables .. 92
Global Embed Points .. 94
Global Extensions ... 94

Overview: Developing Your Application 95

CONTENTS 5

Adding a Procedure to Your Application 99
Application Tree ... 99
Defining the Procedure Type .. 100

Setting Procedure Properties 101
Procedure Files ... 103
Procedure Windows .. 105
Procedure Reports .. 106
Procedure Data ... 106
Calls to Other Procedures ... 108
Embedded Source Code ... 108
Procedure Formulas .. 118
Procedure Extensions ... 118

Prototyping and Parameter Passing 119
Adding Parameters to the Prototype ... 119
Adding Parameters to the PROCEDURE Statement .. 120
Passing Parameters in the Procedure Call .. 120

Maintaining Your Application 122
Application Tree Views/Tabs .. 122
Locator .. 123
Edit Menu—Edit Procedure Properties .. 123
Application Menu—Edit Application Properties ... 124
Procedure Menu—Edit Procedure Properties .. 127
Popup Menu—Edit Procedure Properties .. 128
File Menu—Application Import/Export Commands ... 130

Configuring the Application Generator 131
Application ... 131
Registry ... 134
Generation .. 135
Synchronization .. 136
Editor .. 139

Templates and the Template Registry 141
Configuring the Template Registry .. 141
Registering Templates .. 142
Template Registry Maintenance ... 143

4 - WINDOW FORMATTER 145
About This Chapter 146

Window Creation Overview 147

6 CLARION 5 USER’S GUIDE

Choosing a Window Type 148
 Default Window Structures ... 148

Configuring the Window Formatter 151
Grid ... 151
Populate Defaults.. 152
Margin Defaults .. 153
Spread Defaults .. 155

Using the Window Formatter 156
Typical Window Design Process .. 156
Window Formatter Tools .. 157
Window Formatter Menus .. 166
Window Properties Dialog ... 176
Placing Controls in a Window .. 187

Menu Editor 189
Merging MDI Menus .. 189
Planning and Implementing Menus .. 191
Calling the Menu Editor ... 192
Creating Your Application’s Menus.. 193
Implementing Standard Windows Behavior ... 196
Menu Positions and Merging Behavior .. 197
Adding Hot Keys .. 198
Other Menu Behavior—Disabling and Toggling ... 199
Managing Your Menus.. 200

Toolbars 201
Merging Toolbars.. 201
Adding Toolbars ... 202

List box Formatter 203
List Overview ... 203
Understanding the List box Formatter .. 204
List box Formatter General Tab.. 206
List box Formatter Appearance Tab ... 210
Creting Column Groups ... 212

5 - CONTROLS AND THEIR PROPERTIES 215
Overview 216

About This Chapter .. 216
Setting Control Properties with the Data Dictionary.. 216
Types of Controls.. 217

CONTENTS 7

Common Control Attributes 218
Setting the USE Attribute ... 218
Setting the AT Attribute .. 220
Setting the Text Attribute .. 222
Setting the Display Picture ... 223
Setting the COLOR Attribute ... 223
Setting the KEY Attribute .. 225
Setting the ALRT Attribute ... 226
Setting the FONT Attribute .. 227
Setting Control Modes .. 228
Setting Help Attributes ... 230

Interactive Controls 232
Button Properties .. 232
Radio Button Properties ... 238
Check Box Properties ... 243
Check Box Behavior ... 247
Creating List Boxes .. 249
List (and Combo Box) Properties ... 249
Combo Box Properties ... 255
Spin Box Properties .. 256
Entry Box Properties .. 261
Text Properties .. 266
Sheet Properties .. 269
Tab Properties ... 273
Region Properties ... 275

Non-Interactive Controls 279
String Properties ... 279
Prompt Properties ... 282
Group Box Properties ... 282
Progress Bar Properties .. 284
Image Properties ... 286
Line Properties.. 288
Box Properties .. 288
Ellipse Properties .. 290
Panel Properties .. 291

8 CLARION 5 USER’S GUIDE

6 - CUSTOM CONTROLS 293
Overview 294

OLE Controls 295
OLE Container Overview ... 295
OLE Control Properties .. 296

OLE Controls with OCXs 302
ActiveX Controls, License Files, and Compound Storage Files 302

VBX Controls 305
Registering .VBXs .. 305
VBX Properties .. 306
VBX Operation ... 308

7 - REPORT FORMATTER 311
Overview 312

Clarion’s Report Engine 313

Report Formatter Interface 315
Opening the Report Formatter .. 315
Band View... 315
Report Formatter Toolboxes ... 316
Report Formatter Menus... 321

Report Structures and Properties 329
Report Properties .. 329
Form.. 332
Page Header .. 334
Group Breaks .. 335
Group Header ... 337
Detail .. 340
Group Footer... 343
Page Footer ... 345

8 - CREATING REPORTS 347
About This Chapter 348

Common Reporting Tasks 349
Creating the Report Procedure ... 349
Specifying Files .. 349
Specifying Keys (Sort Order) ... 350
Specifying Which Records to Print (Range Limits & Filters) 351

CONTENTS 9

Specifying Paper Size and Orientation ... 352
Specifying Report Margins... 352
Positioning and Alignment ... 354
Specifying a “Pre-printed” Form .. 356
Specifying Page Headers and Footers .. 356
Specifying Column Headers and Report Titles .. 357
Specifying Fields to Print (variable text) .. 358
Specifying Group Breaks ... 359
Specifying Page Breaking Behavior ... 361
Creating Totals and Calculated Fields .. 361
Page Numbers ... 365
Displaying Print Dates .. 366
Implementing Print Preview ... 367
Printing Labels (Dynamically) ... 368
Printing One Record per Page .. 372
Printing Mail-Merge Documents .. 372
Printing Graphics .. 372
Printing Multi-line Text with Word-wrap ... 376
Reports That Look Like Windows .. 377

9 - TEXT EDITOR 383
About This Chapter 384

Opening the Text Editor 385

Managing Text Editor Windows 386

Using the Text Editor Tools 388
File Menu.. 388
Edit Menu ... 388
Tool Bar .. 390
Populate Field Toolbox ... 391
Search Menu ... 391
Block Indent ... 393
Macros .. 393

Editing Errors 395

Configuring the Text Editor 396
Application Options Dialog .. 396
Editor Options Dialog... 396
Text Editor INI File .. 399

10 CLARION 5 USER’S GUIDE

10 - FORMULA EDITOR 401
Overview 402

Expressions 403

Formula Editor Tools 405
Formulas Dialog ... 405
Formula Editor .. 405
Conditionals Dialog .. 406

All Formula Editor Assignments 407
Preliminary Steps.. 407

Unconditional Assignments 409

Conditional Assignments 410
Creating an IF Structure ... 410
Creating a CASE Structure... 412
Nesting Structures .. 414

11 - PICTURE EDITOR 415
Edit Picture Dialog 416

Favorite Pictures Pool ... 416
String .. 417
Numeric and Currency ... 417
Scientific ... 419
Date... 420
Time .. 421
Pattern ... 422
Key-in Template ... 422

12 - PROJECT SYSTEM 425
Overview 426

Hand Coded Projects 427

Compile and Link Options 429
Global Compile and Link Options ... 429
Individual Source Module Compile Options .. 433

Component Files 434
Projects to Include .. 434
Application Icon ... 434
Source Code Files ... 434
Database Driver Libraries ... 435

CONTENTS 11

Library, Object, and Resource Files ... 435
Programs to Execute ... 437

The Target File 438
.LIB Files .. 438
.DLL Files... 440

Distributing Files 441
Choosing a Configuration ... 441
Installing and Accessing Your Application’s DLLs .. 443
The Ship List .. 443

13 - DEBUGGERS 445
Overview 446

The Debugging Process .. 446
Preparing Your Projects for Debugging .. 447
Locating Page Faults (GPF) ... 448
Starting the Debugger from a Popup Menu.. 449

16-bit Debugger 450
Tutorial ... 450
Starting the Debugger ... 460
Loading the Source Files .. 461
Setting Debugger Options .. 462
Debugger Windows .. 466
Setting Breakpoints .. 471
Running the Program.. 474
Working with Source Code... 475
Editing Watch Expressions ... 476
Editing Variables at Run Time .. 478

32-bit Debugger 480
Tutorial ... 480
Starting the Debugger ... 488
Loading the Source Files .. 489
Setting Debugger Options .. 490
Debugger Windows .. 491
Setting Breakpoints .. 495
Running the Program.. 496
Editing Variables at Run Time .. 497

14 - DATABASE MANAGER 499

12 CLARION 5 USER’S GUIDE

Overview 500
Browsing Data Files ... 501
Closing Data Files .. 503
Sort Order ... 503
File Statistics .. 504

Working with Columns 505
Hiding Columns.. 505
Showing Columns... 505
Reformatting Columns ... 505
Column Justification ... 506
Column Width... 506
Column Display Pictures .. 507
Column Headers ... 507

Working with Data Files 508
Navigating Through a File .. 508
Locate (Key) Command ... 508
Search and Find Next ... 509
Sending Driver Strings ... 510
Saving File Definitions as Source Code ... 510

Using Query-by-Example 511

Editing Data 512
Editing Records .. 512
Adding Records .. 512
Editing Memos ... 513
Showing Deleted Records .. 513
Undeleting Records .. 514
Holding and Releasing Records ... 514

Converting Data Files 515
Immediate Conversion .. 515
Generating Source for File Conversion .. 515
Editing Source Code to Make Field Assignments .. 518
Converting Legacy Data ... 521

Printing Data 522

15 - APPLICATION CONVERTER 525
Overview 526

Application Converter Goals .. 527

CONTENTS 13

Using the Conversion Wizard 528
Starting the Conversion Process ... 528
Dispose of Proposed Changes—Confirm Conversion Window 531

Writing Your Own Conversion Rules 533
Compiling Conversion Rules .. 533

APPENDIX A - WINDOWS DESIGN ISSUES 535
About This Chapter 535

Design Principles 536
User Control ... 536
Event Driven Programming .. 538
Background Processing .. 539

Windows 540
Multiple Document Interface (MDI) .. 540
Application Window ... 540
Document Windows and Dialog Boxes .. 540

Window Elements 542
Buttons .. 542
Check Boxes ... 542
Radio Buttons ... 543
List Boxes ... 543
Combo Boxes ... 543
Drop-Down List Boxes ... 543
Text Boxes .. 544
Spin Boxes .. 544
Static Text ... 544
Group Boxes ... 545
Sheets and Tabs... 545
Wizards ... 545
Control Labels .. 546
Cursors .. 546

Menus 548
File Menu.. 548
Edit Menu ... 549
View Menu ... 550
Window Menu .. 550
Help Menu .. 551
Accelerator Keys .. 551

Color 552

14 CLARION 5 USER’S GUIDE

APPENDIX B - MAKING API CALLS 553
Overview 553

Prototyping API Functions 554

Linking API Functions 556
Windows API Functions ... 556
Other API Functions ... 557
CALL .. 558

APPENDIX C - DEVELOPMENT AND DEPLOYMENT STRATEGIES 559
Overview—EXEs, .LIBs, and .DLLs 559

Multi-Programmer Development 561
Enabling and Organizing Team Projects .. 562
Procedure Oriented Approach .. 563
Module Oriented Approach .. 564
Sub-Application Approach ... 566

One-Piece EXEs 570
When to Use One-Piece EXEs ... 570
How to Implement One-Piece EXEs .. 571

EXE Plus DLLs 575
When to Implement .. 575
How to Implement .. 575
Hiding the Clarion Run-time Library ... 579
Making LIBs and DLLs for Other Environments .. 582

APPENDIX D - DDE—DYNAMIC DATA EXCHANGE 583
Overview 583

Capabilities 584

DDE Conversation—Client to Server 586
Initializing the Conversation... 586
Sending DDE Commands... 587
Sending Data from Client to Server ... 589

APPENDIX E - GLOSSARY 591

INDEX 617

FOREWORD 15

FOREWORD

Welcome to the Clarion 5 User’s Guide! This book is a complete reference
to the static (non-template) parts of the Clarion development environment.

Once you’ve become familiar with the Clarion development environment,
through Getting Started and Learning Clarion, you can refer to the User’s
Guide for complete in-depth information, or you can read it for pure
entertainment pleasure.

The User’s Guide contains a chapter or two on each major component of the
development environment from the Data Dictionary Editor to the 32-bit
Debugger, including examples and tutorials on effective development
techniques. In addition, the User’s Guide includes several appendices
addressing various concepts and tools that are important to Windows
programming and application development in general.

Although to some extent the User’s Guide contents tracks the development
environment’s user interface, it also suggests a rough, but not mandatory,
sequence of tasks with which to approach application development. When
you want more information on how to accomplish a specific programming
task we recommend using the index or the master index to find task-specific
information.

Please refer to the Application Handbook for complete information on the
various templates, the Application Builder Class Library. Please refer to the
Programmer’s Guide for complete information on the database drivers that
come with this product. Please refer to the Language Reference for complete
information on Clarion language syntax and related examples. And don’t
forget to make liberal use of the extensive on-line help.

16 CLARION 5 USER’S GUIDE

Documentation Conventions

Typeface Conventions

Italics Indicates what to type at the keyboard and variable
information, such as Enter This or filename.TXT.

SMALL CAPS Indicates keystrokes to enter at the keyboard such as
ENTER or ESCAPE, and mouse operations such as
RIGHT-CLICK.

Boldface Indicates commands or options froma menu or text
in a dialog window.

UPPERCASE Clarion language keywords such as MAX or USE.

LETTER GOTHIC Used for diagrams, source code listings, to annotate
examples, and for examples of the usage of source
statements.

Keyboard Conventions

F1 Indicates a single keystroke. In this case, press and
release the F1 key.

ALT+X Indicates a combination of keystrokes. In this case,
hold down the ALT key and press the X key, then
release both keys.

Other Conventions

Tip: Special Tips, Notes, and Warnings—information that is not
immediately evident from the topic explanation.

Indicates vital information. If you read nothing else, read this.

CHAPTER 1 CLARION’S DEVELOPMENT ENVIRONMENT 17

1 - CLARION’S DEVELOPMENT ENVIRONMENT

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

18 CLARION 5 USER’S GUIDE

Overview
This chapter introduces you to Clarion’s development environment. It also
introduces you to some terminology and concepts used throughout this book.

Clarion’s development environment is a program that helps you write other
programs. The development environment manages all the files (source code,
executables, resources, etc.) and all the processes (editing, compiling,
linking, etc.) needed to successfully develop Windows programs. The
Getting Started and Learning Clarion books provide a wonderful general
introduction to Clarion’s development environment.

The development environment is highly configurable. You can adjust the
environment to the way you work so you can be most productive. This
chapter describes the various adjustments you can make to the environment.
You may want to browse through this chapter just to get an idea of how
flexible and how powerful the development environment is.

Applications and Projects

This book uses the terms “application” and “project” somewhat
interchangeably, although there is a fine distinction between these two terms.

Both applications and projects should be distinguished from the Project
System, which is the part of the development environment that manages the
compile and link process. The Project System compiles and links both
applications and projects. See Project System for more information.

Applications

By convention, a Clarion application refers to a project whose source code is
generated by templates and whose instructions for compiling and linking are
stored within the application file (.APP), rather than in a separate Project
System file (.PRJ).

Projects

By convention, a Clarion project includes some set of source code, plus the
instructions (.PRJ file) for compiling and linking to produce an executable
program. Project typically refers to a manually coded program rather than a
template generated program.

CHAPTER 1 CLARION’S DEVELOPMENT ENVIRONMENT 19

Basic Environment Commands
Clarion’s development environment provides menu commands, toolbar
buttons, and keyboard shortcuts to access all the development environment
tools. The most commonly used tools have toolbar buttons and keyboard
shortcuts. Toolbar buttons are shown beside their corresponding menu
commands.

File Commands

Clarion’s development environment menu provides several commands to
manipulate various files used in the development process. These basic file
commands are described here.

 New
The New command creates a new file of the type you select in
the folder you select. We recommend you begin development
with the Dictionary (.DCT) file.

 Open
The Open command opens an existing file. Select the file from
the Windows file open dialog.

 Pick
The Pick command opens an existing file. Select the file from
Clarion’s Pick dialog. This dialog shows a list of the most
recently accessed files, categorized by file type. Highlight the
file, then press the Select button. Press the Remove button to
remove filenames from the list.

Close
The Close command closes the active file and prompts you to
save or abandon any pending changes.

 Save
The Save command saves the active file to disk.

20 CLARION 5 USER’S GUIDE

Save as
The Save as command saves a copy of the active file to a new
destination. The new file becomes the active file, and the
original file is abandoned.

Save all
The Save all command saves all open files to disk.

Print
The Print command prints the active file.

Print Setup
The Print Setup command opens the Windows Print Setup
dialog.

Change Directory...
The Change Directory command opens a Windows Directory
dialog.

Search Files...
The Search Files command opens a Windows Search dialog.

Browse Database
The Browse Database command opens the Database Manager to
browse and edit the data file you specify. See Database Manager
for more information.

Convert Application
The Convert Application command starts the Clarion Application
Conversion Wizard to convert applications developed in one
Clarion environment to another Clarion environment (newer
Clarion version, different templates, etc.). See Application
Converter for more information.

Note: If your templates are unchanged, you can open application
files with newer versions of Clarion and the file conversion is
automatic. The Application Conversion Wizard carries out
more complex conversions.

Application and Project Commands—The Project Menu

Clarion’s development environment provides several commands which act
on the application or project (see Applications and Projects). This section
provides a list of the commands and what they do. To access these
commands, choose Project from the menu, or press the corresponding
toolbar button.

Set Makes a project active, so that subsequent project commands
such as Make and Run operate on the project. The Select Project
dialog appears; select a .PRJ or .APP file from the list box.

New
Creates a new project file. Fill in the Project Title and Main file

CHAPTER 1 CLARION’S DEVELOPMENT ENVIRONMENT 21

fields in the New Project File dialog.

Load
Makes a project active, so that subsequent project commands
such as Make and Run operate on the project and displays either
the Application Tree dialog or the Project Editor dialog depending
on whether a .PRJ or .APP file was selected.

Edit Edits the active project file with the Project Editor dialog.

 Make
Generates souce code, then compiles and links the active
application or project.

 Run
Runs the active program after optionally saving and making the
project. See Run Configuration for information on configuring
the Run command.

 Debug
Makes the active project then starts the appropriate debugger.
See Debug Configuration for information on configuring the
Debug command.

Make Statistics
Displays a statistical profile of the most recent make. The Make

22 CLARION 5 USER’S GUIDE

Statistics dialog shows information on the size of each module,
including code and data size.

Run Configuration

The following menu options are toggle switches. Selecting the option
changes the status of the switch from on to off, or from off to on.

Auto make before run
When checked (on), the Run command first initiates a Make.

File save before run
When checked (on), the Run command first initiates a Save.

Minimize on run
When checked (on), the Run command minimizes the
development environment before running the application.

Wait for termination on run
When checked (on), the Run command suspends the
development environment until after you terminate the
application.

Debug Configuration

The following menu option is a toggle switch. Selecting the option changes
the status of the switch from on to off, or from off to on.

Auto Resume on Debug
When checked (on), the Debug command applies the source
files, breakpoints, and watch variables from the previous debug
session (16-bit debugger only).

Application Only Commands—The Project Menu

Generate
Generates source code for any procedures in the project that
have changed since the last generation.

Generate All
Generates source code for all procedures in the project.

Properties
Edits the application’s Project System information with the
Project Editor dialog.

CHAPTER 1 CLARION’S DEVELOPMENT ENVIRONMENT 23

Configuring the Environment
Clarion’s development environment manages different types of files involved
in the program development process. These files include data dictionaries
(.DCT), applications and projects (.APP and .PRJ), source modules (.INC
and .CLW), templates (.TRF, .TPL, and .TPW), and objects (.LIB, .DLL).

The Clarion environment contains tools for managing these various types of
files. Each of the tools (Dictionary Editor/Viewer, Application Generator,
Text Editor, Template Registry, driver/server/VBX registries) is separately
configurable as described in this section.

Dictionary Editor Configuration

You can customize some of the default dictionary settings in the Dictionary
Options dialog. These settings affect the appearance of the Dictionary Editor
and the Dictionary Viewer. In addition, some settings affect the source code
the Application Generator generates to manage data dictionary files and
fields.

To customize the development environment’s dictionary settings, choose
Setup ➤ Dictionary Options . See Dictionary Editor—Configuring the
Dictionary Editor.

Application Generator Defaults and Configuration

The Application Options dialog lets you specify default settings for each new
application you create as well as for the active application. To access the
dialog, choose Setup ➤ Application Options . See Application Generator—
Configuring the Application Generator.

The Template Registry stores a list of all the templates available to you when
building an application. To create an application, you must have at least one
template class registered. To access the Template Registry , choose Setup ➤
Template Registry . See Application Generator—Templates and the Template
Registry.

Text Editor Configuration

To personalize your editing environment, use the Editor Options dialog and,
optionally, the ..\BIN\C5EDT.INI file. To open the Editor Options dialog,
choose Setup ➤ Editor Options . Select the corresponding tab to set specific
Text Editor options. See Text Editor—Configuring the Text Editor.

Environment INI File

The Clarion development environment has its own configuration (.INI) file
that you can edit to customize the environment appearance and behavior. See
the Programmer’s Guide for more information on the environment .INI file.

24 CLARION 5 USER’S GUIDE

Helper (Object) Program Registration
Both the development environment and the programs you create can call on
other programs (typically DLLs) to accomplish certain tasks. In order to use
these “helper” programs, the environment needs to know about them. You
can provide the information the environment needs by registering these
various programs.

Specifically, registerable programs include database drivers (programs that
handle I/O for specific file systems such as Oracle, TopSpeed, Btrieve, etc.),
database servers (programs that handle file definition and database
administration for specific file systems such as Oracle, TopSpeed, Btrieve,
etc.), and VBXs (programs that provide a variety of pre-programmed
functionality—see Custom Controls in this book for more information).

Database Driver Registry

To communicate with various file systems and databases, Clarion’s runtime
library uses database drivers. A database driver is a special .dll that translates
Clarion file I/O commands into native database commands. There is a
database driver for each file system Clarion supports (for example,
ORACLE, MSSQL, Btrieve, Clipper, dBase, FoxPro, etc.). See Database
Drivers in the Application Handbook for more information.

Before your application can use a particular database driver, the driver must
be registered with the Clarion development environment. The in-the-box
drivers are already registered when you install Clarion. You must register any
add-on drivers.

Registering Database Drivers

To register a database driver, choose Setup ➤ Database Driver Registry .

CHAPTER 1 CLARION’S DEVELOPMENT ENVIRONMENT 25

1. Start Clarion (DOUBLE-CLICK on the icon).

2. Choose Setup ➤➤➤➤➤ Database Driver Registry .

This opens the Database Driver Registry dialog.

3. Press the Add button.

This opens a Windows file dialog to the Clarion \BIN\ directory.

Tip: If this dialog is empty, your Windows Explorer is probably set
to hide system files—this includes DLLs. Change your
Windows setting to show system files to display the database
driver .dlls.

4. Highlight the database driver in the list box, then press the Open button.

Database driver DLLs are named C5xxx.DLL, where xxx is a three
character file system abbreviation.

Note: Registering the driver automatically registers both 16-bit and
32-bit drivers.

Choose from:

C5asc.dll ASCII
C5bas.dll Basic
C5btr.dll Btrieve
C5cla.dll Clarion
C5clp.dll Clipper
C5db3.dll dBaseIII
C5db4.dll dBaseIV
C5dos.dll DOS
C5fox.dll FoxPro
C5odb.dll ODBC
C5ssql.dll Scalable SQL
C5tps.dll TopSpeed

Call TopSpeed Sales at (800) 354-5444 for information on additional
client/server (SQL) database drivers.

5. Press the OK button to save the registry.

Maintaining the Driver Registry

In addition to the Add button, the Database Driver Registry provides an
Update button and a Remove button for registry maintenance.

Update
Reloads information contained in the driver registry from all the
registered drivers. If a driver DLL is not present, its registry
entry is deleted.

26 CLARION 5 USER’S GUIDE

Remove
You may want to remove unused drivers to keep your driver list
to a manageable size. To remove a driver from the registry,
highlight it, then press the Remove button.

VBX Custom Control Registry

VBX controls are “add-in” controls sold by many third party vendors. These
perform a wide variety of tasks, from sliders and gauge controls to TWAIN
image capture. The Window Formatter lets you directly place these controls
once you register the .VBX libraries. See Custom Controls for more
information.

Before your application can use a particular VBX, it must be registered with
the Clarion development environment.

Registering VBX Controls

To register a VBX, choose Setup ➤ VBX Custom Control Registry .

1. Start Clarion (DOUBLE-CLICK on the icon).

2. Choose Setup ➤➤➤➤➤ VBX Custom Control Registry .

This opens the VBX Custom Control Registry dialog.

3. Press the Add button.

This opens the standard file selection dialog.

4. Navigate to the directory containing the VBX library.

5. Highlight the VBX in the list box, then press the Open button.

6. Press the OK button to save the registry.

CHAPTER 1 CLARION’S DEVELOPMENT ENVIRONMENT 27

Maintaining the VBX Registry

In addition to the Add button, the VBX Custom Control Registry provides
an Update button and a Remove button for registry maintenance.

Update
Reloads information contained in the VBX registry from all the
registered VBXs. If a VBX DLL is not present, its registry entry
is deleted.

Remove
You may want to remove unused VBXs to keep your VBX list to
a manageable size. To remove a VBX from the registry, highlight
it, then press the Remove button.

28 CLARION 5 USER’S GUIDE

Search Paths—the Redirection File
Clarion’s development environment sets the working directory to the one in
which the current application or project file resides. Additionally, Clarion
uses the redirection file (\CLARION5.RED) to keep track of directories for
the various application or project components. This redirection file tells the
development environment where to find files and where to create new files.

Clarion checks for a (local) CLARION5.RED file in the application
directory first. If it finds no local redirection file, it uses the default
redirection file—installed by default to
..\CLARION5\BIN\CLARION5.RED.

Note: Backup files are always created in the directory where the
original file is located.

To edit the default redirection file, choose Setup ➤ Edit Redirection File . The
text editor opens the ..\BIN\CLARION5.RED file for editing.

Redirection File Syntax

Each line of the redirection file is in the format:

filemask = directory1 [;directory2]... [;directoryn]

The filemask is a file name or a file mask using the standard DOS wild card
characters: * and ?.

The directory is a pathname identifying the directory or folder to search for
the filemask files. The first directory is where any new filemask files are
created. This is only true for files created and saved by the development
environment, such as .OBJ, .DBD, .LIB, .EXE, and .CLW. The additional
directory entries name additional search paths for existing filemask files.

Redirection Macros

The redirection file directory can contain macros. Redirection macros are
labels surrounded by the percent sign (%). Whereever it encounters a
redirection macro, the Clarion environment substitutes the macro’s
substitution value. You define redirection macros and their substitution
values in the [Redirection Macros] section of the ..\BIN\CLARION5.INI
file. For example to define a TEMP macro add the following to
CLARION5.INI:

[Redirection Macros]
TEMP=c:TEMP

To use the TEMP macro, add the following to CLARION5.RED:

CHAPTER 1 CLARION’S DEVELOPMENT ENVIRONMENT 29

*.dbd = %TEMP%\obj

The Clarion environment expands the redirection line to:

*.dbd = c:TEMP\obj

The ROOT Macro

The redirection file directory can contain the predefined %ROOT% macro.
By default, the %ROOT% macro expands to the drive and path one level
above that from which the environment program (CLARION5.exe) is
executing. For example, if the environment program is in
C:\CLARION5\BIN, the environment substitutes C:\CLARION5 for
%ROOT%. The default redirection file uses the %ROOT% macro to work
with Clarion’s default directory structure, regardless of where you install
Clarion.

You may override the %ROOT% macro’s default substitution value by
explicitly setting a value in the CLARION5.INI file. For example:

[Redirection Macros]
ROOT=d:C5Beta2

Redirection File Sections

The redirection file can be separated into sections that are conditionally
ignored or used depending on Project System settings. The sections are of
the form [NNNNN] where NNNNN is one of the following:

Section Name Project System Switch

16 Target OS=16-bit
32 Target OS=32-bit
DEBUG Debug Mode
RELEASE Build Release System
DEBUG16 Debug Mode + Target OS=16-bit
DEBUG32 Debug Mode + Target OS=32-bit
RELEASE16 Build Release System + Target OS=16-bit
RELEASE32 Build Release System + Target OS=32-bit
COMMON none - COMMON is always used

Redirection lines within a section are only used if the section’s
corresponding Project System switches are true (COMMON is always true).
Redirection lines without a section are always used. For example:

[DEBUG16]
*.obj = c:\test
[DEBUG32]
*.obj = c:\test32
[RELEASE]
*.obj = c:\release
[COMMON]
. = work

30 CLARION 5 USER’S GUIDE

In this example if the project is 32-bit and the Build Release System box is
checked, then .obj files are created in c:\release.

cleared, then .obj files are created in c:\test32 from line 2.

The Default Redirection File
-- Default Redirection for Clarion 5

[Debug16]
*.obj = %ROOT%\obj
*.lib = %ROOT%\obj
*.res = %ROOT%\obj
*.rsc = %ROOT%\obj
*.dbd = %ROOT%\obj

[Release16]
*.obj = %ROOT%\obj\release
*.lib = %ROOT%\obj\release
*.res = %ROOT%\obj\release
*.rsc = %ROOT%\obj\release

[Debug32]
*.obj = %ROOT%\obj32
*.lib = %ROOT%\obj32
*.res = %ROOT%\obj32
*.rsc = %ROOT%\obj32

[Release32]
*.obj = %ROOT%\obj32\release
*.lib = %ROOT%\obj32\release
*.res = %ROOT%\obj32\release
*.rsc = %ROOT%\obj32\release

[Common]
*.dll = .;%ROOT%\bin
*.tp? = %ROOT%\template
*.trf = %ROOT%\template
. = .; %ROOT%\examples; %ROOT%\libsrc; %ROOT%\images; %ROOT%\template;
%ROOT%\convsrc
*.lib = %ROOT%\lib
*.obj = %ROOT%\lib
*.res = %ROOT%\lib

Note: The default redirection file is designed to work with Clarion’s
default directory structure. If you change the directory
structure, you should make corresponding changes to the
redirection file.

CHAPTER 2 DICTIONARY EDITOR 31

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

2 - DICTIONARY EDITOR

32 CLARION 5 USER’S GUIDE

About This Chapter
This chapter shows you how to set up a data dictionary. The templates and
the Application Generator rely on the information in the data dictionary to
generate Clarion language statements for a wide range of your application’s
functionality. This chapter explains:

◆ What a data dictionary is and does.

◆ How the data files you design and options you choose in the
dictionary can determine the efficiency of your application’s
data storage. This includes a brief discussion of relational
database theory.

◆ How to add file definitions to a data dictionary by importing
from existing data files.

◆ How to set default data validation, control formatting, and entry
options for end user data entry.

◆ How to define file relationships and enforce relational integrity
(RI) between the data in related files.

◆ How to specify default screen control options. Clarion even lets
you specify controls such as spin boxes or custom list boxes
from within the data dictionary. The Application Generator
automatically uses these controls whenever the field is
referenced.

◆ How to configure the Dictionary Editor.

The Dictionary dialog
lists all files in the

database, including file
aliases.

Define each data file in a
separate File Properties

dialog.

CHAPTER 2 DICTIONARY EDITOR 33

About the Data Dictionary
The Data Dictionary is the central repository for information about your
application’s files, fields, keys, and file relationships. The information stored
includes how and where the data is stored on disk, as well as how the data is
presented to end users on reports and computer screens.

The Dictionary file (.DCT) stores

◆ file names
◆ file descriptions
◆ file key and index definitions
◆ file relationship definitions
◆ database connection information
◆ relational integrity (RI) rules
◆ field data types
◆ field descriptions
◆ field balloon help
◆ field status bar messages
◆ field validation rules
◆ field entry pictures and formatting
◆ default screen and report controls for each field
◆ much more

Benefits of Using a Data Dictionary

The benefit of having all this information stored in a central place is that it
saves huge amounts of time in developing and maintaining applications. Plus
it can give your application a consistent look and feel so that end users have
shorter learning curves. These benefits happen because fields, file
relationships, validation rules, etc. are defined only once, instead of being
redefined each time a field is referenced in the application.

The information stored in the Data Dictionary defines a default method for
handling data. By defining defaults here in the Data Dictionary, you establish
a method of handling each file and field. This method is used every time you
reference the file or field with the Application Generator. This means you
design your data handling method only once, no matter how many times
your application makes use of a field, and no matter how many applications
use this dictionary; however you still retain the ability to modify this default
method in any particular case.

Dictionary Editor Functions

Following is a list of the main functions the Dictionary Editor performs and
the dialog that performs each function.

34 CLARION 5 USER’S GUIDE

❏ Manage files and file relationships in the Dictionary dialog.

❏ Choose the file driver and specify the names and locations of data files in
the File Properties dialog.

❏ Define specific fields and the types of data they hold in the Field
Properties dialog.

❏ Define specific keys and their components in the Key Properties dialog.

❏ Define specific file relationships in the Relationship Properties dialog.

Two Entries to theDictionary Editor

You can access, view,and manipulate Clarion’s Dictionary Editor in two
ways: through the Dictionary dialog, or through the Dictionary Toolbox.

Tip: You can configure the information displayed in the Dictionary
dialog and the Dictionary Toolbox. See Configuring the
Dictionary Editor for more information.

The Dictionary Dialog

The Dictionary dialog provides a hierarchy of dialogs that display and update
information about your database. These dialogs organize the database
information into discrete lists—a file list, a relationship list, plus a field list
and a key list for each file. Each list item has a properties dialog for
manipulating the item’s properties.

Relationships list

Files list

Fields list

Keys list

CHAPTER 2 DICTIONARY EDITOR 35

The Dictionary dialog can add new items to the active data dictionary (files,
fields, keys, etc.), can update all existing items, and can call the Database
Manager to browse, edit, and convert data files. However, you cannot use the
Dictionary dialog to access a dictionary that is already in use within the
development environment. The environment prevents you from doing this.
To open the Dictionary dialog, choose File ➤ Open, then from the Files of
type drop-list, select Dictionary (*.dct).

The Dictionary Toolbox

The Dictionary toolbox provides a hierarchical list representing your
database. This list shows database files, keys, key components, fields, and
relationships in an expanding hierarchical tree. Each list item has a
properties dialog for manipulating the item’s properties. RIGHT-CLICK on an
item to open its properties dialog. CLICK on the plus (+) sign to expand the
list; CLICK on the minus (-) sign to contract it.

The Dictionary toolbox can update all the existing items in the active data
dictionary except the dictionary properties and any other properties that are
already in use within the development environment. The Dictionary toolbox
cannot add new items (new files, fields, keys, etc.) and does not call the
Database Manager to browse, edit, or convert files.

You can use the Dictionary toolbox to access a dictionary that is already in
use within the development environment, with the noted limitations. From
the Dictionary dialog, choose Edit ➤ View as Toolbox , or from the Application
Tree dialog, choose Application ➤ View Dictionary .

File

Key

Key component

Field

Relationship

RIGHT-CLICK to open
selected item’s

properties dialog

36 CLARION 5 USER’S GUIDE

Designing Your Dictionary and Your Database
This section provides a quick review of relational database theory. Planning
and organizing your application’s database design up front can result in a
more efficient application for the end user, not to mention saving hours of
coding and maintenance time.

The relational model concerns itself with three aspects of data management:
structure, integrity, and manipulation. For our purposes, we will discuss the
three practical requirements of these aspects: data normalization, keys, and
relational operations.

Normalization

At its simplest, data normalization means that a data item should be stored at
only one location. To avoid duplication within the database, a good design
splits data into separate files.

For instance, assume a very simple order-entry system storing the following
data:

Customer Number
Customer Name
Customer Address
ShipTo Address
Order Number
Order Date
Product Number
Quantity Ordered
Unit Price

You could store all the data in each record of one file, but that would be
inefficient (unless the business has no repeat customers). A second order
from a customer would repeat all the Customer data, for example. To
eliminate this duplication, you could split the data into three files:

Customer File: Order File: Item File:

Customer Number Order Number Product Number

Customer Name ShipTo Address Quantity Ordered

Customer Address Order Date Unit Price

This organizes the data in a logical scheme and eliminates duplication. The
process of relating each record to another record in another file requires
adding fields to at least two of the files, so that the files can share common
values. This will be discussed in a section below.

Strict relational theory specifies that:

◆ The database consists of one or more tables, which roughly
correspond to Clarion’s Data Dictionary files.

CHAPTER 2 DICTIONARY EDITOR 37

◆ The table consists of columns (which at the file level we refer to
as fields) and zero or more rows (records).

◆ Each record contains exactly one value for each field.

Keys

In the simple order-entry system above, to relate the records in the customer,
order and item files to one another, we could add one field each to two of the
files as follows:

Customer File: Order File: Item File:

Customer Number Order Number Product Number

Customer Name Customer Number Order Number
Customer Address ShipTo Address Quantity Ordered

Order Date Unit Price

Relational database theory states:

◆ A primary key should exist for each table. A primary key is a
unique field or unique combination of fields. The primary key
must not accept a null or blank value.

◆ A foreign key can match the primary key in another table. If
table “A” includes a foreign key that matches table “B’s”
primary key, then every value in the key in table “B” must either
be equal to a value in the primary key in a record in “A,” or be
null.

In the example above, the Customer Number is the primary key (there could
be two “John Smith’s,” but not two customer #1001’s). The Customer
Number field is added to the Order file, as a foreign key.

You can define three types of relationships between files:

◆ One-to-Many. One record in a file relates to many in another. In
the example above, a single customer number may relate to
many records in the Order file. In business database applications,
this is the most common relationship. It is also referred to as a
Parent-Child relationship.

◆ One-to-One. Exactly one record in a file relates to one record in
another file. This is best suited for when one file may or may not
have data in some fields. If all the fields were in one file, disk
space would be wasted on empty fields.

In the example above, if the ShipTo address was rarely different
than the Customer Address, you could place it in another file.

◆ Many-to-Many. Multiple records in a file relate to multiple
records in another. To apply it to the example, assume the Order-

38 CLARION 5 USER’S GUIDE

Entry system were made to fit a manufacturing concern which
buys parts and makes products. If a part could be used in many
different products, and a product could use many parts, two
additional files might look like:

Parts File: Product File:

Part Number Product Number
Part Description Product Description

Relational Operations

Relational database theory provides a set of operators for manipulating data.
The three operations that theoreticians specify for relational database
systems are Select, Project, and Join. A system does not have to explicitly
support the statements as long as it supports their functionality. For
theoretical purposes, a table simply consists of a set of columns (or fields),
plus zero or more rows (records) of data values.

◆ A Select extracts a row subset of a given table—in other words, a
subset of records which satisfy a given condition.

◆ A Project extracts a column subset of a given table—in other
words, a subset of specified fields, which then eliminates
extraneous records (example below).

◆ A relational Join takes two tables and joins them together to
form a new, wider table.

Select (not the same as SQL’s “Select”) provides the means to evaluate a
table and extract a record or records. The database must have the ability to
evaluate the information a single record at a time—in isolation—without
looking at the other rows. In the example, extracting a record or records
(spanning all files) that meet the condition “Customer Number = 100” is an
example of a relational select.

Project extracts unique values by field. In the example above, assuming that
the Item file has many duplicates, to Project the file “Item” over the field
“Product Number” yields a new table of all the products ordered by
customers (not necessarily matching all products made, in the Product file).
All the products sold would have one and only one listing.

Join: Going back to the example, to work with all the combinations of parts
and products possible, there must be a special relationship between these two
files. The solution is to define a third file, called a “Join” file. This file
creates two One-to-Many relationships. The relationships between the three
files would be defined:

CHAPTER 2 DICTIONARY EDITOR 39

Parts File:

Part Number (Primary key)

Part Description

Parts2Prod File:

Part Number (1st Primary key component and Foreign key)

Product Number (2nd Primary key component and Foreign key)

Quantity Used

Product File:

Product Number (Primary key)

Product Description

The Parts2Prod file has a multiple component Primary key and two Foreign
keys. The relationship between Parts and Parts2Prod is One-to-Many. The
relationship between Product and Parts2Prod is also One-to-Many. This
makes the Join file the “middleman” between two files with a Many-to-Many
relationship.

Usually a Join file contains additional information. In this example, the
Quantity Used logically belongs in the Parts2Prod file.

The Dictionary Editor

The Clarion language supports the three aspects of data management that
relational database theory concerns itself with. The Dictionary Editor is a
tool for planning the structure and integrity of the database, two of the
relational model’s “rules.” The Dictionary Editor also lets you “preconstruct”
some of the relational operations specified by database theorists; Clarion
language statements handle the remaining operations.

◆ The Dictionary Editor lets you easily set up the proper database
structure by defining files, fields, and relationships.

◆ The Dictionary Editor lets you easily plan both primary and
foreign keys for your database, as per the relational model’s
integrity rules.

◆ The Dictionary Editor lets you easily implement referential
integrity (RI) constraints that automatically keep related files in
sync by “cascading” changes across files and by “restricting” or
limiting changes or deletions that would cause inconsistencies
between files.

40 CLARION 5 USER’S GUIDE

Creating a Data Dictionary
This section provides an overview of the general process of creating a data
dictionary, that is, defining files, fields, keys, and file relationships. This
overview procedure leaves many options at their defaults and provides basic
descriptions of what the dialog boxes in the Dictionary Editor do. The dialog
boxes and the options they contain are explained more fully in the remainder
of this chapter.

Define the files in your database

1. Choose File ➤ New ➤ Dictionary from the development environment
menu.

2. Specify the path (Folders) and File Name for your dictionary file, then
press the Save button.

This opens the Dictionary dialog.

3. Press the Add File button, then, when asked if you want to use Quick
Load, press the No button.

This opens the New File Properties dialog. See Quick Load for a brief
discussion of using Quick Load to add files to your data dictionary.

4. On the General tab, type the Name, the Prefix , and choose the File Driver
for your data file, then press OK to close the dialog.

The prefix is prepended to field names to guarantee their uniqueness.
The File Driver is simply an indicator of the file system your data
belongs to: TopSpeed, Btrieve, Clipper, etc.

5. Repeat steps 3 and 4 for additional files in your database.

Define the fields in each file

1. Press the Fields/Keys button to open the Field/Key Definition dialog.

2. On the Fields tab, press the Insert button to define a new field.

This opens the New Field Properties dialog.

3. On the General tab, type in the field Name, choose the Data Type , and
specify its length in Characters .

4. Select the Validity Checks tab, then choose an option for data entry
validation.

5. Select the Window tab to specify default screen controls for your
application’s windows and dialogs.

You can define the type of control (entry field, spin box, radio button,
check box, etc.), its size, position, color, messages, help ids, etc. See
Controls and Their Properties for more information.

CHAPTER 2 DICTIONARY EDITOR 41

6. Select the Report tab to specify default report controls for your
application’s reports.

7. Press OK to end this field and define the next.

The New Field Properties dialog reopens, ready for the next field.

8. Repeat steps 3 through 7 for additional fields within this file.

After each field, a blank New Field Properties dialog opens, ready to
define the next field.

9. After adding the last field, press the Cancel button in the New Field
Properties dialog to return to the Field/Key Definition dialog.

Define the Keys in your files

1. Select the Keys tab, then press the Insert button to open the New Key
Properties dialog.

2. On the General tab, type the Key Name .

3. Select the Fields tab, then press the Insert button to open the Insert Key
Components dialog.

A key is based on one or more fields in your file. The Insert Key Compo-
nents dialog lets you specify which fields make up the key.

4. Highlight a component field from the list by CLICKING on it, then press the
Select button.

Press the Insert button again to add any additional component fields to
your key.

5. Press OK to end this key and define the next.

The New Key Properties dialog reopens, ready for the next key.

6. Repeat steps 2 though 5 for other keys in this file.

7. After adding the last key, press the Cancel button to return to the Field/
Key Definition dialog.

8. Press the Close button to return to the Dictionary dialog.

Define the relationships between your files

1. Select a file to relate to another, then press the Add Relation button on the
Related Files side of the Dictionary dialog.

2. Choose the Type of relationship from the drop-down list.

3. Choose the Related File from the drop-down list.

This is simply the other file in the relationship.

4. From the respective drop-down lists, choose the Primary Key for the
original file and the Foreign Key for the related file.

42 CLARION 5 USER’S GUIDE

5. Press the Map By Name or Map By Order button to establish a link
between the primary and foreign keys.

6. Select appropriate Referential Integrity (RI) constraints from the On
Update and On Delete drop-down lists.

7. Press the OK button to return to the Dictionary dialog.

Save the Dictionary

1. Choose File ➤ Save As to save the .DCT file.

CHAPTER 2 DICTIONARY EDITOR 43

Opening the Dictionary Editor
You generally create a data dictionary as the first step in creating an
application. Therefore, you will access it first from the main menu.

Create a new dictionary file

1. Choose File ➤ New ➤ Dictionary from the development environment
menu.

This opens the standard Windows file dialog.

2. Specify the path (folder) and File name for your dictionary file, then
press the Save button.

Open an existing dictionary file

1. Choose File ➤ Open, then from the Files of type drop-list, select the
Dictionary (*.dct).

2. Change drives or directories as necessary and locate the dictionary file
you wish to open. DOUBLE-CLICK on its name in the File Name list, or
select it then press the Open button.

or

1. From the Application Tree dialog, choose Application ➤ View Dictionary .

See Two Entries to the Dictionary Editor for more information.

You may use the same data dictionary for more than one application. An
application, however, can only have one data dictionary.

Tip: Clarion 5 automatically reads and converts Clarion for
DOS3.007 data dictionaries (and above). It will import all
attributes except display size attributes for memo fields. Also,
because relational model rules are more strictly enforced in
Clarion 5 , some relationships may not be complete.

Add description to the data dictionary

1. Press the Dictionary Properties button at the bottom of the dialog.

2. On the Comments tab, type the description in the space provided.

44 CLARION 5 USER’S GUIDE

The description is solely for your convenience, and has no effect on the
application. It is useful when other programmers take over your project, or
for when you return to the project after an absence.

Add a password to the data dictionary

1. Press the Password button.

2. When the Password Validation dialog appears, type a password in the
space provided, then press the OK button.

3. When the Password Verification dialog appears, type the same password,
then press the OK button.

The password can help protect your application from unauthorized access.

CHAPTER 2 DICTIONARY EDITOR 45

Adding Files to the Dictionary
The first function of the dictionary is to specify the data files for the
application. Define the files by adding them to the left side of the Dictionary
dialog. Either of the two “Add” buttons to the right of the list allow you to
add to the list.

Tip: You can configure the information displayed in the Dictionary
dialog. See Configuring the Dictionary Editor for more
information.

❏ To add a file to the files list, press the Add File button. This opens the
New File Properties dialog. Alternatively, you can create a file definition
from existing data with the File ➤ Import File command.

❏ To add an alias to the list, press the Add Alias button. This displays the
New Alias dialog. See the Adding a File Alias section, below.

Quick Load

When you press the Add File button you are optionally prompted to use
Quick Load to add your file to the data dictionary (see Configuring the
Environment—Application Defaults and Configuration for instructions on
disabling this prompt). Quick Load lets you specify only the most basic
information about your file and its fields; Quick Load supplies all other
required attributes by default. This is especially useful for quickly producing
a working application that can be fine-tuned later.

Alternatively, if you have done extensive project planning and specification,
you may prefer to add your file without using Quick Load so you can take
advantage of the many file and field attributes supported by Clarion’s data
dictionary. For example, the data dictionary supports data entry validation,
but validation defaults to none if you use Quick Load. The following section
assumes you are not using Quick Load to add the file. See Adding a File with
Quick Load in the Getting Started book for more information.

Press the Add File
button to add a new file.

RIGHT-CLICK on the file
name or the relationship
to access a popup menu

of choices.

46 CLARION 5 USER’S GUIDE

Importing File Definitions

The Dictionary Editor lets you quickly add a data file definition to the
dictionary by creating a definition based on an existing data file. We strongly
recommend using the import command when accessing existing data because
it is the fastest and most accurate way to define existing data files.

1. From the Dictionary dialog, select File ➤ Import File .

This opens the Select File Driver dialog.

2. Pick a file driver from the drop-down list, then press the OK button.

What happens at this point depends on the driver you choose. Typically,
SQL drivers or other client/server drivers require login information, then
let you choose one or more tables whose definitions to import. The
ODBC driver requires you to specify an ODBC data source whose
definition to import. The non-client/server drivers require that you
specify a file whose definition to import. See Database Drivers in the
Programmer’s Guide for driver specific import instructions.

3. Once you have chosen the file, table, or data source to import, press the
OK button to close each dialog.

The Dictionary Editor creates the file definition then opens the Edit File
Properties dialog. You may make changes to the imported file definition;
however, in most cases it is not necessary.

4. Make any changes to your new file definition, then press the OK button.

The Import Wizard adds the file definition to the dictionary, including its
field and key definitions.

Tip: Some file, field, and key properties vary with the file driver. For
example, for dBase drivers, the NAME attribute on a numeric
field can define its precision. See Database Drivers in the
Programmer’s Guide for the specific file driver for more
information.

File Properties

Define or change a file definition with the New/Edit File Properties dialog.
This dialog lets you desscribe general file characteristics and choose its file
driver.

Once the file is added, you may define fields, keys, set relationships, and
other properties for the data file. The Application Generator uses this
information to write the FILE structure declaration (see FILE in the
Language Reference), plus file I/O routines as required by your application.

CHAPTER 2 DICTIONARY EDITOR 47

General

Usage
Mark the structure as a File, Global Data group, or Field Pool.
You can define relationships for files, but not for Global or Pool
structures.

File The structure represents a FILE. The Application
Generator generates a FILE declaration as well as
code to read and write the FILE. You can use the
fields in the FILE as the parents of derived fields.
See Derived From in the Field Properties dialog.

Global The structure represents a group of global data
declarations. The Application Generator generates a
global data declaration for each field in the
structure. You can use the global fields as the parents
of derived fields. See Derived From in the Field
Properties dialog. This selection enables the
Generate Last check box.

Pool The structure represents a Field Pool. The
Application Generator generates no code for this
structure. You can use the fields in the pool as the
parents of derived fields. See Derived From in the
Field Properties dialog.

Generate Last Check this box to have the ABC Templates generate
global data field declarations last within the program
module (after file declarations). Clear the box to
declare global data before the file declarations.

This box is only enabled for global data and is not
recognized by the Clarion Templates.

Name
Type the file name as you wish to refer to it in your source code.
This serves as the label for the Clarion FILE structure. Specify a
valid Clarion label (see the Language Reference). If you do not
specify a filename in the Full Pathname field, this label also
serves as the filename for the file.

48 CLARION 5 USER’S GUIDE

Tip: You can specify variable file names to take advantage of
Novell Paths.

1. Prefix the file name variable with “!” For example,
!Glo:CustFile.
2. Create the variable (see Application Generator—Global
Variables).
3. Embed the following code before accessing the file (see
Application Generator—Embedded Source Code).
Glo:CustFile = Server/Vol:\dir\dir\Cust.btr

Description
Enter a string description for the file. Clarion automatically
displays the descriptions in certain dialogs, allowing you to
quickly recognize the file contents.

Prefix
As you enter the data file Name, Clarion automatically extracts
the first three letters to use as a label prefix when referring to the
file. Optionally specify up to 14 characters of your choice in this
field.

The prefix allows your application to distinguish between the
same variable names occurring in different data structures. A
field called Invoice may exist in two different files: Orders and
Sales. By establishing a unique prefix for Orders (ORD) and
Sales (SAL), the application may refer to fields as ORD:Invoice
and SAL:Invoice. See Field Qualification Syntax in the
Language Reference for more information.

File Driver
Specify the file type: TopSpeed, Clarion, Btrieve, ASCII, etc.
When using the Application Generator, Clarion automatically
links in the correct database file driver library. See Database
Drivers in the Programmer’s Guide for a discussion of the
relative advantages of each driver.

Remember that file systems vary in their support of some of the
attributes which you add to the FILE structure in this dialog box.
See Database Drivers in the Programmer’s Guide for more
information on each attribute.

Driver Options
A driver string or strings specific to the file driver. A forward
slash precedes each string. This conveys additional instructions
to the file driver and generates the second parameter for the
DRIVER attribute of the FILE statement. See Database Drivers
in the Programmer’s Guide for specific information on the
strings available for each file driver.

Owner Name
A string constant or the label of a variable specifying the
password or connection string (SQL) for access to the file. This

CHAPTER 2 DICTIONARY EDITOR 49

adds the OWNER attribute to the FILE statement. For additional
security you can check the Encrypt box (below).

We recommend using a variable password that is lengthy and
contains special characters because this more effectively hides
the password value from anyone looking for it. For example, a
password like “dd....#$...*&” is much more difficult to “find”
than a password like “SALARY.”

Tip: To specify a variable instead of a constant OWNER attribute,
type an exclamation point (!) followed by the variable name.
For example: !GLO:ConnectString.

See Database Drivers in the Programmer’s Guide for more
information on SQL connect strings.

Full Pathname
The fully qualified pathname for the data file. You may omit the
file extension—Clarion will supply the correct extension
depending on the file driver chosen. This supplies the parameter
for the NAME attribute.

If you omit this field, Clarion supplies a default by appending
the first eight letters in the Name field to the active path.

When using the TopSpeed driver, if you wish to store multiple
tables in a single physical file, separate the file and table names
with “\!,” as in TUTORIAL\!ORDERS. This refers to the ORDERS
table in the TUTORIAL.TPS file. See Database Drivers in the
Programmer’s Guide for more information.

When using an ODBC driver to define a FILE such as Microsoft
Access, which can store multiple tables in a single file, place the
table name in this field. Typically, the name of the physical file

50 CLARION 5 USER’S GUIDE

which includes the table is listed in the ODBC.INI file; the
ODBC driver manager provides this information to the driver.
See Database Drivers in the Programmer’s Guide for more
information.

Tip: To specify a variable name instead of the actual file name, type
an exclamation point (!) followed by the variable name. For
example: !FileNameVar.

Enable File Creation
Optionally specify that the application should create the data file
if it does not exist at run time. This adds the CREATE attribute
to the FILE statement. You may override this setting for all files
or for each file within an application. See the Application
Handbook—Template Overview—File Handling.

Reclaim Deleted Records
This option depends on the file driver. It specifies that the file
driver reuse file space formerly taken up by deleted records.
Otherwise, the application adds new records to the end of the
file. This adds the RECLAIM attribute to the FILE statement.

Encrypt Data Records
Toggles file encryption for the file systems that support it. You
must also specify an Owner Name (see above). This adds the
ENCRYPT attribute to the FILE statement. See Database
Drivers in the Programmer’s Guide to see which file systems
support encryption.

Encrypting the file encodes its data so that only your application
can decode it.

Open in Current Thread
Optionally specify that each execution thread that uses this file
allocates memory for its own separate record buffer. We
recommend this for multiple document (MDI) applications. You
may override this setting for all files or for each file within an
application. See the Application Handbook—Template
Overview—File Handling. This adds the THREAD attribute to
the FILE statement.

Use OEM Collation
The OEM attribute specifies that the FILE on which it is placed
contains non-English language string data. These strings are
automatically translated from the OEM ASCII character set data
contained in the file to the ANSI character set for display in
Windows. All string data in the record is automatically translated
from the ANSI character set to the OEM ASCII character set
before the record is written to disk. This adds the OEM attribute
to the FILE statement.

The specific OEM ASCII character set used for the translation
comes from the DOS code page loaded by the COUNTRY.SYS

CHAPTER 2 DICTIONARY EDITOR 51

file. This makes the data file specific to the language used for
that code page, and means the data may not be usable on a
computer with a different code page loaded.

Enable Field Binding
Optionally specify that all fields in the RECORD structure are
available for use in dynamic expressions at run time (using
BIND and EVALUATE). The compiler allocates memory to hold
the full Prefix:Name for each variable. This adds the
BINDABLE attribute to the FILE statement.

Export Fields
Check this box to indicate that the fields should be exported
from DLLs (valid for Global files only).

32 Bit Only
Optionally specify that the FILE structure is only valid for 32-bit
applications (SQL Drivers only).

Freeze
Check this box to prevent any derived fields in the file from
refreshing. See Derived From in the Field Properties dialog. See
also the Refresh Field, Refresh File, Refresh Dictionary, and
Distribute Field menu commands.

Comments

Comments
Select the Comments tab to type a text description of up to 1000
characters.

Options

Do Not Auto-Populate This File
Checking this box tells the Application Wizard not to generate
Browse, Update, or Report procedures for this file.

User Options
The text typed into this field is available to any Utility Templates
that processes this file in the %FileUserOptions symbol. The
Utility Templates determine the proper syntax for these user
options. See also TOOLOPTIONS and %FileToolOptions in the
Programmer’s Guide.

52 CLARION 5 USER’S GUIDE

Adding File Aliases to the Dictionary
An alias creates a second reference for a file without duplicating the file on
disk. You can add an alias only for files already in the Dictionary.

Why Use Aliases

A file alias creates an additional record buffer for a file on the same thread.
That is, an alias lets you define and use two or more different relationships
between the same two files on the same thread. This is really the only
compelling reason to use file aliases, since aliases use additional memory,
resources, and can create confusion.

Tip: When using aliases it is best to use a file driver that stores
keys internally, such as TopSpeed or Btrieve, to conserve file
handles.

For example, let’s say your hospital application has a patient file and a doctor
file. A patient has several doctors: an admitting doctor, a primary doctor, and
a surgeon. In database terms, the patient record has three different fields
containing doctor IDs, and all three are linking fields to the doctor file (thus,
three relationships between the same two files). If you want to automatically
display all the patient’s doctors on the same window, you need a record
buffer for each link, otherwise, you can show only one doctor at a time—the
last one retrieved.

By defining aliases for the doctor file, you can supply additional buffers to
hold more than one doctor record at a time. Do not confuse this with the
THREAD attribute for a file. The THREAD attribute provides for a separate
record buffer for each different thread, whereas an alias provides an
additional record buffer on the same thread.

The File Alias Dialog

To add an alias, press the Add Alias button in the Dictionary dialog to open
the New File Alias dialog. To modify the alias properties at a later time,
highlight the alias name on the Dictionary dialog list, then press the
Properties button to open the Edit File Alias dialog.

You can edit the fields and keys for the alias by pressing the Fields/Keys
button. The Field/Key Definition dialog lists the fields and keys for the
original file; any changes you make will update the originals.

Tip: When using aliases, you must open the file in Share mode.

The File Alias dialog includes the following tabs and fields:

CHAPTER 2 DICTIONARY EDITOR 53

General

Name
Type an alias “name”, as you wish to refer to it in your source
code. The name must be a valid Clarion label.

Description
Enter a text description for the alias. Clarion displays the
descriptions in dialogs such as the Dictionary dialog.

Prefix
As you enter the alias Name, Clarion automatically extracts the
first three letters to use as a label prefix when referring to the
alias. Optionally specify up to 14 characters of your choice in
this field.

The prefix lets your application distinguish between the same
variable names occurring in different data structures. A field
called Invoice may exist in two different files: Orders and Sales.
By establishing a unique prefix for Orders (ORD) and Sales
(SAL), the application may refer to fields as ORD:Invoice and
SAL:Invoice. See Field Qualification Syntax in the Language
Reference for more information.

Alias File
Choose a file from the drop-down list. This is the original file
that the alias “references.” The drop-down list shows only the
files previously defined in the Dictionary dialog.

Comments

Comments
Select the Comments tab to type a text description of up to 1000
characters.

54 CLARION 5 USER’S GUIDE

Options

Do Not Auto-Populate This File Alias
Checking this box tells the Application Wizard not to generate
Browse, Update, or Report procedures for this file alias.

User Options
The text typed into this field is available to any Utility Templates
that processes this file in the %FileUserOptions symbol. The
Utility Templates determine the proper syntax for these user
options.

CHAPTER 2 DICTIONARY EDITOR 55

Adding or Modifying Fields
Once you define a file, you may define its fields. Highlight the file name in
the Dictionary dialog window then press the Fields/Keys button, or RIGHT-
CLICK the file name then choose Fields/Keys from the popup menu. If you
highlight an alias, the Dictionary Editor automatically displays the fields in
the original file. Any changes then modify the original file as well as the
alias.

Tip: You can configure the information displayed in the Field/Key
Definition dialog. See Configuring the Dictionary Editor for
more information.

The Field/Key Definition dialog contains two tabs. The Fields (left) tab lists
the fields. The Keys (right) tab lists the keys.

❏ To add a new field, select the Fields tab, then press the Insert button.

❏ To modify an existing field, select the field name then press the
Properties button.

❏ To delete an existing field, select the field name then press the Delete
button.

❏ To move a field within the Fields list, select the field name then press the
 or button. This reorders the field labels within the generated

FILE structure.

56 CLARION 5 USER’S GUIDE

Tip: Use the and buttons to move fields into and out of a
GROUP.

When you press the Insert button or Properties button for a field, the
Dictionary Editor opens the Field Properties dialog.

Defining Field Properties

The Field Properties dialog lets you set field related options and attributes.

The Dictionary Editor lets you quickly add fields one after another. Each
time you close the New Field Properties dialog for one field, the dialog
reopens, ready for the next field. After completing the last field, press Cancel
to return to the Field/Key Definition dialog.

Tip: This dialog is identical to the dialog for defining and editing
memory variables. All the Clarion language attributes
applicable to a field in a file are also applicable to memory
variables. However, there are a few additional attributes that
are only applicable to memory variables. Controls which refer
to attributes applicable only to memory variables are disabled
when defining a field in a file.

General

Field Name
Type a valid Clarion label. Valid field names may vary slightly
according to the file driver.

CHAPTER 2 DICTIONARY EDITOR 57

Derived From
Press the ellipsis button (...) to select another (parent) field in the
dictionary from which to copy all field attributes, except the
field name. The parent field may be any other field in the data
dictionary, including global data fields, field pool fields, or file
fields.

Press the refresh button to reapply the attributes from the parent
field. Use the Freeze check box below to prevent a refresh from
the parent. See also the Refresh Field, Refresh File, Refresh
Dictionary, and Distribute Field menu commands.

Description
Type a text description up to 40 characters. The description
appears in the list in the Field Properties dialog. Also, see
Comments below.

Data Type
Choose a data type from drop-down list. Clarion supports the
following types which specify how the data is stored on disk and
accessed in memory by the file driver. The types available vary
according to the selected file driver. See Database Drivers in the
Programmer’s Guide for more information. See also Choosing a
Datatype in this chapter.

STRING A fixed length character string, usually up to 65,520
characters in length, depending on the file system.

PICTURE Provides a “storage picture” for a String field.
Picture is not a separate data type, but declares the
field as a STRING whose length equals the size of
its picture. Fill in the Record Picture field with the
Storage Picture Token. See the Language Reference
for a complete list of picture tokens, including
examples.

CSTRING A character string terminated by a null, up to 65,520
characters in length. Corresponds to the C Language
string data type, and the “ZString” field type in
Btrieve.

PSTRING A character string with a leading length indicator, up
to 255 characters in length. Corresponds to the
Pascal Language string data type, and the “LString”
field type in Btrieve.

BYTE Can contain an unsigned integer, from 0 to 255.

SHORT Can contain an integer, from -32,768 to 32,767.

USHORT Can contain an integer, from 0 to 65,535.

LONG Can contain an integer, from -2,147,483,648 to
2,147,483,647.

ULONG Can contain an integer, from 0 to 4,294,967,295.

58 CLARION 5 USER’S GUIDE

DATE Corresponds to the “Date” field type in Btrieve.

TIME Corresponds to the “Time” field type in Btrieve.

SREAL Can contain a real number between 0 ±
1.175494535e-38 and 0 ± 3.40282347e+38.
Corresponds to the Intel 8087 short real format.

REAL Can contain a real number between 0 ±
2.225073858507201e-308 and 0 ±
1.79769313496231e+308. Corresponds to the Intel
8087 long real format.

BFLOAT4 A real number between 0 ± 5.87747e-39 and 0 ±
1.70141e+38. Corresponds to the four-byte Microsoft
BASIC single precision format.

BFLOAT8 Can contain a real number between 0 ± 5.87747e-39

and 0 ± 1.7014118346e+38. Corresponds to the eight-
byte Microsoft BASIC double precision format.

DECIMAL Contains a real number between
-999,999,999,999,999,999,999,999,999,999 and
9,999,999,999,999,999,999,999,999,999,999 in a
packed decimal format. It offers 31 digits of
precision. You must define at least one “place” to the
left of the decimal point. The left-most byte contains
the sign.

Tip: The Decimal type generally provides the best all around
performance for mathematical calculations. The compiler
optimizes the operation by multiplying values by powers of ten
before processing; this greatly speeds up performance on
systems without math coprocessors, at no cost in
mathematical precision.

PDECIMAL Contains a real number between
-999,999,999,999,999,999,999,999,999,999 and
9,999,999,999,999,999,999,999,999,999,999 in a
packed decimal format. It offers 31 digits of
precision. You must define at least one “place” to the
left of the decimal point. The right-most byte
contains the sign, compatible with Btrieve and IBM/
EPCDIC formats.

MEMO A variable length text field, up to 65,520 characters
in length. MEMOs are allocated in 256 byte chunks.

To specify that a memo field may hold binary data,
check the Binary box. This is dependent on the file
driver. See Database Drivers in the Programmer’s
Guide for more information.

BLOB Can contain variable length binary data larger than
64K. Similar to memos, BLOBs (Binary Large
OBjects) are always variable length, with no length

CHAPTER 2 DICTIONARY EDITOR 59

specified. They are database driver dependent,
currently supported only by the TopSpeed driver.

GROUP A compound data structure that contains other fields
with various data types. This corresponds to a C
Language STRUCT.

Type the label for the group in the Field Name field.
With each successive New Field Properties dialog,
define the elements within the group.

TYPE Declares an instance of a user-defined data type. See
TYPE in the Language Reference. The user-defined
data type can be a GROUP, a QUEUE, or an object.
Selecting TYPE enables the Base type field. See
Base type below.

Base type
Specify the label of a user-defined datatype. The user-defined
data type can be a GROUP, a QUEUE, or an object. See TYPE in
the Language Reference. For example:

G1 GROUP,TYPE !a user-defined data type
S1 STRING(10)
S2 STRING(10)

END

Use the Base type field to specify the G1 label so the Application
Generator generates something like the following:
MyTypeField G1

Reference
To create a reference variable, check this box. A reference
variable stores a reference to another variable or object,
including but not limited to its memory address. This box is
enabled only when defining memory variables. See the
Language Reference for more information.

Characters
Specify the length of the field in bytes.

Places
For decimal data types, specify the number of places to the right
of the decimal.

Dimensions
To declare the field as an array, and to specify the array
dimensions, specify a size for up to four dimensions. Total array
size may not exceed 65,520 bytes. See the Language Reference
for more information on dimensioned variables and arrays.

60 CLARION 5 USER’S GUIDE

Record Picture
To declare a STRING data type whose length equals the size of
its picture, type a valid string picture here. You must choose
PICTURE in the Data Type drop-list to enable this field. See the
Language Reference for more information on pictures.

Screen Picture
To specify a display picture, regardless of data type, type a
picture token here or press the ellipsis button to use the Edit
Picture String dialog (see the Picture Editor chapter). When the
Application Generator creates window and report controls for
the field, this serves as the default display picture for the control.
See the Language Reference for more information on pictures.
See also Controls and Their Properties—Common Control
Attributes.

CLICK the button next to the Screen Picture field to lock the
screen picture even if the data type changes. CLICK the button
to unlock the screen picture.

Prompt Text
Specify the default text for the field’s prompt. The Application
Generator places this text in the PROMPT control associated
with this field.

Tip: To specify that no prompt at all is associated with this field,
clear the Prompt Text field, then press the Reset Controls
button on the Window tab.

Column Heading
Type the default column title here. The Application Generator
uses this for reports and list boxes.

Freeze
Check this box to prevent field attribute refresh from the parent
field. Use the Derived From field above to set the parent field.

CHAPTER 2 DICTIONARY EDITOR 61

See also the Refresh Field, Refresh File, Refresh Dictionary,
and Distribute Field menu commands.

Attributes

Case
Specify the default capitalization mode for the field’s entry
controls.

Normal Specifies no enforced capitalization. The
Application Generator adds nothing to the field’s
entry control.

Word Capitals Specifies word capitalization. The Application
Generator adds the CAP attribute to the field’s entry
control.

Uppercase Specifies all capital letters. The Application
Generator adds the UPR attribute to the field’s entry
control.

Typing Mode
Specify the default typing mode for the field’s entry controls.

Set Insert Specifies insert mode. The Application Generator
adds the INS attribute to the field’s entry control.
New characters are inserted at the cursor.

Set Overwrite Specifies overwrite mode. The Application
Generator adds the OVR attribute to the field’s entry
control. New characters overwrite characters at the
cursor.

62 CLARION 5 USER’S GUIDE

Do Not Reset Specifies no change to the typing mode. The
Application Generator adds nothing to the field’s
entry control.

Flags
Specify other default attributes for the field’s entry controls.

Immediate Check this box to specify immediate event
notification for the field’s controls. The Application
Generator adds the IMM attribute to the field’s entry
control.

Password Check this box to specify the non-display attribute
for the field’s controls. The Application Generator
adds the PASSWORD attribute to the field’s entry
control. Characters typed into the control appear as
asterisks, plus standard Copy and Cut are disabled
so users cannot copy a password and paste it into a
text editor or another control.

Read only Check this box to specify the display only attribute
for the field’s controls. The Application Generator
adds the READONLY attribute to the field’s entry
control.

Justification
Select a justification for the field’s controls from the drop-down
list. The Application Generator adds the LEFT, RIGHT,
CENTER or DECIMAL attribute to the field’s entry control.
LEFT left justifies the leftmost character. RIGHT right justifies
the rightmost character. CENTER centers the center character.
DECIMAL right justifies the decimal point to the offset
specified immediately below.

Tip: For decimal justification specify an offset equal to 4 times the
number of places to the right of the decimal point.

Offset
Specify an offset to the justification. If justification is left, offset
moves the lefmost character back to the right. If justification is
right, offset moves the rightmost character back to the left. If
justification is decimal, offset moves the decimal point to the
left, revealing fractional digits that would otherwise be hidden.
If justification is center, offset moves the center character left for
negative values and right for positive values. The Application
Generator uses this setting as the parameter for the LEFT,
RIGHT, CENTER or DECIMAL attribute of the field’s entry
control. The measurement unit is Dialog Units.

Initial Value
Specify an initial (default) value for the field.

CHAPTER 2 DICTIONARY EDITOR 63

Database Fields Specifying an initial value for a database field
generates an assignment statement. For example:

MyField = MyVariable + TODAY()

Therefore you may type any valid Clarion
expression. The dialog does not validate your entry;
however, at compile time the compiler identifies an
invalid expression.

Memory Variables
Specifying an initial value for a global, module, or
local memory variable generates a data declaration
statement. For example:

MyString STRING(‘InitialString’)

or

MyNumber LONG(100)

Type a string constant for a string field or a number
for a numeric field. The Application Generator
automatically generates surrounding quotes for
string fields.

Tip: Functions, variables, and expressions are valid initial values
for database fields, but not for memory variables (global,
module, or local)! Use surrounding quotes to specify literal
values for database fields; do not use quotes to specify literal
values for memory variables.

External Name
Specify an external name for the field. This adds the NAME
attribute to the field’s declaration—see the Language Reference
for more information.

The function of the NAME attribute varies with the file driver.
See Database Drivers in the Programmer’s Guide for more
information on specific file drivers. Usually, the NAME attribute
specifies the native file system name for the field when it is
different than the Clarion field label.

Place Over
Select another field name from the drop-down list to allow the
current field to redefine the other field’s location in memory.
This adds the OVER attribute to the field’s declaration—see the
Language Reference for more information.

Storage Class
Specify the storage class for memory variables. Choose from:

DEFAULT The Application Generator adds no attribute.The
variable is allocated from stack memory, which
means the variable is reallocated for each new
instance of the procedure.

64 CLARION 5 USER’S GUIDE

EXTERNAL - LOCAL
The Application Generator adds the EXTERNAL
attribute which specifies the variable is defined in an
external library and is allocated no memory by this
program.

EXTERNAL - DLL
The Application Generator adds EXTERNAL and
DLL (dll_mode) which specifies the variable is
defined externally in a DLL. dll_mode is a switch
indicating whether the DLL attribute is active or not.
The DLL attribute is required for EXTERNAL
variables in 32-bit applications.

STATIC The Application Generator adds the STATIC
attribute, which specifies the variable is allocated
static memory instead of stack memory. This makes
the variable “persistent” from one instance of the
procedure to the next.

THREAD The Application Generator adds the THREAD
attribute which specifies the variable is allocated
static memory separately for each execution thread
in the program. Thus the value of the variable
depends on which thread is executing.

See the Language Reference for more information
on these memory allocation attributes.

Comments

Comments Type up to 1000 characters of comments or text
description. The description is solely for your convenience and
has no effect on the application. It is useful when other
programmers take over your project or when you return to the
project after an absence.

Options

Do Not Populate This Field
To cause Clarion’s Wizards to omit this field from browses,
forms, and reports, check this box.

Population Order
Specify where Clarion’s Wizards place this field on browses,
forms, and reports. Chose from:

Normal Populates fields in the same order they appear in the
Data Dictionary.

First Places these fields before all Normal and Last fields.

CHAPTER 2 DICTIONARY EDITOR 65

Last Places these fields after all First and Normal fields.

Form Tab
Specify the property sheet tab on which Clarion’s Wizards will
populate this field for form (update) procedures. You may type a
new tab name, or select from the drop-down list. Each new tab
name is added to the drop-down list. The default tab name is
“General.”

Add Extra Vertical Space Before Field Controls on Form Procedures
Check this box to cause Clarion’s Wizards to add extra vertical
space before this field on form (update) procedures. Default
vertical spacing is 4 dialog units. Checking this box doubles the
default spacing.

User Options The text typed into this field is available to any
Utility Templates that process this file in the %FieldUserOptions
symbol. The individual Utility Templates determine the proper
syntax for these user options. See also TOOLOPTIONS and
%FieldToolOptions in the Programmer’s Guide.

Help

Help ID
Specify a help topic here. The Application Generator adds the
HLP attribute to the field’s entry control.

Message
Specify a status bar message for controls referencing the field.
When the control has focus, the text appears on the status bar,
provided the application has one. The Application Generator
adds the MSG attribute to the field’s entry control.

Tool Tip
Specify a popup message for controls referencing the field.

66 CLARION 5 USER’S GUIDE

When the mouse cursor is idle over the field, the text appears
immediately below the cursor in a popup box. The Application
Generator adds the TIP attribute to the field’s entry control.

Validity Checks

To validate a user entry to this field, select the Validity Checks tab in the Field
Properties dialog, then choose a validation option by CLICKING on one of the
radio buttons.

The Application Generator uses this information to generate data validation
code. At runtime, when the user tabs off the field and shifts focus to another
control, or presses OK on the data entry dialog, the application sounds a
warning beep and sets focus back to the control if the data entered is not
valid.

Tip: When setting a validity check, provide the user with a helpful
status bar message. For example, if you specify that a numeric
field must hold a value between 1 and 50, place a message
such as “Type a number between 1 and 50” in the Message
field (see Help Tab above).

The validity checks constrain data entry to the criteria you select:

No Checks
Specifies no validation. This is the default.

Note: Some validation can still occur, depending on the control you
use to display the data, and the attributes of the control. For
example, an ENTRY control with the REQ attribute
automatically enforces a non-blank entry.

CHAPTER 2 DICTIONARY EDITOR 67

Choices Type the choices to display in the format
“Choice1|Choice2|Choice3.” Separate the choices
with a pipe (|) character (usually SHIFT+\). The
Application Generator adds the FROM attribute to
SPIN, LIST, and COMBO controls, or adds text to
RADIO controls (see the Language Reference).

Values Type the value to assign when the end user selects
the corresponding choice. Type the values in the
format “value1|value2|value3.” Separate the values
with a pipe (|) character (usually SHIFT+\). The
Application Generator adds the VALUE attribute to
RADIO controls (see the Language Reference).

Cannot be Zero or Blank
Specifies a required field. The Application Generator adds the
REQ attribute (see the Language Reference).

The REQ attribute behaves differently for tabbed dialogs than
for single page dialogs. Because the user has the option of never
selecting secondary tabs (pages), special steps are required to
enforce entry of required fields that reside on secondary tabs:

Put all required fields on the first tab and add the REQ attribute
to the tab and to the required entry fields; or

Make a “Wizard” to make sure the user process all tabs; or

At the beginning or end of the procedure, embed code that
selects all tabs with required fields and add the REQ attribute to
the required entry fields and to their parent tabs.

Must be in Numeric Range
Specifies the entry must fall within a numeric range. You may
specify a minimum value, a maximum value, or both. The
Application Generator generates code to enforce the range you
specify, and adds the RANGE attribute to SPIN controls (see the
Language Reference).

Lowest Check this box to set a minimum value, then enter
the value in the corresponding spin box. Clear the
box to specify no minimum value.

Highest Check this box to set a maximum value, then enter
the value in the corresponding spin box. Clear the
box to specify no maximum value.

By entering only a lowest, or only a highest value, you can
specify an open ended range.

Must be True or False
Specifies a Boolean entry (yes/no, true/false, off/on). The Data
Dictionary Window Control defaults to CHECK.

68 CLARION 5 USER’S GUIDE

True Value Type the value to assign when the end user checks
the CHECK control. The Application Generator
adds the VALUE attribute to the CHECK control
(see the Language Reference).

False Value Type the value to assign when the end user clears the
CHECK control. The Application Generator adds
the VALUE attribute to the CHECK control (see the
Language Reference).

Note: The Application Generator does not generate code to enforce
true/false entries because, in Clarion, all entries evaluate as
either true or false. This selection affects the default window
control in the Data Dictionary and applies the VALUE attribute
if the control is a CHECK.

Must be in File
Specifies the value must match a field in a file. This option is
enabled only if you previously related another file or files. See
Adding or Modifying Relationships in this chapter.

File Label Select the lookup file from the list of related files.
The Application Generator generates code to make
sure the entered value is in the selected lookup file.

Tip: Use the FileDrop or FileDropCombo control template in your
application to provide a same window pick list for the end
user, or use the Actions tab for an ENTRY control to provide a
separate window pick list.

Must be in List
Specifies the value must match one of the specified choices. The
choices are displayed with a SPIN, LIST, COMBO, or RADIO
control.

Choices Type the choices to display in the format
“Choice1|Choice2|Choice3.” Separate the choices
with a pipe (|) character (usually SHIFT+\). The
Application Generator adds the FROM attribute to
SPIN, LIST, and COMBO controls, or adds text to
RADIO controls (see the Language Reference).

Values Type the value to assign when the end user selects
the corresponding choice. Type the values in the
format “value1|value2|value3.” Separate the values
with a pipe (|) character (usually SHIFT+\). The
Application Generator adds the VALUE attribute to
RADIO controls (see the Language Reference).

CHAPTER 2 DICTIONARY EDITOR 69

Note: The Application Generator does not generate code to enforce
Must be in List entries. This selection affects the default
window control in the Data Dictionary and applies the FROM
and VALUE attributes.

Window

Use the Window tab in the Field Properties dialog to specify how your
application presents a particular field to the user in the Windows
environment. Remember, this specification is the default presentation
method. By defining it here in the data dictionary, you establish a standard
method of presenting the field which is used every time you place the field
on a Clarion window. This means you need only design your presentation
method once, no matter how many times your application makes use of this
field, and no matter how many applications use this dictionary; but you still
retain the ability to modify this default presentation in any particular case.

❏ To customize the default characteristics for prompts and entry controls
for a field:

1. Select the Window tab in the Field Properties dialog.

Tip: By setting the properties for the control here, you can save
time later. Every application you generate from the dictionary,
and every procedure in the application automatically formats
the control according to the dictionary. If you don’t format it
here, and if the control requires custom formatting, you will
have to custom format it for each use in a procedure and
application later.

2. In the Control Type list, highlight the type of control to use for the field.
The Window Controls list reflects your choice.

70 CLARION 5 USER’S GUIDE

3. In the Window Controls list, highlight a control (PROMPT, ENTRY,
TEXT, SPIN, etc.), then press the Properties button. The respective
control properties dialog opens. Use this dialog to set the control’s
position, size, color, font, text, mode, etc. See Controls and Their
Properties for more information.

4. Optionally, press the Reset Controls button to change prompt and entry
controls back to their default values.

Tip: To specify that no prompt at all is associated with this field,
clear the Prompt Text field on the General tab, then press the
Reset Controls button.

Report

This tab works exactly like the Window tab. By defining your report control
here in the data dictionary, you establish a standard method of displaying the
field every time you place the field on a Clarion report.

Choosing a Datatype

Clarion provides a wide variety of datatypes to accomodate almost any
programming need. This section provides some tips on choosing the correct
datatype for your particular programming problem.

Dates and Times

LONG is generally the best data type for date and time values. This datatype
lets you use Clarion standard Date and Time arithmetic, and provides a very
efficient storage mechanism.

The DATE and TIME data types are useful for compatibility with Btrieve
and SQL DATE and TIME datatypes, and they provide the most information
to file utilities that rely on file header information. For Date arithmetic they
are less efficient than LONG.

For xBase files, you generally use STRING data types for date storage,
because STRING is the actual data storage that all the xBase file systems
use. See the specific file driver's documentation in the User's Guide for more
information on this issue, because your choice can be affected by whether
the file already exists or your program needs to create it.

ZIP Codes

The DECIMAL data type is very good for zip codes because it's a packed
decimal format—a 9 digit ZIP+4 in a DECIMAL is 5 bytes of storage while
9 digit zip in a STRING is 10 bytes. This kind of storage savings is a real
consideration when you're setting up a large database. Since there is no math
to perform on ZIP codes, storage is generally a larger consideration than
performance.

CHAPTER 2 DICTIONARY EDITOR 71

Phone Numbers

The DECIMAL data type is also very good for non-international phone
numbers, for the same reasons as ZIP codes. Since you're dealing only with
phone numbers in your own country, you should be able to define the exact
number of digits and format to display. For U.S. numbers, you can store the
area code separately from the phone number—use a SHORT for the area
code (3 digits in 2 bytes) and a LONG for the phone number (7 digits in 4
bytes)—and achieve the same storage as a single DECIMAL(10,0) (10 digits
in 6 bytes).

If your program must deal with international phone numbers, the best data
type is a STRING, because the most common method of indicating the
country code is with a plus sign (+). For example, +44 (0)800 555 1212
indicates country code 44 (the United Kingdom). You should make the
STRING at least 20 characters, since the number of digits in the number can
vary from country to country, and even within separate sections of the same
country.

"Customer" Numbers

"Customer" Number is defined for this discussion as any internal number in
your program used primarily as the linking field between Parent and Child
files.

LONG is the most common data type used for internal numbering for linking
purposes. It is very efficient for both storage (4 bytes) and execution (it is
one of the base data types used internally by the Clarion libraries see Base
Types in the Language Reference). Any KEY based on a single LONG field
is very efficient and small on the disk, since it requires fewer key node splits
than a KEY based on a longer STRING (like the "customer" name).

Money

The best data type for any field that will store money values is DECIMAL.
Using DECIMAL provides the most efficient storage, since it is a packed-
decimal format. It also provides Binary Coded Decimal (BCD) math
functionality, which means that calculations are executed in Base 10 instead
of Binary (as it would if you use REAL). Using BCD math eliminates the
rounding and significant digit problems that you can encounter when you use
any of the floating point data types (REAL, SREAL, BFLOAT4, BFLOAT8).
See BCD Operations and Functions in the Language Reference for more on
BCD math.

72 CLARION 5 USER’S GUIDE

Adding or Modifying Keys
Keys and indexes specify sort orders for a data file. Add and change keys and
indexes for your database in the Field/Key Definition dialog. The Data
Dictionary generates the correct FILE structure declaration based on the
choices you specify here.

Keys

A key may reside within the data file or as a separate file, depending on the
file system. See Database Drivers in the Programmer’s Guide for more
information.

Keys are automatically updated whenever records are added, changed, or
deleted.

Static Indexes and Run-time Indexes

Indexes usually exist as separate files. Remember that a separate file handle
is necessary for each separate key or index file. Index files are not updated
automatically. The BUILD statement updates an index. See the Language
Reference for more information on BUILD. BUILD behavior depends on the
file system. See Database Drivers in the Programmer’s Guide for more
information.

A Static Index’s component fields are specified in the Data Dictionary. The
BUILD statement for a Static Index always rebuilds the index based on the
component fields specified in the Data Dictionary.

A Run-time Index lets you declare an index file without specifying the key
component fields in the Data Dictionary. The application must define the key
component fields at run-time, as the second parameter of the BUILD
statement. The application may rebuild the same index file with different key
component fields!

Creating a key or index

1. Select a file from the list on the Files side of the Dictionary dialog and
press the Fields/Keys button.

2. In the Field / Key Definition dialog, select the Keys tab to change focus to
the Keys list.

3. Highlight a key (if one exists), then press the Insert button.

This opens the New Key Properties dialog.

4. Type a valid Clarion label in the Key Name field.

5. Optionally type a Description .

CHAPTER 2 DICTIONARY EDITOR 73

The description displays in various dialog boxes, including the File
Definition dialog.

6. In the Type group, select Record Key or Static Index .

You may also select Runtime Index . If you do, you cannot specify
component fields here in the Data Dictionary. Instead, you must specify
the component fields with the BUILD statement.

7. Select the Attributes tab and check all boxes that are appropriate for the
key.

The Setting Key Properties section, below, describes the options in this
dialog.

Tip: If you imported the file definition based on existing data, these
attributes are already set, and you should not change them.

8. Optionally type a valid file name in the External Name field, if the file
system needs one.

Clarion automatically adds the proper file extension.

9. Select the Fields tab, then press the lnsert button.

This opens Insert Key Component dialog. Key components are the fields
used to index the data file. The component fields also determine the sort
sequence of the key.

10. DOUBLE-CLICK a field in the list; this transfers its name to the Fields tab,
which indicates the field is a component of the new key.

11. Repeat steps 9 and 10 for additional key component fields.

12. Press OK to close the New Key Properties dialog.

The New Key Properties dialog reopens, ready to accept additional keys.

13. Repeat steps 4 through 12 to create additional keys for this file.

14. When you are finished adding keys, press Cancel to close the New Key
Properties dialog and return to the Field / Key Defintion dialog.

At the end of the process, your keys appear on the Keys tab, with their field
components arranged in hierarchical order.

Modifying a key or index

To modify a key or index, select it in the Field/Key Definition dialog, then
press the Properties button. This opens the Edit Key Properties dialog. If you
selected a key component, the Fields tab is on top. If you selected the key,
the General tab is on top. The Setting Key Properties section, describes the
options in this dialog.

74 CLARION 5 USER’S GUIDE

Setting Key Properties

The following tabs and fields appear in the New Key Properties and Edit Key
Properties dialogs. They set the attributes for the key.

General

Key Name
Type a valid Clarion label in this field.

Tip: You cannot give a key the same name as one of the fields
within the RECORD. One common convention is to use the
field name plus the word “key,” as in LastNameKey .

Description
Type up to 40 characters in this field. The description appears on
Wizard generated tabs and in dialogs such as the File Definition
dialog. If you anticipate using many keys for your application,
we recommend providing brief meaningful descriptions.

Type
Specify a key or index. Choose from:

Record Key Keys are automatically updated whenever records
are added, changed, or deleted. The Application
Generator adds the KEY statement to the FILE
declaration.

Static Index Static Indexes are not automatically updated, but
require a BUILD statement. Static Index component
fields are specified in the Data Dictionary. The
Application Generator adds the INDEX statement to
the FILE declaration.

Runtime Index Runtime Indexes are not automatically updated, but
require a BUILD statement that specifies its
component fields. Runtime Index component fields

CHAPTER 2 DICTIONARY EDITOR 75

are not specified in the Data Dictionary. The
Application Generator adds the INDEX statement to
the FILE declaration.

Tip: The Static Index and Runtime Index options are disabled when
the Require Unique Value check box is marked on the
Attributes tab, because indexes always allow duplicates.

Attributes

External Name
Optionally, type a valid file name in this field. Clarion
automatically adds the proper extension. The Application
Generator adds the NAME attribute to the KEY or INDEX
statement. Some file systems require an External Name. See
Database Drivers in the Programmer’s Guide for more
information.

Require Unique Value
To disallow duplicate key values, check this box. This option is
valid only for Record Keys and is disabled for indexes. The
Application Generator adds the NO DUP attribute to the KEY
statement.

Primary Key
To establish the current key as the Primary key, check this box.
The Application Generator adds the PRIMARY attribute to the
KEY statement. This may be required for certain file drivers. See
Database Drivers in the Programmer’s Guide for more
information.

Auto Number
To tell the Clarion templates to generate code to manage record
sequence numbers, check this box.

Case Sensitive
To sort according to case, check this box. When creating or
updating the key, capital letters precede lower case letters, as per
their positions in the ASCII table. The Application Generator
omits the NOCASE attribute from the KEY statement.

76 CLARION 5 USER’S GUIDE

Exclude Empty Keys
To exclude records with a null or zero value in the key
component fields from the key file, check this box. The
Application Generator adds the OPT attribute to the KEY or
INDEX statement.

Note: The primary key must be unique and must exclude nulls.
Checking the primary key option has the same effect as
checking both Require Unique Value and Exclude Empty Keys.

Comments

Optionally select the Comments tab to enter up to 1000 characters of
description.

Options

Do Not Auto-Populate This Key
To cause Clarion’s Wizards not to generate browses, forms, or
reports based on this key, check this box.

Population Order
To specify where Clarion’s Wizards will place this field on
browses, forms, and reports, use the Population Order drop-down
list. Normal populates fields in the same order they appear in the
Data Dictionary. All First fields are placed before all Normal and
Last fields. All Last fields are placed after all First and Normal
fields.

User Options
To pass information to any Utility Templates that process this
key, type the information here. The text typed into this field is
available to any Utility Templates that process this key in the
%KeyUserOptions symbol. The Utility Templates determine the
proper syntax for these user options. See also TOOLOPTIONS
and %KeyToolOptions in the Programmer’s Guide.

CHAPTER 2 DICTIONARY EDITOR 77

Key Component Fields

Specify the components of the key or index (the sort field or fields) with the
Fields tab of the Edit Key Properties dialog. Key components are the fields
used to index the data file. These fields determine the sort sequence of the
key.

You may specify more than one field for a key and the fields may have
different data types. You may also specify different sort directions—one field
ascending, one field descending—when defining a key on multiple fields;
however, mixing sort orders is file driver dependent. See Database Drivers
in the Programmer’s Guide for more information.

Key Fields List
To add fields, or components, to your key, press the Insert
button. The Insert Key Components list then shows you the
available fields. DOUBLE-CLICK on the name of a field in the list to
add it to the Key Fields List .

Sort Order
To specify the sort sequence of your key component, choose
either the Ascending or Descending radio button.

Component Order
You can change the order of the components of a key. To move a
component up in the order, select it in the Key Fields List , then
press the button. To move a component down in the order,
select it in the Key Fields List , then press the button.

78 CLARION 5 USER’S GUIDE

Adding or Modifying Relationships
Define relationships between files in the New (or Edit) Relationship Properties
dialog. The relationships appear in the Related Files list on the right side of
the Dictionary dialog for the currently selected file.

Creating a relationship

1. Select a file from the Files list on the left side of the Dictionary dialog.

2. Press the Add Relation button.

This opens the New Relationship Properties dialog.

3. Select the relationship Type from the drop-down list.

You may choose between a One-to-Many (1:Many) relationship or a
Many-to-One relationship (Many:1). The 1:Many relationship defines a
situation where one record in a file relates to many records in another
file. For example, the Customer file contains only one record for cus-
tomer Katy, but the Order file may contain many records for customer
Katy, because Katy is a good customer that has ordered many items.

In the above example, it doesn’t matter which file you start with. If you
selected the Customer file first, the type of relationship is 1:Many , but if
you selected the Order file first, you would specify a Many:1 relationship.

Tip: The label for the group box immediately below will change to
Child or Parent , depending on your choice.

4. Select the Related File from the drop-down list.

The records in the two files, have one thing in common that relates them:
the customer number. For example, the customer number for Katy might
be 629, so the customer number for Katy’s orders will also be 629. Thus
the customer number is the “Key” to this file relationship.

5. Select the Primary Key or Foreign Key for the first file from the drop-
down list at the top right of the dialog.

Clarion automatically changes the label for the drop-down list (either
Primary Key or Foreign Key) according to the relationship type.

A Primary Key is always unique within the file for which it is primary. In
our example there is exactly one customer number 629 in the customer
file. So customer number is the Primary Key for the Customer file.

A Foreign Key need not be unique, and it should match the primary key
in another file. In our example, there is only one customer number 629 in
our Customer file. However, the customer number 629 appears several
times in the Order file. So customer number is the Foreign Key for the
Order file.

6. Select the Primary Key or Foreign Key for the related file, from the drop-
down list immediately below the first drop-down list.

CHAPTER 2 DICTIONARY EDITOR 79

For one-way or “lookup only” relationships, there is no Foreign Key. For
example, the Customer file may contain a state code that is not a key
component for the customer file. However, this same state code may be
the primary key for the States file.

7. Press the Map by Name button to establish the link between the two keys
by matching field names within the two keys.

The Field Mapping lists show the actual links established between the
two files.

This mapping step is required because the keys in the two files are not
always defined exactly the same way. For example, the
Key_CustNumber in the Customer file might consist of CustNumber and
LastName, while the Key_CustNumber in the Order file might consist of
CustNumber only. Mapping ensures that keys with multiple component
fields are handled correctly.

8. Optionally set Referential Integrity Constraints by choosing from the On
Update and On Delete drop-down lists in the Referential Integrity
Constraints group box.

See the Setting Referential Integrity Constraints for more information.

9. Press the OK button to add the new relationship to the Data Dictionary.

Setting Referential Integrity Constraints

By setting Referential Integrity (RI) constraints in the data dictionary, you
tell the Application Generator and the templates how to generate executable
code for handling linked field updates and deletions when working with
related data files.

Referential Integrity requires that a foreign key always has a match in the
primary key. This raises potential problems when the end user wishes to
change the value of a primary key or a foreign key, or delete a parent record.

80 CLARION 5 USER’S GUIDE

Any of these changes could cause a mismatch between the primary and
foreign keys.

The Relationship Properties dialog lets you specify how the generated code
handles situations where only one of several related records is updated or
deleted.

No Action
Tells the Application Generator to generate no code to maintain
referential integrity.

Restrict
Tells the Application Generator to prevent the user from deleting
or changing an entry, if the value is used in a foreign key. For
example, if the user attempts to change a primary key value, the
generated code checks for a related record with the same key
value. If it finds a match, it will not allow the change.

Cascade
Tells the Application Generator to update or delete the foreign
key record. For example, if the user changes a primary key
value, the generated code changes any matching values in the
foreign key. If the user deletes a parent record, the code deletes
the children too.

Clear
Tells the Application Generator to change the value in the
foreign key to null or zero.

Tip: The templates provide support for Referential Integrity for as
many levels of relationships as are defined in the Data
Dictionary.

CHAPTER 2 DICTIONARY EDITOR 81

Managing Your Dictionary
The Dictionary Editor provides several features to help you better manage
your data dictionaries.

• You can copy and paste both file and field definitions from one
dictionary file to another.

• The Dictionary Editor offers custom setup options which, for example,
allow you to define the default database driver.

• The Dictionary Editor offers version control which lets you set
checkpoints prior to major revisions, then roll back to previous
checkpoints if necessary.

Tip: You can configure the information displayed in the Dictionary
dialog and the Dictionary Toolbox. See Configuring the
Dictionary Editor for more information.

Copying And Pasting

You can use the Copy and Paste commands to copy a file or field definition
from one dictionary to another. To do so:

1. Open a dictionary file.

2. Select a file from the Files list in the Dictionary dialog.

3. Choose Edit ➤ Copy , or press CTRL+C.

4. Open a second data dictionary to the Dictionary dialog.

5. Choose Edit ➤ Paste , or press CTRL+V.

After pasting, the New File Properties dialog appears. You can modify the file
definition as you wish. After you press the OK button, the file appears in the
Dictionary dialog for the second dictionary.

Copying and pasting fields from one file to another works similarly, except
that you must have the Field / Key Defintion dialogs open, rather than the
Dictionary dialog. The target file must support the field type being copied.

Tip: You can copy a Data Dictionary item, such as a file or a field,
into the clipboard, then paste it into the Text Editor (and vice
versa)!

82 CLARION 5 USER’S GUIDE

Dictionary Revisions

A new dictionary automatically starts with version 1.0. You can see the
version number/revision number on the caption bar of the Dictionary dialog.
The Dictionary Properties dialog also displays the original creation date and
time, and the last modified date and time.

You should increase the revision number whenever you make significant
changes to a dictionary. From the Dictionary dialog, choose Version ➤
Checkpoint . A revision number (r#) is added to the caption bar. The revision
number increases with each new “checkpoint.”

To roll back to a previous revision, choose Version ➤ Revert . Choose the
revision to revert to by selecting it with the spin control in the Previous
Revision dialog.

CHAPTER 2 DICTIONARY EDITOR 83

Configuring the Dictionary Editor
You can customize some of the default Dictionary Editor settings with the
Dictionary Options dialog. These settings affect the appearance of the
Dictionary Editor and the Dictionary Viewer. In addition, some settings
affect the source code the Application Generator generates to manage data
dictionary files and fields.

To customize the development environment’s dictionary settings, choose
Setup ➤ Dictionary Options .

File Options

Default Driver
Select the default file system and database driver for all your
dictionaries from the drop-down list. The default is TopSpeed—a
solid, fast file system appropriate for large single user
applications and small to medium sized multi-user applications.
See Database Drivers in the Programmer’s Guide for more
information on drivers and file systems.

Sort dictionary files alphabetically
Check this box to show the files in alphabetical order in the
Dictionary Editor.

Default THREAD Attribute
Check this box to add the THREAD attribute to each generated
file definition. This provides a separate record buffer for each
execution thread that uses the file so that multiple threads can
access the file without conflict. Each application that uses the
dictionary can override this setting for all files or for individual
files.

Display File Description
Check this box to show file descriptions in the Dictionary Editor.

84 CLARION 5 USER’S GUIDE

Display File Driver
Check this box to show file drivers in the Dictionary Editor.

Display File Prefix
Check this box to show the file prefix in the Dictionary Editor.

Prompt to use Quick Load
Check this box so the Dictionary Editor or Viewer prompts you
to use Quick Load or not whenever you add a new file. See
Dictionary Editor—Quick Load and see Adding a File with
Quick Load in theGetting Started book.

Use for new file
Check this box to use Quick Load as the default method for
adding new files to the dictionary. If you requested a prompt,
this sets the prompt dialog default; if you requested no prompt,
this sets the default new file action. See Dictionary Editor—
Quick Load and see Adding a File with Quick Load in theGetting
Started book.

Field Options

Assign Description to Message
Check this box to display field descriptions on your application’s
status bar. You may override this default setting for individual
fields in the dictionary and for the individual controls that
display the fields. See Dictionary Editor—Message and see MSG
in the Language Reference.

Assign Description to tooltip
Check this box to display field descriptions as your application’s
balloon help. You may override this default setting for individual
fields in the dictionary, and for the individual controls that
display the fields. See Dictionary Editor—Tooltip and see TIP in
the Language Reference.

Display Field Description
Check this box to show field descriptions in the Dictionary
Editor.

CHAPTER 2 DICTIONARY EDITOR 85

Display Field Type
Check this box to show field types in the Dictionary Editor.

Display Field Picture
Check this box to show field pictures in the Dictionary Editor.

Display Field Prefix
Check this box to show field prefixes in the Dictionary Editor.

Key Options

Display Key Description
Check this box to show key descriptions in the Dictionary
Editor.

Key Type
Check this box to show key types in the Dictionary Editor.

Display UNIQUE Flag
Check this box to identify unique keys in the Dictionary Editor.

Display Primary Key Status
Check this box to identify primary keys in the Dictionary Editor.

Display Other Key Attributes
Check this box to show other key attributes in the Dictionary
Editor.

Display Key Prefix
Check this box to show key prefixes in the Dictionary Editor.

86 CLARION 5 USER’S GUIDE

CHAPTER 3 APPLICATION GENERATOR 87

3 - APPLICATION GENERATOR

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

88 CLARION 5 USER’S GUIDE

About This Chapter
When you use the Application Generator, you define procedures for the
major tasks you want your application to do. Then you describe how the
procedures accomplish the tasks, and how their windows, dialogs and reports
appear to the end user. The Application Generator draws from the Template
Registry, the Data Dictionary, and the information you provide, to write the
source code for the application and its procedures.

This chapter describes:

◆ How to begin a new application by creating an application
(.APP) file.

◆ How to add procedures to the application.

◆ How to fully customize your procedures.

◆ How to import and export procedures.

◆ How to configure the Application Generator.

◆ How templates “drive” the Application Generator.

◆ How to configure the Template Registry.

CHAPTER 3 APPLICATION GENERATOR 89

Creating the Application (.APP) File
The first step in creating a new application (after creating a Data Dictionary)
is to create an application (.APP) file. The application file holds the
procedure specifications, data declarations, and other properties you define
for your application—it contains everything necessary to generate source
code, then make an executable program.

Tip: You may want to create a new directory for each application
you develop because whenever you open an application
(.APP) file, Clarion uses the directory in which the file resides
as the working directory.

1. Optionally, in File Manager or Windows Explorer, choose File ➤ Create
Directory or File ➤ New ➤ Folder, type a subdirectory or folder name
then press OK.

This creates a working directory for your application.

2. Start Clarion and choose File ➤ New ➤ Application .

This opens the New dialog.

3. Clear the Use Quick Start box by CLICKING on it.

See Quick Start Tutorial in the Getting Started manual for more informa-
tion on using Quick Start .

4. Use the Save in drop box to navigate to your application directory and
the File name box to name the .app file, then press the Save button.

This opens the Application Properties dialog where you define the basic
files and properties for the application.

5. In the Application File field, optionally press the ellipsis (...) button to
redefine the pathname for your .APP file.

6. Type a name for the .DCT file in the Dictionary File field, or press the
ellipsis (...) button to select the dictionary file from the Select Dictionary
dialog.

See the previous chapter for information on creating your application’s
data dictionary.

90 CLARION 5 USER’S GUIDE

Tip: The Application Generator does not require a data dictionary
to generate an application if you clear the Require a dictionary
box in the Application Options dialog. See Configuring the
Environment for more information.

7. In the First Procedure field, name application’s “supervisor” procedure.

8. Choose the Destination Type from the drop-down list.

This defines the target file for your application. Choose from Executable
(.EXE), Library (.LIB), or Dynamic Link Library (.DLL).

Choosing Dynamic Link Library (.DLL) enables the Export Procedure
prompt in the Procedure Properties dialog (see Setting Procedure
Properties) and the Export all file declarations prompt in the Global
Properties dialog (see Template Overview—File Control Tab Options the
Application Handbook).

Tip: Using LIBs or DLLs to modularize and organize larger
applications can provide substantial savings in development
and maintenance costs: compiling and linking only a portion
of a large application saves development time, and calling a
set of common functions from a single source means
maintaining only one set of code.

You may want to develop a portion of an application as an .EXE, then
remake it as a .DLL when complete. See Development and Deployment
Strategies for more information.

Tip: Setting the Project’s Target Type is equivalent to setting the
Application’s Destination Type and vice versa. See Project
System for more information.

9. Type a name for the application’s .HLP file in the Help File field, or use
the ellipsis (...) button to select one from the Select Help File dialog.

If you specify a help file in the current directory, the application looks
for the help file in the current directory, then the system directory, then
the system path. The full path is not stored.

However, if you specify a help file in another directory, a full path is
established and the application looks for the help file by the full
pathname.

You are responsible for creating a Windows Standard .HLP file that
contains the context strings and keywords that you enter as HLP at-
tributes for the application’s various controls and dialogs. There are
many third party products that help you do this.

10. Choose the Application Template type.

CHAPTER 3 APPLICATION GENERATOR 91

Accept the default (ABC), or press the ellipsis (...) button to select from
another template set. The Application template controls source code
generation.

11. Choose the ToDo Template type.

Accept the default (ABC), or press the ellipsis (...) button to select from
a third party template set. The ToDo template controls source code
generation.

12. Clear the Use Application Wizard box by CLICKING on it.

Checking this box causes the Application Generator to create an entire
working application based on the data dictionary you selected. In this
chapter, we will build an application without using the Application
Wizard .

13. Press the OK button.

Clarion creates the .APP file, then displays the Application Tree dialog
for your new application.

The Application Tree dialog provides five different views of your
application. The Procedure view displays all application procedures in
hierarchical order, nesting each procedure under its calling procedure.

92 CLARION 5 USER’S GUIDE

Global Application Settings
You can specify a number of settings that apply to your entire application,
including file handling defaults, use of .INI files, global variables, and
embedded source code. These “global” settings are done primarily through
the Global Properties dialog.

Global Template Settings

The prompts on the Global Properties tabs are provided by the Application
Template. See Global Application Settings in the Application Handbook for
more information on these prompts.

The buttons in the Global Properties dialog (Data, Embeds , and Extensions)
are provided by the Application Generator, and are described in this section.

Global Data and Variables

Global data must be declared before the CODE statement in your
PROGRAM module (see the Language Reference for more information).
There are several ways to accomplish this with the Clarion environment. You
can declare global data in the data dictionary (see Dictionary Editor—File
Properties); you can declare global data with the Data button in the Global

CHAPTER 3 APPLICATION GENERATOR 93

Properties dialog; and you can declare global data with the Embeds button in
the Global Properties dialog (embed data declarations in a data section
embed point—see Embedded Source Code).

data dictionary global data
declares global data that can be shared by several applications.
Because it is declared with the Field Properties dialog, you can
specify controls and properties to apply to the data each time
you populate them on your application’s windows and reports.

Global Properties dialog Data button
declares global data for a single application. Because it is
declared with the Field Properties dialog, you can specify
controls and properties to apply to the data each time you
populate them on your application’s windows and reports.

Global Properties dialog Embeds button
declares global data for a single application with free form
source code.

To access the Global Properties dialog, go to the Application Tree dialog and
press the Global button. To add global variables, press the Data button in the
Global Properties dialog.

To add a new variable to the list

1. Press the Insert button.

2. Fill in the New Field Properties dialog.

The New Field Properties dialog is the same dialog used to add a field to
the Data Dictionary. You can set all the characteristics of the variable,
including the data type, length, label, etc. in this dialog. See Dictionary
Editor—Adding or Modifying Fields.

3. Press the OK button to close the New Field Properties dialog.

4. Press the Close button to close the Global Data dialog.

94 CLARION 5 USER’S GUIDE

To change the data type or label of a global variable

1. Highlight the variable in the Global Data dialog list.

2. Press the Properties button.

3. Make any changes necessary in the Edit Field Properties dialog then
press OK.

4. Press the Close button to close the Global Data dialog.

To reposition a global variable

1. To move a variable up in the list, highlight it, then press the button.

2. To move a variable down in the list, highlight it, then press the
button.

Global Embed Points

The global embed points are provided by the Application Template. See
Global Embed Points in the Application Handbook for more information on
these embed points.

To access these embed points, press the Embeds button in the Global
Properties dialog. As with any embed point, you can write your own custom
code, call a procedure, or use a code template. The Application Generator,
when generating code, places your code or calls your procedure at the next
source code line following the point you pick from the Embedded Source
dialog. See Embedded Source Code for more information on adding
embedded source code to your application.

Global Extensions

The Extensions button in the Global Properties dialog lets you add Extension
templates to your application. Extension templates generate a variety of task
oriented source code statements at one or more preset locations as needed to
accomplish the extension task.

The ABC Templates include no application Extension templates. However,
TopSpeed’s Internet Connect uses an application extension template to make
the application a hybrid Web/Windows application that can be run with an
Internet Browser. See #EMPTYEMBED in the Programmer’s Guide for
another example of a small application Extension template.

CHAPTER 3 APPLICATION GENERATOR 95

Overview: Developing Your Application
Once the .APP file exists, you develop your application through a series of
dialogs. When you create your application’s menus and toolbars, they call
procedures that you name. The Application Generator adds these “ToDo”
procedures to the application tree. You define the functionality of the “ToDo”
procedures by picking from a set of Procedure templates.

Remember, templates are code generation scripts that prompt you for
information on how to customize the generated code. Use the Window and
Report Formatters to supply information to the templates about how your
application looks to the end user.

Following is an overview illustrating the tasks which you normally complete
when building an application with the Application Generator. The tutorials in
the Getting Started and Learning Clarion books provide a more detailed
description.

❏ Define the Main procedure.

• Add menu commands and their “ToDo” procedures.

❏ Define the “ToDo” procedures.

• Choose the appropriate template to generate each procedure.

• Use the Procedure Properties dialog to identify procedure files.

• Use the Window Formatter to design your windows.

• Use the Report Formatter to design your reports.

• Use the Procedure Properties dialog to add local variables as needed.

❏ Make the application (generate source code, compile, and link).

❏ Incrementally test the application (run it).

Define the Main Procedure.

In the dialog, highlight the Main “ToDo” procedure, then press the
Properties button to access the Select Procedure Type dialog. This lists the
Procedure templates available in the Template Registry.

Select the Frame procedure type for Main from the Select Procedure Type
dialog then press the Select button.

The Frame procedure template is usually the best starting point for a typical
application which employs different MDI child windows to present data in
different views and forms. The Frame procedure template contains an MDI
application frame, which already includes fully functional standard windows
menus like File, Edit and Help . See Procedure Templates in the Application
Handbook for more information.

96 CLARION 5 USER’S GUIDE

After you make your selection, the Procedure Properties dialog appears.
Each Procedure template contains defaults or starting points for such
elements as the window, a basic menu structure, reports and more. These
defaults are designed with real world uses in mind, such as update forms (a
window that displays a single record) for updating a database record. When
developing an application, you can customize these procedures to fit your
needs.

Add Menu Commands and Their “ToDo” Procedures

In the Procedure Properties dialog, access the Window Formatter by pressing
the Window button. When the Window Formatter appears, go directly to the
Menu Editor : choose Menu ➤ Menu Editor. The Menu Editor dialog appears.
See Creating Menus and Toolbars for details on editing the menu.

Typically, you add a menu item by pressing the Item button. Then, select the
Actions tab to specify the procedure or program to execute when the end user
chooses that menu item. Once you type in the procedure name, the
Application Generator adds the procedure to the Application Tree as a “To
Do.”

When creating a Multiple Document Interface (MDI) application, check the
Initiate Thread box when prompted.

Press the Close button to close the Menu Editor , saving your changes. Press
Exit! to exit the Window Formatter and save your changes.

Define the “ToDo” Procedures

Select the first “ToDo” procedure in the Application Tree and press the
Properties button. The “ToDo” items are the procedure or procedures you
named with the Menu Editor .

CHAPTER 3 APPLICATION GENERATOR 97

Choose the Appropriate Template to Generate each Procedure

Select a Procedure type from the Select Procedure Type dialog, then press
Select . At this point, you might choose, for example, a Browse template,
which displays records in a list box. See Procedure Templates in the
Application Handbook for more information on the available Procedure
templates.

If you check the Use Procedure Wizard box, the Browse Wizard, Form Wizard,
or Report Wizard prompts you for the information needed to complete your
procedure (or procedures). See Wizards and Utility Templates in the
Application Handbook for more information on the Procedure Wizards.

Choose the Files that the Procedure Uses

From the Procedure Properties dialog, press the Files button to open the File
Schematic Definition dialog, then choose the files and keys the procedure
uses. See the Procedure Files section below for detailed instructions. By
adding files to the schematic, you allow the procedure to access them.

Add local variables

Press the Data button in the Procedure Properties dialog. The Procedure Data
section, below, describes this process in detail. Basically, you declare each
variable same way you define a field in a data file.

Use the Window Formatter to design your windows

In the Procedure Properties dialog, press the Window button. The Window
Formatter displays a sample window. See Window Formatter for more
information. Depending on the Procedure template you chose, the window
may already contain some predefined controls.

Everything that appears in the window is a control, including buttons, list
boxes, check boxes, spin boxes, data entry fields, etc. Select a control, then
choose Edit ➤ Properties and Edit ➤ Actions to specify the appearance and
behavior of the control.

Use control templates (Populate ➤ Control Template) to place “prefabricated”
controls—fully functional controls with associated source code. See Control
Templates in the Application Handbook for more information. For example,
a BrowseBox control template generates a list control with associated source
code that loads and scrolls the list.

Use dictionary fields (Populate ➤ Field) to place “some assembly required”
controls, that is, entry controls that are automatically loaded with a data
dictionary field or memory variable values.

98 CLARION 5 USER’S GUIDE

Use simple controls (Control menu) to place “do it yourself” controls, that is,
controls with no associated source code. See Controls and Their Properties
for more information.

Make the Application

Press the button on the toolbar to generate source code, compile, and
link the application. The Application Generator automatically maintains the
compile and link information for the application.

Test the Application

Press the button on the toolbar or press the Run button in the Compile
Results dialog.

After testing your first procedure, you can add more procedures, embed
custom source code, and otherwise add functionality to your application.

CHAPTER 3 APPLICATION GENERATOR 99

Adding a Procedure to Your Application
A procedure is a series of Clarion language statements (source code) which
perform a task. A Procedure template is an interactive tool that (with the
help of Clarion’s development environment) requests information from you,
the developer, then generates a custom procedure for just the task you
specify.

A Procedure as stored in a Clarion application (.app) file, is really a
specification that the development environment uses to generate the
procedure source code. The specification includes the Procedure template,
your answers to its prompts, the WINDOW definition, the REPORT
definition, local data declarations, embedded source code, etc.

Your application’s supervisor procedure is called “Main” by default. You can
name this procedure anything you want, but this chapter refers to it as
“Main.” All other procedures branch from “Main”—one procedure can call
another.

Application Tree

The hierarchical tree controls (or outline controls) in the Application Tree
dialog illustrate how the procedures branch from “Main” and from each
other. This provides a schematic diagram of your program’s logical structure.
See Maintaining Your Application for more information.

Tip: An icon means the procedure contains embedded source
code.

The Application Generator adds a procedure to the Application Tree
whenever you press the INSERT key, or add a menu item, a toolbar command,
or a code template that calls a procedure. Each new procedure is marked “To
Do.” When you “fill in” its functionality, the Application Generator replaces
the “To Do” with your description.

100 CLARION 5 USER’S GUIDE

Defining the Procedure Type

Once you add a “ToDo” procedure to the Application Tree, the next step is to
define its type from the choices available in the Select Procedure Type dialog.
The choices available correspond directly to the Procedure templates in your
template registry. See Procedure Templates in the Application Handbook for
more information on the Procedure templates in this package.

❏ To open the Select Procedure Type dialog, select any “ToDo” procedure
in the Application Tree dialog, then press the Properties button, or choose
Edit ➤ Properties . You can also DOUBLE-CLICK on the “ToDo” procedure.

❏ To define the procedure type for your application’s procedures, highlight
a Procedure template from the Select Procedure Type dialog list, then
press the Select button. You can also DOUBLE-CLICK on a procedure type.
If you select a Browse, Form, or Report, and you check the Use
Procedure Wizard box, the Wizard guides you through each step of the
procedure properties definition. If you do not check the Use Procedure
Wizard box, the Procedure Properties dialog appears.

If you must change the procedure type later, go to the Application Tree,
highlight the procedure, then choose Procedure ➤ Change Template Type .
The Select Procedure Type dialog appears so you can select another
procedure type. If the new procedure type doesn’t support some of the
structures—such as menus—that you defined in the previous procedure type,
you may “orphan” the previously defined structures. Therefore, be cautious
when changing procedure type.

Select the procedure type
from a list of available
procedure templates.

CHAPTER 3 APPLICATION GENERATOR 101

Setting Procedure Properties
After you choose the procedure type, you can define the procedure’s
properties—these properties include:

◆ a description of the procedure
◆ the procedure prototype
◆ the module containing the generated source code
◆ whether to export the procedure
◆ whether to declare the procedure globally
◆ parameters passed to the procedureT

◆ return values from the procedureT

◆ INI file settings used by the procedureT

◆ files accessed by the procedure
◆ the WINDOW displayed by the procedure, including its size,

shape, appearance and functionality
◆ the REPORT generated by the procedure
◆ data items (fields and variables) used by the procedure
◆ procedures called by the procedure
◆ custom source code embedded within the procedure
◆ formulas used by the procedure
◆ template generated extensions to the procedure

T These prompts are provided by the Procedure templates, therefore their
presence or absence depends on the particular template that generates the
procedure. See Procedure Templates in the Application Handbook.

You need not define every property for every procedure. In many cases, the
default property definition is appropriate. When a default property is already
established, a green check mark appears beside its command button. For
example, the Browse procedure template contains a predefined window;
therefore, a green check mark appears next to the Window button for
procedures with this template.

For the properties you do define, you may use a Wizard and you may use the
Procedure Properties dialog and its subordinate dialogs and formatters to set
them. This section is primarily concerned with the Procedure Properties
dialogs (see the Application Handbook—Wizards and Utility Templates for
more information on Procedure Wizards).

Application Generator Properties (Prompts)

The properties discussed in this section are common to all Procedure
Properties dialogs because they are managed by the Application Generator.
You define these properties by completing the entry boxes and using the
command buttons on the Procedure Properties dialogs.

102 CLARION 5 USER’S GUIDE

Template Properties (Prompts)

In addition to the Application Generator properties, the Procedure Properties
dialog displays and manages the template prompts for the templates in the
procedure. See Procedure Templates in the Application Handbook for more
information on the template prompts.

To set the procedure properties

From the Application Tree, select a procedure then press the Properties
button to access the Procedure Properties dialog. Alternatively, DOUBLE-CLICK

on the procedure, or RIGHT-CLICK the procedure, then choose Properties from
the popup menu.

This opens the Procedure Properties dialog which displays the following
prompts.

Description
A short text description for the procedure, which appears next to
the procedure name in the Application Tree dialog.

Press the ellipsis (...) button to edit a longer (up to 1000
characters) description.

Prototype
Optionally specify a custom procedure prototype which the
Application Generator places in the MAP section. If you specify
nothing, the Application Generator provides the correct
prototype for the selected procedure template. See the Procedure
Prototyping in the Language Reference and Prototyping and
Parameter Passing below for more information. For example:
(SHORT ID,STRING Name)

Module Name
Specify which module (.CLW) file contains the source code for
the procedure by selecting from the drop-down list. By default,
the Application Generator names modules by taking the first five
characters of the .APP file name, then adding a three digit

CHAPTER 3 APPLICATION GENERATOR 103

number for each module. You may specify your own module
names by choosing Application ➤ Insert Module from the menu.

Export procedure
Check this box to add the procedure to the application’s
automatically generated export (.EXP) file, so the procedure can
be called by other executables. See Module Definition Files in
the Programmer’s Guide and see Development and Deployment
Strategies for more information. This prompt is only available
when you specify Dynamic Link Library (.DLL) as the
Destination Type in the Application Properties dialog.

Declare Globally
Check this box to generate the procedure’s prototype into the
PROGRAM’s MAP, rather than the MODULE’s MAP. This
makes the procedure callable from any other procedure, but it
also forces a recompile of all program modules whenever you
change the prototype.

Procedure Files

By default, file data (data stored in your application files) are available to
any procedure within the entire application; however, you must tell the
Application Generator which files are used by the procedure so it can
provide source code for reading (and writing) the files.

❏ Press the Files button in the Procedures Properties dialog.

or

❏ RIGHT-CLICK the procedure in the Application Tree, then choose Files from
the popup menu.

This opens the File Schematic Definition dialog.

To add a file to the file schematic, select

a control template <To Do> item,
a control template file,
or OTHER FILES,

then press the Insert button. Next, choose a file from the Insert File dialog.

When you select a <To Do> itemfor the control template, you add a
“primary” file from among all the files in your data dictionary. When you
select an existing control template file, you add a “secondary” or “child” file
from a list of related files only. Clarion’s templates automatically generate
all the code needed to open, read, and close both the primary and any
secondary files. The templates also generate any code needed to update the
primary file.

104 CLARION 5 USER’S GUIDE

Select OTHER FILES when you want to access a file that is already open and
positioned to the appropriate record, or when you want to hand code the file
access. The templates automatically generate code to open (if not already
open) and close OTHER FILES, but any other processing is up to you.

To delete an item from the file schematic, highlight it and press the Delete
key.

Sorting

To specify the sort sequence of a file, select it in the Files list, then press the
Edit button. Choose a key from the Change Access Key dialog.

Views and Joins

To specify an “inner join” or a custom join instead of the default “left outer
join” for the generated JOIN structure, select the secondary (child) file, then
press the Edit button to open the File Relationship dialog.

Dictionary
Choose this to generate a VIEW that reflects the file relationship
as defined in the Data Dictionary. For example:
VIEW(Customer)
PROJECT(CUS:LastName)
PROJECT(CUS:FirstName)
PROJECT(CUS:ID)
JOIN(PH:CustomerIDKey,CUS:ID) !default JOIN
END

END

Custom
Choose this to enter a custom JOIN expression for the generated
VIEW. See JOIN in the Language Reference for more
information. For example:

CHAPTER 3 APPLICATION GENERATOR 105

VIEW(Customer)
PROJECT(CUS:LastName)
PROJECT(CUS:FirstName)
PROJECT(CUS:ID)
JOIN(Phone,‘PH:CustomerID,CUS:ID’) !custom JOIN
END

END

Inner
Check this box so that only those primary file records with
related secondary file records are retrieved. Inner joins are
normally more efficient than outer joins. See INNER in the
Language Reference for more information. For example:
VIEW(Customer)
PROJECT(CUS:LastName)
PROJECT(CUS:FirstName)
PROJECT(CUS:ID)
JOIN(Phone,‘PH:CustomerID,CUS:ID’),INNER !custom inner JOIN
END

END

Procedure Windows

❏ Press the Window button in the Procedures Properties dialog.

or

❏ RIGHT-CLICK the procedure in the Application Tree, then choose Window
from the popup menu.

The Window Formatter lets you visually design the size, shape, menus,
controls and functionality for the window in this procedure. See the Window
Formatter chapter for details on how to define your window.

❏ Press the Window’s ellipsis (...) button in the Procedures Properties
dialog to edit the source code that declares the window.

Tip: The ellipsis (...) button next to the Window button lets you edit
the source code declaring the WINDOW structure. You may
notice some non-language keywords such as #FREEZE,
#ORIG, or #SEQ in this source code. Do not remove or change
these keywords. The Application Generator uses them to
manage source code generation, but does not include them in
the generated source. The #LINK keyword ties an input control
to its associated PROMPT control and can be safely deleted.

106 CLARION 5 USER’S GUIDE

Procedure Reports

❏ Press the Report button in the Procedures Properties dialog.

or

❏ RIGHT-CLICK the procedure in the Application Tree, then choose Report
from the popup menu.

The Report Formatter lets you visually design the size, shape, content,
layout, and functionality for the report in this procedure. See Report
Formatter for more information.

❏ Press the Report’s ellipsis (...) button in the Procedures Properties dialog
to edit the source code that declares the report.

Tip: The ellipsis (...) button next to the Report button lets you edit
the source code declaring the REPORT structure. You may
notice some non-language keywords such as #LINK or #ORIG
in this source code. Do not remove or change these keywords.
The Application Generator uses them to manage source code
generation, but does not include them in the generated
source.

Procedure Data

Procedures may access several classes of data. These include file or field
data (see Procedure Files), GLOBAL data (see Global Variables), MODULE
data, and LOCAL data.

LOCAL data are defined in the data section of a procedure, and may only be
accessed by the procedure that defines them. MODULE data are defined in
the data section of a module. A module is simply a source file that may
contain several procedures. Module data may be accessed by any procedures
contained in the source file where the module data are defined. GLOBAL
data may be accessed by any procedure in the entire application. See the
Language Reference section on Data Declarations and Memory Allocation
for more information.

LOCAL Data

❏ Press the Data button in the Procedures Properties dialog.

or

❏ RIGHT-CLICK the procedure in the Application Tree, then choose Data from
the popup menu.

CHAPTER 3 APPLICATION GENERATOR 107

This opens the Local Data dialog. If any local variables already exist,
they appear in the list.

To define a new data item, press the Insert button.

This opens the New Field Properties dialog. Type in the variable name,
choose the variable type, and set any additional attributes, including
screen attributes. See The DictionaryEditor—Adding or Modifying Fields
for more information on this dialog.

❏ Press the Data’s ellipsis (...) button in the Procedures Properties dialog to
edit the TXA code that declares the data. See the Programmer’s Guide
for more information on TXA format.

Tip: You may declare new data items here with normal Clarion
language syntax. You do not need to supply the TXA code.

MODULE Data

❏ Press the Data button in the Module Properties dialog.

or

❏ RIGHT-CLICK the module in the Application Tree, then choose Data from
the popup menu.

Defining Module data is exactly like defining Local data with one
exception—you must select a module rather than a procedure. To define
MODULE data (memory variables available to several procedures in a single
source file):

1. From the Application Tree dialog, select the Module tab.

2. Highlight a module (folder), not a procedure.

3. Press the Properties button to display the Module Properties dialog, or
RIGHT-CLICK then choose Data from the popup menu.

4. Press the Data button.

108 CLARION 5 USER’S GUIDE

This opens the Module Data dialog.

5. Press the Insert button.

This opens the Field Properties dialog. This is the same dialog used to set
field properties in the data dictionary. For details, see Dictionary Edi-
tor—Adding or Modifying Fields.

❏ Press the Data’s ellipsis (...) button in the Module Properties dialog to edit
the TXA code that declares the data. See the Programmer’s Guide for
more information on TXA format.

Tip: You may declare new data items here with normal Clarion
language syntax. You do not need to supply the TXA code.

Tip: Unlike LOCAL data, MODULE data is not automatically cleared
when a procedure closes. You, the developer, must take care to
initialize the MODULE data as required by your various
procedures.

Calls to Other Procedures

❏ Press the Procedures button in the Procedures Properties dialog to
identify procedures called within embedded source code.

Procedures may call other procedures. Procedure calls specified with
template prompts are automatically added to the Application Tree; however,
the Application Generator cannot “see” procedures called from embedded
source code.

Identifying these embedded procedure calls is important to project
management and to source code generation. When you use the Procedures
button to identify procedures called within embedded source code, the
Application Generator can properly display the procedures within the
Application Tree hierarchy, and the Application Generator can generate the
appropriate local MAP structure for the source module.

To identify procedures called from embedded source, press the Procedures
button to open the Called Procedures dialog. This dialog lists all procedures
in the application. Mark the called procedure by CLICKING on its name.

Embedded Source Code

❏ RIGHT-CLICK the procedure in the Application Tree, then choose Embeds
from the popup menu (or press the Embeds button in the Procedures
Properties dialog) to open the Embedded Source dialog to embed source
code using alphabetically or logically ordered named embed points.

CHAPTER 3 APPLICATION GENERATOR 109

or

❏ RIGHT-CLICK the procedure in the Application Tree, then choose Source
from the popup menu to open the Embeditor to embed source code
within the context of surrounding generated code.

or

❏ RIGHT-CLICK on a control in the Window Formatter, then choose Embeds
from the popup menu to access the embed points for a single control.

Clarion’s templates let you add your own customized code to many
predefined points inside the standard code that the templates generate. It’s a
very efficient way to achieve maximum code reusability and flexibility. The
point at which your code is inserted is called an Embed Point. Embed points
are available at all the standard events for the window, the window controls,
and for many other logical positions within the generated code. The embed
points are determined by the templates. You can even add your own embed
points if needed. See #EMBED in the Programmer’s Guide or the on-line
Template Language help.

Embedding source code in a procedure lets you fully customize the
procedure. The Application Generator saves the embedded source in the .app
file and integrates it into the template generated source code each time you
generate source code.

You can write your own embedded source code or use Code templates to
generate the code for you. Once you embed source code in a procedure, the
procedure is flagged with an “S” in the Application Tree.

In order to effectively embed code, you should understand the surrounding
template generated code. See Learning Clarion and the Application
Handbook for moreinformation on the Clarion and ABC Templates and the
code they generate.

Several ways to Embed Source Code

Clarion provides several powerful methods for embedding source code.
There are advantages to each of these methods as noted below:

• The Embeditor (choose Source from the popup menu) lets you see the
embedded source code within the context of the surrounding generated
code and gives you the full power of the Text Editor, including text
search and replace, copy and paste, the Populate Fields toolbox, and File
Import.

110 CLARION 5 USER’S GUIDE

• The Embedded Source dialog (choose Embeds from the popup menu)
lets you see only the embed points and their code, without the
surrounding code. It gives you the full power of the Text Editor, plus a
locator to find embed points, plus tools for moving and copying entire
embed points with multiple blocks of embedded code, and for generating
embedded code with Code templates.

• The Embeds button for a control (choose Embeds from the Window
Formatter’s popup menu) gives you the power of the Embedded Source
dialog focused on the embed points for a single control.

Source code embedded with the Embeditor is fully accessible with the
Embedded Source dialog and vice versa, with the exception of Code
templates, which are only modifiable with the Embedded Source dialog.

Embeditor

1. From the Application Tree, RIGHT-CLICK the procedure, then choose
Source from the popup menu.

The Embeditor generates a temporary source file with shading and
optional comments to identify all the embed points for the selected
procedure. You may insert source code into the embed points simply by
typing the new source statements into the unshaded or white area.

Tip: You may configure the Embeditor’s temporary source file with
the Application and Editor tabs of the Application Options
dialog. Choose Setup ➤➤➤➤➤ Application Options. See Configuring
the Environment—Action for Legacy embeds and Editor .

The Embeditor is the Text Editor opened in a special mode which allows
you to not only edit all the embed points in your procedure, but to edit
them within the context of template-generated code. The Embeditor
displays all possible embed points for the procedure within the context
of all the possible code that may be generated for the procedure. Notice
the distinction here—Embeditor does not show you the code that will
be generated, but all the code which could be generated, if you placed
code into every available embed point.

2. Press to scroll to the next embed point.

 scrolls to the previous embed point; scrolls to the next filled
embed point; scrolls to the previous filled embed point.

3. Place the insertion point in the unshaded area, then type your source
code.

The full power of the Text Editor is at your disposal. See Text Editor for
more information.

CHAPTER 3 APPLICATION GENERATOR 111

Note: The Embeditor automatically indents your source code at least
as far as the embed point comments. You may indent farther
(to the right), but you may not indent less (to the left).

4. Choose Exit! from the menu, then save when prompted.

The Embeditor automatically puts your source into the appropriate
embed point and sets the priority for the embedded code.

Embedded Source Dialog

1. From the Application Tree, RIGHT-CLICK the procedure, then choose
Embeds from the popup menu.

This opens the Embedded Source dialog, providing access to all the
embed points in the procedure. You can also get here from the Embeds
button on the Procedure Properties window, but the popup menu is
quicker.

Tip: You may sort the embed points in alphabetical order or in
logical order with the Application tab of the Application
Options dialog. Choose Setup ➤➤➤➤➤ Application Options from the
menu.

2. Filter the embed points by choosing from the View menu or by pressing
buttons on the toolbar. Choose from:

 Expand All
Fully expand the embeds list.

 Expand Filled
Expand only the filled embeds.

 Contract All
Fully contract the embeds list.

112 CLARION 5 USER’S GUIDE

 Show Filled Only
Show only filled embeds.

 Show Priority Labels
Show template generated embed point labels so you can
precisely interleave your code with template generated code.

 Include Legacy Embeds
Show Clarion 2.x embed points.

Tip: You may set the default for legacy embed points with the
Application tab of the Application Options dialog. Choose
Setup ➤➤➤➤➤ Application Options. See Configuring the
Environment—Action for Legacy embeds .

 Display All
Available only when editing embeds for a control, this button
allows you to expand the view to show embeds for the window.

3. Locate an embed point by typing its name in the locator field near the
top of the dialog, or by choosing from Navigate menu or by pressing
buttons on the toolbar. Choose from:

 Previous Filled
Scroll to the next filled embed point.

 Next Filled
Scroll to the next filled embed point.

CHAPTER 3 APPLICATION GENERATOR 113

Tip: To embed code associated with a specific control, open the
Window Formatter, RIGHT-CLICK the control and choose Embeds
from the popup menu. Only those embed points associated
with the selected control are listed.

4. Select an embed point then press the Insert button.

This opens the Select Embed Type dialog. There are three ways to create
the embedded source code: hand-coding with the text editor, calling
another procedure, or embedding a Code template.

You may combine one or more of these three methods at a single embed
point—that is, a single embed point accepts multiple “blocks” of embed-
ded code. You can control the execution sequence of each block of code
relative to any other code in the embed point by setting its priority.
Lower priority numbers execute before higher priority numbers.

The Embedded Source dialog displays the embedded source in the order
it generates and executes.

To “hand-code” embedded source with the Text Editor

1. Select SOURCE in the Select Embed Type dialog.

2. Press the Select button to start the Text Editor with a blank source code
window.

This opens the Text Editor (see Text Editor for more information). The
display includes a Populate Field toolbox from which you can select
variable names and field names. Simply DOUBLE-CLICK on an item in the
toolbox to insert its fully qualified name at the insertion point.

114 CLARION 5 USER’S GUIDE

3. Write your custom code in the source code window.

Tip: Don’t forget to use the on-line help for explanations and
examples of Clarion Language syntax and techniques. Copy
and paste directly from the help examples!

4. Choose Exit! .

5. Choose Yes when prompted to save the embedded source.

6. Optionally set the Priority for the embedded source.

The Priority of each block within an embed point controls the execution
sequence of the code relative to any other code in the same embed point.
Lower priority numbers execute before higher priority numbers.

Configure the Embedded Source Dialog

From the environment main menu choose Setup ➤ Application Options ,
then select the Embed Tree tab. This tab lets you control the appearance of
the Local Objects section of the embed tree. This tab only appears if you
have the ABC Templates registered. Options specified here only affect the
embed tree of an application using the ABC templates.

Show Procedure Keyword
Check this box to enable display of the PROCEDURE keyword
in the Embed tree. This is a matter of personal preference.

Show Virtual Keyword
Check this box to enable display of the VIRTUAL keyword in
the Embed tree. This allows you to identify embed points in
virtual methods. You can also use color to identify virtuals.

Show Protected Keyword
Check this box to enable display of the PROTECTED keyword
in the Embed tree. This allows you to identify embed points in
protected methods. You can also use color to identify protected
methods.

CHAPTER 3 APPLICATION GENERATOR 115

Show Base Class
Check this box to display the name of the Local Object’s base
class. Use the base class to find object methods and properties in
the Application Handbook or the on-line help.

Show Object Description
Check this box to display the Local Object’s description. This
shows information about the object. For example, a BrowseClass
object’s description displays the primary file it uses.

Show Details
Check this box to display more detail about the Local Object.
For example, display the condition that invokes a BrowseClass
object’s locator or step object.

Color Entries
Check this box to enable the Colors group so you can set
different colors for different types of embed points. Choose from
the following embed types.

DATA Sections
The color displayed for DATA sections in the embed tree. Enter
a valid color equate, hexadecimal color value or press the ellipsis
(...) button to select a color from the Color dialog. See
\LIBSRC\EQUATES.CLW for a list of valid color equates.

CODE Sections
The color displayed for CODE sections in the embed tree. Enter
a valid color equate, hexadecimal color value or press the ellipsis
(...) button to select a color from the Color dialog. See
\LIBSRC\EQUATES.CLW for a list of valid color equates.

116 CLARION 5 USER’S GUIDE

VIRTUAL Methods
The color displayed for VIRTUAL methods in the embed tree.
Enter a valid color equate, hexadecimal color value or press the
ellipsis (...) button to select a color from the Color dialog. See
\LIBSRC\EQUATES.CLW for a list of valid color equates.

PROTECTED Methods
The color displayed for PROTECTED methods in the embed
tree. Enter a valid color equate, hexadecimal color value or press
the ellipsis (...) button to select a color from the Color dialog.
See \LIBSRC\EQUATES.CLW for a list of valid color equates.

New Methods
The color displayed for New methods in the embed tree. Enter a
valid color equate, hexadecimal color value or press the ellipsis
(...) button to select a color from the Color dialog. See
\LIBSRC\EQUATES.CLW for a list of valid color equates.

Call a Procedure

1. Select Call a Procedure in the Select Embed Type dialog.

A dialog named for the embed point opens to accept the name of the
procedure to call.

2. In the Procedure to Call field, type a name for the procedure or choose an
existing procedure from the drop-down list.

Typing a new name tells the Application Generator to add the procedure
to the Application Tree as a “To Do” item. If another procedure with the
same name already exists, the Application Generator generates code to
call it.

You define the functionality of the other procedure separately. See
Defining Procedure Properties.

3. Press the OK button to close the dialog.

Use a Code template to generate the embedded code

1. In the Select Embed Type dialog, select a Code template then press the
Select button.

Code templates are the items indented beneath the Class folders. See
Code and Extension Templates in the Application Handbook for descrip-
tions of the Code templates included with this package.

This displays a Prompts for ... dialog box.

2. Read the instructions and explanations in the dialog.

Each code template includes explanatory text on its proper use and how
to fill in the necessary options.

CHAPTER 3 APPLICATION GENERATOR 117

3. Fill in or choose from the options in the Prompts for ... dialog.

4. Press the OK button to close the dialog.

Managing Embedded Source

The Embedded Source dialog contains several tools that let you control the
sequence in which embedded source is listed and executed. The and Priority

prompt and the and buttons change the order of one or more
embedded source items; execution occurs in the order they are listed.

There are also Delete and Properties buttons, plus Cut, Copy, and Paste
buttons for maintenance. To Cut and Paste (or Copy and Paste) embedded
source from one embed point to another:

1. In the Embedded Source dialog, highlight a line in the tree diagram.

Highlighting an embed point line (folder icon) selects all the embedded
source at this embed point for subsequent cut and paste operations.
Highlighting a single embed source item selects only that item.

2. Press the to cut, or press the button to copy.

3. Again, highlight a line in the tree diagram.

4. Press the button to paste.

Copying Embedded Source Between Procedures

Occasionally you will create two or more procedures that are very similar
and that require lots of embedded source code. Rather than retype the
embedded source in the similar procedures, you can copy the embedded
source as follows:

1. Develop and test the embedded code in your first procedure.

2. Choose File ➤ Selective Export .

3. Specify a .TXA file to receive the exported procedures, then press OK.

4. Select all the similar procedures for export, then press OK.

Selected procedures are identified with a check mark.

5. With your favorite text editor, open the .TXA file and copy the embed
definitions from the finished procedure to the other similar procedures,
then save the .TXA file.

The embed definitions commence with the [EMBED] line. See the
Programmer’s Guide for more information on TXA file format.

6. In Clarion Choose File ➤ Import Text .

7. Specify the .TXA file, then press OK.

The import replaces the procedures in the the .APP with the procedures
from the .TXA, with the embedded source code intact.

118 CLARION 5 USER’S GUIDE

Procedure Formulas

❏ Press the Formulas button in the Procedures Properties dialog.

This opens the Formula Editor. The Formula Editor helps you create simple
assignment statements and complex conditional structures. See the Formula
Editor chapter for details on how to use the Formula Editor.

Procedure Extensions

❏ Press the Extensions button in the Procedures Properties dialog.

The Extensions button opens the Extension and Control templates dialog.
This dialog lets you add, change, and delete Extension templates, and it lets
you change existing Control template properties. To add and delete Control
templates, use the Window Formatter.

Procedure extensions include both Extension templates and Control
templates. These templates provide additional functionality to the basic
Procedure templates. Control templates give your procedure the ability to
display and manage a specific control. For example a browse box that
displays, scrolls, and locates file data may be added with the BrowseBox
control template.

Extension templates give your procedure additional functionality not
associated with specific controls. For example, date and time displays may
be added using an extension template. See the Application Handbook for
specific information on each template.

CHAPTER 3 APPLICATION GENERATOR 119

Prototyping and Parameter Passing
When calling procedures, you may want to pass parameters, return values, or
both. You can define (prototype) parameters and return values with the
Procedure Properties dialog.

To pass parameters to a procedure, you must do the following.

1. Add the parameters’ datatypes to the prototype in the MAP.

2. Add the parameters’ names to the PROCEDURE statement.

3. Pass the parameters in the procedure call.

Adding Parameters to the Prototype

Use the Prototype field in the Procedure Properties dialog to redefine the
prototype generated in the program or module MAP. The prototype declares
everything the calling program needs to know to call the PROCEDURE,
including the data types of any parameters. See Procedure Prototyping in the
Language Reference for more information.

For example, type (SHORT ID,BYTE Size),BYTE in the Prototype field

to generate the following prototype statement in the module’s MAP:

MAP
...

WindowsControls PROCEDURE(SHORT ID,BYTE Size),BYTE
...

END

Notice the entire text from the Prototype field, including the parentheses, is
appended to the prototype for the procedure. The words inside the
parentheses are the datatypes and labels of the parameters passed to the
procedure. The word following the parentheses is the datatype of the value
returned by the procedure. See Procedure Prototyping in the Language
Reference for more information.

120 CLARION 5 USER’S GUIDE

Adding Parameters to the PROCEDURE Statement

Type (SHORT ID, BYTE Size) in the Parameters field in the Procedure
Properties dialog to generate the following code for the procedure:

WindowsControls PROCEDURE(SHORT ID,BYTE Size)
...

Again, the entire text from the Parameter field, including the parentheses, is
appended to the PROCEDURE statement.

In the Return Value field in the Procedure Properties dialog, press the ellipsis
button (...) to select or define a return variable for a procedure, and to
generate the following code. Notice the generated procedure now RETURNs
the value of the return variable you specified in the Return Value field:
ReturnValue.

WindowsControls PROCEDURE(ControlX,ControlY)
...
 CODE
 GlobalResponse = ThisWindow.Run()
 RETURN(ReturnValue)

Tip: You should add embedded code to assign the appropriate
value to the returned variable.

Passing Parameters in the Procedure Call

Use the Actions tab of the calling control (menu item, button, etc.) to pass
parameters to a procedure.

Passing Parameters to Procedures

1. Go to the Actions tab for the control.

2. In the When Pressed drop-down list, choose Call a Procedure.

3. In the Procedure Name drop-down list, choose the name of the procedure
to call.

If you have not yet defined the procedure, type it’s name. You can define
the new procedure later.

Tip: The templates do not support parameters for the START
statement, therefore, do not check the Initiate Thread box if
you want to pass parameters. Checking the Initiate Thread box
generates a START statement to start a new thread.

4. In the Parameters field, type the parameters to pass, separated by
commas.

CHAPTER 3 APPLICATION GENERATOR 121

The parameters may be literal values, expressions, or variable names.

Receiving Return Values from Procedures

Although you may call a procedure with Call a Procedure from the Actions
tab, this method does not allow you to receive return values. Therefore, you
should use embedded source to receive a return value from a procedure.
Following is one way to call a procedure from a control, however, you may
call a procedure in many ways.

1. Go to the Actions tab for the control.

2. In the When Pressed drop-down list, choose No Special Action.

3. Press the Embeds button.

4. In the Embedded Source dialog, choose the Accepted embed point for
Control Event Handling, then press Insert .

5. In the Select Embed Type dialog, select SOURCE.

6. In the Text Editor, type your procedure call, for example:
 IF WindowControls(0,75) THEN RETURN.

This source statement passes an ID of 0 and a Size of 75 to the
WindowControls procedure. It uses the IF statement to evaluate the
return value.

7. Choose Exit! from the menu, then save your embedded source when
prompted.

122 CLARION 5 USER’S GUIDE

Maintaining Your Application
The Application Tree dialog provides five different views of your application.
Each view has its own tab: Procedure, Module, Template, Name , and Category .
You maintain the application with several environment menus: the Edit
menu, the Application menu, the Procedure menu, and the Popup menu.

Application Tree Views/Tabs

The Application Tree dialog shows your procedures in five different views or
arrangements. Change the view by selecting the corresponding tab.

Tip: For each hierarchical view (Procedure, Module, Template, and
Category), CLICK on the plus (+) sign to expand a tree branch;
CLICK on the minus (-) sign to contract a branch.

Procedure
Displays procedures in hierarchical order, nesting each
procedure under its calling procedure. This is the default view,
and combined with the “ToDo” legends for undefined
procedures, is the best view for determining what remains to be
done to complete the application.

Module
Each procedure appears nested under the name of the source file
(module) to which its source code generates.

Tip: This tab is the only entry point to the Module level embed
points and to the Default Program Properties dialog.

Template
Each procedure appears nested under its template type. This
view is useful for making a single change to several similar
procedures.

CHAPTER 3 APPLICATION GENERATOR 123

Name
Lists procedures alphabetically by name. This is sometimes
convenient for large projects.

Category
Each procedure appears nested under its template category. This
view is useful for making a single change to several similar
procedures.

Locator

The Application Tree dialog provides a locator field—the wide entry box near
the top of the dialog. Type the first letter of the procedure name, module
name, or template type to select the first matching item. The locator is
incremental: typing additional letters searches for a more specific match
anywhere within the procedure list. Type CTLR+ENTER to advance to the next
matching item.

Edit Menu—Edit Procedure Properties

The Application Tree dialog provides an Edit menu that lets you “edit” the
properties of the selected procedure. With the Application Tree dialog active,
you can execute the following commands from the Edit menu:

Properties
Calls the selected procedure’s Procedure Properties dialog.
Equivalent to the Properties button.

Window
Calls the Window Formatter for the selected procedure.
Equivalent to the Window button in the Procedures Properties
dialog.

Report
Calls the Report Formatter for the selected procedure. Equivalent
to the Report button in the Procedures Properties dialog.

Data
Calls the Local Data dialog for the selected procedure.
Equivalent to the Data button in the Procedures Properties
dialog.

Embeds
Calls the Embedded Source dialog for the selected procedure.
Equivalent to the Embeds button in the Procedures Properties
dialog.

Extensions
Calls the Extension and Control Templates dialog for the selected
procedure, where you can add Extension templates, or you can

124 CLARION 5 USER’S GUIDE

edit either Control or Extension templates. Equivalent to the
Extensions button in the Procedures Properties dialog. See the
Control Templates and Code and Extension Templates in the
Application Handbook.

Source
Opens the Embeditor for the selected procedure. See Embedded
Source Code for more information.

Find
Searches for a procedure by name. This can be very useful in a
large application with dozens of procedures. Type a string to
search for in the Search for Procedure dialog.

Find Next
Searches for another procedure using the same search string as
the previous search. If there was no previous search, this invokes
the Find command.

Edit by Name
Lets you type the name of a procedure in the Edit Procedure by
Name dialog, then opens the Procedure Properties dialog of the
procedure you named. This is useful in a large application with
many procedures.

Delete
Deletes the selected procedure code, properties, etc. The
procedure remains as a ToDo item in the Application Tree if it is
called by another procedure. To remove the procedure from the
Application Tree, you must remove all references to the
procedure. See Calls to Other Procedures.

Application Menu—Edit Application Properties

With the Application Tree dialog active, you can execute the following
commands from the Application menu:

Properties
Displays the Application Properties dialog for specifying
fundamental changes to the application. See Creating the
Application (.APP) File for more information on this dialog.

Global Properties
Displays the Global Properties dialog for specifying template
based changes to the application. See the Application
Handbook—ABC Templates for more information on this dialog.
This is quivalent to using the Global button in the Application
Tree dialog.

Change Dictionary
Sets a new data dictionary for the application. Type a file name
in the Select New Dictionary dialog, or press the ellipsis (...)
button to choose a new dictionary file from the Open File dialog.

CHAPTER 3 APPLICATION GENERATOR 125

If your procedures already reference fields in one dictionary, the
Application Generator can only match fields from the new
dictionary if both the FILE structure prefix and the RECORD
fields are exactly the same. The Select New Dictionary dialog
provides a warning message.

View Dictionary
Opens the Dictionary Toolbox for the application’s data
dictionary. The Dictionary toolbox provides a hierarchical list
representing your database. This list shows database files, keys,
key components, fields, and relationships in an expanding
hierarchical tree. The Dictionary toolbox can update all the
existing items in the application’s data dictionary except the
dictionary properties.

Insert Module
Opens the Select Module Type dialog where you specify a new
MODULE for your application. Highlight an item from the list,
then press the Select button.

ExternalDLL External Dynamic Link Module--Use this choice
when the module to add is a DLL.

ExternalLib External Library Module--Use this choice when the
module to add is a .LIB (without a .DLL).

ExternalObj External Object Module--Use this choice when the
module to add is an .OBJ file.

ExternalSource Use this choice when the module to add is Source
Code that will not be maintained by the Application
Generator. The Application Generator reads and
compiles this source file but does not write to it.

126 CLARION 5 USER’S GUIDE

GENERATED Use this choice when the module to add is source
code which is generated by the Application
Generator. This allows you to control the name of
the Module.

Template Utility
Lets you run any utility templates that are registered You may
write your own utilities or acquire utilities from third party
vendors. Use this command to start any of Clarion’s Wizards.
See Wizards and Utility Templates in the Application Handbook.

Synchronize
Applies the Data Dictionary’s respective default control
specifications, including Screen Picture, Prompt, Heading, Case,
Typing Mode, Flags, Justification, Initial Value, Help IDs,
Messages, Tool Tips, Validity Checks, etc. to all the controls in
the application, with the following exceptions.

The control’s type and position do not change. The control’s
height and width may change if they are set to “Default.” Blank
dictionary attributes do not replace filled control attributes (e.g..
Tool Tips). Controls placed by a Control template retain those
attributes required by the template. Controls that are explicitly
frozen do not change. See Controls and Their Properties—
Common Control Properties for information on freezing
controls.

Redistribute Procedures
Redistributes the procedures among the modules in the order in
which they already occur. The number of procedures contained
in each module is determined by the Procedures Per Module you
specify. This utility immediately affects the Application Tree,
but generated source modules are not affected until the next time
source is generated.

Repopulate Modules
Redistributes the procedures among the modules trying to keep
procedures that call each other in the same module. The number
of procedures contained in each module is determined by the
Procedures Per Module you specify. This utility immediately
affects the Application Tree, but generated source modules are
not affected until the next time source is generated.

Renumber Modules
Renumbers modules. This is useful when empty modules have
been deleted. This utility immediately affects the Application
Tree, but generated source modules are not affected until the
next time source is generated.

Delete Empty Modules
Removes modules from the Application Tree that have become
empty as a result of application changes or deletions. This menu
option immediately affects the Application Tree but it does not
delete module files (.CLW) on your disk drive.

CHAPTER 3 APPLICATION GENERATOR 127

Delete Empty Libraries
Removes libraries from the Application Tree that have become
empty as a result of application changes or deletions. This menu
option immediately affects the Application Tree but it does not
delete library files on your disk drive.

Procedure Menu—Edit Procedure Properties

With the Application Tree dialog active, you can execute the following
commands from the Procedure menu:

New
Adds a new procedure not connected to the procedure tree. The
INSERT key does the same thing.

Rename
Changes the name of the selected procedure. Type a new name
in the Rename dialog box.

Copy
Copies the selected procedure. Type a new name in the New
Procedure dialog box.

Synchronize
Applies the Data Dictionary’s respective default control
specifications, including Screen Picture, Prompt, Heading, Case,
Typing Mode, Flags, Justification, Initial Value, Help IDs,
Messages, Tool Tips, Validity Checks, etc. to all the controls in
the procedure, with the following exceptions.

The control’s type and position do not change. The control’s
height and width may change if they are set to “Default.” Blank
dictionary attributes do not replace filled control attributes (e.g..
Tool Tips). Controls placed by a Control template retain those
attributes required by the template. Controls that are explicitly
frozen do not change. See Controls and Their Properties—
Common Control Properties for information on freezing
controls.

Change Module
Lets you move the currently selected procedure from one source
module to another. Select the destination in the Select
Destination Module dialog.

Your application may execute slightly faster if you group
procedures which commonly execute together in the same
module.

Change Template
Lets you change the procedure type for the currently selected
procedure. Select a new procedure template in the Select
Procedure Type dialog. If the new procedure type doesn’t support

128 CLARION 5 USER’S GUIDE

some of the structures—such as menus—that you defined in the
previous procedure type, you may “orphan” the previously
defined structures. Therefore, be cautious when changing
procedure type.

Popup Menu—Edit Procedure Properties

With the Application Tree dialog active, right-click on any procedure to
access the following commands. This popup menu serves as a shortcut to the
procedures’ properties.

Properties
Opens the currently selected procedure’s Procedure Properties
dialog. Equivalent to the Properties button.

Files
Opens the selected procedure’s File Schematic Definition dialog.
Equivalent to the Files button in the Procedures Properties
dialog.

Window
Opens the Window Formatter for the selected procedure.
Equivalent to the Window button in the Procedures Properties
dialog.

Report
Opens the Report Formatter for the selected procedure—same as
the Report button in the Procedures Properties dialog.

Data
Opens the Local Data dialog for the selected procedure—same as
the Data button in the Procedures Properties dialog.

CHAPTER 3 APPLICATION GENERATOR 129

Procedures
Opens the Called Procedures dialog for the selected procedure—
same as the Procedures button in the Procedures Properties
dialog.

Embeds
Opens the Embedded Source dialog for the selected procedure—
same as the Embeds button in the Procedures Properties dialog.
See Embedded Source Code above for more information.

Formulas
Opens the Formula Editor for the selected procedure—same as
the Formulas button in the Procedures Properties dialog.

Extensions
Opens the Extension and Control Templates dialog for the
selected procedure, where you can add Extension templates, or
you can edit either Control or Extension templates—same as the
Extensions button in the Procedures Properties dialog. See the
Control Templates and Code and Extension Templates in the
Application Handbook for more information.

Module
Opens the source file for the selected procedure, provided the
source has been generated. Any changes you make to the
generated source are overwritten next time the source is
generated. This lets you experiment before permanently making
changes with other Application Generator tools.

Tip: The Text Editor displays the source code that was last
generated. Thus, if you have changed the application after the
last code generation, your changes are not reflected in the
Module display. Choose Project ➤➤➤➤➤ Generate to update your
source code.

Source
Opens the Embeditor which lets you embed your own source
code within the context of the surrounding generated code. See
Embedded Source Code for more information.

Synchronize
Applies the Data Dictionary’s respective default control
specifications, including Screen Picture, Prompt, Heading, Case,
Typing Mode, Flags, Justification, Initial Value, Help IDs,
Messages, Tool Tips, Validity Checks, etc. to all the controls in
the procedure, with the following exceptions.

The control’s type and position do not change. The control’s
height and width may change if they are set to “Default.” Blank
dictionary attributes do not replace filled control attributes (e.g.,
Tool Tips). Controls placed by a Control template retain those
attributes required by the template. Controls that are explicitly
frozen do not change. See Controls and Their Properties—
Common Control Properties regarding freezing controls.

130 CLARION 5 USER’S GUIDE

Delete
Deletes the selected procedure from the application (but does not
remove the source module from the disk).

Rename
Renames the selected procedure.

File Menu—Application Import/Export Commands

When the Application Generator is active, the File menu contains commands
for importing and exporting application procedures. This import and export
process is managed through the use of a special file format (.TXA) designed
to help incorporate procedures written with other versions of Clarion. See
TXA File Format in the Programmer’s Guide for more information.

The following commands are available on the File menu:

Import from Application
Lets you select an .APP file from the Select Application to Import
From dialog. After you make the selection and press the OK
button, the Application Generator adds all the procedures from
the selected .APP file to the Application Tree.

Name conflicts (same procedure name in both applications) are
resolved according to the Application Options settings. See
Configuring the Application Generator—Import name clash
action for complete information on these settings.

Warning! Be sure to back up both source and target before importing. As part
of the import process, Clarion converts the source file to the new version
format. Once converted to the new format, earlier versions of Clarion cannot
read or use the files.

Import Text
Imports the procedures defined in a .TXA file (an ASCII version
of an .APP file), created with the Export Text (see below)
command. You will be prompted to rename or replace
procedures with name conflicts. Name conflicts (same procedure
name in .APP and .TXA) are resolved according to the
Application Options settings. See Configuring the Application
Generator—Import name clash action for complete information
on these settings.

Export Text
Creates a .TXA file (an ASCII version of your .APP file)
containing all the application’s procedures and properties.

Selective Export
Creates a .TXA file (an ASCII version of your .APP file)
containing only the procedures you specify.

CHAPTER 3 APPLICATION GENERATOR 131

Configuring the Application Generator
The Application Options dialog lets you specify default settings for each new
application you create as well as for the active application. To access the
dialog, choose Setup ➤ Application Options . The dialog is divided into five
sections or tabs: Application , Registry , Generation , Synchronization , Editor.

Application

This tab lets you specify several miscellaneous defaults pertaining to the
application.

Require a dictionary
Each new application must have a data dictionary.

Default dictionary
Specifies the default data dictionary filename to use when you
creaate a new application. You may override the default.

Tip: A single data dictionary may be used to support multiple
applications.

Display Repeated Functions
Check this box to have the Application Generator (Procedure tab
only) provide full expansion of procedures called from more
than one place in the Application Tree. Clear the box to provide
full expansion of only the first instance—every other instance is
marked “Expanded Above.”

Procedures per module
Specifies the number of procedures the Application Generator
writes to each source code module. This affects compile times
when the Conditional Generation switch is turned on. It can also
have a small effect on runtime performance.

132 CLARION 5 USER’S GUIDE

Specifying one procedure per module causes Clarion to compile
only those procedures changed since the last compile. However,
this requires more disk space and more file accesses. We
recommend 3-5 procedures per module for the Clarion
Templates and 15-20 procedures per module for the ABC
Templates.

Application Wizard
Sets the default value of the Application Wizard check box on the
Application Properties dialog when creating a new application.
The Application Wizard builds an entire application based on
your data dictionary. See Wizards and Utility Templates in the
Application Handbook for moreinformation.

Procedure Wizard
Sets the default value of the Procedure Wizard check box on the
Select Procedure Type dialog when creating a new procedure.
Checking this box will invoke a Wizard to help you define your
Browse, Form, and Report procedures. See Wizards and Utility
Templates in the Application Handbook for moreinformation.

Multi user development
Opens the Data Dictionary and the Template Registry in read
only mode, so many developers can work with the same
dictionary. See Development and Deployment Strategies for
more information.

Translate controls to control templates when populating
Check this box to have the Window Formatter prompt you with a

CHAPTER 3 APPLICATION GENERATOR 133

list of control templates whenever you place a control. We
recommend this setting for new Clarion users to encourage the
use of templates whenever possible. Generally it is to your
advantage to use Control templates rather than simple controls.
Control templates define a control and the source code to
manage it.

Import name clash action
Specifies how the Application Generator handles procedure
names from an imported application file which clash with
procedure names already resident. Choose from the following:

Query on first clashWhen the first clash is encountered, the Application
Generator prompts for specific instructions on how
to handle this clash and each subsequent clash.
Choose from:

Auto Rename Renames all imported procedures with name clashes
by appending a sequence number to the imported
procedure name.

Replace All Replaces all resident procedures with imported
procedures of the same name.

Prompt Asks for specific instructions for each clash
encountered. Choose from:

Replace Replaces the resident procedure
with the imported procedure of the
same name.

Rename Prompts you to rename the imported
procedure.

Ask for alternative For all procedures with the same name, the
Application Generator prompts you to rename each
imported procedure.

Auto Rename For all procedures with the same name, the
Application Generator renames the imported
procedure by appending a sequence number to the
name.

Replace previous For all procedures with the same name, the
Application Generator replaces the resident
procedures with the imported procedures.

134 CLARION 5 USER’S GUIDE

Disable Field Prompts
Check this box to suppress template generated control-specific
prompts on Action tabs (affects the properties dialog for
CHECK, BUTTON, ITEM, and ENTRY controls). This does not
disable Control template prompts. This can reduce “clutter”
when you are using Control templates rather than simple
controls.

Sort Embeds Alphabetically
Check this box to show embed points in alphabetical order in the
Embedded Source dialog. Clear the box to show the embed
points in “logical” order (order of execution). See Embedded
Source Code for more information.

Tip: The logical sort sequence is most useful with the Clarion
template chain. The ABC Template embed points (object
oriented) do not lend themselves to logical ordering.

Action for Legacy embeds
Specify how the Application Generator handles legacy embed
points. Legacy embed points are generally provided for
backward compatibility among template chains. They allow
newer template chains to conditionally support embed points
from older template chains. See LEGACY in the Programmers
Guide. Choose from:

Ignore all Application Generator neither displays Legacy
embed points at design time nor generates any code
embedded therein. We recommend this setting to
reduce “clutter” when developing new applications.

Show all and generate
Application Generator displays all Legacy embed
points at design time and generates any code
embedded therein. We generally do not recommend
this setting; however, it can be useful for developers
that are very comfortable with a particular template
chain and its embed points.

Show filled and generate
Application Generator displays only filled Legacy
embed points at design time and generates any code
embedded therein. We recommend this setting for
applications ported to a new template chain.

Registry

This tab lets you specify application options concerning maintenance and use
of the Template Registry. See Configuring the Template Registry.

CHAPTER 3 APPLICATION GENERATOR 135

Generation

This tab lets you specify application options concerning source code
generation.

Conditional Generation
Specifies that only source code modules changed since the last
make should be compiled.

Debug Generation
Turns debug logging on and off and specifies a Debug Filename
for the Application Generator to log events to. In case of a fatal
error by the Application Generator, this log provides a trace for
TopSpeed Technical Support to identify where the problem
occurred.

Generation Message
Specifies what and how many messages are displayed during
source code generation. Choose from

No Messages,
Module Names only (#MESSAGE line 1),
Module and Procedure Names (#MESSAGE lines 1-2), and
All Messages (#MESSAGE lines 1-3).

See #MESSAGE in the Programmers Guide for more
information.

Enable #ASSERT checking
Check this box to enforce heightened error checking during
source code generation. This allows the Application Generator to
identify certain template execution problems and notify you
during source code generation. This slows the code generation
process slightly. Clear the box for faster, but riskier source code
generation. See #ASSERT in the Programmers Guide for more
information.

Create local maps
Check this box to generate a MAP structure for each source
module that prototypes only the procedures referenced in the
module. This results in faster compiles whenever you add new
procedures or change procedure prototypes, because only the
affected modules are recompiled. To generate accurate local
maps, you must use the Procedures button in the Procedure
Properties dialog to identify any procedures referenced in
embedded source code.

Clear this box to generate a single MAP for the PROGRAM
module that prototypes all the program’s procedures globally.
This results in slower compile times whenever you add new
procedures or change procedure prototypes, because the change
to the PROGRAM module forces a recompile of all application
source modules.

136 CLARION 5 USER’S GUIDE

Enable embed commenting
Check this box to optimize automatic comment generation
specified by the application templates. See Template Overview—
General Tab Options—Generate EMBED Comments in the
Application Handbook for more information.

Synchronization

This tab lets you specify how and when control attributes defined in your
data dictionary are applied to your application’s procedures and controls. See
also Application Menu—Synchronize, and Controls and Their Properties—
Common Control Attributes.

Synchronize Application when opened
Check this box to reapply data dictionary attributes each time
your application is opened. Clear the box to apply the attributes
only on your explicit command. See Application Menu—
Synchronize.

Synchronize Window definitions
Check this box to apply data dictionary attributes to WINDOW
structures during application-wide synchronization. Clear the
box to ignore WINDOW structures.

Synchronize Report definitions
Check this box to apply data dictionary attributes to REPORT
structures during application-wide synchronization. Clear the
box to ignore REPORT structures.

Update controls for variables
Check this box to apply memory variable control attributes to
their associated controls. Clear the box to ignore controls
associated with memory variables.

Primary attributes only
Check this box to apply only the primary control attributes.
Primary attributes are those attributes set on the General,
Attributes, Help and Validity Checks tabs of the Dictionary
Editor’s Field Properties dialog. They include Field Name,
Characters (length) Screen Picture, Prompt Text, Column
Heading, Case (UPR, CAP), Typing Mode (INS, OVER), Flags
(IMM, PASSWORD, READONLY), Justification, Initial Value,
Help IDs (HLP), Messages (MSG), Tool Tips (TIP), and Validity
Checks. Secondary attributes are those attributes set on the
Window and Report tabs of the Dictionary Editor’s Field
Properties dialog.

Tip: Check the Primary attributes only box to speed up the
synchronization process, especially if you synchronize each
time you open the application.

CHAPTER 3 APPLICATION GENERATOR 137

Clear HLP, MSG, TIP if omitted in dictionary
Check this box to override control specific help attributes (set
from the Window Formatter) with blank help attributes from the
data dictionary. Clear the box to retain control specific help
attributes despite blank help attributes in the dictionary.

Allow control types to change
Check this box to apply new control types. For example, a SPIN
may replace an ENTRY.

Note: Changing a control’s type can result in “orphaned” embed
code. For example a SPIN supports a NewSelection embed
point, but an ENTRY does not. Orphaned embed code should
be manually moved to an appropriate place.

Allow conversion from list to drop list
Check this box to allow a drop list to replace a list.

Clear all other attributes if omitted in dictionary
Check this box to override all control specific attributes
(attributes set from the Window Formatter) except HELP, TIP,
and MSG with blank attributes from the dictionary. Clear the
box to retain control specific attributes despite blank attributes in
the dictionary. Clearing the box also enables the More button so
you can set each attribute individually.

More
Press this button to elect, for each individual attribute, whether
to override the control specific (Window Formatter) attribute with

138 CLARION 5 USER’S GUIDE

a blank attribute from the dictionary or whether to keep the
attribute despite a blank attribute in the dictionary. Attributes are
Font, Alert, Tally, Cursor, Key, Icon, and Colors.

Dictionary can override size
Check this box to let data dictionary size attributes prevail over
Window Formatter size attributes. Control sizes can change when
the height or width value is default and the control’s text
changes, or when an explicit height or width value in the
dictionary varies from the control specific (Window Formatter)
height or width values.

Ignore Freeze attribute setting
Check this box to apply data dictionary attributes to controls
with the #Freeze attribute. Clear the box to leave frozen controls
alone. See Controls and Their Properties—Common Control
Attributes—Setting Control Modes.

Refreeze frozen control after synchronize
Check this box to” refreeze” the control after synchronizing it.
Clear the box to “unfreeze” the control after synchronizing.

Update field formatting
Check this box to apply dictionary attributes to LIST FORMAT
strings (i.e. justification). In other words, format list box fields
according to data dictionary attributes. Clear this box to leave
LISTs alone.

Update column headers
Select from the drop-down list to specify when List Box column
headers are applied from the data dictionary. Choose from:

Always The Application Generator always applies the
dictionary column header, even if it is blank.

If present in dictionary
The Application Generator applies the dictionary
column header only if it is non-blank, otherwise, the
LISTs column header prevails.

Window and Dictionary
The Application Generator applies the dictionary
column header only if both are non-blank,
otherwise, the LISTs column header prevails.

CHAPTER 3 APPLICATION GENERATOR 139

Never The Application Generator never applies the
dictionary column header. The LISTs column header
always prevails.

Display warning if could not synchronize
Check this box to display a warning dialog if warnings occur
during synchronization. Warnings occur when controls change
size, when there is a different number of radio buttons in the
dictionary than on the window or when an OPTION is replaced
with a different control (e.g. a drop-down list).

Add report entry when controls change size
Check this box to generate warnings when controls change size.
Clear the box to suppress size change warnings.

Filename for report
Specify the file to hold the warning report. Clearing this box
suppresses the report.

Editor

This tab lets control how the Application Generator generates the temporary
source file for the Embeditor. You can specify the text that delimits the
embed points within the temporary source file. By customizing the text, you
can make it easy to identify the embed points you want to edit. See
Embedded Source Code and see Text Editor for more information.

140 CLARION 5 USER’S GUIDE

Preceeding Comment
Specify the text that marks the beginning of each embed point.

Include preceeding comment
Check this box to generate a preceeding comment.
Clear the box to omit the preceeding comment.

Prefix Set the text generated before the embed point name.

Suffix Set the text following the embed point name.

Following Comment
Specify the text that marks the end of each embed point.

Include following comment
Check this box to generate a trailing comment. Clear
the box to omit any trailing comment.

Prefix Set the text generated before the embed point name.

Suffix Set the text following the embed point name.

Show priority levels
Check this box to show the embedded source priority within the
Embeditor. The priority determines the sequence in which the
Application Generator places multiple blocks of embedded code
within a single embed point.

Edit errors in context
This box controls which edit mode to invoke when you edit
embedded source code from the Make Status dialog (see
Clarion’s Development Environment—Project Commands for
more information). Check this box to open the Embeditor (equal
to Edit ➤ Source) to edit embedded source code. Clear the box to
open the non-contextual embed editor (equal to Edit ➤ Embeds).

CHAPTER 3 APPLICATION GENERATOR 141

Templates and the Template Registry
Template files (*.TPL) drive the Application Generator. Each Procedure
template contains some source code, as well as prompts for additional
information needed to complete the procedure. The templates are
interactive—they process the information you specify when you design the
application. Clarion evaluates the template file twice:

◆ Before creating an application, Clarion preprocesses registered template
classes and stores the information in the ..\TEMPLATE\REGISTRY.TRF
file. Preprocessing occurs only when the Application Generator detects a
new or changed template.

When it preprocesses the template set, the Application Generator stores a
list of all the information you must provide to each template. It also
determines the points where you can embed source code to customize a
procedure (see Application Generator—Embedded Source Code).

◆ At code generation time, the Application Generator uses the information
you provided in the Procedure Properties dialogs, information from the
Data Dictionary, the .APP file, the template language statements, and
symbols in the REGISTRY.TRF file to generate your source code.

Each template class can contain multiple templates which you use to create
the procedures in your application. Before you can use a template it must be
in the Template Registry. See Registering Templates.

Configuring the Template Registry

To set Template Registry options, choose Setup ➤ Application Options . This
opens the Application Options dialog. Select the Registry tab.

Template language code can be stored among many files, typically .TPW and
.TPL files. Clarion uses these files to produce one logical template class
(..\TEMPLATE\REGISTRY.TRF). Think of the .TPW and .TPL files as the
source or backup of your templates, and the REGISTRY.TRF file as your
working copy.

The Registry tab lets you specify how the template language files and the
one logical template class are managed for your applications. These options
are mainly for developers who produce their own template files or make
modifications to the default templates.

Re-Register when changed
Check this box to automatically reregister your templates when
the Application Generator detects a change—that is, when a
.TPL or .TPW file changes, Application Generator copies the
change to the REGISTRY.TRF file, .

142 CLARION 5 USER’S GUIDE

Update Template Chain when edited
Check this box to automatically update the template files (.TPL
and .TPW) when you use the Template Registry to edit the
REGISTRY.TRF file.

Regenerate Deleted Templates
Check this box to specify the Application Generator should
replace any deleted .TPL or .TPW files from the registered
templates (\TEMPLATE\REGISTRY.TRF).

#APPLICATION template
Select the APPLICATION template from the drop-down list. The
APPLICATION template controls source code generation. See
Template Overview in the Application Handbook for more
information.

Registering Templates

The Template Registry stores a list of all the templates available to you when
building an application. To create an application, you must have at least one
template class registered.

The default template class is preregistered. However, if you need to
reregister it, or if you wish to register a third party template class, this is how
to do it:

1. Choose Setup ➤ Template Registry .

CHAPTER 3 APPLICATION GENERATOR 143

This opens the Template Registry dialog which provides a hierarchical
list of the templates, plus some command buttons to maintain them.

2. Press the Register button.

This opens the Template File dialog which lets you choose the templates
to register. The List Files of Type specification is *.TPL. The default
template subdirectory or folder is ..\Clarion5\TEMPLATE.

3. Select the .TPL files to register, then press the Open button.

This registers (preprocesses) the template sets (classes), making them
available for use in your applications.

Template Registry Maintenance

The Template Registry dialog also provides other command buttons for other
file maintenance options for the registry:

Unregister
This button deletes the highlighted template class from
REGISTRY.TRF, making it unavailable for use in your
applications.

Enable
This button enables the highlighted template class or template,
making it available for use in your applications.

Disable
This button disables the highlighted template class or template,
making it unavailable for use in your applications.

Properties
This button opens the Template Procedure Properties dialog to
modify Procedure templates. Press the Global Data button to edit

144 CLARION 5 USER’S GUIDE

default global data generated by this Procedure template. Press
the Defaults button to edit default structures (windows, list
boxes, etc.) contained in this template.

Edit Definition
This button opens the highlighted Template source file (.TPL or
.TPW) with the Text Editor.

If the highlighted item in the Template Registry is a module, the
Text Editor opens to the first line of template language code for
the #MODULE. If the highlighted item in the Template Registry
is a procedure, it opens to the first line of template language
code for the #PROCEDURE. See the Programmer’s Guide for
more information on template language format and syntax.

The next time you open an application, any changes to the
Template source are registered or not, according to the Registry
settings in the Application Options dialog.

CHAPTER 4 WINDOW FORMATTER 145

4 - WINDOW FORMATTER

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

146 CLARION 5 USER’S GUIDE

About This Chapter
Use the Window Formatter to visually design window elements—windows
and controls—on screen. The Window Formatter generates the Clarion
language source code that describes the window, then the Application
Generator places the generated source code at the appropriate point in your
application.

This chapter:

◆ Tells you how to use the Window Formatter to create a new
WINDOW structure or edit an existing one.

◆ Tells you how to use the Window Formatter to create a new
TOOLBAR structure or edit an existing one.

◆ Tells you how to use the Menu Editor to create a new
MENUBAR structure or edit an existing one.

◆ Tells you how to use the Window Properties dialog to set window
properties.

◆ Tells you how to configure the Window Formatter to work the
way you prefer.

◆ Tells you how to use the List box Formatter to format your LIST
and COMBO controls.

The Window
Formatter
displays a

sample window
showing the
controls you

place in it. You
can resize or

reposition any
control by

dragging its
handles.

Commands

Controls

Alignment

Data Fields

Properties

CHAPTER 4 WINDOW FORMATTER 147

Window Creation Overview
Most likely, your application will use a number of windows to display
instructions, accept input, and provide data or other information to the user.
In general, this is what you will do to put such a window on the screen:

1. Select or create the procedure that manages the window.

See the Application Generator chapter for more information.

2. From the Application Tree dialog, RIGHT-CLICK the procedure name and
select Window from the popup menu.

If no default window is defined, select a window type from the New
Structure dialog. See Choosing a Window Type.

If a default window is already defined, the Window Formatter opens.

Tip: You can access the Window Formatter from the Text Editor! To
create a new window from the Text Editor, place the cursor on
a blank line, then choose Edit ➤➤➤➤➤ Format Structure or press
CTRL+F. To edit an existing window, place the cursor anywhere
within the source code structure that defines the window, then
choose Edit ➤➤➤➤➤ Format Structure or press CTRL+F.

3. Customize the window by setting its size and properties.

See Defining Your Application’s Windows.

4. Optionally, place a menu in the window with the Menu Editor .

See Creating Your Application’s Menus for more information on this
process.

5. Place controls in the window—these might include entry boxes for
editing fields from the database, command buttons for initiating or
cancelling actions, text, strings, or prompts containing instructions for
the user, and other controls to enhance the appearance and ease of use of
the window.

See Placing Controls in a Window.

6. Set the control properties.

ALT+DOUBLE-CLICK accesses the control properties. See the Controls and
Their Properties chapter.

7. Return to the Procedure Properties dialog.

148 CLARION 5 USER’S GUIDE

Choosing a Window Type
Clarion’s Procedure templates usually provide an appropriate default
window for you. So if you create your procedure with a code generation
Wizard or with a Frame, Browse, Form, Viewer, or Splash Procedure
template, then you need not choose a window type, although you can change
the default if you want to.

However, if you use the Window - Generic Window Handler Procedure
template, or if you start the Window Formatter from within the Text Editor
(CTRL+F) the Application Generator opens the New Structure dialog so you
can choose from a list of default window definitions. Following are some
guidelines to help you choose the right window for the job at hand.

STARTing Modeless Windows (new thread)

 When you START a procedure on its own thread, the procedure and its
window operate independently of other threads in the same program; that is,
the end user can switch focus between each execution thread at will. This is
true regardless of whether the windows on each thread are MDI or non-MDI.
These are “modeless” windows. See START in the Language Reference.

MDI and Non-MDI Windows (same thread)

If you start a procedure on an existing thread (call a procedure without
START), program behavior depends on whether or not the procedure’s
window has the MDI attribute.

A non-MDI window on the same thread as its parent blocks access to its
parent window, blocks access to all other threads in the program, and
prevents subsequent opening of non-MDI windows on the same thread. This
is an “application modal” window. When the application modal window
closes, the other execution threads are available again.

An MDI window on the same thread as its parent blocks access only to its
parent window. When the MDI child window closes, its parent window
regains focus.

 Default Window Structures

Some of the types of windows you can create with Clarion appear in the New
Structure dialog. The items in the New Structure dialog represent Clarion
language data structures.

You may see window structures, report structures, or both, depending on
how you access the dialog. A window structure is a group of Clarion
language statements that define all the attributes of a window. You may want

CHAPTER 4 WINDOW FORMATTER 149

to think of a window structure as the definition of the window. See WINDOW
in the Language Reference.

This section discusses only the default window structures supplied with this
release; however, you may modify these default windows, and you may even
add your own default window structures by editing the
\LIBSRC\DEFAULTS.CLW file. If you edit the DEFAULTS.CLW file, be
sure to precede each new structure with the following line:

!!> title

where “title” is the structure name that appears in the New Structure dialog.

Following is a description of the default window structures provided with
this package.

Window

To create a general purpose document window or dialog box, choose Window
from the New Structure dialog. The Window Formatter generates a non-MDI
WINDOW structure with no controls. That is, a bare or empty window.

This window accepts any controls (listboxes, entry boxes, buttons, etc.) you
want to add. Because the window is non-MDI, it can move “outside” its
application window. See Windows Design Issues for more information.

Window with OK & Cancel

This window is exactly like Window described above, except it contains OK
and Cancel buttons. There are no actions associated with the buttons, you
must add any needed functionality. If you want buttons with functionality
already attached, see the Application Handbook—Control Templates—
CancelButton, CloseButton, etc.

MDI Child Window

To create a document window which appears only inside an application
frame, choose MDI Child Window . The Window Formatter generates a
WINDOW structure with the MDI attribute.

The child window typically appears as a normal window, with frame, system
menu, maximize and minimize buttons, and icon. The user should be able to
manipulate it like any other window—except that the child window cannot

150 CLARION 5 USER’S GUIDE

move outside the main application window. See Windows Design Issues for
more information.

All MDI windows must reside in separate procedures and execution threads
from the APPLICATION window (see MDI Parent Frame below). This
means you must initiate a thread (use START) when you start this window’s
procedure from the APPLICATION frame.

Tip: Any menus and toolbars you create for an MDI window will
automatically merge with the APPLICATION’s menu and
toolbar when the MDI child is the active window!

MDI Parent Frame

To create the APPLICATION frame, or main window, for an MDI
application, choose MDI Parent Frame . This provides the “outside” frame in
which the MDI child windows appear. See Windows Design Issues for more
information.

Tip: Typically, the APPLICATION window should have a resizable
frame, plus a system menu, maximize and minimize buttons,
and a menu. The File menu should provide commands to open
the MDI child windows, and the Window menu should provide
commands for managing the separate child windows. The
Frame template provides all these features automatically!

The APPLICATION window may only have controls on its toolbar. MDI
child windows contain all other controls in an MDI application. In other
words, the APPLICATION window should hold only its child windows, and
optionally, its toolbar.

The APPLICATION window and its MDI children must not reside in the
same procedure. You must START the MDI child’s procedure so that the
MDI child window is in a separate thread from the APPLICATION. Multiple
MDI windows may run in the same thread, but not on the same thread as the
APPLICATION window.

System Modal Window

A system modal window prevents the user from doing anything else—even
switching to another application—until the window closes. The Window
Formatter generates a WINDOW structure with the MODAL attribute.

Tip: Only use a system modal window to signal a critical error.
Unless your application has a very compelling reason to halt
all system activity—for example, a severe file error which
might result in lost data unless corrected at once—do not use
this type of window.

CHAPTER 4 WINDOW FORMATTER 151

Configuring the Window Formatter
The Window Formatter Options dialog sets the default position and size
values applied when auto-populating controls, or when aligning controls
with the alignment tools. To access the dialog, choose Setup ➤ Window
Formatter Options from the environment menu, or choose View ➤ Options
from the Window Formatter menu. The dialog is divided into four sections or
tabs: Grid, Populate Defaults, Margin Defaults, and Spread Defaults.

The Reset Default Values button affects all four tabs.

Reset Default Values
Press this button to reset the values on all tabs to their Windows
Standard values.

Grid

This tab turns “grid snap” on or off, and sets the starting point and offsets of
the window grid. It also lets you show or hide the screen boundaries (extents)
for the most common video resolutions (640x480, 800x600, 1024x768, etc.).

You can use the grid to force the boundaries of your window controls to fall
only on certain x / y values (axes, latitude, longitude). By enforcing the grid
axes, your controls are easier to position and align.

Snap to Grid
Check this box turn grid snap on; clear the box to turn it off.
Grid snap displays a dot grid of valid positioning coordinates
and forces the upper left corner of new controls to align with the
dot grid. The end user does not see the grid at run time; it is a
design tool only.

Tip: You can also choose View ➤➤➤➤➤ Show Grid from the menu, or
press the button to toggle grid snap on and off.

152 CLARION 5 USER’S GUIDE

Width
Enter the horizontal distance between the grid dots (x axis). This
is the minimum horizontal distance you can move a control
when grid snap is on.

Height
Enter the vertical distance between the grid dots (y axis). This is
the minimum vertical distance you can move a control when grid
snap is on.

Origin X
Enter the horizontal coordinate at which to begin placing the
grid dots. This is the left-most position at which controls will
align or auto-populate when grid snap is on.

Origin Y
Enter the vertical coordinate at which to begin placing the grid
dots. This is the top-most position at which controls will align or
auto-populate when grid snap is on.

Show Screen Extents
Check this box to show video screen boundaries within the
Window Formatter for the most common video resolutions.
Clear the box to suppress the boundaries.

Snap on Resize
Check this box to force controls to snap to the nearest grid point
grid when resizing from the right or bottom edges. This
constrains a control’s width and height to the grid. Resizing a
control using the top and left edges always snaps to the grid.

Populate Defaults

This tab sets the default width and height for a variety of window controls.
The Window Formatter applies the default sizes whenever you use it to add a
control to the window.

Control Type
Choose the type of control for which to set the default size.

Tip: The default sizes are specified in dialog units—a unit of
measure based on the current system font. See the Glossary
for a complete definition.

Default Width
Set the default width for the specified control type. A value of
zero (0) specifes no width—the control expands to the size of the
data it displays. See AT in the Language Reference for more
information.

Use most common width already present
Check this box to specify a dynamic default based on width of
any controls of the same type that are already present on the

CHAPTER 4 WINDOW FORMATTER 153

window. For example, if there are three ENTRY controls and
two of the controls are 50 units wide, then 50 becomes the
default width for ENTRY controls. Clear this box to always
apply the Default Width value, even if other controls of the same
type are present.

Default Height
Set the default height for the specified control type. A value of
zero (0) specifes no height—the control expands to the size of
the data it displays. See AT in the Language Reference for more
information.

Use most common height already present
Check this box to specify a dynamic default based on height of
any controls of the same type that are already present on the
window. For example, if there are three ENTRY controls and
two of the controls are 10 units wide, then 10 becomes the
default height for ENTRY controls. Clear this box to always
apply the Default Height value, even if other controls of the
same type are present.

Margin Defaults

This tab sets the margins applied by the margin alignment tool. For more
information on these alignment tools, see Window Formatter Tools. The
margin is simply the distance between the closest edges of two controls (or
of a control and the window). The Window Formatter applies the margins
whenever you use the margin alignment tools.

Different types of controls require different margins to accomodate their
unique characteristics. For example, TAB controls and GROUP controls
need extra space to allow for their text.

Margin Relative to
Choose the type of control for which to set the margins. Choose
from:

154 CLARION 5 USER’S GUIDE

Other Set the default margins.

Group Set the margins to apply for controls inside a
GROUP control, abutting the GROUP control.

Option Set the margins to apply for controls inside an
OPTION control, abutting the OPTION control.

Tab Set the margins to apply for controls inside a TAB
control, abutting the TAB control.

Top Margin
The distance between the top edge of the selected control and
the nearest horizontal edge of a bounding control or window.

Side Margins
The distance between the vertical edges of the selected control
and the nearest vertical edge of a bounding control or window.

Bottom Margin
The distance between the bottom edge of the selected control
and the nearest horizontal edge of a bounding control or window.

Tip: The two settings (Full and Thin) provide alternative margins
applied by the margin alignment tools. For more information
on these alignment tools, see Window Formatter Tools .

Tip: The default sizes are specified in dialog units—a unit of
measure based on the current system font. See the Glossary
for a complete definition.

Show Sample Window
Press this button to see a sample window that applies the current
margin settings.

CHAPTER 4 WINDOW FORMATTER 155

Spread Defaults

This tab sets the default spacing between auto-populated window controls
and between controls positioned by the Spread Alignment tools. The
Window Formatter applies the default spacing when you auto-populate fields
from the Fields Toolbox and when you use the Spread Alignment tools. For
more information on these alignment tools, see Window Formatter Tools.

Button Spacing
Set the default distance between the edges of a button control
and the nearest control.

Other Control Spacing
Set the default distance between the edges of two adjacent
controls.

Prompt to Field Spacing
Set the default distance between the right edge of a PROMPT
control and the left edge of its (visually) associated (ENTRY,
SPIN, TEXT, etc.) control.

Tip: The default sizes are specified in dialog units—a unit of
measure based on the current system font. See the Glossary
for a complete definition.

Multiple control alignments
This selection applies only to the Spread Alignment tools. For
more information on these alignment tools, see Window
Formatter Tools.

Use fixed spacing
Apply the static values specified above when
spacing (spreading) multiple controls.

Calculate spacing
Calculate spacing based on distance between first
and last control, so there is an equal distance
between each control.

156 CLARION 5 USER’S GUIDE

Using the Window Formatter
Choosing the window type is just the beginning. The Window Formatter
provides a rich assortment of visual tools and menus to help you create and
edit your window.

The Window Formatter lets you directly manipulate the window and the
controls inside it. The sample window, for example, contains ‘handles’—tiny
boxes located at the corners and sides of the window. By selecting a handle
and dragging the mouse, you may resize the sample window. The window
the user sees when your application runs is the same size as the window you
create by dragging.

When the Window Formatter generates the source code for the window, it
places the data determining the size and position of the window (as you
specified by dragging the mouse) in the AT attribute of the statement
declaring the window.

Similarly, the Window Formatter supplies the other attributes by presenting
you with options, check boxes and fields in which you specify your design
preferences.

Typical Window Design Process

Here is the typical process for customizing a new window with the Window
Formatter :

1. Set the size of the window by dragging its handles so that the sample
window is the size you wish.

2. Set other window attributes by using the Window Properties dialog.

RIGHT-CLICK the window then choose Properties from the popup menu, or
select the window then choose Edit ➤ Properties.

Window attributes include the window caption, whether the window is
resizable, whether the window is scrollable, icons associated with the
window, messages, help files, and cursor types associated with the
window, and many others. See Window Properties Dialog.

3. Close the Window Properties dialog.

4. Place controls in the window.

 See Placing Controls in a Window. Also see Controls and Their Proper-
ties.

5. Preview the window by choosing Preview! from the menu. Press ESC to
return to the Window Formatter , then make any additional adjustments.

6. Choose Exit! to return to the Application Generator or Text Editor.

CHAPTER 4 WINDOW FORMATTER 157

Window Formatter Tools

Sample Window

The Window Formatter is a visual design tool. You always see a sample of the
window you’re working on, as you work on it. In addition, you can see the
window, exactly as it will appear to the end user by choosing Preview! from
the menu.

Command Toolbox

The Window Formatter contains a dockable Command toolbox. The toolbox
lets you quickly execute a variety of Window Formatter functions at the touch
of a button.

All the commands in the Command toolbox are also available from the menu
(Exit!, Edit, View, Preview!).

Display or hide the Command toolbox by choosing View ➤ Show
Commandbox. Resize the Command toolbox by placing the cursor on the
border of the box. When the cursor changes to a double headed arrow, CLICK

and DRAG. Dock the toolbox by dragging the handle (double verticle lines) to
any edge of the Window Formatter frame (dragging the titlebar repositions
the toolbox without docking).

Tip: Position the cursor over any tool and wait for half a second. A
tool tip shows you the type of control this tool creates.

Exit the Window Formatter and save changes.

Exit the Window Formatter and abandon changes.

Edit the properties of the selected (red handles)
control or window.

Edit the actions of the selected (red handles) control
or window.

Edit the embedded source for the selected (red
handles) control or window.

158 CLARION 5 USER’S GUIDE

Hide or display the Controls Toolbox.

Hide or display the Align Toolbox.

Hide or display the Property Toolbox.

Hide or display the Fields Toolbox.

Toggle the alignment grid on or off.

Preview the window.

Controls Toolbox

The Window Formatter contains a dockable Controls toolbox, similar to those
found in many draw or paintbrush programs. Simply choose a control from
the toolbox (CLICK on it), then CLICK in the sample window to place the
control in the window. By default, the control takes on the size of the other
controls of that type already in the window. If there are no like controls in
the window, the control is the default size.

Tip: You can control the initial height and width of a control with
the Window Formatter Options dialog. See the Configuring the
Window Formatter for more information.

All the controls in the toolbox are also available from the Controls menu
with the exception of the Control Template and the Dictionary Field, which
are available from the Populate menu.

Display or hide the Controls toolbox by choosing View ➤ Show Toolbox or
press . Resize the Controls toolbox by placing the cursor on the border of
the box. When the cursor changes to a double headed arrow, CLICK and DRAG.
Dock the toolbox by dragging the handle (double verticle lines) to any edge
of the Window Formatter frame (dragging the titlebar repositions the toolbox
without docking).

CHAPTER 4 WINDOW FORMATTER 159

Tip: Position the cursor over any tool and wait for half a second. A
tool tip shows you the type of control this tool creates.

Places a Control Template on the window under
construction. See the Application Handbook—
Control Templates chapter.

Tip: Generally, it is to your advantage to use a Control template
rather than a simple control.

Control templates generate source code to declare controls and manage their
associated data. For example, the BrowseBox Control template not only
generates source code to display a listbox, it also generates code to load data
from a file into a QUEUE, then display the data in the listbox with complete
scrolling and mouse-click selection capability.

Drops the selected control tool.

Places a STRING control on the window under
construction. See Controls and Their Properties—
String Properties.

Places a PROMPT control on the window under
construction. See Controls and Their Properties—
Prompt Properties.

Places an ENTRY control on the window under
construction. See Controls and Their Properties—
Entry Properties.

Places a TEXT control on the window under
construction. See Controls and Their Properties—
Text Properties.

Places a GROUP control (group box) on the window
under construction. See Controls and Their
Properties—Group Box Properties.

Places an OPTION control (OPTION structure,
which appears as a group box with radio buttons) on
the window under construction. See Controls and
Their Properties—Radio Button Properties.

160 CLARION 5 USER’S GUIDE

Places a BUTTON control on the window under
construction. See Controls and Their Properties—
Button Properties.

Places a CHECK control on the window under
construction. See Controls and Their Properties—
Check Box Properties.

Places a RADIO control on the window under
construction. See Controls and Their Properties—
Radio Button Properties.

Places a SHEET control on the window under
construction. Sheet controls contain Tab controls.
See Controls and Their Properties—Property Sheet
Properties.

Places a TAB control on the window under
construction. Tab controls may contain any other
control types. See Controls and Their Properties—
Tab Properties.

Places a LIST control (listbox, or drop-down
listbox) on the window under construction. See
Controls and Their Properties—Creating Listboxes.

Places a Drop LIST control on the window under
construction. See Controls and Their Properties—
Creating Listboxes.

Places a COMBO control (combo box, or drop
combo box) on the window under construction. See
Controls and Their Properties—Combo Box
Properties.

Places a Drop COMBO control on the window
under construction. See Controls and Their
Properties—Combo Box Properties.

Places a SPIN control on the window under
construction. See Controls and Their Properties—
Spin Box Properties.

CHAPTER 4 WINDOW FORMATTER 161

Places a PROGRESS control on the window under
construction. See Controls and Their Properties—
Progress Bar Properties.

Places an IMAGE control (graphic image) on the
window under construction. See Controls and Their
Properties—Image Properties.

Places a REGION control on the window under
construction. See Controls and Their Properties—
Region Properties.

Places a LINE control on the window under
construction. See Controls and Their Properties—
Line Properties.

Places a BOX control on the window under
construction. See Controls and Their Properties—
Box Properties.

Places an ELLIPSE control on the window under
construction. See Controls and Their Properties—
Ellipse Properties.

Places a PANEL control on the window under
construction. See Controls and Their Properties—
Panel Properties.

Places a VBX control (Visual Basic) on the window
under construction. See Custom Controls—VBX
Control Properties.

Places a OLE/OCX Container control on the
window under construction. See Custom Controls—
OLE Control Properties. Available only in
Professional and Enterprise Editions.

Lets you select a field defined in the Data
Dictionary, and places the control specified in the
data dictionary, plus an associated PROMPT, on the
window under construction.

162 CLARION 5 USER’S GUIDE

Display or hide the Controls toolbox by choosing Options ➤ Toolbox. All the
controls in the toolbox are also available from the Controls menu. See
Placing Controls in a Window. Also see Controls and Their Properties.

Populate Field Toolbox

The Window Formatter contains a floating Populate Field toolbox. This
toolbox lets you quickly “populate” a window with controls for data
dictionary fields and memory variables. First, choose a file or variable scope
from the drop-down list, then DOUBLE-CLICK the field or variable you want to
show on the window. This places a prompt and a control for the selected
field. The type of control (entry box, check box, radio button, etc.) is
determined by the settings for this particular field in the Data Dictionary. The
field is automatically aligned.

If the Data Dictionary specifies no size for the control, it takes on the size of
the other controls of that type already in the window. If there are no like
controls in the window, the control is the default size.

Tip: You can control the initial height and width of a control with
the Window Formatter Options dialog. See the Configuring the
Window Formatter for more information.

Tip: Select a control, then press a directional arrow key to nudge
the control’s position one dialog unit at a time.

Select a control, then press and hold the SHIFT key while pressing a
directional arrow key to nudge the control’s size one dialog
unit at a time.

Display or hide the Populate Field toolbox by choosing View ➤ Show
Fieldbox or press . Resize the Populate Field toolbox by placing the cursor
on the border of the box. When the cursor changes to a double headed arrow,
CLICK and DRAG.

You may also populate a window with entry controls for fields in your data
files by using the Populate menu, or by using the Dictionary Fields tool in
the Controls toolbox.

CHAPTER 4 WINDOW FORMATTER 163

Property Toolbox

The Window Formatter’s Property toolbox lets you quickly specify the
appearance and content of the text on each control within the window and on
the window title bar. Control the font, size, style, and content of all your text,
using standard word processor buttons and drop-down lists.

Display or hide the Property toolbox by choosing View ➤ Show Propertybox
or press . Resize the Property toolbox by placing the cursor on the border
of the box. When the cursor changes to a double headed arrow, CLICK and
DRAG. Dock the toolbox by dragging the handle (double verticle lines) to any
edge of the Window Formatter frame (dragging the titlebar repositions the
toolbox without docking).

Align Toolbox

The Window Formatter’s Align toolbox lets you quickly, professionally, and
precisely align the controls in your window. Select the controls to align
(CTRL+CLICK lets you select multiple controls, or you can “lasso” multiple
controls with CTRL+DRAG), then click on the appropriate alignment tool. All
the toolbox alignment actions (and more) are also available from the Align
menu.

Display or hide the Align toolbox by choosing View ➤ Show Alignbox or
press . Resize the Align toolbox by placing the cursor on the border of
the box. When the cursor changes to a double headed arrow, CLICK and
DRAG. Dock the toolbox by dragging the handle (double verticle lines) to
any edge of the Window Formatter frame (dragging the titlebar
repositions the toolbox without docking).

Tip: For most alignment functions, the first control(s) selected
(blue handles) are aligned with the last control selected (red
handles). That is, the last control selected is the anchor
control. It doesn’t move, the others do.

Align Left: Aligns the left borders of the selected
controls with the left border of the last control
selected (red handles).

164 CLARION 5 USER’S GUIDE

Align Right: Aligns the right borders of the
selected controls with the right border of the last
control selected (red handles).

Align Top: Aligns the top borders of the selected
controls with the top border of the last control
selected (red handles).

Align Bottom: Aligns the bottom borders of the
selected controls with the bottom border of the last
control selected (red handles).

Align Vertically: Along a vertical axis, aligns the
centers of the selected controls with the center of the
last control selected (red handles).

Align Horizontally: Along a horizontal axis,
aligns the centers of the selected controls with the
center of the last control selected (red handles).

Spread Vertically: Equalizes the vertical space
between the selected controls.

Spread Horizontally: Equalizes the horizontal
space between the selected controls.

Same Size:Makes all selected controls the same
height and width as the last control selected (red
handles).

Same Height: Makes all selected controls the
same height as the last control selected (red
handles).

Same Width: Makes all selected controls the
same width as the last control selected (red handles).

Center Vertically: As a group (relative positions of
selected controls don’t change), centers the selected
controls vertically within the window.

Tip: Position the cursor over any tool and wait for half a second. A
tool tip shows you the type of alignment this tool
accomplishes.

CHAPTER 4 WINDOW FORMATTER 165

Center Horizontally: As a group (relative
positions of selected controls don’t change), centers
the selected controls horizontally within the window.

Set Left Margin: Repositions (or SHIFT+
resizes) the selected controls so the left edge of each
control is a specified distance from the neareast
bounding control or window. The margin distance
toggles between two standard left margins. See
Configuring the Window Formatter—Margin
Defaults.

Set Right Margin: Repositions (or SHIFT+
resizes) the selected controls so the right edge of
each control is a specified distance from the neareast
bounding control or window. The margin distance
toggles between two standard margins. See
Configuring the Window Formatter—Margin
Defaults.

Set Top Margin: Repositions (or SHIFT+
resizes) the selected controls so the top edge of each
control is a specified distance from the neareast
bounding control or window. The margin distance
toggles between two standard top margins. See
Configuring the Window Formatter—Margin
Defaults.

Set Bottom Margin: Repositions (or
SHIFT+ resizes) the selected controls so the bottom
edge of each control is a specified distance from the
neareast bounding control or window. The margin
distance toggles between two standard margins. See
Configuring the Window Formatter—Margin
Defaults.

Set All Margins: Repositions (or SHIFT+
resizes) the selected controls so all edges of each
control are a specified distance from the neareast
bounding control or window. The margin distance
toggles between two standard margins. See
Configuring the Window Formatter—Margin
Defaults.

Tip: Use the Set All Margins tool to position and size SHEET,
GROUP, and LIST controls within their respective containers.

166 CLARION 5 USER’S GUIDE

Shrink Wrap: If only a container control is
selected, this repositions and resizes the container to
the minimum dimensions necessary to surround its
containees. If multiple controls are selected, this
creates a new UBOXED (hidden) GROUP control
minimally surrounding the selected controls. This
lets you position the contained controls with the
Margin Alignment tools.

Align Prompts: For selected prompt/field pairs,
this aligns the prompt with its (visually) associated
(ENTRY, SPIN, COMBO, TEXT, etc.) field.

Constrained Dragging

Press and hold the SHIFT key while dragging a control to limit the control’s
movement to a single axis. That is, SHIFT + DRAG moves a control either
horizontally or vertically, but not both.

Fine Sizing and Positioning

Select a control, then press a directional arrow key to nudge the control’s
position one dialog unit at a time.

Select a control, then press and hold the SHIFT key while pressing a
directional arrow key to nudge the control’s size one dialog unit at a time.

Window Formatter Menus

Popup Menu

Access the popup menu by RIGHT-CLICKING a window or a control. The popup
menu on the Window Formatter lets you manipulate and customize the
window and the controls on the window, depending on whether the window
or a control is selected.

❏ To select a window, place the cursor in the sample window title bar and
RIGHT-CLICK.

CHAPTER 4 WINDOW FORMATTER 167

❏ To select a control, place the cursor on the control and RIGHT-CLICK.

❏ To select a property sheet control, place the cursor anywhere on the
sheet, but not on other controls, and not on a tab, then RIGHT-CLICK.

❏ To select a tab control, place the cursor on the corresponding tab and
RIGHT-CLICK.

Tip: All of the popup menu commands, and more, are available on
the Window Formatter Edit menu.

Following is a description of the popup menu choices.

Properties
To edit control or window properties, RIGHT-CLICK a control or the
window, then choose Properties . See Window Properties Dialog,
or see Controls and Their Properties.

Actions
To answer the template prompts associated with a control or the
window, RIGHT-CLICK it then choose Actions . See the Controls
and Their Properties chapter for more information.

Embeds
To add or edit embedded source associated with a control or
window, RIGHT-CLICK it then choose Embeds . See Application
Generator—Embedded Source Code.

Font
To control the appearance of the text displayed in a control or
window, RIGHT-CLICK the control or window then choose Font .
Specify font, size, style, script, and color from drop-down
listboxes. Toggle Strikeout and Underline on and off with check
boxes. The Select Font dialog shows you a sample of the text
design you have chosen.

168 CLARION 5 USER’S GUIDE

Key
To specify a “hot” key for a control, RIGHT-CLICK the control then
choose Key (the KEY attribute is not applicable to windows, nor
to some controls). Use the Input Key dialog to add the KEY
attribute to your control. The KEY attribute specifies a “hot”
key, or key combination, which, when pressed by the user, gives
immediate focus to the control, or, for an action control such as a
command button, initiates the action.

From the Input Key dialog, specify the hot key or key
combination by pressing the desired key or key combination.
The keys you press appear in the Key field, and are supplied as
parameters to the KEY attribute for this control. See KEY in the
Language Reference.

Mouse clicks may be used as hot keys; however, mouse clicks
cannot be specified by clicking the mouse. For mouse clicks,
check the corresponding check box(es). For example, to give
focus to a control when the user double-clicks, check the Left
Button box and the Double Click box.

Optionally, add a modifier or modifiers to create a multiple-key
hot key sequence (for example, CTRL+H, or ALT+RIGHT-CLICK), by
checking Ctrl , Alt , or Shift , or any combination of the three.

The ESC, ENTER, and TAB keys cannot be specified by pressing
them. For these keys, press the ellipsis (...) button then type
“esc,” “enter,” or “tab.”

The following controls receive focus from the KEY attribute:

Combo Box
Entry Field
Group Box
Listbox
Option Box
Prompt

CHAPTER 4 WINDOW FORMATTER 169

Property Sheet
Spin Box
Tab
Text Field

The following controls both receive focus and immediate
execution from the KEY attribute:

Button
Check Box
Radio Button
OLE Control
VBX Control

The KEY attribute is not applicable to the following controls:

String
Progress Bar
Image
Region
Line
Box
Ellipse
Panel

Alert
To specify an Alert key for a window or a control, select the
window or control then choose Alert . Use the Alert Keys dialog
and the Input Key dialog to add the ALRT attribute to your
window or control. When the ALRT attribute is set, the window
generates an EVENT:AlertKey if the user presses the key(s) you
specify in these dialogs. You may specify more than one Alert
key for a window or a control.

See Key above for a discussion on how to specify keys using the
Input Key dialog.

Position
To specify the position of a control or a window, select it then
choose Position . See Position in Window Properties Dialog
section for a discussion of positioning windows.

To position controls, you will normally CLICK and DRAG the
controls and use the Align tools, or both. However, you may use
the Position tab of the various control properties dialogs. See
Controls and Their Properties for more information. Also see
Grid Settings in The Options Menu section.

Listbox Format
To specify the appearance and functionality of a listbox control,
select the listbox then choose Listbox Format . See List box
Formatter for more information.

170 CLARION 5 USER’S GUIDE

Duplicate
To place a copy of a control in the same window, select the
original then choose Duplicate . The copy appears beside the
original.

Tip: You may duplicate multiple controls by selecting multiple
controls before invoking the Duplicate command. Use
CTRL+CLICK to select multiple controls, or lasso multiple
controls using CTRL+CLICK+DRAG.

Delete
To delete a control, select it then choose Delete , or select it then
press the DELETE key.

Custom
To open the Property Sheet for an OCX associated with an OLE
control, select the control and choose the Custom command.

Open
To open the OLE Server associated with an OLE control, select
the control and choose the Open command.

Synchronize
Applies the control attributes specified in the Data Dictionary to
the selected control, or if the window is selected, to all the
controls in the window. The attributes are applied as specified in
the Synchronization tab of the Application Options dialog. See
Application Generator—Configuring the Application Generator.

Edit Menu

The Edit menu in the Window Formatter lets you manipulate and customize
the window, and the controls in the window, depending on whether the
window or a control is selected.

❏ To select a window, place the cursor in the sample window title bar and
CLICK.

❏ To select a control, place the cursor on the control and CLICK.

❏ To select a Property Sheet control, place the cursor anywhere on the
sheet, but not on other controls, and not on a tab, then CLICK.

❏ To select a Tab control, place the cursor on the corresponding tab then
CLICK.

Tip: Many of the Edit menu commands are also available on the
popup menu that you access by RIGHT-CLICKING on the control or
the window.

Following is a description of the Edit menu choices not described in the
Popup Menu section:

CHAPTER 4 WINDOW FORMATTER 171

Undo
To reverse the last editing action, choose Undo . All Window
Formatter actions may be reversed, except deleting a control.

Tip: To undo several actions, including deleting controls, Exit the
Window Formatter, but do not save the changes.

Redo
To redo the undone action, choose Redo . Not all actions may be
redone.

Set Tab Order
To visually set the tab key order for selected controls, select a
window, a Group Box, or an Option Box, then choose Set Tab
Order . This opens the Ordering Type dialog, which lets you
specify how the tab-stop order is set: Automatically or Manually,
Horizontally or Vertically. See Set Control Order for an
alternative method of setting tab key order.

From the Ordering Type dialog, select the Manual radio button,
then press the OK button to specify the tab-stop order by
manually CLICKING on the controls. A number appears on each
control, indicating the current order. CLICK on the controls to
change the order to the order you wish.

Alternatively, from the Ordering Type dialog, select the
Automatic radio button, then choose either the Horizontally or
Vertically radio button. Press the OK button to automatically set
the tab-stop order based on the position of the controls.
Horizontally numbers the topmost controls first. Vertically
numbers the leftmost controls first. Reselect the Set Tab Order
command, or CLICK on the sample window title bar to return to
normal editing mode.

Set Control Order
To set the tab key order, and move controls among overlapping
tab controls, choose Set Control Order . This opens the Order
Controls dialog, which displays all controls on the window in a
hierarchical list. Reorder the controls and their tab key order by
selecting a control then pressing the or button to move
the control up or down within the list.

172 CLARION 5 USER’S GUIDE

Synchronize Window
To apply the control attributes specified in the Data Dictionary to
all the controls in the window, choose Synchronize Window . The
attributes are applied as specified in the Synchronization tab of
the Application Options dialog. See Application Generator—
Configuring the Application Generator.

Control Templates
To add Extension templates to the procedure or to edit the
Control and Extension template prompts for the procedure,
choose Control Templates . This opens the Extension and Control
Templates dialog where you can add Extension templates and
you can edit both Control and Extension template prompts. See
Code and Extension Templates in the Application Handbook for
more information.

Control Menu

The Control menu lists all the controls that appear in the Controls toolbox,
except Control Template and Dictionary Fields (see Populate Menu).

Executing a command from the Control menu is identical to clicking on the
corresponding toolbox icon. The menu serves as a convenience. For a list of
toolbox controls, see the Window Formatter Tools. Also see Controls and
Their Properties.

Alignment Menu

The Alignment menu lists the same Alignment tools that appear in the Align
Toolbox. Executing a command from the Alignment menu is identical to
clicking on the corresponding toolbox icon. The menu provides the
following additional options.

Snap All To Grid
Snaps all controls to the nearest grid coordinate.

Snap To Grid
Snaps the selected controls to the nearest grid coordinate.

For a list of Alignment tools, see Window Formatter Tools.

CHAPTER 4 WINDOW FORMATTER 173

Menu Menu

The Menu menu lets you add, change, or delete menus on your window or on
an OLE control.

When you specify a menu for your application window or for MDI child
windows, Clarion automatically merges the application menu with the MDI
child menu when the MDI child window has focus. This saves you the
trouble of enabling, disabling, inserting and replacing various menu
selections depending on which window has focus.

See the The Menu Editor and Toolbars below for directions on how to create
menus and toolbars for your application.

Toolbar Menu

The Toolbar menu lets you add or delete a toolbar for your window.

Specify a toolbar for your application window, or for MDI child windows.
Clarion automatically merges the application window toolbar with the MDI
child toolbar when an MDI child window has focus. This saves you the trouble
of enabling, disabling, inserting and replacing various tools depending on which
window has focus.

See the The Menu Editor and Toolbars below for directions on how to create
menus and toolbars for your application.

Populate Menu

The Populate Menu appears in the Window Formatter only when the
Application Generator is active. It places a field or memory variable in the
window, along with an appropriate control. For fields, the control type
depends on how the field is defined in the data dictionary.

When active, two new tool icons appear at the bottom of the Controls
toolbox, corresponding to the following commands:

Field
Places a control tied to a field or variable. When you CLICK in the
window, the File Schematic Definition dialog appears. Select a
field or variable, then CLICK in the window. This is equivalent to
the Dictionary Fields tool in the Controls toolbox.

The Window Formatter places the control specified on the
Window tab of the Field Properties dialog. If the Data Dictionary
specifies no size for the control, it takes on the size of the other
controls of that type already in the window. If there are no like
controls in the window, the control is the default size.

174 CLARION 5 USER’S GUIDE

Tip: You can control the initial height and width of a control with
the Window Formatter Options dialog. See the Configuring the
Window Formatter for more information.

Multiple Fields
Places a control tied to a field or variable. When you CLICK in the
window, the File Schematic Definition dialog appears. Select a
field or variable, then CLICK in the window. This is equivalent to
the Dictionary Fields tool in the Controls toolbox.

The Window Formatter places the control specified on the
Window tab of the Field Properties dialog.

After placing the first field, the File Schematic Definition dialog
appears again, ready for you to place another field. When all
fields are placed, press the Cancel button to return to normal
editing.

Control Template
Lets you add a control template to the window under
construction. Select one from the Select a Control Template
dialog.

Control templates generate source code to declare controls and
manage their associated data. For example, the Browse Box
control template places a listbox in the window, lets you choose
the fields for the list, and adds all the executable code for
managing the listbox (loading it, scrolling it, etc.).

Once the control template is placed, you can specify its
properties and actions by RIGHT-CLICKING and selecting Properties
or Actions from the popup menu. See Control Templates in the
Application Handbook for more information.

View Menu

The View menu lets you display and hide the Window Formatter grid tools and
toolboxes.

Options
Open the Window Formatter Options dialog to set default spacing
and control population coordinates. See Configuring the Window
Formatter.

Show Grid
Toggle automatic grid snap on or off.

Tip: Aligning the controls in your dialog boxes and windows gives
your application a professional look. See Windows Design
Issues for specific suggestions on how to align different types
of controls.

CHAPTER 4 WINDOW FORMATTER 175

To set the width and height spacing between the grid dots, enter
values in the Width and Height fields in the Grid Settings dialog.
The values are in dialog units. See the Glossary for a definition
of dialog units.

Show Commandbox
Toggle the Command toolbox on and off. When designing large
windows, it may be useful to hide the toolbox, gaining additional
room for the window. You may still access all the commands by
choosing them from the Exit!, Edit, View, and Preview! menus.

Show Toolbox
Toggle the Controls toolbox on and off. When designing large
windows, it may be useful to hide the toolbox, gaining additional
room for the window. You may still access all the control tools
by choosing them from the Control and Populate menus.

Show Alignbox
Toggle the Align toolbox on and off. This is a matter of
individual preference. You may still access all the alignment
commands by choosing them from the Alignment menu.

Show Propertybox
Toggle the Property toolbox on and off. This is a matter of
individual preference. You may still eidt control properties with
the Command toolbox or the Edit menu.

Show Fieldbox
Toggle the Populate Field toolbox on and off. This is a matter of
individual preference. You may still populate fields using the
Controls toolbox or the Populate menu.

VBX Custom Control Registry
Add a custom control library to the registry. Press the Add button
in the VBX Custom Control Registry dialog, then DOUBLE-CLICK on
the .VBX file name. This lets the Window Formatter place
controls from the VBX library in your window (see Custom
Controls). To remove a registration, press the Remove button.

Preview!

Display the window as your end user sees it at runtime. The only difference
is, the window won’t contain live data and the command buttons won’t
execute commands. To exit Preview! mode, press ESC.

Tip: You should always test your windows and dialog boxes.
Though the Window Formatter is visual, it does not show you
how 3-D shading will affect the ‘look’ of your window, nor does
it actually ‘hide’ a hidden control. Additionally, you may test
the tab order while in Preview! mode to verify the current order
makes sense.

176 CLARION 5 USER’S GUIDE

Window Properties Dialog

Use the Window Properties dialog to set all the properties or attributes of a
WINDOW or APPLICATION. Properties include the window caption,
whether the window is resizable, whether the window is scrollable, icons
associated with the window, messages, help files, and cursor types associated
with the window, and many others. In short, all the properties associated with
windows as opposed to properties associated with procedures, controls,
fields, etc.

To open the Window Properties dialog from the Window Formatter :

❏ RIGHT-CLICK on the sample window then choose Properties from the
popup menu.

❏ Select the sample window then press ENTER.

❏ Select the sample window then choose Edit ➤ Properties from the menu.

Additionally, selecting a window from the New Structure dialog leads to the
Window Properties dialog.

General Tab

Text
To specify caption bar text for your window, type a string
constant.

CHAPTER 4 WINDOW FORMATTER 177

Tip: If you create a system modal window, leave the caption bar
blank. The normal Windows style for this type of window is to
display the window without a caption bar.

Tip: You may dynamically alter the caption bar text at run-time. See
PROP:Text in the Language Reference .

Label
Specify the WINDOW label. The label is used to refer to the
WINDOW in source code. In the following example
“CustEntry” is the label for the CustEntry window:
CustEntry WINDOW... !defines CustEntry window

END
CODE
OPEN(CustEntry) !opens CustEntry window

The label may contain upper or lower case letters, numbers, the
underscore character, or a colon. Spaces are forbidden. The first
character must be a letter or the underscore character. Clarion
reserved words may not serve as labels.

Frame Type
Pick the frame type for your window from the drop-down list.
The frame type defines the borders of the window. Choose from:

Single A single pixel frame which the user cannot resize.
Most suitable for dialog boxes.

Double A thick frame, which the user cannot resize. Use
this type frame for a system modal window (without
a caption bar), or for a modal dialog box (with a
caption bar).

Resizable A thick frame, which the user may resize. Choose
this for application and MDI child windows.

None A single pixel frame under Windows 95, and no
frame under Windows 3.1. Most suitable for dialog
boxes. The user cannot resize this frame.

Initial Size
Select the initial size and state of your window from the drop-
down list. Choose from:

Normal Display the window at the default size. If you don’t
specify a default size, Clarion’s run-time library sets
it for you.

178 CLARION 5 USER’S GUIDE

Maximized The window fills the entire desktop, or the entire
application frame, depending on whether the
window is an application window, or an MDI child
window.

Iconized In Windows 3.1, the window appears in an iconized
state—as a 32 by 32 pixel window at the bottom of
the desktop (application window) or at the inside
bottom of the application frame (MDI child
window).

In Windows 95, the window appears in an iconized
state in the Taskbar.

Tip: If you choose the iconized selection, be sure to specify a file
name in the Icon field. If not, your window may not receive a
Restore command on its system menu, which means it will
always remain iconized. Specifying a file name also adds a
minimize button to the window, allowing the user to iconize
the window again, after restoring it.

Freeze
To “freeze” all the controls on the window so that subsequent
data dictionary changes are not applied, check this box. You can
override the #Freeze attribute for all controls or for individual
controls. See Application Generator—Configuring the
Application Generator.

Wallpaper
To provide a background image for the window’s client area,
specify an image filename. Type the filename or press the
ellipsis button (...) to select a file. See WALLPAPER in the
Language Reference.

Wallpaper Mode
Specify how the window displays the background image.
Choose from:

Stretched The image expands to fill the entire client area.

Centered The image displays at its default size and is centered
in the window’s client area.

Tiled The image displays at its default size and is repeated
so it fills the entire client area.

Extra Tab

Icon
To associate an icon with the window (and add a system menu—
see System Menu below), specify an icon file name (.ICO file) in

CHAPTER 4 WINDOW FORMATTER 179

this field. Type the file name or press the ellipsis button (...) to
select a file name with the standard Open File dialog.

You should usually specify an icon for an application window
and for an MDI child window. Specifying an icon automatically
places a minimize button on the caption bar of your application
or MDI child window.

Tip: If you embed SYSTEM{PROP:Icon}=’~MyIcon.ICO’ in the After
Opening the Window embed point of your Application Frame,
the Application Generator applies MyIcon.ICO to all of the
application’s MDI child windows that have no icon specified.

Palette
To specify maximum color depth, fill in the Palette field. This
does not mean your end user’s hardware will support the palette.
Type the total number of colors you wish to support. For
example, 24-bit color would be 16777215. Leave this field zero
to specify the default for the end user’s system.

Timer
To have the window receive Timer Event messages from
Windows, fill in the Timer field. Specify the timer interval in
hundredths of seconds. For example, if you specify 100 in the
field, the window receives an EVENT:Timer once every second.
This might be appropriate for adding a clock to a status bar. See
also Windows Design Issues—Background Processing and
TIMER in the Language Reference.

Tip: Though Windows places limits on the number of active timers,
you can place as many timers on as many windows as you like
in your Clarion application. At run-time, your application uses
only one Windows timer.

Immediate
To generate an event each time the end user moves or resizes the
window, check this box. You are responsible for the code that
executes for the event.

Status Bar
To provide a message bar at the bottom of your window, check
this box. See Status Widths below for information on segmenting
or zoning your status bar.

Tip: A status bar in an application window is a good place to
provide feedback to your user. Clarion makes it easy to post
messages on the status bar advising the user of what your
application is doing. Increasing user feedback makes the user
more in control, more confident, and more efficient when
using your application.

180 CLARION 5 USER’S GUIDE

Modal Window
To specify a system modal window, check this box. This box is
already checked when you choose System Modal Window from
the New Structure dialog.

A system modal window seizes control of the entire system and
prevents any other tasks—even in other applications—from
executing until the window is closed.

Entry Patterns
To add the MASK attribute to your window, check this box. This
causes Clarion to enforce the entry patterns for all the fields in
this window. For example, you may have specified an entry
pattern of @P###-##-####P for a Social Security number field.
Checking the Entry Patterns box means the entry pattern will be
enforced on this window.

Tip: Entry Patterns are also known as Picture Tokens.

The entry patterns, or picture tokens, are specified on the
General tab of the Entry Properties dialog. See Controls and
Their Properties—Entry Properties for information on
specifying entry patterns. See the Language Reference for more
information on the MASK attribute.

System Menu
To place a system menu in your window, check the System Menu
box, or specify an icon file (see Icon above), or specify a
maximize box (see Maximize below). When your window has the
SYSTEM attribute Windows 95 and Windows NT display an
icon in the upper left corner. If you specify an icon (see Icon
above), that icon displays, otherwise the system default icon
displays. Initially, the system default icon is set to the Clarion
icon; however, you can specify a system default icon with:

System{PROP:Icon} = My.ico

Activate the system menu by CLICKING the button, box, or icon in
the upper left corner of the window. Standard system menu
choices include Restore, Minimize, Maximize, and Close.

Every application frame should have a system menu. For users
on a system without a mouse, the system menu provides the only
means of minimizing, maximizing or re-sizing the application
window.

CHAPTER 4 WINDOW FORMATTER 181

Auto display
To add the AUTO attribute to your window, check this box. This
automatically updates the contents of all controls on the window
on each pass through the ACCEPT loop.

MDI Child
To specify an MDI child window, check this box. An MDI child
window cannot move outside the main application window.

 When you START a procedure on its own thread, the procedure and its
window operate independently of other threads in the same program; that is,
the end user can switch focus between each execution thread at will. These
are “modeless” windows.

If you don’t initiate a new thread, the program behavior depends on whether
the procedure’s window has the MDI attribute. A non-MDI child window on
the same thread as its parent, blocks access to all other threads in the
program. This is an “application modal” window. When the application
modal window closes, the other execution threads are available again. An
MDI child window on the same thread as its parent, blocks access only to its
parent window. When the MDI child window closes, its parent window
regains focus.

Maximize Box
To place a maximize button in your window (and a system
menu—see System Menu below), check this box. In general, you
should place a maximize button on application windows and
MDI child document windows, not on dialog boxes.

3D Look
To provide the gray window background, and chiseled control
look for your window, check this box. This is clearly a style
consideration, but will go a long way in giving your application
a professional look.

182 CLARION 5 USER’S GUIDE

The gray background is not visible when you design your
window with the Window Formatter . It is visible in Preview!
mode and when your application is running.

Toolbox
To add the TOOLBOX attribute to your window, check this box.
The TOOLBOX attribute makes your window always stay “on
top” of other open windows.

Docking Options

These options allow you to specify the behavior of a dockable
toolbox. These options are available only when the Toolbox box
is checked. The check boxes set the DOCK attribute.

Left
Allows the toolbox to dock to the left side of the parent window.

Right
Allows the toolbox to dock to the right side of the parent
window.

Top
Allows the toolbox to dock to the top of the parent window.

Bottom
Allows the toolbox to dock to the bottom of the parent window.

Float
Allows the toolbox to float within the client area of the parent
window.

Initial State
Select the window’s initial docking state from the dropdown list.
Only those options selected above are available in the list. This
sets the DOCKED attribute.

Scroll Bars

Horizontal
To add a horizontal scroll bar to your window, check this box.

Vertical
To add a vertical scroll bar to your window, check this box.

Status Widths
To set the width of status bar zone(s), type a value, or a list of
values separated by commas. You must also check the Status Bar
box. See above. The values you enter in this field provide the
STATUS() attribute parameters for your window. See STATUS in
the Language Reference.

If your application has no status bar, or has only one zone on the
status bar, you may omit this field.

Status bar zones are the areas within the status bar marked off by

CHAPTER 4 WINDOW FORMATTER 183

the 3D shaded boxes. The first zone on the left, by default,
displays MSG attribute text from the control with input focus.
This is useful for showing brief instructions or other information
to the user.

The values you enter represent the width, in dialog units, of each
zone. A dialog unit is 1/4 the width of the average character in
the default character set. Thus a value of 40 produces a zone
about 10 characters long. A value of 400 produces a zone about
100 characters long.

You may specify an expandable zone by typing a negative
number. A negative number creates a zone with a minimum
width, that expands as far as the window size will allow.

Use property assignment syntax to place text in any zone. To
place a string in the second zone, for example:

MyWindowLabel{PROP:StatusText,2} = ‘A String’

Tip: A multi-zone status bar can give your application a
professional look. You may display help text in zone one, and
when editing a record, the current record number in zone two,
for example.

Drop ID
To add the DROPID attribute to your window, type up to 16
comma delimited signatures. The DROPID attribute indicates
this window is a valid target for “Drag and Drop” operations.
The signature is a string constant that identifies which types of
drag and drop operations are valid for this window.

Drag and Drop capability means the end user can select an item
in one window or control, hold down the left mouse button,
“drag” the item to another window or control, and release the
mouse button, “dropping” the item onto the other window or
control, which can then look at the item that was “dropped” on
it, and do something with it.

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the
target window’s or control’s DROPID signature, and that the
procedures that drive each window have appropriate source code
to process the drag and drop events. See the Language Reference
for more details and examples. Also see How to Add Drag and
Drop Capability in the on-line help.

184 CLARION 5 USER’S GUIDE

Colors Tab

Enter a valid color value in any of the following fields to add the
COLOR attribute to your WINDOW declaration. See the
Language Reference for more information on COLOR and
WINDOW.

See ..\LIBSRC\EQUATES.CLW for a list of valid color equates.

See the Windows Design Issues appendix for a discussion on
using color to enhance your application.

Text Color
To apply a specific color to all client area text, type a valid color
equate in this field, or press the ellipsis (...) button to select a
color from the Text Color dialog.

Background
To apply a specific color to the entire window, except for title
bar, selected text, and window controls, type a valid color equate
in this field, or press the ellipsis (...) button to select a color from
the Background Color dialog.

Selected text
To apply a specific color to the window’s selected text, type a
valid color equate in this field, or press the ellipsis (...) button to
select a color from the Selected Color dialog.

Selected fill
To apply a specific color to the background of the window’s
selected text, type a valid color equate in this field, or press the
ellipsis (...) button to select a color from the Selected
Background Color dialog.

Help Tab

Cursor
To specify the cursor appearance for the window, choose a
cursor from the drop-down list, or type in the name of a .CUR
file. When the user passes the cursor over the window, the cursor
takes the image defined in the .CUR file. Controls within the
window automatically inherit the same cursor unless you
override it.

Tip: See the Windows Design Issues chapter for tips on when to
use each cursor.

Help ID
To associate a Help ID with the window, fill in a keyword or
context string (preface the context string with a tilde ~
character). This fills in the HLP attribute for the window.

CHAPTER 4 WINDOW FORMATTER 185

Tip: You must author your help file using a word processor that
supports output to .RTF files (such as Microsoft Word for
Windows™). You must compile the help file with the Windows
Help Compiler, which is available from Microsoft.

When the user calls Windows Help while the window is active, it
opens to the associated topic. Should you set a Help ID for
individual controls within the window, they override the
window’s Help ID while the control has focus.

When generating code, the Application Generator calls the
context string or keyword in the .HLP file you specify in the
Application Properties dialog. See Application Generator for
more information.

Message
Type a string to display in zone one of the status bar when the
window is active. This provides the MSG attribute for the
window. Messages may also be specified for controls in the
window. When a control has focus, the control’s MSG is
displayed instead of the window’s MSG. See Status Bar and
Status Widths above for more information on the status bar. See
MSG in the Language Reference.

Position Tab

Generally, you will want to size your window by dragging its handles in the
Window Formatter . Handles are the tiny boxes that appear at the corners and
the sides of selected items. However, you may specify the window size and
its position with the Position Tab.

186 CLARION 5 USER’S GUIDE

Top Left Corner
To specify the initial position (of the top left corner) of your
window, choose the desired X and Y coordinates. Choose from:

Default This instructs Windows to set the X and/or Y
positions of the upper left corner of the window to a
default value which will depend on the user’s system
and on the number of other active applications.

Tip: To give your application the “standard” look of other Windows
applications, use the Default setting wherever possible.

Center Places the window in the center of the desktop. You
may choose horizontal centering, vertical centering,
or both. Adds the CENTER attribute to the
WINDOW. See the Language Reference for more
information.

Fixed To set a specific position, mark the Fixed choices
for the X and Y coordinates. This fixes the position
of the upper left corner of the window. For the
APPLICATION frame this position is relative to the
desktop, for an MDI child window, this position is
relative to the APPLICATION frame’s client area.

The measurement units for these coordinates are
dialog units. Dialog units are a relative measure
based on the default character set. A dialog unit is 1/
4 of the width of the average character, and 1/8 of
the height of the average character. Thus, Windows
proportionally repositions the window at different
screen resolutions.

The Position tab controls
the position and size of

the window. When you
choose default positions,

Windows places your
window at a point

depending on where the
last window (even from

another application) was
opened.

CHAPTER 4 WINDOW FORMATTER 187

Width
To specify the width of your window, choose the desired width
value. Choose from:

Default This instructs Windows to set the width of the
window to a default value which will depend on the
user’s system and on the number of other active
windows and applications.

Fixed To set a specific width, mark the Fixed choice and
specify a value. This sets the width of the window in
dialog units.

Height
To specify the height of your window, choose the desired height
value. The choices are the same as for Width .

Actions Tab

There are no default actions specific to a window. However, this tab provides
alternative access to the File Schematic and the Embed points for the
procedure. Simply press the corresponding buttons.

Placing Controls in a Window

This section explains how to place a control in a window. The Controls and
Their Properties chapter explains how to customize the controls you place.

To place a control

1. CLICK on an icon in the Controls toolbox, or choose a control from the
Controls menu or the Populate menu.

2. After you have selected a control or control template, pass the cursor
over the sample window.

The cursor becomes a crosshair (+). Position the crosshair where you
want the control to appear.

3. CLICK the mouse.

The Window Formatter places the upper left hand corner of the control at
the intersection of the cursor crosshair when you CLICK the mouse. By
default, the control takes on the size of the other controls of that type
already in the window. If there are no like controls in the window, the
control is the default size.

Tip: You can control the initial height and width of a control with
the [Control Defaults] section in the Clarion5.INI file (installed
by default to \CLARION5\BIN). See the Programmer’s Guide for
more information on these settings.

188 CLARION 5 USER’S GUIDE

4. If you chose a LIST, a COMBO, or a BUTTON, and you checked the
Translate controls to control templates when populating box in the
Application Options dialog, then select the control or control template
from the list.

Control templates generate source code to declare controls and manage their
associated data. For example, the BrowseBox control template not only
generates source code to display a listbox control, it also generates code to
load data from a file into a QUEUE, then display the data in the listbox with
complete scrolling and mouse-click selection capability.

Tip: Generally, it is to your advantage to use a Control template
rather than a simple control.

Tip: When using the Window Formatter to place a Dictionary Field,
it automatically opens the Select Field dialog so you can
select or define a data dictionary field or memory variable to
associate with the control. Once placed, you can access the
control’s Properties dialog from the Edit menu or from the
right-click popup menu.

5. If necessary, CLICK and DRAG on a control handle to resize the control.
CLICK and DRAG on the interior of the control to move the control.

CHAPTER 4 WINDOW FORMATTER 189

Menu Editor
A menu is a list of the various actions your application may perform. In
Clarion, this list of actions (menu) is declared using the MENUBAR
structure, MENU structures, and ITEMs. In this chapter, the word menu
generically refers to the list of actions your application may perform. The
words MENUBAR, MENU, and ITEM refer to Clarion Language statements
that define your application’s menu.

The Menu Editor is a visual design tool—a subset of the Window Formatter —
that generates Clarion Language statements to define your application’s
menu.

This section:

◆ Discusses dynamic menu management for Multiple Document Interface
(MDI) applications.

◆ Shows you how to call the Menu Editor and create a menu.

◆ Describes how to automatically implement Standard Windows Behavior
(SWB) for commands such as Edit ➤ Copy by linking a Clarion Standard
ID (STD attribute) to an ITEM or MENU.

Merging MDI Menus

Multiple Document Interface (MDI) applications make special demands
upon a program. Often, the program may support a variety of document
windows, each of which has a slightly different set of commands from which
the user may select. See Windows Design Issues for more information.

Normally in an MDI application, the developer writes code to monitor which
window is active and to change the menus and toolbars to reflect the options
currently available to the user. Clarion does this automatically by merging
menus and toolbars according to preferences you specify with the Menu
Editor. However, accurate specification requires some understanding and
planning by the application developer.

Global Selections

On an APPLICATION frame, the MENUBAR defines the Global menu
selections for the program. These Global menu selections are generally
available on all MDI “child” windows. However, if the NOMERGE attribute
is present on the application’s MENUBAR, then there is no Global menu,
and the application’s menu is a Local menu displayed only when no MDI
child windows are open.

190 CLARION 5 USER’S GUIDE

Local Selections

On an MDI child window, the MENUBAR defines Local menu selections
that are automatically merged with the Global menu selections defined on
the application’s MENUBAR. Both the Global and the Local menu
selections are available while the MDI “child” window has input focus. Once
the window loses focus, its Local menu selections are removed from the
Global menu selections. If the NOMERGE attribute is specified on an MDI
child window’s MENUBAR, the Local menu overwrites and replaces the
Global menu.

Non-MDI Windows

On a non-MDI window, the Local menu selections are never merged with the
Global menu selections. A MENUBAR on a non-MDI window always
appears in the window, and not on any application frame which may have
been previously opened.

Merging Order

Normally, when an MDI window’s menu (Local selections) merges into an
application’s menu (Global selections), the Global menu selections appear
“first”, followed by the Local menu selections. First means either toward the
left or toward the top, depending on whether the merged selection is
displayed on the action bar (horizontal list) or in a menu (vertical list).

 The merge process also considers whether any Local MENUs match any
Global MENUs. MENUs that have the same name and the same MENUBAR
level, match. When there are no matches, the menus merge in the normal
order. However, when MENUs match, a single menu (vertical list) results
with the Global selections appearing above the Local selections. This new
menu has all the attributes of the Global MENU, such as, MSG, FIRST, etc.
Within this merged menu, any matching subMENUs are also merged into a
single menu. Note that ITEMS are not merged, even when they match.

The normal merging order may be modified by using the Menu Editor’s
Position drop-down list (see Specifying Menu Positions and Merging
Behavior below) to add FIRST or LAST attributes to individual MENUs and
ITEMs. The merge position priority is:

1. Global selections with FIRST attribute

2. Local selections with FIRST attribute

3. Global selections without FIRST or LAST attributes

4. Local selections without FIRST or LAST attributes

5. Global selections with LAST attribute

6. Local selections with LAST attribute

See the Language Reference for more information on these attributes.

CHAPTER 4 WINDOW FORMATTER 191

Planning and Implementing Menus

To create menus for MDI applications:

1. Create a master menu for the APPLICATION frame window.

Most likely, this will include a File menu and a Help menu, since they
contain functions that are available even when no document windows are
open.

Tip: Clarion’s Application Frame procedure template comes with a
predefined menu with many of the most common functions
already provided for you.

Use the Window Formatter’s Menu Editor to create your menus. Be sure to
choose the FIRST attribute for the File MENU, and the LAST attribute
for the Help MENU from the Position drop-down list. This ensures that
File and Help will maintain their relative positions when Clarion merges
this global menu with local menus.

2. Plan the additional menus for the child windows.

Can they all share the same menu titles? Do they share many of the same
commands? Ideally, most of the MENUs and ITEMs can be active in all
the child windows. If there are only a few commands specific to certain
windows, plan on disabling those MENUs and ITEMs in the windows
that don’t support them, and enabling them in those that do.

3. Create the menu for the first child window.

Again, you will use the Window Formatter’s Menu Editor to create the
menu. Add any window-specific MENUs to the first child window. That
is, the window-specific MENUs the application frame lacks-—such as
Edit, Insert, etc.

Optionally, add a File MENU to the first child window. This is necessary
only if the child window needs an ITEM on the File MENU that is not
already included on the application’s File MENU. For example, adding a
Close command might be appropriate. If so, add the File MENU to the
first child window. Add the Close ITEM to the File MENU.

Add the Window MENU to the first child window. Window MENUs are
standard for most windows programs. A typical Window MENU in-
cludes the following ITEMs: Arrange Icons, Tile, Cascade, plus a
document (windows) list that displays all open child windows and allows
the user to switch between them. In many cases this entire MENU,
including the document list, can be implemented with standard ID’s
(StdID’s). See Creating Your Application’s Menu below.

4. Exit the Menu Editor and save the menu.

5. Test the interaction of these first two menus.

192 CLARION 5 USER’S GUIDE

Do they merge the way you planned? Are the correct selections available
for the window with focus? Make any adjustments with the Menu Editor .

6. Repeat steps 3 through 5 for other child windows.

Calling the Menu Editor

To create a menu for your application, use the Menu Editor . You access the
Menu Editor through the Window Formatter .

Tip: You can also create a toolbar for your application using the
Window Formatter. See Toolbars for more information.

This section provides detailed examples of using the Menu Editor to create
menus. From the Window Formatter , choose Menu ➤ New Menu to create a
new menu or choose Menu ➤ Menu Editor to edit an existing menu.

The Menu Editor dialog visually represents a Clarion MENUBAR data
structure. The menu tree (on the left hand side of the dialog) appears as
simplified Clarion language syntax, containing these Clarion keywords:

◆ A MENUBAR keyword at the top.

◆ A MENU statement or statements followed by a menu name, and a
corresponding END statement.

◆ An ITEM statement or statements followed by an item name.

Menu Editor command buttons allow you to add and delete MENUs and
ITEMs. You may also move MENUs and ITEMs within the MENUBAR
structure with the and buttons.

The right hand side of the dialog lets you specify the text of your MENUs
and ITEMs, the equate labels used to reference the MENUs and ITEMs in
executable code, and the actions that occur when the user selects an ITEM.

Tip: When using the Application Generator, each ITEM you place
on a MENU or MENUBAR automatically adds an embed point
to the control event handling tree in the Embedded Source
dialog. This lets you easily attach functionality to your ITEMs.

The following section provides a step by step procedure for creating a menu.
Following that are sections detailing the Menu Editor commands and options,
and a discussion of considerations to keep in mind when creating MDI
application menus.

CHAPTER 4 WINDOW FORMATTER 193

Creating Your Application’s Menus

Here are the steps for creating a menu starting from an empty window within
the Window Formatter .

1. Choose the Menu ➤ New Menu command.

The Menu Editor dialog appears. Only the MENUBAR statement is
present.

2. Press the new menu button.

This adds the first MENU statement, its name, and its corresponding
END statement, ready for editing.

The ampersand within the MENU name signifies that the character
following the ampersand is the accelerator key. That is, the character is
underlined (for example: Menu1), and, when the user presses
ALT+accelerator key, the menu displays.

3. In the Menu Text field, type the text to display for this MENU.

For example, type &File , so the end user sees File .

You can embed tabs and other special characters within your menu text.
To embed special characters (such as the tab character) in your menu
text:

In the Procedure Properties dialog, press the Window ellipsis (...) button.

This opens the Text Editor to the WINDOW declaration for this proce-
dure. When you embed special ASCII characters in your WINDOW
declaration, you must edit the source code directly, because the Window
Formatter doesn’t recognize the ASCII delimiter characters (<,>).

In your ITEM text, type <n> where you want the character to appear.

194 CLARION 5 USER’S GUIDE

Where n is the ASCII code for the character. The brackets (<,>) tell the
Clarion compiler to insert the ASCII characters specified within. For
example:

ITEM(‘Cut<9>Ctrl+X’),USE(?CutText),KEY(CtrlX),STD(STD:Cut)

Exit the Text Editor and save.

Tip: You can embed special characters within POPUP menu text
and MESSAGE text by using the ASCII delimiters (<,>).

4. In the Use Variable field, type a Field Equate Label.

A Field Equate Label has a leading question mark (?), and you should
make it descriptive. For example ?File shows this menu is to manipulate
a file. You can refer to the MENU in your source code by its Field
Equate Label.

5. Press the new item button.

This inserts an ITEM between the MENU statement and its END state-
ment. Note that ITEMs are used to execute commands or procedures,
whereas MENUs are used to display a selection of other MENUs or
ITEMs.

6. In the Menu Text field, type the text to display for this menu ITEM.

For example, type &Open, so the end user sees Open . The ampersand
within the ITEM name signifies the character following the ampersand is
the accelerator key. That is, the character is underlined, and, when the
user presses the accelerator key, the action associated with the ITEM
executes.

Note: A MENU accelerator key requires the ALT key to take effect,
whereas an ITEM accelerator key does not require the ALT key,
but does require that the ITEM is currently displayed. See
Adding a Hot Key below for another method of invoking your
MENUs and ITEMs.

7. In the Use Variable field, type a Field Equate Label.

A Field Equate Label has a leading question mark (?), and you should
make it descriptive. For example ?FileOpen shows at a glance the
intended purpose of this ITEM: to open a file.

You refer to an ITEM within source code by its Field Equate Label.

8. In the Message field, type the MSG attribute contents.

This message text displays in the status bar (if enabled) when the user
highlights this MENU or ITEM.

9. In the Help ID field, type either a help keyword or a context string present
in a .HLP file.

CHAPTER 4 WINDOW FORMATTER 195

If you fill in the Help ID for a MENU or an ITEM, when the user high-
lights the MENU or ITEM and presses F1, the help file opens to the
referenced topic. If more than one topic matches a keyword, the search
dialog appears.

The Help ID field (HLP attribute) takes a string constant specifying the
key for accessing a specific topic in a Windows Help file. This may be
either a Help keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may search
for it in the Help Search dialog.

Tip: When authoring a Windows Help file, you indicate a keyword
with the ‘K’ footnote. A Help context string is the arbitrary
string which uniquely identifies each topic page for the
Windows Help Compiler. When creating the Help file, the ‘#’
footnote marks a context string. These tasks are all done for
you by many help authoring tools.

When referencing a context string in the Help ID field, you must identify
it with a leading tilde (~).

10. From the Actions Tab , choose Call a Procedure from the When Pressed
drop-down list.

The procedure you specify executes when the user selects this ITEM.
You may specify parameters to pass and standard file actions (insert,
change, delete, or select) if applicable (Clarion’s Procedure templates
understand and carry out the requested file actions). Or you may initiate
a new thread. The procedure appears as a “ToDo” item in your Applica-
tion Tree (unless you named a procedure that already exists).

 When you START a procedure on its own thread, the procedure and its
window operate independently of other threads in the same program; that is,
the end user can switch focus between each execution thread at will. These
are “modeless” windows.

If you don’t initiate a new thread, the program behavior depends on whether
the procedure’s window has the MDI attribute. A non-MDI child window on
the same thread as its parent, blocks access to all other threads in the
program. This is an “application modal” window. When the application
modal window closes, the other execution threads are available again. An
MDI child window on the same thread as its parent, blocks access only to its
parent window. When the MDI child window closes, its parent window
regains focus.

196 CLARION 5 USER’S GUIDE

This is one way to add functionality to your ITEM. You may also add
functionality by choosing Run a Program from the drop-down list, by
embedding source code, or by typing an STD ID in the STD ID field.
STD IDs give your application Standard Windows Behavior (SWB) for
common actions such as File/Open and Edit/Cut, Copy, and Paste. See
Implementing Standard Windows Behavior.

After following these steps, you have a single MENU called File , with a
single ITEM called Open . To add other ITEMS to the MENU, repeat
steps 4 through 11. To add a second MENU, select the END statement
and press the Menu button. To add a subMENU, select a MENU or ITEM
statement and press the Menu button.

11. To finish the menu and return to the Window Formatter , press the Close
button.

Implementing Standard Windows Behavior

There are some menus and commands that you see in almost every windows
program. For example, Cut, Copy, and Paste. Clarion provides an easy
method for implementing these standard actions in your application menus—
with the Std ID field on the Menu Editor dialog.

To specify a standard action for your menu ITEM, enter one of the equates
listed below in the Std ID field. Clarion automatically implements the
command using standard windows behavior; you do not need any other
support for it in your code. The standard equate labels and their associated
actions are also contained in the \LIBSRC\EQUATES.CLW file.

STD:PrintSetup Opens Printer Options Dialog
STD:Close Closes active window
STD:Undo Reverses the last editing action
STD:Cut Deletes selection, copies to clipboard
STD:Copy Copies selection to clipboard

CHAPTER 4 WINDOW FORMATTER 197

STD:Paste Pastes clipboard contents at the insertion point
STD:Clear Deletes selection
STD:TileWindow Arranges child windows edge to edge
STD:TileHorizontal Arranges child windows edge to edge
STD:TileVertical Arranges child windows edge to edge
STD:CascadeWindowArranges child windows so title bars are visible
STD:ArrangeIcons Arranges iconized child windows
STD:WindowList Select child windows from a MENU
STD:Help Opens .HLP file to the contents page
STD:HelpIndex Opens .HLP file to the index
STD:HelpOnHelp Opens Microsoft’s Help system.HLP file
STD:HelpSearch Opens Microsoft’s Help Search .HLP file.

Menu Positions and Merging Behavior

The Position drop-down list lets you specify MENU and ITEM order priority
when Clarion merges menus. Choose from:

Normal
Set normal merging order. In normal merging, Global selections
precede Local selections. See Merging Menus above.

First
Force the selected MENU or ITEM to the first position when
merging menus. This adds the FIRST attribute to the MENU or
ITEM statement. See the Language Reference for more
information. Also, see Merging Menus above.

Last
Force the selected MENU or ITEM to the last position when
merging menus. This adds the LAST attribute to the MENU or
ITEM statement. See the Language Reference for more
information. Also, see Merging Menus above.

The following two Flags let you specify whether or not your menu can be
merged, and right justification of selections displayed on the actionbar:

198 CLARION 5 USER’S GUIDE

Do Not Merge
To never merge this MENUBAR with other MENUBARs, check
this box. This is available only for the MENUBAR. See
NOMERGE in the Language Reference for more information.

Right Justify
To right justify the selected MENU, check this box. This is
available only for MENUs on the action bar. Nested MENUs
(subMENUs) cannot be right justified. Checking this box
displays the selected MENU, and all MENUs after the selected
MENU, at the far right of the action bar.

Adding Hot Keys

A hot key is very similar to an accelerator key. A hot key or hot key
combination allows the end user to immediately display a MENU, or execute
the action associated with an ITEM, without mouse clicking, and without
displaying the menu that contains the ITEM. Customarily, hot keys take the
form of CTRL + character, or CTRL + SHIFT + character. To add a hot key:

1. Press the Key ellipsis (...) button to select the hot key combination.

This opens the Input Key dialog. Use this dialog to add the KEY attribute
to your MENU or ITEM. The KEY attribute specifies a “hot” key or key
combination.

2. From the Input Key dialog, specify the hot key or key combination by
pressing the desired key or keys.

The keys you press appear in the Key field, and are supplied as the
parameter to the KEY attribute for this menu item.

Mouse clicks may be used as hot keys; however, mouse clicks cannot be
specified by clicking the mouse. For mouse clicks, check the correspond-
ing check box(es). For example, to execute the Open command when the
user double-clicks, check the Left Button box and the Double Click box.

CHAPTER 4 WINDOW FORMATTER 199

The ESC, ENTER, and TAB keys may be used as hot keys, but they cannot be
specified by pressing them. For these keys, press the ellipsis (...) button
and type “esc,” “enter,” or “tab.”

Tip: See Windows Design Issues for a list of common hot keys
associated with standard windows commands.

3. Press the OK button to return to the Menu Editor .

4. To display the hot key combination (or any other text) as right-justified
menu text, type the text in the Menu Text field.

For example, if you set the hot key as CTRL+h, type ctrl+h in the Hot Key
Menu Text field. Then, each time the end user uses the menu, the right-
justified text reminds her that the menu choice can be invoked with the
ctrl+h keystrokes.

Other Menu Behavior—Disabling and Toggling

The following two Flags let you disable a selection, and set up an ITEM as
toggle switch.

Disable Item
To disable a MENU or ITEM (dim the text and make it
unavailable to the user), check this box. This adds the DISABLE
attribute to the MENU or ITEM statement.

Tip: The Disable box is handy when you incorporate modality into
a program—that is, when one type of child window does not
support the same commands another type does. For the type
that doesn’t support the command, disable the ITEM rather
than omitting it. This will avoid confusing the user with menu
ITEMs that disappear and reappear depending on which
window is active.

Toggle (on/off) Item
To create an on/off toggle for a selected ITEM, check this box.
The ITEM should have a numeric variable in the Use Variable
field. The variable should be declared using one of the data
dialogs, or in embedded source. See Creating Your Application’s
Menu above. The Menu Editor adds the CHECK attribute to this
ITEM.

With the CHECK attribute, when the user selects the item for the
first time, the item is “on,” the USE variable’s value is one (1),
and a check mark appears beside the item. When the user selects
the item a second time, the item is “off,” the USE variable’s
value is zero (0) and no check mark is displayed. You should add
source code to control the application’s behavior depending on
the state of the USE variable.

200 CLARION 5 USER’S GUIDE

Managing Your Menus

Press this button to add a separator bar after the highlighted
MENU or ITEM.

Tip: Separator bars can provide the user with a visual cue that a
group of ITEMs on the menu perform related functions.

Press this button to delete the highlighted MENU or ITEM. If
you delete a MENU, all nested ITEMs and MENUs, and its
associated END statement are also deleted.

To move the highlighted MENU or ITEM up in the menu list,
press this button. When moving a MENU, all ITEMs and
MENUs within it and its associated END statement move also.

To move the highlighted MENU or ITEM down in the menu list,
press this button. When moving a MENU, all ITEMs and
MENUs within it and its associated END statement move also.

CHAPTER 4 WINDOW FORMATTER 201

Toolbars
With a simple command in the Window Formatter , you can add a toolbar to
any window. You can place any controls on a toolbar, but the ones you will
probably use the most are command buttons, check boxes, radio buttons, and
drop-down listboxes. As with menus, Clarion automatically merges global
and locao toolbars in certain situations.

Merging Toolbars

Global and Local Toolbars

The TOOLBAR structure declares the tools displayed for an APPLICATION
or WINDOW. On an APPLICATION, the TOOLBAR defines the Global
tools for the program. Global tools are active and available on all MDI child
windows unless the MDI child window’s TOOLBAR structure has the
NOMERGE attribute.

If you specify the NOMERGE attribute on the APPLICATION’s
TOOLBAR, there are no global tools; the tools are local and are displayed
only when no MDI child windows are open.

Note: To merge toolbars, the APPLICATION’s toolbar AT width must
be less than the APPLICATION’s frame width. In the Procedure
Properties dialog, press the Window’s ellipsis (...) button, then
set the TOOLBAR’s width (third AT attribute) equal to the X
position plus the width of the rightmost toolbar control.

MDI Windows

On an MDI window, the TOOLBAR defines tools that are automatically
merged with the Global toolbar. Both the Global and the local MDI
window’s tools are active while the MDI child window has input focus. Once
the window loses focus, its specific tools are removed from the Global
toolbar. If the NOMERGE attribute is specified on an MDI window’s
TOOLBAR, the tools overwrite and replace the Global toolbar.

Non-MDI Windows

On a non-MDI WINDOW, the TOOLBAR is never merged with the Global
menu. A TOOLBAR on a non-MDI window always appears with the window
itself, and not on the parent window.

Merging Order

When an MDI window’s TOOLBAR is merged into an application’s
TOOLBAR, the global tools appear first, followed by the local tools. The

202 CLARION 5 USER’S GUIDE

toolbars are merged so that the fields in the window’s toolbar begin just right
of the position specified by the value of the width parameter of the
application TOOLBAR’s AT attribute. The height of the displayed toolbar is
the maximum height of the “tallest” tool, whether global or local. If any part
of a control falls below the bottom, the height is increased accordingly.

Toolbar Merging Checklist

Application Properties

1. Clear the NOMERGE box on the APPLICATION’s toolbar.

2. TOOLBAR’s width must be less than APPLICATION’s width.

In the Procedure Properties dialog, press the Window’s ellipsis (...)
button, then set the TOOLBAR’s width (third AT attribute) equal to the
X position plus the width of the rightmost toolbar control.

Child Window Properties

1. Clear the NOMERGE box on the WINDOW’s toolbar.

2. Check the MDI box.

Adding Toolbars

The following describes how to add a toolbar to a window, then how to add a
control to the toolbar. The starting point is the Window Formatter , open to an
empty window:

1. From the Toolbar menu, choose New Toolbar .

The Window Formatter places a toolbar at the top of the window (gray
rectangle).

2. Optionally choose Options ➤ Snap to Grid .

This makes sizing and placing the controls easier.

3. To place a control on the toolbar, CLICK on a control in the Controls
toolbox, then CLICK inside the toolbar in the sample window.

This places the control in the toolbar. See Controls and Their Properties
for more information on various controls.

Tip: Uses .ICO files that are 32 x 32 pixels for toolbar buttons.
These larger .ICO files contain both the enabled and the
disabled icon in the same file, rather than requiring a separate
file. When creating a custom .ICO file for a toolbar button,
place your the image in the center of the icon file. Clarion
automatically crops the icon image to fit the button size.

CHAPTER 4 WINDOW FORMATTER 203

List box Formatter
The List box Formatter is a visual design tool—a subset of the Window
Formatter —that generates Clarion Language statements to format your
application’s LISTs. The List box Formatter provides a wide degree of
flexibility to create and modify your listboxes, drop-down listboxes, and
combo boxes. You may invoke the List box Formatter from the Window
Formatter or from the Report Formatter .

Once you specify a QUEUE to provide the data for the list (done
automatically when specifying a BrowseBox template), the List box
Formatter lets you customize your list in the following ways:

◆ You can set the number, content, and formatting of columns,
with or without resizable borders.

◆ You can specify that a record (row) from the QUEUE occupies
more than one listbox row.

◆ You can add horizontal scrollbars for each column or group of
columns in the listbox.

◆ You can specify the focus on rows or individual “cells,”
spreadsheet fashion.

◆ You can specify headers for the listbox columns.

◆ You can add a locator control that allows users to quickly find
the item they need.

◆ You can enable selection of multiple rows in the list.

◆ You can enable colorization of items in the list.

◆ You can enable iconization of items in the list.

◆ You can enable nesting (indenting) of items in the list.

List Overview

LIST controls come in a variety of forms, the most common of which are
listboxes, drop-down listboxes, and combo boxes.

A listbox, by convention, is a read-only display of data in a tabular format
(rows and columns). It is scrollable and may display many records and fields.
It efficiently displays large amounts of data.

A drop-down listbox, by convention, is a read-only display of mutually
exclusive selections or choices. It is often scrollable and is called a drop-
down list because it initially appears as a single row, but “drops down” to
display multiple rows, like a menu. It forces valid user selections, provides a

204 CLARION 5 USER’S GUIDE

visual cue reminding the user that a selection is required, offers a default
selection, and doesn’t take up much screen space.

A combo box, is a drop-down listbox with the ability to accept user input.

When creating a listbox control, you define its data source, its functionality,
and its format. Clarion’s development environment divides these property
definitions among several dialogs:

◆ The List Properties dialog specifies a drop-down list versus a
regular list, specifies the queue that supplies the list data, and
specifies the general scrolling capability, that is, all the
properties of the listbox that are not column-specific. See
Controls and Their Properties—List Properties.

◆ The List box Formatter dialog lets you add, delete, reorder, and
resize the specific fields or columns displayed in the listbox. And
it defines the appearance and behavior of individual listbox
columns as well as groups of columns. For example, define
individual column headers, widths, and scrolling, or spread a
header across several columns. This dialog is discussed here.

After you’ve started defining your listbox with the List Properties dialog,
these are the general steps for completing your listbox.

Understanding the List box Formatter

Add columns, one by one, and format them

From the Window Formatter , RIGHT-CLICK on the LIST or COMBO control,
then choose List Box Format... from the popup menu to open the List box
Formatter dialog.

The Sample Listbox

The List box Formatter displays a representation of the listbox—the sample
listbox. Each field appears as a column in the listbox, the data represented by
“$” characters for strings, or “<“ and “#” characters for numbers. If any field
contains a header, a header row appears over the list.

You format the fields one by one, which updates the sample listbox. For your
convenience, the List box Formatter provides a horizontal scroll bar whether
or not you specify one in the List Properties dialog.

The List box Formatter does not display a vertical scroll bar, even if you
checked the Vertical box in the List Properties dialog. However, the vertical
scroll bar does appear at run time, if the queue contains more items than will
fit in the listbox.

CHAPTER 4 WINDOW FORMATTER 205

❏ Press the new column button to add a new column.

When working from within the Application Generator, choose a field
from the Select Field dialog. The List box Formatter adds the selected
field.

❏ Use the General tab to set the column-specific heading width and text,
data format, scrolling, and other attributes.

❏ Use the Appearance tab to set the column-specific icons, colors, fonts,
and nesting.

Tip: Formatting for the first column becomes the default format for
subsequent columns.

For each setting you make, the List box Formatter creates the appropriate
FORMAT attribute for the LIST statement that defines your listbox. See
FORMAT in the Language Reference for more information.

Tip: At run-time, the PROP:Format property always contains the
current format of the listbox, including any user changes. To
save the user’s column sizes, use GETINI and PUTINI to save
and restore the PROP:Format values:

PUTINI(‘Settings’,‘UserList’,?List{PROP:Format},”MYAPP.INI’)

Tip: You can update the FORMAT string by typing directly into it,
and your changes are reflected in the corresponding List box
Formatter field.

❏ To remove a field from the listbox, press the button.

206 CLARION 5 USER’S GUIDE

❏ To cancel the formatting changes, press the Cancel button.

❏ To accept the formatting changes and continue formatting, press the
Apply button.

❏ To accept the formatting changes and close the List box Formatter , press
the OK button.

❏ To move the selected field to the left, CLICK the button, or press
CTRL+UP ARROW.

If the selected field is leftmost in a group, the button moves the field
out of the group, but the order of the fields is unaffected. Conversely, the

 button moves the selected field into a group at its immediate left, and
the order of the fields is unaffected.

❏ To move the selected field to the right, CLICK the button, or press
CTRL+DOWN ARROW.

If the selected field is rightmost in a group, the button moves the
field out of the group, but the order of the fields is unaffected.
Conversely, the button moves the selected field into a group at its
immediate right, and the order of the fields is unaffected.

List box Formatter General Tab

The tab lets you set the following formatting options.

Column Heading

Heading Text
Optionally specify header text for the column. The header
appears as a gray row above the listbox data items. To specify no
header, leave this field blank. If any field included in the listbox
has a header, a header appears across the entire listbox; fields
with no header text have a blank header.

The heading appears within the FORMAT string enclosed in
tilde (~) characters, as in “~My Header~.”

Width
Specify the width in dialog units for the column data. By default,
the Formatter sets the value to four times the number of
characters specified in the field picture in the data dictionary. For
variables, the default is four times the number of characters in
the picture token defined for it.

Tip: As a rough guide, allow four dialog units for an average
character. For example, if you want a column 10 characters
wide, type 40 in the Width field.

CHAPTER 4 WINDOW FORMATTER 207

Tip: After you’ve placed a field, you can drag the column
separators in the Sample Listbox to resize the column width.
The cursor changes when you place it on top of the separator,
to indicate you can resize it.

The data width you set appears within the FORMAT string for
the field, preceding the Justification code, as in “40L.”

Scroll Bar
Type a non-zero value to specify a horizontal scroll bar for this
column only. If the overall listbox already has a scroll bar, the
column scroll bar appears above the listbox scroll bar. The value
pecifies, in dialog units, how far the column scrolls.

For example, if your data is fifty (50) characters, and your
listbox column width is about forty (40) characters (one hundred
sixty (160) dialog units), you should specify a value of fifty (50).
Fifty (50) additional dialog units are enough to display the ten
characters that extend beyond the width of the listbox column.

The scroll bar and size appear in the FORMAT string together,
as in “S(4).”

Justification
Choose from the drop-down list to specify left, right, center or
decimal header justification.

This appears within the FORMAT string following the header, as
in “~My Header~L.”

208 CLARION 5 USER’S GUIDE

Indent
Optionally specify an indent, in dialog units, for the heading
text. Indent moves the data by the number of dialog units
specified, in the opposite direction to the justification. An indent
of two (2) on left justification improves listbox readability.

This appears within the FORMAT string following the header, as
in “~My Header~L(8).”

Column Data

Picture
Specify the picture token for the data. The List box Formatter
displays the data according to the picture token. For example,
the picture token @P(###) ###-####P displays a phone number
as (555) 555-5555.

The picture token you specify appears in the FORMAT string.

Justification
Choose from the drop-down list to specify left, right, center or
decimal. Decimal justification aligns decimal numbers by their
decimal points.

The justification appears in the FORMAT string following the
data width, as in “40R.”

Indent
Optionally specify an indent, in dialog units, for the listbox data.
Indent moves the data by the number of dialog units specified, in
the opposite direction to the justification. An indent of two (2)
on left justified data improves listbox readability.

The indent appears within the FORMAT string surrounded by
parentheses and preceded by a letter indicating the justification,
as in “L(8).”

Formatting Flags

Right Border
Check this box to specify column separators between fields in
the listbox at run time.

The FORMAT string includes the pipe symbol (|), immediately
preceding the header text, as in “|~MyHeader~.”

Resizeable
Check this box to specify that the user can resize the width of the
columns at run time.

The FORMAT string includes the “M” character, immediately
preceding the header text as in “M~MyHeader~.”

CHAPTER 4 WINDOW FORMATTER 209

Underline
Check this box to add the underline style to the listbox text. In
effect, this creates a bottom border for each row in the column,
giving your listbox a spreadsheet or cell-like appearance.

The FORMAT string includes the underscore character,
immediately preceding the header text, as in “_~My Header~.”

Fixed
Check this box to specify that the column always remains visible
in the listbox, even if other columns scroll.

The FORMAT string includes the “F” character, immediately
preceding the header text as in “F~MyHeader~.”

Last on Line
Checking this box specifies that the next field in the group will
appear immediately below the current field. In effect, it stacks
two or more fields below the group header.

Tip: The field must be part of a group. See Creating Column
Groups .

The FORMAT string includes the “/” character, immediately
preceding the header text as in “/~MyHeader~.”

Locator
By default, the first field in a multi-column COMBO displays in
the entry portion of the COMBO. Check the Locator box to
specify that this field (instead of the first field) displays in the
entry box portion of a multi-column COMBO control.

The FORMAT string includes the “?” character, immediately
preceding the header text as in “?~MyHeader~.”

Color
Check this box to allow conditional runtime colors for individual
list items—that is, to conditionally override the default colors for
individual list rows. The color information for each row is
contained in four LONG fields that immediately follow the data
field in the QUEUE. Assign the color value to the appropriate
QUEUE field at runtime, and Clarion’s runtime library does the
rest.

See Control Templates—BrowseBox Control in the Application
Handbook for information on specifying conditional BrowseBox
colors, and see FORMAT in the Language Reference.

Adds an asterisk “*” to the FORMAT string.

Style
Check this box to allow conditional runtime fonts for individual
list items—that is, to conditionally override the default fonts for
individual list rows. The font (style) information for each row is
contained in a LONG field that immediately follows the data

210 CLARION 5 USER’S GUIDE

field in the QUEUE. Assign the style value to the appropriate
QUEUE field at runtime, and Clarion’s runtime library does the
rest.

See Control Templates—BrowseBox Control in the Application
Handbook for information on specifying conditional BrowseBox
colors, and see FORMAT in the Language Reference.

Adds a “Y” to the FORMAT string.

List box Formatter Appearance Tab

Color and Style

Use these prompts to set the default colors for all list rows and columns.

Text
To set the default color for normal (unselected) list text, type a
valid color equate in this field, or press the ellipsis (...) button to
select a color from the color dialog.

Adds an “E(color,,,)” to the FORMAT string.

Background
To set the default color for normal (unselected) list background,
type a valid color equate in this field, or press the ellipsis (...)
button to select a color from the color dialog.

Adds an “E(,color,,)” to the FORMAT string.

Selected Text
To set the default color for normal (unselected) list text, type a
valid color equate in this field, or press the ellipsis (...) button to
select a color from the color dialog.

Adds an “E(,,color,)” to the FORMAT string.

Selected Background
To set the default color for normal (unselected) list background,
type a valid color equate in this field, or press the ellipsis (...)
button to select a color from the color dialog.

Adds an “E(,,,color)” to the FORMAT string.

Default Style
Type the default style number. The style number sets the font
typeface, size, style, and color for all list rows and columns.

Adds a “Z(n)” to the FORMAT string, where n is the style
number.

CHAPTER 4 WINDOW FORMATTER 211

Icon

None
Select this to display no icons in the column.

Normal
Select this to create an area to the left of the data in the column
for displaying a normal image (.ICO) that you supply. See
Control Templates—BrowseBox Control in the Application
Handbook for information on specifying BrowseBox icons, and
see Prop:IconList in the Language Reference.

Adds an “I” to the FORMAT string.

Transparent
Select this to create an area to the left of the data in the column
for displaying a transparent image (.ICO) that you supply. See
Control Templates—BrowseBox Control in the Application
Handbook for information on specifying BrowseBox icons, and
see Prop:IconList in the Language Reference.

Adds a “J” to the FORMAT string.

Tree

Tree
Checking this box displays this column in a hierarchical tree
diagram. See Application Handbook—Control Templates—
Relation Tree for more information. See also Relation Tree in the
on-line help.

Adds a “T” to the FORMAT string.

212 CLARION 5 USER’S GUIDE

One-based tree
Checking this box allows the root level to collapse, that is, all the
items in the tree can collapse to a single line.

Adds a “(1)” to the “T” in the FORMAT string, resulting in
“T(1).”

Show Level
Checking this box causes each descending level of the Tree
hierarchy to be indented.

Clearing this box appends “(I)” to the “T” in the FORMAT
string, resulting in “T(I).”

Show Lines
Checking this box adds connecting lines between related items
in the tree diagram.

Clearing this box appends “(L)” to the “T” in the FORMAT
string, resulting in “T(L)” to suppress lines.

Show Boxes
Checking this box adds expand (+) and contract (-) boxes to the
tree diagram.

Clearing this box appends “(B)” to the “T” in the FORMAT
string, resulting in “T(B)” to suppress boxes.

Show Root
Checking this box displays a root item for the tree diagram.

Clearing this box appends “(R)” to the “T” in the FORMAT
string, resulting in “T(R)” to suppress display of a root item.

Creating Column Groups

Listbox groups contain two or more fields which share common formatting
elements, such as a header, a scroll bar, or even the same vertical space
(multi-row records).

To create a group, select a listbox column in the List box Formatter, then
press the button. The selected field becomes the first member of the
group; the next field you populatebecomes the next member of the group.
Alternatively, use the and buttons to move fields into and out of an
existing group. To delete a group, move or delete all fields out of the group.

From the List box Formatter dialog, you can specify a group header that
appears above the column headers. The group header stretches across all the
columns in the group.

You can use group headers to visually link related data in different columns.
For example, you can link first and last name columns by placing “Name” in

CHAPTER 4 WINDOW FORMATTER 213

the group header, then “First” and “Last” in the column headers. You can
also use a group header to break up the header text into two lines when the
column header is extra long.

General Tab

This tab lets you set the following column group formatting options.

Heading Text
Optionally specify header text for the group. The header appears
as a gray row above the listbox data items. To specify no header,
leave this field blank. If any field included in the listbox has a
header, a header appears over each field in the listbox; those
fields with no header text will have a blank header.

Scroll Bar
Type a non-zero value to specify a horizontal scroll bar for this
column only. If the overall listbox already has a scroll bar, the
column scroll bar appears above the listbox scroll bar. The value
pecifies, in dialog units, how far the column scrolls.

For example, if your data is fifty (50) characters, and your
listbox column width is about forty (40) characters (one hundred
sixty (160) dialog units), you should specify a value of fifty (50).
Fifty (50) additional dialog units are enough to display the ten
characters that extend beyond the width of the listbox column.

The scroll bar and size appear in the FORMAT string together,
as in “S(4).”

214 CLARION 5 USER’S GUIDE

Justification
Choose from the drop-down list to specify left, right, center or
decimal justification.

Indent
Optionally specify an indent, in dialog units, for the heading.
This moves the data by the number of dialog units specified in
the opposite direction to the justification. An indent of two (2)
on left justification improves listbox readability. An indent of
(2+4*decimal places) is appropriate for decimal justification.

Right Border
Check this box to specify column separators between fields in
the listbox at run-time.

The FORMAT string includes the pipe symbol (|), immediately
preceding the header text, as in “|~MyHeader~.”

Resizeable
Check this box to specify that the user can resize the width of the
group at run time.

The FORMAT string includes the “M” character, immediately
preceding the header text as in “M~MyHeader~.”

Underline
Check the Underline box to add the underline style to the listbox
text. In effect, this creates a bottom border for each row in the
group, giving your listbox a spreadsheet or cell-like appearance.

The FORMAT string includes the underscore character,
immediately preceding the header text, as in “_~My Header~.”

Fixed
Check this box to specify that the group always remains visible
in the listbox.

The FORMAT string includes the “F” character, immediately
preceding the header text as in “F~MyHeader~.”

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 215

5 - CONTROLS AND THEIR PROPERTIES

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

216 CLARION 5 USER’S GUIDE

Overview

About This Chapter

This chapter shows you how to set control properties. It assumes you
understand how to use the Window Formatter to choose, place, and size
controls (see Window Formatter).

It provides an overview of the types of controls as they relate to data entry,
discusses the properties applicable to the controls, then covers each control
type individually. It also shows you how to associate the contents of a
variable with an entry or display control.

Some of the specific tasks covered in this chapter include:

◆ How to set control properties with the Data Dictionary.

◆ How to customize a button with text, picture, or both.

◆ How to specify radio button and check box properties, including
customizing them with a 3D look suitable for toolbars.

◆ How to create an entry control and how to associate it with a variable
that holds the data the user enters.

◆ How to specify spin box control properties, such as the increment value
when the user presses the increase or decrease buttons.

◆ How to specify group, sheet, and tab control properties, which visually
organize related controls in a window.

◆ How to format list box controls, including how to create multi-column
list boxes, and hierarchical lists.

◆ How to include graphic controls such as bitmaps, metafiles, lines, boxes,
and ellipses in a window.

Setting Control Properties with the Data Dictionary

Control properties may be set for a single control using the Window
Formatter . Better still, with the Data Dictionary, you may set control
properties for every control associated with a specific database field (press
the Properties button on the Window and Report tabs of the Field Properties
dialog). When control properties are set in this manner (with the Data
Dictionary), the Application Generator applies these properties every time
you place the field on a window or report and every time you synchronize
your application and data dictionary.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 217

Types of Controls

For this discussion, we will divide controls into three categories: Interactive
Controls, Non-Interactive Controls, and Custom Controls.

Interactive Controls

Interactive controls are clicked on or typed into by the user.

◆ Action controls—BUTTON—lead to an instantaneous result. For
example, closing a dialog box and completing its pending operations.
Clarion also supports associating a continuous action with a button—
pressing the button and holding it down is the same as clicking the button
repeatedly.

◆ User Choice controls—CHECK, OPTION, RADIO, COMBO, SPIN and
LIST—let the user enter data by choosing from a finite group of
alternatives. No keyboard input is required. They create streamlined user
entry since it is usually faster to pick an item from a list than to type the
name of an item you may not remember. Use choice controls to force the
user to choose only one of a set of mutually exclusive selections—create
“latched” buttons that stay depressed until pressed again, or groups of
radio buttons where only one button can be selected at a time.

◆ Entry controls—ENTRY and TEXT—allow data entry from the
keyboard. Clarion provides extensive options for automatically
validating user data entry, plus supports Windows standard Cut, Copy,
and Paste operations for these text fields.

◆ Hybrid controls—SHEETs, TABs and REGIONs—interact with the user
by guiding them to other controls, and by generating events that your
program can detect and act upon.

Non-Interactive Controls

Non-interactive controls provide visual cues that help the user understand
and operate the interactive controls.

◆ Static controls—PANEL, PROMPT, GROUP, BOX, ELLIPSE, LINE
and IMAGE—don’t perform an action, but instead guide the user to
other controls or otherwise provide visual candy. They can take the form
of a group box, a line, or a graphic image, all of which visually organize
or emphasize other controls. GROUP controls also help you develop and
maintain your application by letting you apply common attributes such
as positioning, enabling, or hiding to several controls at once.

Custom Controls

Custom controls are defined outside the Clarion Development Environment
and may be either interactive or non-interactive. Custom controls are
discussed in the following chapter.

218 CLARION 5 USER’S GUIDE

Common Control Attributes
The attributes you add to a control determine how the control looks and acts.
Different controls support different functions, and so require different
attributes. However, all Clarion controls allow you to set two common
attributes: USE and AT. Additionally, most controls allow you to set TEXT,
COLOR, KEY, ALRT, FONT, SKIP, HIDE, DISABLE, SCROLL,
CURSOR, HLP, MSG, and TIP attributes. This section explains how to set
these common control attributes. Each attribute is discussed fully in the
Language Reference.

Tip: ALT+DOUBLE-CLICK a control to access its properties.

Setting the USE Attribute

The Use field takes either a Field Equate Label or a variable label. If you
placed a control template, you can accept the default label or you may
specify your own label.

Field Equate Labels

Use a Field Equate Label when you don’t need to assign a value from the
control to a variable. A field equate label is a valid Clarion label prefixed by
a question mark(?). This label references the control within your source code
(see the Language Reference for more information). For example:

HIDE(?MyButton) !hides the control with USE attribute ?MyButton

Variable Labels

Use a variable label when you do need to assign a value from the control to a
variable or vice versa.

Tip: Some controls, such as PROMPTs and LINEs, cannot accept
variable values and therefore only accept Field Equate Labels
as their USE attribute.

The variable must be declared in your program, module, or procedure. Press
the ellipsis (...) button in the control’s properties dialog to declare the
variable or to select the variable from those already declared.

The variable label automatically serves as the field equate label for the
control too! For example:

MESSAGE('My Variable = '& MyVar) !displays the variable MyVar
HIDE(?MyVar) !hides the ?MyVar entry control

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 219

Duplicate Field Equate Labels

Two or more entry controls may update the same variable. However, they
cannot have the same field equate label. In this circumstance, the Window
Formatter automatically creates unique field equate labels by appending a
sequence number to the field equate labels that would otherwise be
duplicated. The unique field equate label is specified by the third parameter
of the USE attribute (see USE in the Language Reference). For example, if
you place three controls on a single window that all update the same
variable, the Window Formatter generates code something like this:

window WINDOW('Caption'),AT(,,183,119),GRAY
SPIN(@s20),AT(66,27),USE(MyVar)
COMBO(@s20),AT(66,50),USE(MyVar,,?MyVar:2)
ENTRY(@s20),AT(67,7),USE(MyVar,,?MyVar:3)

END

To set the USE attribute

1. RIGHT-CLICK the control, then choose Properties from the popup menu.

This displays the General tab of the respective control properties dialog,
which lets you specify the USE attribute for your control.

2. If the control is an entry control or has an associated variable (CHECK,
COMBO, CUSTOM, ENTRY, LIST, OPTION, PROGRESS, SHEET,
SPIN, STRING, or TEXT), press the Use field ellipsis (...) button to
select or define a data dictionary field or memory variable from the
Select Field dialog.

If the control does not have an associated variable (BOX, BUTTON,
ELLIPSE, GROUP, IMAGE, LINE, PANEL, PROMPT, RADIO,
REGION, or TAB), type a valid Clarion label prefixed with a question
mark (?). Notice there is no Use field ellipsis (...) button for these
controls.

Remember, you can always use the default label supplied by the Window
Formatter .

Setting the USE
attribute for your

control, so you can
refer to the control

by name in your
source code.

220 CLARION 5 USER’S GUIDE

3. Press the OK button.

Tip: Field equate labels and Clarion’s property syntax let you
modify the control at run-time. For example, you can use the
DISABLE statement to “dim out” controls in situations when
they should be unavailable to the user:

DISABLE(?MyList)

Following is an alternative method for setting the USE attribute. This method
works best for controls with no associated variable.

1. From the Window Formatter menu, choose Options ➤ Show Propertybox .

This displays the Property toolbox, which lets you specify the USE
attribute for your controls.

2. CLICK the control you want to change.

3. In the Property toolbox Use field, type a Field Equate Label or the label
of a variable to use with the control.

Setting the AT Attribute

The AT attribute defines the control’s position and size. The Window
Formatter lets you visually set the AT attribute of each control simply by
dragging it wherever you want. You may also specify position and size by
manually typing coordinates in the control’s properties dialog and by using
the Alignment tools. To set the AT attribute, which defines the control’s
position and size:

1. RIGHT-CLICK on the control, then choose Position in the popup menu.

Alternatively, use the
Property toolbox to

set the USE attribute.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 221

This displays the Position tab of the respective control properties dialog.

2. Specify coordinates for the top left corner of the control.

Type in an ‘X’ (horizontal) and ‘Y’ (vertical) coordinate. This places the
top left corner of the control relative to the top left corner of the window.
The unit of measurement for the coordinates is the dialog unit. See the
Glossary for the definition of dialog units. These provide a relative
measure based on the size of the character set currently in use.

3. Specify Width and Height options.

Choose Default and Clarion automatically selects a size based on the
display picture on an entry control. Or choose Fixed and type in width
and height values for the control in dialog units.

Tip: For IMAGE controls, Default displays the picture at the size it
was created.

You may also specify that the control fills the window by choosing the
Full options. This adds the FULL attribute to the control. See the
Language Referencefor more information on this attribute.

Note: Default and Full are mutually exclusive choices. For example,
you cannot set Width to Full and Height to Default.

Tip: You can provide your users a full window text editor for MEMO
fields. Create a window and place a TEXT control in it.
Optionally change the cursor to an I-Beam, then set the Width
and Height of the TEXT control to Full.

222 CLARION 5 USER’S GUIDE

Setting the Text Attribute

Many controls, such as BUTTONs, TABs, CHECKs, GROUPs, etc., display
constant text on their face. This is the most straightforward and common
method for telling the user how and when to use the control.

To set the text attribute:

1. RIGHT-CLICK on the control then choose Properties from the popup menu.

This displays the General tab of the respective control properties dialog,
which lets you specify the text attribute for your control.

2. In the Text field, type the text to display.

An ampersand (&) within the text means the next character is the
mnemonic key for the control. When displayed, the character is
underlined, and when the user presses ALT + the mnemonic key, the
control’s action initiates. For example type &Print to display Print and to
let ALT +P initiate the control’s action.

Tip: Microsoft recommends you do not place a mnemonic key on
buttons labeled ‘OK,’ or ‘Cancel.’

3. Press the OK button.

Tip: Field equate labels allow you to use executable statements
and Clarion’s property syntax to modify the text of the control
at run-time. For example, you can change text on the fly with:
?MyButton{PROP:Text}=’new text’

Following is an alternative method for setting the text attribute.

1. From the Window Formatter menu, choose Options ➤ Show Propertybox .

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 223

This displays the Property toolbox, which lets you specify the text
attribute for your controls.

2. CLICK on the control you want to change.

3. In the Property toolbox Text field, type the text to display.

Setting the Display Picture

Many controls, such as ENTRYs, COMBOs, STRINGs, etc., display variable
values as well as constant text. These controls provide a Picture field instead
of the Text field.

To set the display picture for variable values, type a picture token in the
Picture field or press the ellipsis button to use the Edit Picture String dialog
(see the Picture Editor chapter). See the Language Reference for more
information on pictures. See also Dictionary Editor—Defining Field
Properties.

Setting the COLOR Attribute

The sparing use of color can improve the look and functionality of your
program. See Windows Design Issues for more information on the use of
colors in the Windows environment.

Enter a valid color value in any of the following fields to add the COLOR
attribute to your control declaration. See ..\LIBSRC\EQUATES.CLW for a
list of valid color equates.

Text Color
To apply a specific color to the control text, type a valid color
equate in this field, or press the ellipsis (...) button to select a
color from the Text Color dialog.

Background
To apply a specific color to the entire control, except for selected
text, type a valid color equate in this field, or press the ellipsis
(...) button to select a color from the Background Color dialog.

Selected text
To apply a specific color to the control’s selected text, type a
valid color equate in this field, or press the ellipsis (...) button to
select a color from the Selected Color dialog.

Selected fill
To apply a specific color to the background of control’s selected
text, type a valid color equate in this field, or press the ellipsis
(...) button to select a color from the Selected Background Color
dialog.

224 CLARION 5 USER’S GUIDE

Grid Color (LIST and COMBO only)
To apply a specific color to the LIST’s grid lines, type a valid
color equate in this field, or press the ellipsis (...) button to select
a color from the Grid Color dialog.

Border Color (BOX, ELLIPSE, and REGION only)
To apply a specific color to the control’s border, type a valid
color equate in this field, or press the ellipsis (...) button to select
a color from the Border Color dialog.

Fill Color (BOX, ELLIPSE, REGION, and PANEL only)
To apply a specific color to the control’s interior, type a valid
color equate in this field, or press the ellipsis (...) button to select
a color from the Fill Color dialog.

The Color Dialog

You invoke the Color dialog from several places within the Clarion
environment, but primarily when setting color for a window or for a window
control. The Color dialog is a Microsoft product, but is documented here for
your convenience.

Standard Colors
Choose from a drop-down list of the standard colors that Clarion
uses to create its default Windows standard application interface.
These colors match the default colors used by Clarion’s template
generated procedures.

Basic Colors
Choose from 48 predefined color samples. CLICK on the color
you want then press the OK button.

Custom Colors
Choose from 16 custom color samples that you define. CLICK on
the color you want then press the OK button.

Define Custom Colors
To define a custom color, CLICK on one of the 16 Custom Color
sample boxes, then press the Define Custom Colors button. The
Color dialog expands so you can define the custom color.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 225

Color Continuum Pad
Displays a continuum of color choices. click on this pad to set
the gross definition for your custom color. Fine tune your color
definition with the controls described below.

Luminance Continuum Slider
Displays a continuum of luminance choices. click and DRAG

inside the elongated rectangle to adjust the luminance of the
color from darkest (black) to lightest (white).

Color|Solid Displays a sample of the currently defined (mixed) color
and its nearest solid color equivalent. To convert the currently
defined color to its nearest solid color equivalent, type Alt+O .
The conversion automatically adjusts the values of the six
components listed below to make the appropriate solid color
equivalent.

HueAn integer from 0 to 240 representing the hue.

Sat An integer from 0 to 240 representing the saturation.

Lum
An integer from 0 to 240 representing the luminance.

RedAn integer from 0 to 255 representing red.

Green
An integer from 0 to 255 representing green.

Blue
An integer from 0 to 255 representing blue.

Add to Custom Colors
When you are satisfied with the custom color definition press
this button.

Setting the KEY Attribute

The KEY attribute applies to any control which may receive focus (Combo
Box, Entry Box, Group Box, List Box, Option Box, Property Sheet, Spin
Box, Tab, Text Field, Button, Check Box, Custom Control, and Radio
Button). It specifies a hot key which gives immediate focus to the control.
For an action control, such as a command button, the hot key initiates the
action as well. See the Language Reference for more information.

To set the KEY attribute:

1. RIGHT-CLICK on the control, and choose Key in the popup menu.

This opens the Input Key dialog, which lets you specify the KEY
attribute for your control.

2. Press the desired key or key combination.

226 CLARION 5 USER’S GUIDE

The key or key combination you press appears in the Key field, and is
used as the parameter to the KEY attribute for this control. Alternatively,
press a character or function (F1, F2, etc.) key and check a combination
of the Ctrl, Shift , or Alt boxes to specify a hot key combination.

Mouse clicks may be used as hot keys; however, mouse clicks cannot be
specified by clicking the mouse. For mouse clicks, check the
corresponding box(es). For example, to give focus to a control when the
user ALT+DOUBLE-CLICKS, check the Alt box, the Left Button box, and the
Double Click box.

The ESC, ENTER, and TAB keys cannot be specified by simply pressing
them, because these keys are standard Windows navigation keys. For
these keys, press the ellipsis (...) button and type “esc,” “enter,” or “tab.”

3. Press the OK button.

Tip: Avoid using ALT plus letter combinations as hot keys. These
combinations should be reserved for menu accelerator keys.

Setting the ALRT Attribute

The ALRT attribute applies to any control which may receive focus. It
specifies an alert key which is enabled when the control has focus. When the
user presses an alerted key, it generates an EVENT:AlertKey. This lets you
execute an action while the user is still in the entry field. For example, you
may set an ALRT to display additional information to the user upon a
function key press. See the Language Reference for more information.

To set the ALRT attribute:

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 227

1. RIGHT-CLICK on the control, then choose Alert in the popup menu.

This opens the Alert Keys dialog, which manages the ALRT attributes for
your control. You may set as many alert keys as you like for a control.

2. Press the Add button.

This opens the Insert Key dialog, which lets you specify the ALRT
attribute for your control. This is the same dialog used to specify the
KEY attribute. See Key above for information on how to use this dialog.

3. Press the OK button.

Setting the FONT Attribute

You may specify the appearance of the text displayed on a control. Select
typeface, size, color, style, and script from standard drop-down lists. Choose
strikeout and underline effects too. See FONT the Language Reference for
more information.

To set the FONT attribute:

1. RIGHT-CLICK on the control and choose Font in the popup menu.

This displays the Select Font dialog.

2. Select typeface, size, color, style, and script from standard drop-down
lists.

 The dialog displays a sample of the text design you have chosen.

4. Check the Strikeout or Underline boxes.

5. Press the OK button.

228 CLARION 5 USER’S GUIDE

Tip: Be sure the font you pick is present on the user’s system. If
not, Windows will try to substitute an equivalent font; however,
since you have no control over the substitution, you cannot be
sure of the result.

Following is an alternative method for setting the FONT attribute:

1. From the Window Formatter menu, choose Options ➤ Show Propertybox .

This displays the Property toolbox, which lets you specify the FONT
attribute for your controls.

2. CLICK on the control you want to change.

3. In the Property toolbox, select font typeface and size from standard drop-
down lists.

4. In the Property toolbox, select font style with standard bold, italic, and
underline buttons.

Setting Control Modes

The General tab of the various control properties dialogs lets you set several
attributes that control the “mode” of your window controls. To set the
control’s mode:

1. RIGHT-CLICK on the control, and choose Properties in the popup menu.

This displays the Properties dialog for the selected control.

2. Select the General tab.

This displays the General tab which contains the Mode check boxes.

3. Check any combination of the Mode boxes.

The choices and their effects are:

Skip
Instructs the Window Formatter to omit the control from the Tab
Order (the order in which controls get input focus as the user
presses the TAB key). When the user TABS from field to field in the
dialog box, Windows will not give the control focus. This is
useful for seldom-used controls, because the user can still access
the control by CLICKING on it. The Window Formatter places the
SKIP attribute on the control (see the Language Reference).

Disable
Disables (or dims) the control when your program initially
displays it, so it is unavailable to the user. The Window Formatter
places the DISABLE attribute on the control. You can use the
ENABLE statement to allow the user to access the control (see
the Language Reference).

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 229

Hide
Makes the control invisible at the time Windows would initially
display it. Windows actually creates the control — it just doesn’t
display it on screen. The Window Formatter places the HIDE
attribute on the control. You can use the UNHIDE statement to
display the control (see the Language Reference).

Scroll
Specifies whether the control should remain in the window when
the user scrolls the window. By default (unchecked), the control
remains in the window. Check the Scroll box to create a control
that can be “scrolled off” the window. The Window Formatter
places the SCROLL attribute on the control (see the Language
Reference).

Transparent
Specifies whether the control is drawn on the window, or only its
text or icon. By default (unchecked), the control is drawn. Check
the Transparent box to create a control that is invisible, except
for its text or icon. The Window Formatter places the TRN
attribute on the control (see the Language Reference).

Freeze
“Freezes” the control, and all its children, so that subsequent
data dictionary changes are not applied (see Synchronize). You
can override the #Freeze attribute for all controls, or for
individual controls. See Application Generator—Configuring the
Application Generator.

4. Press the OK button.

230 CLARION 5 USER’S GUIDE

Setting Help Attributes

The Help tab of the various control properties dialogs lets you set several
attributes that supply information to the user about the control.

1. RIGHT-CLICK on the control, and choose Properties in the popup menu.

This displays the Properties dialog for the selected control.

2. Select the Help tab.

This displays the Help tab which contains cursor, help, and message
entry boxes.

3. Optionally fill in any of the four entry fields.

The fields and their effects are:

Cursor
Lets you specify an alternate shape for the cursor when the user
passes it over the control. The Cursor drop-down list provides
standard cursor choices such as I-Beam and Crosshair . To select
an external cursor file (whose extension must be .CUR), choose
Select File... from the drop-down list, then pick the file using the
standard file dialog. The Window Formatter places the CURSOR
attribute on the control (see the Language Reference).

Tip: The I-Beam, which signals text entry, is an excellent choice for
the active cursor for an entry or text control.

Help ID
Sets the HLP attribute for a control (see the Language
Reference). When the control has focus and the user presses F1,
the Windows Help file opens to the topic referenced by the HLP
attribute. In the Help ID field, type either a help keyword or a
help context string present in a .HLP file.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 231

A Help keyword is a word or phrase indexed so the user may
search for it in the Help Search dialog. If more than one topic
matches a keyword, the search dialog appears.

A Help context string is the arbitrary string which uniquely
identifies each topic page for the Windows Help Compiler. A
help context string must be prefixed with a tilde (~).

Tip: When authoring a Windows Help file, you indicate a keyword
with the ‘K’ footnote. A Help context string is the arbitrary
string which uniquely identifies each topic page for the
Windows Help Compiler. When creating the Help file, the ‘#’
footnote marks a context string. These tasks are all done for
you by many help authoring tools.

Message
Sets the MSG attribute for the control (see the Language
Reference). The MSG attribute specifies text to display in the
first zone of the status bar when the control has focus. In the
Message field, type the text to display in the status bar.

Tip Sets the TIP attribute for the control (see the Language
Reference). TIP displays text in a small box near the cursor when
the cursor is idle on the control for a specified period. The
default period is half a second. This technique is also known as
“Balloon Help.” In the Tip field, type the text to display in the tip
box.

232 CLARION 5 USER’S GUIDE

Interactive Controls

Button Properties

A BUTTON is a control that performs an action when the user presses it. In
addition to the common control attributes described above, the Window
Formatter lets you set the following button properties:

◆ The Button text.

◆ The Button icon or picture.

◆ The action to take When Pressed.

◆ The STD ID specifying a standard windows action for the button to take.

◆ Whether the button’s action is the default action.

◆ The Drop ID specifying drag and drop operations for which the button is
a valid target.

By convention, a button is a rectangular area containing text, picture, or both.
When the user presses (CLICKS on) the button, it executes the command
described by the text or picture.

To specify button properties, RIGHT-CLICK the button control and choose
Properties from the popup menu. The Button Properties dialog appears. This
dialog helps you to specify the attributes for the BUTTON statement.

General Tab

1. In the Text field, type the text to display on the button.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 233

An ampersand (&) within the text means the next character is the
mnemonic key for the button. When the user presses ALT + the
corresponding key, the button’s action initiates. See Common Control
Properties—Setting the Text Attribute.

Tip: Microsoft recommends you do not place a mnemonic key on
buttons labeled ‘OK,’ or ‘Cancel.’

 2. In the Use field, type a field equate label.

A field equate label is a valid Clarion label, prefixed with a question
mark (?). Use the field equate label to refer to the button in program
statements. See Common Control Properties—Setting the USE Attribute.

 3. Use the Justification drop-down list to position the button text relative to
the button icon.

Default places the icon above any text. Right Justified places the icon to
the right of any text. Left Justified places the icon to the left of any text.

 4. Mode options:

See Common Control Properties—Setting Control Modes.

Extra Tab

 1. In the Icon field, select a standard icon from the drop-down list.

This displays a small bitmap on the button face in addition to any button
text. To select a standard icon, choose one of the named items in the
drop-down list. To select an icon file (extension .ICO), choose Select
File... from the drop-down list, then pick the file using the standard open
file dialog.

Tip: An icon and text gives a button with both. The text appears
below the icon picture by default, however the Justification
prompt provides alternative positioning.

2. Check the appropriate Options boxes.

There are several button options which you may toggle on or off
independently.

Flat
(the FLAT attribute) creates a button control which appears flat
until the mouse cursor passes over it. This is typically used on
toolbar buttons. This feature works best if the ICON attribute
names a .GIF file.

Required
(the REQ attribute) specifies that, when pressed, your program
automatically checks that all ENTRY controls with the REQ
attribute are neither blank nor zero. A button with this attribute is
a ‘required fields check’ button. Specify this type of button when
a window also contains an ENTRY or TEXT control field with

234 CLARION 5 USER’S GUIDE

the REQ attribute (or else use the INCOMPLETE function to
test the ENTRY controls). When the user presses a button with
the REQ attribute and an ENTRY field is blank or zero, the first
required control which is blank or zero receives focus.

Default Button
(the DEFAULT attribute), ‘presses’ the button when the user
presses the ENTER key. A heavy border appears around the button
to signal the default button to the user. In general, place the
DEFAULT attribute on the button that represents the most likely
action the user will take. Place only one default button in a
window.

Immediate
(the IMM attribute) lets you create a button control which
repeats the executable action continuously, for as long as the
user holds the button down. Normally, buttons generate an event
only after the user presses and releases the mouse.

3. For buttons with the IMM attribute, set the delay between first and
second EVENT:Accepted event in the Delay box.

This is how long the second EVENT:Accepted occurs in hundredths of
seconds, after the first EVENT:Accepted when the end user clicks and
holds the button.

4. For buttons with the IMM attribute, set the event generation rate for
EVENT:Accepted in the Repeat box (the REPEAT attribute).

This is how often the EVENT:Accepted occurs in hundredths of seconds
when the end user clicks and holds the button.

5. In the STD ID field, optionally select a standard windows action from the
drop-down list.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 235

This is one way to tell your button what action to take. There are some
actions you see in almost every windows program. For example, Cut,
Copy, and Paste. Clarion provides an easy method for implementing
these standard actions in your application—with the STD ID field.

Clarion automatically executes any of the standard actions from the
drop-down list using standard windows behavior; you do not need any
other support for it in your code. The STD ID equate labels and their
associated actions are in the ..\LIBSRC\EQUATES.CLW file.

Tip: Do not combine a procedure or program call with an STD ID,
because a control with an STD ID does not generate an event
when the user activates the control.

6. In the Drop ID field, optionally type up to sixteen (16) comma delimited
signatures.

The Window Formatter adds the DROPID attribute to your button. The
DROPID indicates this button is a valid target for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the button.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping the
item onto the other window or control, which can then look at the item
that was dropped and do something with it.

Implementation of this capability requires that the source control have a
DRAGID attribute with a signature that matches the target’s DROPID
signature, and that the procedures that drive each window have
appropriate source code to process the drag and drop events. See the
Language Reference for more details and examples.

Help Tab

See Common Control Attributes—Setting Help Attributes.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

Actions Tab

The Actions tab prompts come from the templates, in other words, the
prompts you see here vary with the template used to create the control.
Following are the standard action prompts for all button controls. See the
Control Templates in the Application Handbook for more information on
these and other prompts.

1. From the When Pressed drop-down list, choose Call a Procedure , Run a
Program , or No Special Action .

236 CLARION 5 USER’S GUIDE

The procedure or program you specify executes when the user pushes
the button. The choices are:

Call a Procedure
You must specify the Procedure Name , and whether the
procedure Initiates a Thread .

Procedure Name Choose an existing procedure name from the drop-
down list, or type a new procedure name. A new
procedure appears as a “ToDo” item in your
Application Tree.

Initiate a Thread Check this box to START a new thread and specify
the Thread Stack size. If the procedure initiates a
thread, you cannot specify Parameters or Requested
File Action . If the procedure does not initiate a
thread, you can specify Parameters , Requested File
Action , or both.

When you START a procedure on its own thread, the procedure and its
window operate independently of other threads in the same program; that is,
the end user can switch focus between each execution thread at will. These
are “modeless” windows.

If you don’t initiate a new thread, the program behavior depends on whether
the procedure’s window has the MDI attribute. A non-MDI child window on
the same thread as its parent, blocks access to all other threads in the
program. This is an “application modal” window. When the application
modal window closes, the other execution threads are available again. An
MDI child window on the same thread as its parent, blocks access only to its
parent window. When the MDI child window closes, its parent window
regains focus.

Tip: A BUTTON on an application frame toolbar that calls an MDI
child procedure must initiate a thread.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 237

Thread Stack Accept the default value in the Thread Stack spin
box unless you have extraordinary program
requirements. To change the value, type in a new
value or click on the spin box arrows.

Parameters In the Parameters field, optionally type a comma
delimited list of variable labels to pass to the
procedure.

Requested File Action
From the Requested File Action drop-down list,
optionally select None, Insert, Change, Delete , or
Select . The default selection is None . The
GlobalRequest variable gets the selected value. The
called procedure can then check the value of
GlobalRequest and perform the requested file
action.

Run a Program
You must specify the Program Name , and optionally, any
parameters.

Program Name In the Program Name field, type the program name.
The template generates:

RUN('MyPgm.exe')

Parameters In the Parameters field, optionally type a list of
values that are passed to the program.The template
generates:

RUN('MyPgm.exe MyParameter')

No Special Action
Choose this option if you are providing your button’s
functionality with another method, such as embedded source, or
an STD ID.

Tip: You may combine a procedure or program call with embedded
source, but not with an STD ID.

2. Optionally press the Files button to access the file schematic for this
procedure.

3. Optionally press the Embeds button to embed source code at points
surrounding the event handling for this button only.

4. Press the OK button to return to the Window Formatter .

238 CLARION 5 USER’S GUIDE

Radio Button Properties

A Radio Button, also called an option button, provides the user a set of
mutually exclusive choices. For example, in a group of three buttons, only
one can be selected at a time.

By default, Radio Buttons display as small circles; the selected button is
filled. You can make Radio Buttons look like push buttons simply by adding
icons to each button; the selected button remains depressed.

Relationship Between RADIOs and OPTIONs

An option box—an OPTION structure—must always surround the radio
button choices. The Window Formatter automatically prompts you to create
an option box if you try to place a radio button outside an option box. The
option box appears at run time as a rectangle with a caption in the top border,
and radio buttons inside. When you set radio button properties, you should
also set the properties for the option box.

When the user selects a radio button, the OPTION’s USE variable receives a
value indicating which button was selected: either the text of the selected
button, the button number, or another value that you specify. Your program
can then take appropriate action based on the value of the OPTION’s USE
variable.

To place a radio button and an associated option box, CLICK the Radio Button
tool, then CLICK in the sample window. The Window Formatter automatically
adds an option box and a radio button.

General Tab—Option Box

1. In the Text field, type the text to display.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 239

This string appears at runtime in the top border of the option box. See
Common Control Properties—Setting the Text Attribute.

Tip: Though the OPTION structure must be present, it does not
have to appear on screen. You may hide it from the user by
clearing the ‘Boxed’ box on the ‘Extra’ tab of this dialog.

2. In the Use field, type the label of a variable.

The Use field (the USE attribute) takes the label of a variable. When the
user selects a radio button, the OPTION’s USE variable receives a value
indicating which radio button is selected. When the USE variable is a
string data type, it receives either the text of the selected button, or
another string value that you specify (see General Tab—Radio Button
below). When the USE variable is a numeric data type, it receives the
button number.

3. Check any combination of the Mode boxes.

See Common Control Properties—Setting Control Modes.

Extra Tab—Option Box

1. Optionally, set the BEVEL attribute for the OPTION.

The BEVEL attribute gives a three dimensional look to the option box.
The box appears raised, depressed, or both.

Outer
A positive value makes the group box appear raised above the
plane of the window. The higher the value, the further the box is
raised. A negative value makes the group box appear depressed
below the plane of the window. The bevel effect begins at the
outer border of the box.

240 CLARION 5 USER’S GUIDE

Inner
A positive value makes the group box appear raised above the
plane of the window. The higher the value, the further the box is
raised. A negative value makes the group box appear depressed
below the plane of the window. The bevel effect begins
immediately inside the outer bevel.

Style
A integer, whose sixteen bits define the style (but not the size) of
the four edges of the OPTION. The STYLE attribute gives you
very fine control over the bevel appearance. See the Language
Reference for more information.

3. Optionally, clear the Boxed box to hide the option box, but not the radio
buttons, from the user at run time.

This produces a slightly different effect than the HIDE attribute. The
HIDE attribute hides both the option box and the controls inside the box.

4. In the Drop ID field, optionally type up to sixteen (16) comma delimited
signatures.

The Window Formatter adds the DROPID attribute to your control. The
DROPID indicates this control is a valid target for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the button.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping the
item onto the other window or control, which can then look at the item
that was dropped and do something with it.

Implementation of this capability requires that the source control have a
DRAGID attribute with a signature that matches the target’s DROPID
signature, and that the procedures that drive each window have
appropriate source code to process the drag and drop events. See the
Language Reference for more details and examples.

Help Tab (Option Box)

See Common Control Attributes—Setting Help Attributes.

Position Tab (Option Box)

See Common Control Attributes—Setting the AT Attribute.

1. Press the OK button to finish setting attributes for the OPTION box.

The OPTION box appears in the sample window. If you cleared the
Boxed option, it will be visible in layout mode, but will become invisible
in Preview! mode.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 241

Now that you have completed the option box properties, you should set the
radio button properties; RIGHT-CLICK the radio button then select Properties
from the popup menu; this opens the Radio Button Properties dialog.

General Tab—Radio Button

1. In the Text field, type the text to display.

 See Common Control Properties—Setting the Text Attribute.

 2. In the Use field, type a field equate label.

A field equate label is a valid Clarion label, prefixed with a question
mark (?). Use the field equate label to refer to the radio button in
program statements. See Common Control Properties—Setting the USE
Attribute.

3. Type a value in the Value field.

When the user selects a radio button, the OPTION’s USE variable
receives the value that you specify here. The value you enter should
match the data type of the OPTION’s USE variable.

If you leave the Value field blank, the OPTION’s USE variable receives
either the string found in the Text field, or the button number, depending
on the data type of the OPTION’s USE variable.

The button number corresponds to the button’s position within the option
box. From the Window Formatter choose Edit ➤ Order Control dialog to
see the button’s tab order position within the option box.

4. From the Justification drop-down list, choose Left Justification, Right
Justification, or Default .

Left Justification arranges the button (or icon) to the left of the text.
Right Justification arranges the button (or icon) to the right of the text.
Default arranges the button according to any applicable settings in the
data dictionary.

5. Check any combination of the Mode boxes.

See Common Control Properties—Setting Control Modes.

242 CLARION 5 USER’S GUIDE

Extra Tab—Radio Button

1. From the Icon drop-down list, optionally select a standard icon, or select
a custom icon file.

Adding an icon to a radio button makes the radio button look like a
command button.

Tip: When you require a set of buttons for the toolbar, only one of
which can be active at a time, use radio buttons with the ICON
attribute filled in.

To select a standard icon, choose one of the named items in the drop-
down list. To select an icon file (whose extension must be .ICO), choose
Select File... from the drop-down list, then pick the file using the standard
open file dialog.

Tip: If you add an icon and text, you get a radio button with both!
Make the resulting button large enough to display both.

2. In the Drop ID field, optionally type up to sixteen (16) comma delimited
signatures.

The Window Formatter adds the DROPID attribute to your control. The
DROPID indicates this control is a valid target for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the button.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping the
item onto the other window or control, which can then look at the item
that was dropped and do something with it.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 243

Implementation of this capability requires that the source control have a
DRAGID attribute with a signature that matches the target’s DROPID
signature, and that the procedures that drive each window have
appropriate source code to process the drag and drop events. See the
Language Reference for more details and examples.

Help Tab—Radio Button

See Common Control Attributes—Setting Help Attributes.

Position Tab—Radio Button

See Common Control Attributes—Setting the AT Attribute.

Tip: To create professional looking radio button groups, turn the
Grid control on and use the Alignment tools. Grid Settings
appear on the Window Formatter’s Options menu. They allow
you to easily line up your radio buttons.

Check Box Properties

A check box manages a variable that the user may turn on or off. Select the
Check Box tool, or choose Check Box from the Control menu, then click in
the sample window. The Window Formatter opens the Select Field dialog so
you can choose or create a data dictionary field or memory variable to
associate with the check box. Once placed, RIGHT-CLICK the check box and
select Properties from the popup menu; the Check Box Properties dialog
appears.

General Tab

1. In the Text field, type the text to display.

By default, the text appears immediately to the right of the check box.
Use Justification to change this default. See Common Control
Properties—Setting the Text Attribute.

2. The Use field should already contain a variable label.

If not, type the label of a variable, or press the ellipsis button (...) to
choose or create a data dictionary field or a memory variable with the
Select Field dialog. Use a BYTE variable for best results.

Tip: For best results, use a BYTE variable with a check box. Also,
because the variable’s value should be limited to exactly two
values, you should update the variable with a check box or
with a control that restricts input to the two valid values.

244 CLARION 5 USER’S GUIDE

Tip: Give the variable an appropriate initial value, especially if you
use True Value and False Value. See Dictionary Editor—Adding
or Modifying Fields .

3. Optionally, in the True Value field, type the value to assign when the box
is checked. In the False Value field, type the value to assign when the box
is cleared. These values are also used to determine the initial state of the
check box (checked or cleared) when it is displayed.

True Value and False Value let you easily manage legacy data with a
check box, or let you use character values such as “T” and “F” or “Yes”
and “No” where appropriate. For example, if your legacy field contains
“True” and “False” or “Y” and “N,” rather than 1 and 0, then True Value
and False Value can modify the check box’s default behavior to be
consistent with the legacy data. If you leave both fields blank, you get
the default values and behavior, that is, 1 for checked and 0 for cleared.

Tip: True Value and False Value are case sensitive, so “True” is not
the same as “TRUE” and “T” is not the same as “t.”

4. From the Justification drop-down list, choose from:

Left Justified Arranges the check box (or icon) to the left of its
text.

Right Justified Arranges the check box (or icon) to the right of its
text.

Default Arranges the check box according to any applicable
settings in the data dictionary.

 5. Mode options:

See Common Control Attributes—Setting Control Modes.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 245

Extra Tab

1. In the Icon field, select a standard icon from the drop-down list.

Adding an icon to a check box converts the check box to a latched
button. A latched button “stays depressed” when CLICKED, then returns to
its original state when CLICKED a second time.

The icon appears as a small bitmap on the button face in addition to any
check box text.

To select a custom icon file (extension .ICO), choose Select File... from
the drop-down list, then pick the file using the standard open file dialog.

Tip: If you add an icon and text, you get a check box with both!
Make the resulting button large enough to display both.

2. In the Drop ID field, optionally type up to sixteen (16) comma delimited
signatures.

The Window Formatter adds the DROPID attribute to your check box.
The DROPID indicates this check box is a valid target for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the check box.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping the
item onto the other window or control, which can then look at the item
that was dropped and do something with it.

Implementation of this capability requires that the source control have a
DRAGID attribute with a signature that matches the target’s DROPID
signature, and that the procedures that drive each window have
appropriate source code to process the drag and drop events. See the
Language Reference for more details and examples.

246 CLARION 5 USER’S GUIDE

Help Tab

See Common Control Attributes—Setting Help Attributes.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

Actions Tab

The Actions tab prompts come from the templates, in other words, the
prompts you see here vary with the template used to create the control.
Following are the standard action prompts for all check box controls.

The Actions tab leads to dialogs allowing you to name variables (other than
the USE variable) and change their values when the user checks or clears the
box. Additionally, you can hide or unhide other controls in the window.

Two group boxes with two pairs of buttons appear on the Actions tab. These
buttons set the behavior for When the Check Box is Checked , and When the
Check Box is Unchecked .

1. Press the Assign Values button to open the Assign Values dialog.

You may specify multiple variable assignments. Press the Insert button to
add a new assignment. In the Variable to Assign entry box, type the
variable name, or press the ellipsis (...) button to choose or create a data
dictionary field or a memory variable with the Select Field dialog.

In the Value to Assign entry box, type the value assigned to the variable.
Press the OK button to end the dialogs.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 247

2. Press the Hide/Unhide Controls button to open the Hide/Unhide Controls
dialog.

You may specify multiple controls to hide/unhide. Press the Insert button
to add a new hide/unhide action to the list. In the Control to hide/unhide
drop-list, select the control’s equate label.

In the Hide or unhide control drop-list, select Hide or Unhide. Press the
OK button to end the dialogs.

3. Press the Enable/Disable Controls button to open the Enable/Disable
Controls dialog.

You may specify multiple controls to enable/disable. Press the Insert
button to add a new enable/disable action to the list. In the Control to
Enable/Disable drop-list, select the control’s equate label.

In the Enable or Disable control drop-list, select Enable or Disable. Press
the OK button to end the dialogs.

4. Optionally press the Files button to access the File Schematic Definition
dialog for this procedure.

5. Optionally press the Embeds button to embed source code at points
surrounding the event handling for this check box only.

6. Press the OK button to return to the Window Formatter .

Check Box Behavior

The state of the check box (checked or cleared) affects the value of the
associated variable and, conversely, the value of the associated variable
affects the state of the check box, however, the effects may not be what you
expect. This topic describes these effects.

248 CLARION 5 USER’S GUIDE

Default Behavior (without True Value/False Value)

Numeric Fields
Assigning the Variable

Checking the box always assigns a value of 1 to the
associated variable. Clearing the box always assigns
a value of 0 to the associated variable.

Drawing the Check Box
Any non-zero value produces a checked box,
whereas only a zero value produces a cleared box.

Character Fields
Assigning the Variable

Checking the box always assigns a value of 1 to the
associated variable. Clearing the box always assigns
a value of blank to the associated variable.

Drawing the Check Box
Any non-blank value produces a checked box,
whereas only a blank value produces a cleared box.

Non-Default Behavior (with True Value/False Value)

Numeric Fields
Assigning the Variable

Checking the box assigns the value specified in the
True Value field, if the value is numeric. If the value
is not numeric, no assignment occurs. Clearing the
box assigns the value specified in the False Value
field, if the value is numeric. If the value is not
numeric, no assignment occurs.

Drawing the Check Box
Any value except zero or the False Value produces a
checked box, conversely, either a zero value or the
False Value produces a cleared box.

Character Fields
Assigning the Variable

Checking the box always assigns the value specified
in the True Value field. Clearing the box always
assigns the value specified in the False Value field.

Drawing the Check Box
Any value except blank or the False Value produces a
checked box, conversely, either a blank value or the
False Value produces a cleared box.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 249

Creating List Boxes

The LIST control is most useful for presenting a great number of choices to
the user. It can display a large amount of data in a small area, which has led
to its use as an all-purpose data control. Using Clarion you can create list
boxes which look like spreadsheets, perform drag and drop tasks, and more.

Further, you may use Control templates (BrowseBox, FileDrop, etc.) to
generate code that declares the LIST and manages it too (loads it, scrolls it,
locates items, selects items for processing, etc.).

Tip: As you read this section, please be aware that all the
information that applies to LIST controls also applies to
COMBO controls.

When you create a list box (whether a control template or a simple control),
you define its data source, its format, and its functionality. The development
environment divides these property definitions among three dialogs:

◆ The List Properties dialog specifies the queue that supplies the list data,
the general scrolling capability, and whether the list is a drop-down list
or a regular list. In other words, the List Properties dialog specifies all
the properties of the list box that are not column-specific. This dialog is
discussed in this chapter.

◆ The List Box Formatter dialog lets you add, delete, reorder, and resize the
specific fields or columns that are displayed in the list box. In other
words, the List Properties dialog specifies all the column-specific
properties of the list box. See Window Formatter—List Box Formatter.

List (and Combo Box) Properties

1. From the Window Formatter , choose Control ➤ List Box from the menu
(or choose Populate ➤ Control Template then select BrowseBox), then
click in the window.

This opens the List Box Formatter dialog. This dialog manages the
columns or fields in your list box (see Window Formatter—List Box
Formatter).

2. Press the OK button to return to the Window Formatter.

3. RIGHT-CLICK the list box then select Properties from the popup menu.

This opens the List Properties dialog.

General Tab

1. The Use field takes either a field equate label, or the label of a variable to
receive the value the user selects from the list.

250 CLARION 5 USER’S GUIDE

If you placed a control template, you can accept the default field equate
label, or supply your own label.

Use a field equate label when you don’t need to assign the user’s
selection to a variable (for a LIST). This label references the control in
your source code, for example:
HIDE(?MyList)

Use a variable label when you do need to assign the user’s selection to a
variable (for a COMBO). Press the ellipsis (...) button to select or declare
a data dictionary field or memory variable. The variable label also serves
as the field equate label for the list box! For example:
...
MESSAGE('You Selected '& MyList) !displays the variable MyList

!which contains the selected item
HIDE(?MyList) !hides the ?MyList control
...

See Common Control Properties—Setting the USE Attribute.

2. In the From field, supply the data source for the list.

Sets the FROM attribute for the LIST. See the Language Reference for
more details. Generally, this is the label of a QUEUE structure, but may
also be a field within a QUEUE or a string constant.

If you use a Control template or a Wizard to build your list box, the
QUEUE label is supplied for you, as well as the code needed to declare
and load the QUEUE.

3. In the Drop field specify the number of rows to “drop” the list.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 251

Place a zero in the Drop field for a normal list box, with no drop-down.
To create a drop-down list box, type the number of drop elements you
wish to display.

4. In the Width field specify the width of the “dropped” elements in dialog
units.

This is useful for displaying a single field in the undropped list, but
showing multiple fields in the dropped list. A Width of zero (0) sets the
dropped elements to the same width as the undropped element. See
PROP:DropWidth in the Language Reference.

5. From the Justification drop-down list, choose Left Justified , Centered ,
Right Justified , Decimal , or Default .

Adds the LEFT, CENTER, RIGHT, or DECIMAL attribute to the LIST.
See the Language Reference for details. Left Justified , Centered , and
Right Justified position the list data predictably, left, center, or right
justified in the list box. Default positions the data according to any
applicable settings in the data dictionary. Decimal justification aligns
values by their decimal points. Each justification may be Offset by a
distance you specify.

These attributes are superseded by the FORMAT attribute (generated by
the List Box Formatter).

6. In the Offset field, specify a justification offset in dialog units.

See the Glossary for the definition of dialog units. Sets the offset value
for the LEFT, RIGHT, CENTER, and DECIMAL attributes. For
CENTER justification, a negative value offsets to the left of center and a
positive value offsets to the right of center.

For DECIMAL justification, a negative value offsets to the left of the
decimal and a positive value offsets to the right of the decimal.

Tip: For Decimal justification, use an offset equal to
4 * (decimal places + 1)

7. Check any combination of the Mode boxes.

See Common Control Properties—Setting Control Modes.

Extra Tab

1. In the Mark field, type the name of a QUEUE field.

Clarion’s runtime library uses this field to let the user select or “mark”
more than one item in the list.

Tip: For control template lists, look at the generated source code
to find the name of the QUEUE field generated by the control
template to store the marks.

252 CLARION 5 USER’S GUIDE

The QUEUE field may be in the same QUEUE that displays in the LIST
(the FROM attribute), or it may be in another QUEUE; however, it is
your responsibility to ensure that the two QUEUES have corresponding,
synchronized entries. The QUEUE field flags the selected items.
Selected items get a ‘1’, unselected items get a ‘0.’ The field may be a
numeric or character data type.

2. Check the VCR box to provide VCR scrolling buttons for your list box.

These special scrolling buttons provide the following functionality:
Top of List, Page Up, Row Up, Locate, Row Down, Page Down, and
Bottom of List.

Tip: VCR buttons provide a smoother, more reliable navigation
mechanism than vertical scrollbars for very large datasets or
skewed datasets presented in a page-loaded list such as the
BrowseBox Control template. See Control Templates —
BrowseBox in the Application Handbook for more information.

Note that the Locate (?) button is not meaningful in all LIST
implementations. For example, to use Locate with the BrowseBox
Control template, you must browse the file in key order and use an entry
locator, not a step locator or an incremental locator. See Control
Templates—BrowseBox in the Application Handbook for more
information.

Tip: Use ?List1{PROP:VCR} = True to add just the navigation
buttons and omit the locator button.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 253

Do not confuse these VCR buttons, which only operate on a single LIST,
with the similar FrameBrowseControl toolbar buttons which operate
globally on BrowseBox and RelationTree Control templates and Form
procedures with the FormVCRControls Extension template. See Control
Templates—FrameBrowseControl in the Application Handbook for more
information.

3. In the entry box to the right of the VCR check box (the VCR Locator
Field), optionally type the field equate label of an entry control whose
USE variable is the access key for the browsed file.

Tip: Use this field only with a simple LIST locator. The BrowseBox
and FileDrop Control templates do not require this field.

The ENTRY control identified in the VCR Locator Field must be
declared before the associated LIST control. Choose Edit ➤ Set Control
Order to move the ENTRY before the LIST.

At runtime, the user types a value into the locator entry field, then
presses the Locate button to scroll the list to the item that is nearest the
value in the locator entry field.

4. Optionally, check the Select Columns box to enable individual column
selection in a multi-column list box.

Allows the user to highlight a multi-column list box field by field, rather
than one row at a time. This provides for spreadsheet grid style
movement of the highlight bar.

5. Optionally, check the Hide Selection box to place the NOBAR attribute
on the LIST.

The NOBAR attribute specifies the currently selected element in the
LIST is only highlighted when the LIST control has focus.

6. Optionally, check the Immediate box to place the IMM attribute on the
LIST.

The IMM attribute generates an event whenever the user presses a key
(such as the down arrow or page up key, or even the alphabet keys) while
the list box has focus.

Do not check this box unless you want to hand code the LIST’s scrolling
behavior.

7. Optionally, check the Horizontal or Vertical boxes to add scroll bars to
your list box.

Check the scroll bar components you wish. The scroll bars manipulate
the entire list. You can add horizontal scroll bars for individual columns
with the List Box Formatter (see Window Formatter—List Box
Formatter). Vertical scroll bars only appear when the number of items
exceeds the available space in the list box.

8. In the Drag ID field, optionally type up to sixteen (16) comma delimited
signatures.

254 CLARION 5 USER’S GUIDE

The Window Formatter adds the DRAGID attribute to your control. The
DRAGID indicates this control is a valid source for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the control.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping the
item onto the other window or control, which can then look at the item
that was dropped and do something with it.

Implementation of this capability requires that the source control have a
DRAGID attribute with a signature that matches the target’s DROPID
signature, and that the procedures that drive each window have
appropriate source code to process the drag and drop events. See the
Language Reference for more details and examples.

9. In the Drop ID field, optionally type up to sixteen (16) comma delimited
signatures.

The Window Formatter adds the DROPID attribute to your control. The
DROPID indicates this control is a valid target for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the control. See the Language
Reference for more details and examples.

Color Tab

1. Specify the text and grid colors.

Type a valid color equate or press the ellipsis button to select a color. The
standard Color dialog appears. See Common Control Attributes—The
Color Dialog.

Help Tab

See Common Control Attributes—Setting Help Attributes.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

Actions Tab

The Actions tab is blank unless you are using a list control template. See the
Control Templates in the Application Handbook for information on the
prompts for each control template.

1. Optionally press the Files button to access the File Schematic Definition
dialog for this procedure.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 255

2. Optionally press the Embeds button to embed source code at points
surrounding the event handling for this LIST only.

3. Press the OK button to return to the Window Formatter .

Combo Box Properties

The COMBO control combines an entry box with a list box. It is useful for
selecting data which usually is a member of the list, but sometimes is not.

Combo Box properties are set exactly like List Box properties except for the
following four additional properties associated with the entry box portion of
the COMBO control.

General Tab

1. In the Picture field, specify the picture token for the control.

Pressing the ellipsis button lets you select the picture token from the Edit
Picture String dialog. See Common Control Properties—The Picture
Editor.

The picture token forces the input data into a specific format. For
example, a picture token of @P##/##/##P forces a typical date format.

You may check the user entry against the picture at two points: as the
user types the data in, or when the user moves the focus to another
control (for example, by TABBING to another field).

Checking the data as the user types it incurs a slight performance
penalty. To do so, check the Entry Patterns box in the Window Properties
dialog. This adds the MASK attribute to the WINDOW. As the user types
in data, the program attempts to convert it to match the picture. If the
program cannot convert the data to match the picture, it sounds an
audible alarm and returns focus to the control so the user can try again.

If the MASK attribute is off, entry checking takes place when the user
moves the focus to another control.

Extra Tab

2. Specify Case attributes for the entry field.

The entry box can automatically convert character from one case to
another as the user types. Uppercase (UPR attribute) automatically
converts to all caps. Capitalize (CAP attribute) is equivalent to “Proper
Name” (the first letter of each word is uppercase). Default (no attribute)
accepts input in the case the user types it.

3. In the Entry Mode drop-down list, choose Default, Insert , or Overwrite .

256 CLARION 5 USER’S GUIDE

Sets the entry mode for the entry field of the combo box. Insert causes
each keystroke to insert a new character and push existing characters to
the right. Overwrite causes each keystroke to type a new character over
an existing character. Default causes each keystroke to behave according
to current system settings.

The Entry Mode applies only for windows with the MASK attribute. See
the Language Reference for more information.

4. Optionally, check the Read Only box, to prevent data entry in this
control.

Adds the READONLY attribute to the combo box (see the Language
Reference).

Spin Box Properties

A SPIN control is a specialized entry box that only accepts values in a
predefined range. The SPIN also provide ‘increase’ and ‘decrease’ buttons,
which many people like because they can use the mouse to change the value.
You can also type a value directly into the control.

General Tab

1. In the Picture field, specify the picture token for the control.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 257

Pressing the ellipsis button lets you select the picture token from the Edit
Picture String dialog. See Common Control Properties—The Picture
Editor.

The picture token forces the input data into a specific format. For
example, a picture token of @P##/##/##P forces a typical date format.

You may check the user entry against the picture at two points: as the
user types the data in, or when the user moves the focus to another
control (for example, by TABBING to another field).

Checking the data as the user types it incurs a slight performance
penalty. To do so, check the Entry Patterns box in the Window Properties
dialog. This adds the MASK attribute to the WINDOW. As the user types
in data, the program attempts to convert it to match the picture. If the
program cannot convert the data to match the picture, it beeps, and
returns focus to the control so the user can try again.

If the MASK attribute is off, entry checking takes place when the user
moves the focus to another control.

2. In the Use field, type a variable label.

The variable receives the value the user selects. The same label, prefixed
by a question mark (?) is the field equate label that references the spin
box in source code statements. See Common Control Properties—Setting
the USE Attribute.

3. In the From field, supply the data source for the spin box.

258 CLARION 5 USER’S GUIDE

This sets the FROM attribute for the SPIN. See the Language Reference
for more details. This is the label of a QUEUE structure, a field within a
QUEUE, or a string constant.

The FROM attribute is useful for values that progress in an irregular
increment. You may also wish to provide the user with string constants
formatted as Spin Box choices when the choices are a limited
progression such as the days of the week or the months of the year.

The From field and Range fields are mutually exclusive.

4. From the Justification drop-down list, choose Left Justified , Centered ,
Right Justified , Decimal , or Default .

Adds the LEFT, CENTER, RIGHT, or DECIMAL attribute to the SPIN.
See the Language Reference for details. Left Justified , Centered , and
Right Justified position the data predictably, left, center, or right justified
in the spin box. Default positions the data according to any applicable
settings in the data dictionary. Decimal justification aligns values by their
decimal points. Each justification may be offset by a distance you
specify.

5. In the Offset field, specify a justification offset in dialog units.

See the Glossary for the definition of dialog units. Sets the offset value
for the LEFT, RIGHT, CENTER, and DECIMAL attributes. For
CENTER justification, a negative value offsets to the left of center and a
positive value offsets to the right of center.

For DECIMAL justification, a negative value offsets to the left of the
decimal and a positive value offsets to the right of the decimal.

Tip: For Decimal justification, use an offset equal to
4 * (decimal places + 1)

6. Check any combination of the Mode boxes.

See Common Control Properties—Setting Control Modes.

Extra Tab

1. Press the Extra Tab for the specific funtionality of the Spin box.

2. Specify the upper and lower Range , and the Step value.

Place the highest value which the control should contain in the Range
Upper field. The value should be formatted to match the Picture field.
Place the lowest acceptable value in the Lower field. Place the step
value—the amount by which each press of the increase or decrease
buttons should change the spin box value—in the Step field.

The From field and Range limits fields are mutually exclusive.

3. Specify Case attributes for the spin box.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 259

The entry box can automatically convert character from one case to
another as the user types. Uppercase (UPR attribute) automatically
converts to all caps. Capitalize (CAP attribute) is equivalent to “Proper
Name” (the first letter of each word will appear in caps). Default (no
attribute) accepts input in the case the user types it.

4. In the Entry Mode drop-down list, choose Default, Insert , or Overwrite .

Sets the entry mode for the entry field of the spin box. Insert causes each
keystroke to insert a new character and push existing characters to the
right. Overwrite causes each keystroke to type a new character over an
existing character. Default causes each keystroke to behave according to
current system settings.

The Entry Mode applies only for windows with the MASK attribute set.
See the Language Reference for more information.

5. Check the appropriate Options boxes.

There are three option flags you may toggle on or off independently.

Required
(the REQ attribute) specifies that the control may not be left
blank or zero.

Read Only
(the READONLY attribute) prevents data entry in this control.
Use this to declare display-only data.

Immediate
(the IMM attribute) specifies immediate event generation
whenever the user presses a key.

260 CLARION 5 USER’S GUIDE

6. Set the delay between first and second EVENT:NewSelection event in
the Delay box.

This is how long the second EVENT:NewSelection occurs in hundredths
of seconds, after the first EVENT:NewSelection when the end user
clicks and holds the spin box arrow button.

7. Set the event generation rate for EVENT:NewSelection in the Repeat
box (the REPEAT attribute).

This is how often the EVENT:NewSelection occurs in hundredths of
seconds when the end user clicks and holds the spin box arrow button.

8. Set the appearance of the Spin control buttons by checking any
combination of the two Scroll Bar boxes.

Checking neither box or the Vertical box produces smaller, vertically
stacked buttons. Checking both boxes or the Horizontal box produces
larger buttons arranged side by side.

9. In the Drop ID field, optionally type up to sixteen (16) comma delimited
signatures.

The Window Formatter adds the DROPID attribute to your control. The
DROPID indicates this control is a valid target for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the control.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping the
item onto the other window or control, which can then look at the item
that was dropped and do something with it.

Implementation of this capability requires that the source control have a
DRAGID attribute with a signature that matches the target’s DROPID
signature, and that the procedures that drive each window have
appropriate source code to process the drag and drop events. See the
Language Reference for more details and examples.

Help Tab

See Common Control Attributes—Setting Help Attributes.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 261

Entry Box Properties

An ENTRY control allows the user to enter data from the keyboard. Clarion
provides extensive options for automatically validating user entry.

◆ You may specify a picture for the field, automatically formatting the data
the user enters.

◆ You may specify an initial value for the field.

◆ You may validate the data the user enters either at the time it’s typed, or
when the focus changes to another control.

To set the properties for an entry box RIGHT-CLICK the entry box then select
Properties from the popup menu.

General Tab

1. In the Picture field, specify the picture token for the control.

Pressing the ellipsis button lets you select the picture token from the Edit
Picture String dialog. See Common Control Attributes—The Picture
Editor.

The picture token forces the input data into a specific format. For
example, a picture token of @P##/##/##P forces a typical date format.

You may check the user entry against the picture at two points: as the
user types the data in, or when the user moves the focus to another
control (for example, by TABBING to another field).

Checking the data as the user types it incurs a slight performance
penalty. To do so, check the Entry Patterns box in the Window Properties
dialog. This adds the MASK attribute to the WINDOW. As the user types
in data, the program attempts to convert it to match the picture. If the
program cannot convert the data to match the picture, it beeps, and
returns focus to the control so the user can try again.

If the MASK attribute is off, entry checking takes place when the user
moves the focus to another control.

2 Specify a Use attribute.

Type the name of the variable to receive the value the user enters in the
control; or press the ellipsis (...) button to select or define a variable. See
Common Control Attributes—Setting the USE Attribute.

3. From the Justification drop-down list, choose Left Justified , Centered ,
Right Justified , Decimal , or Default .

262 CLARION 5 USER’S GUIDE

Adds the LEFT, CENTER, RIGHT, or DECIMAL attribute to the
ENTRY. See the Language Reference for details. Left Justified , Centered ,
and Right Justified position the data predictably, left, center, or right
justified in the spin box. Default positions the data according to any
applicable settings in the data dictionary. Decimal justification aligns
values by their decimal points. Each justification may be offset by a
distance you specify.

4. In the Offset field, specify a justification offset in dialog units.

See the Glossary for the definition of dialog units. Sets the offset value
for the LEFT, RIGHT, CENTER, and DECIMAL attributes. For
CENTER justification, a negative value offsets to the left of center and a
positive value offsets to the right of center.

For DECIMAL justification, a negative value offsets to the left of the
decimal and a positive value offsets to the right of the decimal.

Tip: For Decimal justification, use an offset equal to
4 * (decimal places + 1)

 5. Set Mode options.

See Common Control Attributes—Setting Control Modes.

Extra Tab

1. Optionally, press the Extra tab to set additional properties of the entry
box.

2. Specify Case attributes for the entry field.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 263

The entry box can automatically convert character from one case to
another as the user types. Uppercase (UPR attribute) automatically
converts to all caps. Capitalize (CAP attribute) is equivalent to “Proper
Name” (the first letter of each word will appear in caps). Default (no
attribute) accepts input in the case the user types it.

3. In the Entry Mode drop-down list, choose Default, Insert , or Overwrite .

Sets the entry mode for the entry field of the entry box. Insert causes
each keystroke to insert a new character and push existing characters to
the right. Overwrite causes each keystroke to type a new character over
an existing character. Default causes each keystroke to behave according
to current system settings.

The Entry Mode applies only for windows with the MASK attribute set.
See the Language Reference for more information.

4. Set the Option flags.

You may toggle the following options on or off independently:

Required
(the REQ attribute) specifies that the control may not be left
blank or zero.

Read Only
(the READONLY attribute) prevents data entry in this control.
Use this to declare display-only data.

Password
(the PASSWORD attribute) specifies non-display of data entered
in the control, that is, all characters typed are displayed as
asterisks, plus standard Copy and Cut are disabled for the
control so users cannot copy a password and paste it into a text
editor or another control.

264 CLARION 5 USER’S GUIDE

Immediate
(the IMM attribute) specifies immediate event generation
whenever the user presses any key.

5. In the Drop ID field, optionally type up to sixteen (16) comma delimited
signatures.

The Window Formatter adds the DROPID attribute to your control. The
DROPID indicates this control is a valid target for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the control.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping the
item onto the other window or control, which can then look at the item
that was dropped and do something with it.

Implementation of this capability requires that the source control have a
DRAGID attribute with a signature that matches the target’s DROPID
signature, and that the procedures that drive each window have
appropriate source code to process the drag and drop events. See the
Language Reference for more details and examples.

Help Tab

See Common Control Attributes—Setting Help Attributes.

Tip: The I-Beam, which signals text entry, is the standard choice for
the active cursor for a text or entry control.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

Actions Tab

The Actions tab prompts are all from the templates, in other words, the
prompts you see here vary with the template used to create the control.
Following are the standard action prompts for all entry controls. See the
Control, Code, and Extension Templates chapter for more information.

The standard Actions prompts are designed to provide data validation
support for your entry controls. The tab is divided into two parallel sections.
The When the Control is Selected section provides validation when the
control receives focus (when the user TABS onto, or mouse CLICKS the
control). The When the Control is Accepted section provides data validation
when the control loses focus after data have been entered in it. The control
loses focus when the user TABS off the control, mouse CLICKS to a different
control or window, or closes the window without cancelling. The two
sections are not mutually exclusive, so you can provide validation at both
points.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 265

The standard Actions prompts are designed with selection list lookup
validation in mind, however, they are flexible enough to allow any custom
validation you might want to provide.

1. In the Lookup Key field, type a key label from the lookup file, or press
the ellipsis (...) button to select a key from the Select Key dialog.

A lookup file is a file which contains all the valid values for the entry
field, and they are directly accessible through a unique key, which is the
lookup key you name here.

For example, a file containing all of the customer numbers for your
application could be a lookup file. The key label could be ST:ByCode.

The Select Key dialog lets you select from files and keys already defined
in the Data Dictionary, or to define a new key if necessary.

Note: Defining a new key changes the file format and may therefore
require you to convert any existing files to the new format.

Tip: This lookup validation works best with a single component
unique key.

2. In the Lookup Field field, type the label of a component field of the
lookup key, or press the ellipsis (...) button to select a field from the
Select component from key dialog.

This is the field within the key that contains the same value being
validated. Ideally, this field is the only component of a unique key.
Following our example above, the field label could be ST:StateCode.

3. In the Lookup Procedure combo box, type a procedure name, or choose
an existing procedure from the drop-down list.

266 CLARION 5 USER’S GUIDE

This is the procedure that is called when the user enters an invalid value,
and the lookup fails. The usual purpose of this procedure is to allow the
user to choose a valid value from the lookup file.

Select procedures (Browse procedures) generated by Clarion’s Wizards
are appropriate for this purpose. Alternatively, you may hand-code a
procedure. Continuing our example above, the procedure name could be
SelectState.

4. Optionally, press the Advanced button to customize the (Selected or
Accepted) event handling source code for this entry control.

Pressing the Advanced button calls the Embedded Source dialog. The
only embed point shown is after the code generated to call the lookup
procedure specified above. For more embed points press the Embeds
button. Also see Application Generator—Embedded Source Code.

5. Optionally, check the Perform lookup during non-stop select box.

Checking this box tells Clarion to perform the validation when the
window is accepted, even if the entry control never received focus. From
a practical viewpoint, checking this box prevents the user from entering
blanks by virtue of having pressed the window’s “OK button” without
ever TABBING or CLICKING onto the entry field.

This option is only applicable to the When the Control is Accepted
section.

6. Optionally, check the Force Window Refresh when Accepted box.

Checking this box ensures that everything (including formulas and other
entry fields) on the window is current and up-to-date when the user TABS

off this entry control.

7. Optionally press the More Field Assignments button to specify additional
value assignments from the selected lookup item's record.

8. Optionally press the Files button to access the File Schematic Definition
dialog for this procedure.

9. Optionally press the Embeds button to embed source code at points
surrounding the event handling for this check box only.

10. Press the OK button to return to the Window Formatter .

Text Properties

The TEXT control provides a multi-line data entry field. This control is
especially suitable for holding a long STRING or a MEMO. The TEXT
control provides automatic word wrapping.

To set the properties for a text box RIGHT-CLICK the text box then select
Properties from the popup menu.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 267

General Tab

1. Specify a Use attribute.

Type the name of the variable to receive the value that the user enters in
the control; or press the ellipsis button (...) to select or define the
variable. Be sure the variable is large enough to hold the amount of data
you expect your users to enter in the control. See Common Control
Properties—Setting the USE Attribute.

Tip: You can control line breaks within TEXT control text by
specifying the ASCII code for a carriage return/line feed within
angle brackets at the appropriate place within the text. In fact,
you can include any special characters with this technique.
For example:
MyText = ‘Here comes a line break. <13,10> Yada yada...’

2. From the Justification drop-down list, choose Left Justified, Right
Justified, Centered or Default .

Adds the LEFT, CENTER, or RIGHT attribute to the TEXT. See the
Language Reference for details. Left Justified, Right Justified and
Centered position the data predictably, left, center, or right justified in
the text box. Default positions the data according to any applicable
settings in the data dictionary.

 3. Set Mode options.

See Common Control Properties—Setting Control Modes.

Extra Tab

1. Optionally, press the Extra tab to set additional properties of the text box.

2. Specify case attributes for the text field.

268 CLARION 5 USER’S GUIDE

The entry box can automatically convert character from one case to
another as the user types. Uppercase (UPR attribute) automatically
converts to all caps. Default (no attribute) accepts input in the case the
user types it.

3. Set the Option flags.

There are several option flags you may toggle on or off independently.

Required
(the REQ attribute) specifies that the control may not be blank or
zero.

Read Only
(the READONLY attribute) prevents data entry in this control.
Use this to declare display-only data.

Single
(the SINGLE attribute) specifies the control is only for single
line data entry. This lets you use TEXT controls instead of
ENTRY controls for languages that write from right to left (such
as Hebrew or Arabic).

4. Optionally, check the Horizontal or Vertical boxes to add scroll bars to
your text box.

Tip: Uncheck the Horizontal Box to enable automatic word-
wrapping on a text control.

5. In the Drop ID field, optionally type up to sixteen (16) comma delimited
signatures.

The Window Formatter adds the DROPID attribute to your control. The
DROPID indicates this control is a valid target for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the control.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 269

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping the
item onto the other window or control, which can then look at the item
that was dropped and do something with it.

Implementation of this capability requires that the source control have a
DRAGID attribute with a signature that matches the target’s DROPID
signature, and that the procedures that drive each window have
appropriate source code to process the drag and drop events. See the
Language Reference for more details and examples.

Help Tab

See Common Control Attributes—Setting Help Attributes.

Tip: The I-Beam, which signals text entry, is the standard choice for
the active cursor for a text control.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

Sheet Properties

The SHEET control declares a group of TAB controls that offer the user
multiple pages of controls for a single window. The multiple TAB controls in
the SHEET structure define the pages displayed to the user. The SHEET
structure’s USE variable receives the text of the TAB control selected by the
user.

General Tab

1. Place a field equate label in the Use field.

The field equate label references the property sheet in program
statements. See Common Control Attributes—Setting the USE Attribute.

2. From the Justification drop-down list, set the location of the tabs for this
SHEET. Choose from:

Default The tabs run across the top of the sheet.

Left The tabs run down the left side of the sheet. This
adds the LEFT attribute to the SHEET.

Right The tabs run down the right side of the sheet. This
adds the RIGHT attribute to the SHEET.

270 CLARION 5 USER’S GUIDE

Above The tabs run across the top of the sheet. This adds
the ABOVE attribute to the SHEET.

Below The tabs run across the bottom of the sheet. Adds the
BELOW attribute to the SHEET.

Tip: To fit many tabs on a sheet, set the Justification to Above and
set the Text Orientation to Up. Alternatively set the
Justification to Right and set the Text Orientation to Default.
Also, see Extra Tab to make scrolling tabs!

3. In the Tab Width field, specify the tab width in dialog units.

This sets the value of the width parameter for the LEFT, RIGHT,
ABOVE, or BELOW attribute. By setting this width, you can make all
your tabs the same size, regardless of varying text lengths per tab.

Tab width is the distance between the edges of the tab that are
perpendicular to the text orientation. That is, width determines how
much space appears on either end of your tab’s text, not how much space
appears above and below the text. This is true, regardless of text
orientation.

4. Use the Text Orientation drop-down list to set the orientation of the tabs
and their text. A Text Orientation other than Default requires a TrueType
font. See Common Control Properties—Setting the FONT Attribute for
more information. Choose from the following orientations:

Default The text reads left to right and the shape of the tab is
a horizontal rectangle.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 271

Up The text reads from bottom to top and the shape of
the tab is a vertical rectangle. This adds the UP
attribute to the SHEET.

Down The text reads from top to bottom and the shape of
the tab is a vertical rectangle. This adds the DOWN
attribute to the SHEET.

Inverted The text is upside down and the shape of the tab is a
horizontal rectangle. This adds the UP and the
DOWN attribute to the SHEET.

 5. Set Mode options.

See Common Control Properties—Setting Control Modes.

Extra Tab

1. Optionally, press the Extra tab to set additional properties of the SHEET.

2. Check the Spread box to resize the tabs on the TABs to fill all the
available space on the SHEET.

The resizing algorithm considers the size and orientation of the text
displayed on each tab, the number of tabs, and the available space on the
property sheet. This adds the SPREAD attribute to the SHEET. See the
Language Reference for more information.

3. Check the Wizard box to hide the “tab” portion of the TAB controls.

Hiding the tabs aids in creating a wizard. A wizard is a window with a
“tabless” SHEET control containing one or more TABs. You’ll need to
write the code to handle the “turning of the pages”.

272 CLARION 5 USER’S GUIDE

This adds the WIZARD attribute to the SHEET. See the Language
Reference for more information. See How to Create a Wizard in the on-
line help.

Tip: Do not check this box until you are finished designing the
window!

4. Check the NoSheet box to erase the borders of the tab pages so that only
the protruding selectable portion of the tab is visible.

This has the additional effect of making tabs located above the sheet, fall
to the bottom of the sheet, and making tabs located below the sheet rise
to the top of the sheet. This adds the NOSHEET attribute to the SHEET.
See the Language Reference for more information.

5. From the Scrolling drop-down list, specify tabs scrolling behavior by
choosing one of the following selections:

No Scrolling The tabs do not scroll. This is the default. If
necessary, the tabs are arranged in multiple rows.

Joined Scroll Buttons
Tabs are scrollable, with adjacent scroll buttons.
Adds the JOINED attribute to the SHEET. See the
Language Reference for more information.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 273

Spread Scroll Buttons
Tabs are scrollable, with scroll buttons at opposite
ends of the sheet. Adds the HSCROLL attribute to
the SHEET. See the Language Reference for more
information.

6. In the Drop ID field, optionally type up to sixteen (16) comma delimited
signatures.

The Window Formatter adds the DROPID attribute to your control. The
DROPID indicates this control is a valid target for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the control.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping the
item onto the other window or control, which can then look at the item
that was dropped and do something with it.

Implementation of this capability requires that the source control have a
DRAGID attribute with a signature that matches the target’s DROPID
signature, and that the procedures that drive each window have
appropriate source code to process the drag and drop events. See the
Language Reference for more details and examples.

Help Tab

See Common Control Attributes—Setting Help Attributes.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

Tab Properties

The TAB structure declares a group of controls. This group is one of multiple
pages of controls that may be contained within a SHEET structure. The
multiple TAB structures within the SHEET structure define the pages
displayed to the user. The SHEET structure’s USE attribute receives the text
of the TAB control selected by the user.

The Windows 95 standard to change from tab to tab is CTRL+TAB. Clarion
TAB controls follow this standard, both in the development environment and
in a compiled application.

Note: If you nest TABS, only the top level is controlled by CTRL+TAB.

274 CLARION 5 USER’S GUIDE

General Tab

1. In the Text field, type a string constant.

See Common Control Properties—Setting the TEXT Attribute.If the
control is to display a variable, type a picture token in this field. See
Common Control Properties—The Picture Editor.

2. In the Use field, type a field equate label.

The field equate label references the tab control in program statements.
See Common Control Properties—Setting the USE Attribute.

 3. Set Mode options.

See Common Control Properties—Setting Control Modes.

Extra Tab

1. Optionally, press the Extra tab to set additional properties of the TAB
control.

2. Check the Required box to enforce input to required input fields.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 275

When checked, your program automatically checks that all input
controls with the REQ attribute are neither blank nor zero.

Specify this type of tab when a window also contains an ENTRY,
COMBO, SPIN or TEXT control field with the REQ attribute (or else
use the INCOMPLETE function to test the input controls). When the
user clicks on a tab with the REQ attribute and an input field is blank or
zero, the first required control which is blank or zero receives focus.

3. In the Drop ID field, optionally type up to sixteen (16) comma delimited
signatures.

The Window Formatter adds the DROPID attribute to your control. The
DROPID indicates this control is a valid target for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the control.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping the
item onto the other window or control, which can then look at the item
that was dropped and do something with it.

Implementation of this capability requires that the source control have a
DRAGID attribute with a signature that matches the target’s DROPID
signature, and that the procedures that drive each window have
appropriate source code to process the drag and drop events. See the
Language Reference for more details and examples.

Help Tab

See Common Control Attributes—Setting Help Attributes.

Position

The position of the TAB is determined by the position of the parent SHEET.

Region Properties

A REGION control is simply a rectangular area of the screen. Its main
purpose is to provide a reference to test whether a given event—such as a
mouse event—occurred within that region.

You may give a region control color, a bevel, or provide for a cursor change
when the user passes the mouse over the region.

276 CLARION 5 USER’S GUIDE

General Tab

1. Place a field equate label in the Use field.

The field equate label references the region in program statements. See
Common Control Properties—Setting the USE Attribute.

 2. Set Mode options.

See Common Control Properties—Setting Control Modes.

Extra Tab

1. Optionally, press the Extra tab to set additional properties of Region
control.

2. Optionally, set the BEVEL attribute for the REGION.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 277

The BEVEL attribute gives a three dimensional look to the region. The
region appears raised, depressed, or both.

Outer
A positive value makes the region appear raised above the plane
of the window. The higher the value, the further the region is
raised. A negative value makes the region appear depressed
below the plane of the window. The bevel effect begins at the
outer border of the region.

Inner
A positive value makes the region appear raised above the plane
of the window. The higher the value, the further the region is
raised. A negative value makes the region appear depressed
below the plane of the window. The bevel effect begins
immediately inside the outer bevel.

Style
A USHORT, whose sixteen bits define the style (but not the size)
of the each of the four edges of the REGION. The STYLE
attribute gives you very fine control over the bevel appearance.
See the Language Reference for an explanation of the meaning
of each bit.

3. You may add the IMM attribute to the Region control by checking the
Immediate box.

This generates events (EVENT:MouseIn, EVENT:MouseOut,
EVENT:MouseMove) whenever the user passes the cursor over the
region; however, it incurs substantial overhead at run-time, so should be
used sparingly.

4. In the Drag ID field, optionally type up to sixteen (16) comma delimited
signatures.

The Window Formatter adds the DRAGID attribute to your control. The
DRAGID indicates this control is a valid source for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the control.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping the
item onto the other window or control, which can then look at the item
that was dropped and do something with it.

Implementation of this capability requires that the source control have a
DRAGID attribute with a signature that matches the target’s DROPID
signature, and that the procedures that drive each window have
appropriate source code to process the drag and drop events. See the
Language Reference for more details and examples.

5. In the Drop ID field, optionally type up to sixteen (16) comma delimited
signatures.

278 CLARION 5 USER’S GUIDE

The Window Formatter adds the DROPID attribute to your control. The
DROPID indicates this control is a valid target for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the control. See the Language
Reference for more details and examples.

Help Tab

See Common Control Attributes—Setting Help Attributes.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 279

Non-Interactive Controls
Non interactive controls do not accept data, but instead guide the user to
other controls with text or graphics. For example:

◆ A string in a dialog box can provide directions for filling out the data
field.

◆ One of the simplest graphic elements—a group box—can visually
associate a group of controls, signalling the user that the entries all relate
to the same thing.

◆ An image or graphic can do more than embellish a dialog. It can convey
meaning to a process that might otherwise take many, many words.

String Properties

The String control lets you place a string constant on screen. It optionally
lets you display a variable value.

Tip: Strings do not support multi-line text; for multi-line text (word
wrap) use a Prompt control or a Text control.

The String Properties dialog contains the following options.

General Tab

1. In the Text field, type the string constant or a picture token.

A string constant is displayed as typed. See Common Control
Attributes—Setting the Text Attribute.

Checking the Variable String box changes the Text: prompt to Picture: . A
picture token is used to format a variable string for display. Press the
ellipsis button (...) to define an appropriate picture token. See Common
Control Attributes—The Picture Editor.

2. In the Use field, type a field equate label or the label of a variable to
display.

A field equate label references the control in source code. Press the
ellipsis button (...) to select or define a variable to display. See Common
Control Attributes—Setting the USE Attribute.

3. From the Justification drop-down list, choose Left Justified , Centered ,
Right Justified , Decimal , or Default .

280 CLARION 5 USER’S GUIDE

Adds the LEFT, CENTER, RIGHT, or DECIMAL attribute to the
STRING. See the Language Reference for details. Left Justified ,
Centered , and Right Justified position the data predictably, left, center, or
right justified in the control. Default positions the data according to any
applicable settings in the data dictionary. Decimal justification aligns
values by their decimal points. Each justification may be offset by a
distance you specify.

4. In the Offset field, specify a justification offset in dialog units.

See the Glossary for the definition of dialog units. Sets the offset value
for the LEFT, RIGHT, CENTER, and DECIMAL attributes. For
CENTER justification, a negative value offsets to the left of center and a
positive value offsets to the right of center.

For DECIMAL justification, a negative value offsets to the left of the
decimal and a positive value offsets to the right of the decimal.

Tip: For Decimal justification, use an offset equal to
4 * (decimal places + 1)

5. Optionally check the Variable String box.

This specifies that you want to display the contents of a variable in the
string control. If so, place a picture in the Picture field, such as @s2. See
Common Control Attributes—The Picture Editor.

 6. Set Mode options.

See Common Control Attributes—Setting Control Modes above.

Tip: When you place text on top of an IMAGE or a colored graphic
such as a BOX, check the Transparent box (TRN attribute) so
as not to obscure the graphic.

Extra Tab

1. Optionally, press the Extra tab to set additional properties of String
control.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 281

2. Optionally, specify the Angle of the text.

An angle other than zero requires a TrueType font. See Common Control
Properties—Setting the FONT Attribute for more information. Adds the
ANGLE attribute to the STRING. With this, you can rotate the text from
its normal horizontal position through a full 360 degrees.

Tip: Make the control taller than usual to accommodate the slant of
the text.

3. In the Drop ID field, optionally type up to sixteen (16) comma delimited
signatures.

The Window Formatter adds the DROPID attribute to your button. The
DROPID indicates this button is a valid target for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the button.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping the
item onto the other window or control, which can then look at the item
that was dropped and do something with it.

Implementation of this capability requires that the source control have a
DRAGID attribute with a signature that matches the target’s DROPID
signature, and that the procedures that drive each window have
appropriate source code to process the drag and drop events. See the
Language Reference for more details and examples.

Help Tab

See Common Control Attributes—Setting Help Attributes.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

282 CLARION 5 USER’S GUIDE

Prompt Properties

The PROMPT control lets you place a string on screen which automatically
provides an accelerator key to the next active control following the prompt. It
is identical to the STRING control, except it has no variable capability and
no angle capability; however, unlike a STRING, a PROMPT supports word
wrapping (multi-line text). See String Properties.

Group Box Properties

A GROUP control draws a box around other controls. It visually associates
the controls for the user, and lets you address all the controls as one entity—
making it easy, for example, to disable all at once.

The Group Properties dialog contains the following options.

General Tab

1. In the Text field, type a string constant.

The Text field takes a string constant containing the prompt for the group
of controls. An ampersand (&) within the text means the next character
is the accelerator key for the group. See Common Control Properties—
Setting the Text Attribute.

2. In the Use field, type a field equate label.

A field equate label references the control in source code. See Common
Control Properties—Setting the USE Attribute.

3. Set Mode options.

See Common Control Properties—Setting Control Modes.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 283

Extra Tab

1. Optionally, press the Extra tab to set additional properties of the group
box.

2. Optionally, set the BEVEL attribute for the GROUP.

The BEVEL attribute gives a three dimensional look to the group box.
The box appears raised, depressed, or both.

Outer
A positive value makes the group box appear raised above the
plane of the window. The higher the value, the further the box is
raised. A negative value makes the group box appear depressed
below the plane of the window. The bevel effect begins at the
outer border of the box.

Inner
A positive value makes the group box appear raised above the
plane of the window. The higher the value, the further the box is
raised. A negative value makes the group box appear depressed
below the plane of the window. The bevel effect begins
immediately inside the outer bevel.

Style
A USHORT, whose sixteen bits define the style (but not the size)
of the each of the four edges of the GROUP. The STYLE
attribute gives you very fine control over the bevel appearance.
See the Language Reference for an explanation of the meaning
of each bit.

3. Optionally, make the group box invisible.

284 CLARION 5 USER’S GUIDE

By clearing the Boxed box, you may make the group box and its text
invisible to the user. This removes the BOXED attribute from the
GROUP. The group box is visible in the Window Formatter , but invisible
in Preview! mode and at runtime. This creates a different effect than
hiding or disabling the group. Hiding or disabling the group also hides or
disables all controls within the group.

4. In the Drop ID field, optionally type up to sixteen (16) comma delimited
signatures.

The Window Formatter adds the DROPID attribute to your button. The
DROPID indicates this button is a valid target for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the button.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping the
item onto the other window or control, which can then look at the item
that was dropped and do something with it.

Implementation of this capability requires that the source control have a
DRAGID attribute with a signature that matches the target’s DROPID
signature, and that the procedures that drive each window have
appropriate source code to process the drag and drop events. See the
Language Reference for more details and examples.

Help Tab

See Common Control Attributes—Setting Help Attributes.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

Progress Bar Properties

The PROGRESS control declares a control that displays a progress bar. This
usually displays the current percentage of completion of a batch process by
incrementally “filling” the bar as the process progresses.

The Progress Properties dialog contains the following options.

General Tab

1. In the Use field, type the label of the numeric variable that tracks the
progress of your process.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 285

The progress bar is automatically updated whenever the value in the
variable changes. If the USE attribute is a field equate label, you can
update the progress bar display by assigning a value (within the range
defined by the RANGE attribute) to the control’s PROP:Progress
property. See Common Control Properties—Setting the USE Attribute.

 2. Set Mode options.

See Common Control Properties—Setting Control Modes.

Extra Tab

1. Optionally, press the Extra tab to set additional properties of the progress
bar.

2. Specify the Range of values the progress bar displays.

If omitted, the default range is from zero (0) to one hundred (100).

3. In the Drop ID field, optionally type up to sixteen (16) comma delimited
signatures.

286 CLARION 5 USER’S GUIDE

The Window Formatter adds the DROPID attribute to your control. The
DROPID indicates this control is a valid target for drag and drop
operations. The signature is a string constant that identifies which types
of drag and drop operations are valid for the control.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping the
item onto the other window or control, which can then look at the item
that was dropped and do something with it.

Implementation of this capability requires that the source control have a
DRAGID attribute with a signature that matches the target’s DROPID
signature, and that the procedures that drive each window have
appropriate source code to process the drag and drop events. See the
Language Reference for more details and examples.

Help Tab

See Common Control Attributes—Setting Help Attributes.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

Image Properties

The IMAGE control lets you place bitmapped and vector images in a
window. The bitmap file formats supported are .BMP, .CUR, .PCX, .GIF,
.ICO and .JPG. The vector file format supported is .WMF. Clarion supports
up to 16.7 million color resolution.

GIF images are substantially faster than .JPG images although they do not
compress quite as well. 32-bit JPG images are significantly faster than 16-bit
JPG images. Clarion does not support printing of ICO images (because
Windows doesn’t support it). BMP images are fast, but take lots of space
because they are not compressed.

Tip: Use the PALETTE attribute on your window to ensure ample
color support for your images. The PALETTE attribute
specifies how many colors you want this window to use when
it is the foreground window. This is applicable in hardware
modes where a palette is in use and spare colors are available.
See the Language Reference for details.

The Image Properties dialog provides the following options.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 287

General Tab

1. Select a graphics file.

Type in a file name, or press the ellipsis (...) button to the right of the File
field to select a graphics file using the standard open file dialog.

2. Place a field equate label in the Use field.

The field equate label references the image in program statements. See
Common Control Attributes—Setting the USE Attribute.

3. Select an Image Mode

Choose from:

Stretched
The image expands (or contracts) to fill the image control.

Centered
The image displays at its default size, centered within the image
control.

Tiled
The image displays at its default size and is repeated as many
times as needed to fill the image control.

 4. Set Mode options.

See Common Control Properties—Setting Control Modes above.

Extra Tab

1. Optionally add scroll bars.

Check the Horizontal , Vertical , or both check boxes to add scroll bars if
the image is larger than the control size.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

288 CLARION 5 USER’S GUIDE

Tip: For IMAGE controls, Default displays the picture at the size it
was created.

Line Properties

The LINE control lets you place a straight line in your windows. You may set
the line’s color, thickness and position. The Line control cannot receive
focus, nor can it generate events.

The Line Properties dialog contains the following options.

General Tab

1. Place a field equate label in the Use field.

The field equate label references the line in program statements. See
Common Control Attributes—Setting the USE Attribute.

2. Optionally, set the line’s thickness.

Type a point value in the Line Width spin control. The default is 1 point.

 3. Set Mode options.

See Common Control Properties—Setting Control Modes.

Color Tab

1. Specify the Line Color .

Type a valid color equate or press the ellipsis button to select a color. The
standard Color dialog appears. Select a color by clicking on the color
selection square, or add a custom color. See Common Control
Attributes—The Color Dialog.

Tip: To heighten the “chiselled” look of a 3D window with a menu
bar, place a white line control of 0 height, and FULL width,
starting at point 0,0. The line sets off the gray area of the
window against the menu bar.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

Box Properties

The Box control lets you place a square or rectangle in your windows. You
may fill the box with a color, and specify a border color. You may also

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 289

specify it should have rounded corners. The Box control cannot receive
focus, nor can it generate events.

The Box Properties dialog contains the following options.

General Tab

1. Place a field equate label in the Use field.

The field equate label references the Box in program statements. See
Common Control Attributes—Setting the USE Attribute.

2. Optionally, set the thickness of the box’s border.

Type a point value in the Line Width spin control. The default is 1 point.

 3. Set Mode options.

See Common Control Properties—Setting Control Modes.

Extra Tab

1. Optionally specify the Box should appear with rounded corners by
checking the Rounded box.

Color Tab

1. Specify the Fill and Border colors.

290 CLARION 5 USER’S GUIDE

Type a valid color equate or press the ellipsis button to select a color. The
standard Color dialog appears. Select a color by clicking on the color
selection square, or add a custom color. See Common Control
Attributes—The Color Dialog.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

Tip: While you can set the size of the box and other graphic
controls by manually typing in coordinates, it is much easier to
draw it directly in the Windows Formatter.

Ellipse Properties

The ELLIPSE control lets you place a circle or ellipse in your windows. You
may fill the ellipse with a color, and specify a border color. The ellipse
control cannot receive focus, nor can it generate events.

The Ellipse Properties dialog contains the following options.

General Tab

1. Place a field equate label in the Use field.

The field equate label references the ellipse in program statements. See
Common Control Attributes—Setting the USE Attribute.

2. Optionally, set the thickness of the ellipse’s border.

Type a point value in the Line Width spin control. The default is 1 point.

 3. Set Mode options.

See Common Control Properties—Setting Control Modes.

Color Tab

1. Specify the Fill and Border colors.

Type a valid color equate or press the ellipsis button to select a color. The
standard Color dialog appears. See Common Control Attributes—The
Color Dialog.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

Tip: While you can set the size of the ellipse and other graphic
controls by manually typing in coordinates, it is much easier to
drag its handles in the Window Formatter.

CHAPTER 5 CONTROLS AND THEIR PROPERTIES 291

Panel Properties

The PANEL control lets you place a raised or depressed rectangular panel in
your windows. You may color the panel. The panel control cannot receive
focus, nor can it generate events.

The Panel Properties dialog contains the following options.

General Tab

1. Place a field equate label in the Use field.

The field equate label references the panel in program statements. See
Common Control Attributes—Setting the USE Attribute.

 2. Set Mode options.

See Common Control Properties—Setting Control Modes.

Extra Tab

1. Optionally, set the BEVEL attribute for the PANEL.

The BEVEL attribute gives a three dimensional look to the panel. The
panel appears raised, depressed, or both.

Outer A positive value makes the panel appear raised
above the plane of the window. The higher the value,
the further the panel is raised. A negative value
makes the panel appear depressed below the plane
of the window. The bevel effect begins at the outer
border of the panel.

Inner A positive value makes the panel appear raised
above the plane of the window. The higher the value,
the further the panel is raised. A negative value
makes the panel appear depressed below the plane
of the window. The bevel effect begins immediately
inside the outer bevel.

Style A USHORT, whose sixteen bits define the style (but
not the size) of the each of the four edges of the
PANEL. The STYLE attribute gives you very fine
control over the bevel appearance. See the Language
Reference for an explanation of the meaning of each
bit.

Color Tab

1. Specify the Fill and Border colors.

292 CLARION 5 USER’S GUIDE

Type a valid color equate or press the ellipsis button to select a color. The
standard Color dialog appears. See Common Control Attributes—The
Color Dialog.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

Tip: While you can set the size of the panel and other graphic
controls by manually typing in coordinates, it is much easier to
draw it directly in the Window Formatter.

CHAPTER 6 CUSTOM CONTROLS 293

6 - CUSTOM CONTROLS

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

294 CLARION 5 USER’S GUIDE

Overview
This chapter shows you how to set custom control properties. Custom
controls include both OLE and VBX controls.

Custom controls are defined outside the Clarion Development Environment
and may be either interactive or non-interactive.

◆ OLE controls—are “containers” for linked or embedded objects from
other programs such as Excel, Word, or PowerPoint. The programs must
be registered OLE servers. The objects may be documents created by the
server programs such as spreadsheets, word processing documents, or
slide presentations. Or the objects may be “directors” that let the server
program appear to run from within your Clarion program.

◆ OLE controls—are also “containers” for OCX (ActiveX) controls. OCXs
are add-in controls from third party vendors. You can place these
controls with the Window Formatter once you register the OCXs with
Windows.

◆ VBX controls—are add-in controls from third party vendors in Visual
Basic Extension format. Clarion supports VBX controls compatible with
Microsoft Visual Basic 1.0. You can place these controls with the Window
Formatter once you register the .VBX libraries with the Clarion
development environment.

CHAPTER 6 CUSTOM CONTROLS 295

OLE Controls

OLE Container Overview

The OLE control lets you place OLE (Object Linking and Embedding)
objects or .OCX controls in your windows. See Object Linking and
Embedding in the Language Reference for a complete discussion of this
topic.

OLE

By using an OLE Server, you add the full power of the server to your
application with very little programming on your part. However, your end
users must be licensed to use the OLE Server, and their hardware should
support the substantial additional resources required by the server. For
example, your Clarion application may run very efficiently on a 486
processor with 4M RAM, but if it calls Excel, PowerPoint, and/or Word,
your end users must have licenses for Excel, PowerPoint and Word, and their
hardware should provide reasonable performance for those programs (a
Pentium with 16 to 32M RAM).

OCX

Using an OCX usually requires a lot of embedded source code or hand code.
However, many OCXs are distributable to end users with no additional
license fee, and most OCXs require considerably fewer resources than do
typical OLE Servers.

Note: The Application Generator does not automatically generate
source code to support any particular functionality for the
OLE control. You must embed some code, or use the
OLEControl template to get functionality from the OLE control;
otherwise it is display only.

Embedded Code

When you use an OLE control to access an OLE Server, at a minimum you
probably should embed code to activate and deactivate the server (OCXs are
automatically activated). This gives your user full access to all the
functionality of the server. You can embed additional code to control exactly
how the server behaves and which server functions are available to your user.
Consult the server’s documentation for more information.

You may activate the server based on a button push, a menu selection, a list
selection, a mouse click, etc. To activate the server, use PROP:DoVerb. For
example:

296 CLARION 5 USER’S GUIDE

!Activate Server in its default mode.
?OleControl{PROP:DoVerb} = 0

or

!Activate Server in open mode (in its own separate window).
?Ole{PROP:DoVerb} = -2

To deactivate an in-place activated server, use PROP:Deactivate. You can add
a “deactivate” menu item to the OLE control and embed the deactivation
code in the Control Event Handling—Accepted embed point for the menu
item. For example:

?Ole{PROP:Deactivate} !Deactivate OLE Server

More embedded code is generally required to implement an OCX. The code
required is specific to the OCX and usually requires a thorough
understanding of the OCX’s operation.

OLE Control Menus

OLE controls may have MENUs, just like WINDOWs have. To define the
OLE control’s menu, in the Window Formatter , select the OLE control, then
choose Menu ➤ New Menu . Define the menu the same way you define menus
for your windows (see Window Formatter—Menu Editor).

The OLE control’s menu merges with the window’s menu. At runtime, if you
activate the OLE server “in-place,” the server’s menus merge with the
window’s menu as well.

Compound Storage File v. Linked or Embedded Document

Specifying a Storage File (OPEN(‘Filename\!ObjectName)) is very similar
to specifying a linked or embedded document (LINK(‘Filename’)). In both
cases, the OLE object is a link to an external file. However, there are some
significant differences:

◆ The OLE Server can manipulate a linked or embedded document file
independent of your application, but cannot do so with a Storage File.

◆ A Storage File can contain multiple objects, for example, two
spreadsheets, or a spreadsheet and a word document.

◆ The OLE container’s properties are saved in (and restored from) the
Storage File, but not in the linked or embedded document.

OLE Control Properties

Use the OLE Properties dialog to specify how the OLE control is declared in
the generated source code. This section describes each prompt in the OLE
Properties dialog. The pages following this section provide instructions for
using this dialog for specific OLE implementations.

CHAPTER 6 CUSTOM CONTROLS 297

General Tab

1. Type a field equate label in the Use field.

The field equate label references the OLE control in program statements.

2. Select a sizing attribute from the Sizing Mode drop-down list. The
Window Formatter adds the attribute to the OLE declaration. Choose
from:

Default Adds no sizing attribute. Zoom is the default.

Clip The OLE declaration gets the CLIP attribute. The
OLE object only displays what fits into the area
defined by the OLE container control’s AT attribute.
If the object is larger than the control, only the top
left corner displays.

Stretch The OLE declaration gets the STRETCH attribute.
The OLE object stretches to completely fill the area
defined by the OLE container control’s AT attribute.
The object’s aspect ratio is lost.

AutoSize The OLE declaration gets the AUTOSIZE attribute.
The OLE object automatically resizes when the
OLE container control’s AT attribute changes at
runtime.

Zoom The OLE declaration gets the ZOOM attribute. The
OLE object stretches to fill the area defined by the
OLE container control’s AT attribute. The object’s
aspect ratio is maintained.

3. Check the Compatible Mode box to specify a compatibility mode of 1 for
objects that require it (such as the Windows bitmap editor). Clear this
box to let the compatibility mode default to 0.

4. Check the 32-Bit box to tell the Window Formatter you want to work with
32-bit objects.

This restricts the Object Type list to 32-bit objects and allows the Window
Formatter to load 32-bit Ole Servers.

5. Use the Control Type group of controls to specify the object type for the
OLE control declaration. Select one of the three radio buttons: Ole,
Document , or OCX.

Control Type—Ole

When you select the Ole radio button, the Object Type list contains registered
OLE objects. The OLE structure gets the CREATE or OPEN attribute.

Object Type
Select from a list of registered OLE objects, such as Excel
Spreadsheets, Word documents, PowerPoint Slides, etc. to create
or open.

298 CLARION 5 USER’S GUIDE

Tip: When you select an OLE server, the Window Formatter
automatically loads it. This can be time consuming during the
window design process. Design and draw your window first,
then specify your OLE control last, or specify the server at
runtime using property syntax rather than at design time.

Storage File
Specifies the name of an OLE Compound Storage File (.OLR)
and the object within it to OPEN. Separate the filename and the
object name with a backslash and exclamation point:
FileName\!ObjectName.

If this field is blank, your application creates a new OLE object
(spreadsheet, slide, etc.) of the specified type.

The Window Formatter supplies a default value for this field
when you use it to create the Compound Storage File. See
Window Formatter Menus—Popup Menu—Open.

The OLE Server (PowerPoint, Word, etc.) can access and
manipulate the object in the compound storage file, but only
through your application. Therefore, use a compound storage file
when you want to limit your user’s access to the object.

Tip: RIGHT-CLICK the OLE control in the Window Formatter, then
choose Open from the popup menu to activate the specified
OLE server. This lets you build the object with the OLE server,
and it automatically specifies a default filename\!objectname
in the Storage File field.

When the object in the storage file is opened, the saved version
of the OLE container properties are reloaded.

CHAPTER 6 CUSTOM CONTROLS 299

Control Type—Document

When you select the Document radio button, the Document entry box
replaces the Object Type list, and the Keep synchronized with original check
box appears. The OLE structure gets the DOCUMENT or LINK attribute.

Document
Type the full pathname of the document file or press the ellipsis
button (...) to select the file from the Windows file dialog. A
document file is a file that is associated with a specific OLE
server, so the application can activate that server at runtime (e.g.,
MYBUDGET.XLS is associated with Excel).

If the filename has no path, the application looks for it in the
current directory. The document file should be installed on the
end user’s machine in the specified directory.

Keep synchronized with original (Link)
Check this box to add the LINK attribute (see the Language
Reference) to the OLE structure. This tells the server to update
the original document with any changes made through your
application.

Clear this box to add the DOCUMENT attribute (see the
Language Reference) to the OLE structure. This tells the server
not to update the original document with changes made through
your application.

Tip: The default DoVerb action ({PROP:DoVerb}=0) may depend on
whether the object is a link (LINK) or an embed (DOCUMENT).

Storage File
Specify the name of an OLE compound storage file (.OLR) and
the embedded document within it to open (a compound storage

300 CLARION 5 USER’S GUIDE

file may be specified for embedded documents (DOCUMENT)
but not for linked documents (LINK)). Separate the filename and
the object name with a backslash and exclamation point:
FileName\!ObjectName

The Window Formatter supplies a default value for this field
when you use it to create the compound storage file. See Window
Formatter Menus—Popup Menu—Open.

The OLE Server can access and manipulate the object in the
compound storage file, but only through your application.
Therefore, use a compound storage file when you want to limit
your user’s access to the document.

Tip: RIGHT-CLICK the OLE control in the Window Formatter, then
choose Open from the popup menu to activate the OLE server.
This lets you build the document with the OLE server, and it
automatically specifies a default filename\!object name in the
Storage File field.

When the object is opened, the saved version of the OLE
container properties are reloaded.

Control Type—OCX

When you select the tOCXradio button, the Object Type list contains
registered OCX objects. The OLE declaration gets the CREATE or OPEN
attribute.

Object Type
Select from a list of registered OCX objects to CREATE or
OPEN.

Storage File
Specify the name of an OLE compound storage file (.OLR) and

CHAPTER 6 CUSTOM CONTROLS 301

the object within it to open. Separate the filename and the object
name with a backslash and exclamation point:
FileName\!ObjectName

If you leave this field blank, your application creates a new OCX
object of the specified type.

Tip: RIGHT-CLICK the OLE/OCX control in the Window Formatter, then
choose Custom from the popup menu to activate the Custom
Properties dialog for the OCX. This records any property
changes and adds them as attributes to the OLE control
declaration statement.

If a property is set that cannot be represented in text form, a
storage file is created to store the property. The Window
Formatter specifies a default filename\!object name in the
Storage File field.

Tip: You can create a Storage File at runtime for the OCX by
issuing a

?OCXControl{PROP:SaveAs}=’FileName\!ObjectName’

while the OCX is active within your program. With this
technique, you can reopen an OCX in the state the user left it!

When the object is opened, the saved version of the OLE
container properties are reloaded.

 6. Set Mode options.

See Common Control Properties—Setting Control Modes.

Color Tab

7. Optionally, set colors for the OLE control.

Type a valid color equate or press the ellipsis button to select a color. The
standard Color dialog appears. See Common Control Attributes—The
Color Dialog.

Tip: Specify a background color for the OLE control. This makes
the boundaries of the control more visible and makes the
control look like an action control rather than a static control.

Help Tab

See Common Control Attributes—Setting Help Attributes.

Position Tab

See Common Control Attributes—Setting the AT Attribute.

302 CLARION 5 USER’S GUIDE

OLE Controls with OCXs
You must register your OCX with your Windows operating system before
you can use it. Consult your OCX documentation for instructions on
registering the OCX.

Tip: Some OCX installation programs register the OCX
automatically upon installation.

In addition, many OCXs require that you use them only in accordance with a
license agreement.

Generally, your program talks to the OCX with property assignments and
callback functions which, among other things, capture OCX events.
Therefore, you should be familiar with the OCX’s properties, events, and
operations. Consult your OCX documentation for this information.

The Clarion runtime library calls the callback functions whenever it needs to
pass on information concerning the OCX. You must register your callback
functions before the runtime library can call them. You may unregister the
functions if you need to. Clarion supplies procedures for this purpose as
illustrated below and in OLE (.OCX) Custom Controls in the Language
Reference.

ActiveX Controls, License Files, and Compound Storage Files

ActiveX Controls and License Files

Many ActiveX controls operate on two levels: the development/design level,
and a more limited end user level. Typically, a developer buys a license
which allows him to operate the control at the design level and to redistribute
the control at the end user level. This type of license is often enforced
through an associated license file. (.LIC or .LPK). That is, the license file
must be present at design time to successfully manipulate the properties of
the ActiveX control during application development; but it need not (and
should not) be present at runtime to support the more limited end user
operation of the control. Thus, the ActiveX control (.OCX and/or .DLL) may
be distributed with the application to end users, but the license file need not
be distributed, and in fact, cannot legally be distributed under the terms of
the typical license agreement.

Clarion and License Files

Clarion lets you implement ActiveX controls in your application with the
following methods. All the methods require the presence of the license file at
design time and the last method requires the presence of the license file at
runtime as well; therefore you cannot use the last method for distribution to
end users.

CHAPTER 6 CUSTOM CONTROLS 303

1) Within the WINDOW structure, name the ActiveX control.

You can use the Window Formatter to populate an OLE container control
(or control template), then select the ActiveX control from the Object
Type drop-down list in the OLE Properties dialog.

2) Within the WINDOW structure, name a compound storage file (.OLR)
that contains an instance of the ActiveX control.

You can use the Window Formatter to create the compound storage file:
populate an OLE container control (or control template), select the
ActiveX control from the Object Type drop-down list in the OLE
Properties dialog, then choose the Custom command on the right-click
popup menu.

3) Outside the WINDOW structure, name a compound storage file that
contains an instance of the ActiveX control. For example:
CODE
?CalendarObject{PROP:Open} = ‘Calendar.OLR\!MeetingSchedule’

4) Outside the WINDOW structure, name the ActiveX control. This method
requires the presence of a license file at runtime—a violation of the
typical license agreement; therefore you cannot use this method for
distribution to end users.
CODE
?CalendarObject{PROP:Create} = ‘GraphDemoLib.GraphDemo’

Benefits of Compound Storage Files

Compound storage files are files that contain one or more OLE or ActiveX
objects, including any special property settings for those objects such as
fonts, colors, sizes, initial values, etc. Microsoft established the standard
format for these files, which in the Clarion implementation have a file
extension of .OLR (by convention only).

You can use compound storage files to reduce and reuse the code needed to
implement ActiveX objects in your application. In addition, if you always
use compound storage files to implement your ActiveX controls, you will
never need to distribute license files to end users in violation of your license
agreement.

Compound storage files reduce code because the Clarion Window Formatter
automatically creates compound storage files for OLE and ActiveX objects.
You can save the custom properties of a specific object by visually
manipulating the object (such as a spreadsheet or a calendar control) with its
own powerful and easy to use methods, rather than laboriously hand coding
property assignments. For example, you can format an Excel spreadsheet
using Excel menu commands, toolbar buttons, etc., then save the spreadsheet
in a compound storage file, then open the spreadsheet in its current state
from the compound storage file. Without the compound storage file, you

304 CLARION 5 USER’S GUIDE

would have to issue a series of Excel property assignments to the Excel
spreadsheet object to initialize it to the desired state.

Compound storage files reuse code because you can reference a single
compound storage file many times within a single application or from
multiple applications. The property settings saved within the compound
storage file are reused with each reference.

CHAPTER 6 CUSTOM CONTROLS 305

VBX Controls
VBX controls are “add-in” controls sold by many third party vendors. These
perform a wide variety of tasks, from sliders and gauge controls to TWAIN
image capture add-ins. The Window Formatter lets you directly place these
controls once you “register” the .VBX libraries.

The specific VBX control format Clarion supports is the Microsoft Visual
Basic control format, normally given the .VBX extension. There is one
important limitation:

◆ Clarion supports .VBX properties compatible with Microsoft Visual
Basic 1.0. VBX controls which require VB 2.0 or higher are
incompatible.

This is in line with other non-Visual Basic platforms, such as the
Microsoft Foundation Classes v. 2.0. The biggest difference between
level one and level two or higher .VBX’s is that the latter contain
“hooks” into the MS Access database engine which ships with Visual
Basic 2.x and higher. The level number refers to the VB version number.

Tip: If the vendor description of a .VBX doesn’t specifically state
whether the control is designed for Visual Basic 1, you can
immediately identify a level two or higher control if they
identify it as a “data bound” control.

VBX control libraries usually require a license file (*.LIC or *.DEM) before
you can add the control to your applications. The library vendor provides the
file when you buy the library. When you distribute the application to your
end users, you distribute the .VBX file only, not the license file.

Additionally, when you ship the .VBX file to your end users, follow the
library vendor’s instructions as to where to place the .VBX control file(s).

Registering .VBXs

Before you can place a VBX control in a window, you must register the
.VBX file which contains it. To do so:

1. Install the .VBX and any associated .dlls and license files into a directory
in the system path.

Some .VBX vendors install their .VBX’s to the Windows System
directory, while others prefer private directories. When you install a
.VBX library to your hard drive, make a note of where you put it so you
can locate it with the Open File dialog.

2. From Clarion’s main menu, choose Setup ➤ VBX Custom Control
Registry .

306 CLARION 5 USER’S GUIDE

3. Press the Add button in the VBX Custom Control Registry dialog box.

4. Navigate to the .VBX file and select it in the Add Custom Control dialog,
then press OK.

5. Press OK to close the VBX Custom Control Registry dialog.

Adding VBX Controls to a Window or Report

1. From the Window Formatter or the Report Formatter , select the VBX
Control tool, or choose Control ➤ VBX Control , then CLICK in the window
or report.

This opens the Select Custom Control dialog. This dialog lets you select
controls from the VBX Custom Control Registry. Highlight the control you
want. When you highlight a control, if the Sample box is checked, the
dialog displays the control with its default settings.

2. Press the OK button to return to the Window Formatter.

3. RIGHT-CLICK the VBX control then select Properties from the popup
menu.

VBX Properties

The VBX Control Properties dialog contains the following prompts.

1. Optionally type a label for the control in the Text field.

If the control supports a label, it will appear as part of the control. In
practice, most controls will require you to specify a title label as a Visual
Basic Control property (see VBX Operation).

2. Type a field equate label or variable name in the Use field.

The variable will nominally receive the value of the control. If the
control accepts user entry, you will more likely retrieve the value entered
by the user by accessing a Visual Basic Control property (see VBX
Operation).

.VBX’s also generate a specific event (EVENT:vbxevent). The event
represents a string message sent from the .VBX to the Clarion
application. You can examine the event (see VBX Operation).

CHAPTER 6 CUSTOM CONTROLS 307

3. In the Custom Properties entry field, type start-up properties for the
control.

The Custom Properties list appears at the left of the dialog. It displays
the Visual Basic Control properties and their default values. If you enter
a start-up value in the dialog, the Window Formatter automatically adds it
to the Clarion language statement that places the control in the window.

When you highlight a Visual Basic Control property in the list, either an
edit box or a drop-down list appears below the property list. Type a value
or variable in the edit box or choose from the drop-down list.

The documentation from the .VBX vendor should describe the Visual
Basic Control properties you may set. Read on to find out how to change
these properties at runtime and how to retrieve user input from the VBX
control (see VBX Operation).

4. Optionally, specify the appearance of the cursor, the Help ID, and
Message text.

See Common Control Attributes—Setting Help Attributes.

5. Optionally, specify the KEY and ALRT attributes.

See Common Control Attributes—Setting the KEY Attribute and Setting
the ALRT Attribute.

6. Optionally, press the Position button to specify the AT attribute, plus any
Mode attributes.

See Common Control Attributes—Setting the AT Attribute and Setting
Control Modes.

7. Optionally, check the Sample box to display the control with default
settings.

8. Optionally, check the Meta box to generate a Windows metafile (.WMF)
for reports.

308 CLARION 5 USER’S GUIDE

When adding a .VBX control to a report, this specifies that the print
engine generates a metafile (.WMF) to represent the control. This
metafile may be previewed and printed just like any other report
generated metafiles.

VBX Operation

The .VBX file acts as a mostly self-contained external library. When the
application loads it into memory, you can exchange information between the
application and the custom control with the properties. The Visual Basic
Control properties are a message map.

The .VBX properties are the most common means by which a non-VB
application uses a VBX’s functionality. Think of a property as a variable
which both the application and the VBX can access.

If both the application and the VBX monitor the property, they can use it to
signal each other. When the value of the property changes, it is a signal that
something may need to be done. Each VBX has its own properties. You find
out what properties are available by reading the VBX Vendor’s
documentation.

For example, assume a VBX has a property called ‘CellColor,’ which
indicates the background color of a grid cell. If the application wants to
know what the current color is, it retrieves the value in the property called
‘CellColor.’ Usually, it works the other way, too. If the application changes
the value of ‘CellColor’ from blue to red, then the VBX updates the window
control and changes the color.

Tip: The Visual Basic Control properties are usually documented
with a leading dot. Drop the dot when accessing it from the
Clarion application.

VBXs and Property Syntax

The section above notes how to set the start-up properties for a control with
the Window Formatter . At other times you’ll want to alter the properties at
runtime, and of course, retrieve values after user input.

❏ To alter properties at runtime, use the property syntax. Access the
control’s properties by referring to the specific property in quotes:
?vbx{ ‘VBProperty’ } = value

❏ To retrieve the current value of a Visual Basic Control property, use the
property syntax this way:
value = ?vbx{ ‘VBProperty’ }

CHAPTER 6 CUSTOM CONTROLS 309

VBX Events

Besides properties, the other “channel” by which the .VBX “talks” to your
application is with events. A .VBX might trigger an event, for example, if the
end user double clicks on a particular part of it. When the event occurs, the
.VBX generates a string (up to 255 characters) naming the event. The .VBX
vendor’s documentation lists the possible events the control may generate.

Your application can examine the event, and take appropriate action by
interrogating PROP:VBXevent. When working with the Application
Generator, you place code similar to the example below at the embed point
labelled “Control Event Handling, (VBXevent).” For example:

SomeString = ?vbx{PROP:VBXevent}
IF SomeString = ‘UserWantsToDoX’
 SomeProcedure
END

310 CLARION 5 USER’S GUIDE

CHAPTER 7 REPORT FORMATTER 311

7 - REPORT FORMATTER

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

312 CLARION 5 USER’S GUIDE

Overview
Using the Report Formatter , you visually lay out your application’s reports.
The Report Formatter automatically generates and places all the code
structures necessary to produce the reports. Preview the reports without
actually generating any code or data.

This chapter provides an overview of Clarion’s page oriented print engine,
and a comprehensive treatment of each feature of the Report Formatter .

Clarion has many powerful reporting features and we want to systematically
cover all of them. However, you the developer, probably have a particular
report you need to produce by yesterday! To read about those features that
will help you produce your particular report right now, turn to the Creating
Reports chapter.

For even more examples of how to create a variety of report effects and
features, see the Creating Reports chapter in the Learning Clarion book.

CHAPTER 7 REPORT FORMATTER 313

Clarion’s Report Engine
Before learning how to create a report using the Report Formatter , it is
important to understand how Clarion executes a report—in other words, the
division of labor between the print engine and your source code, plus the
order in which the print engine processes the different sections of your
report.

Usually, your source code need only contain the REPORT data structure,
plus the appropriate file I/O and a PRINT statement. The REPORT data
structure is generated for you by the Report Formatter , and the Application
Generator handles the file I/O and the PRINT statement, that is, unless you
prefer to hand code.

REPORT Structures

The REPORT data structure contains all the information necessary for
formatting and printing each report page. A REPORT data structure may
contain five sub-structures: FORM, HEADER, DETAIL, FOOTER, and
BREAK. Each BREAK structure can contain it’s own HEADER, nested
BREAK, DETAIL, and FOOTER.

These structure names carry traditional positioning connotations, however,
Clarion provides complete flexibility in positioning the FORM, page
HEADER, and page FOOTER structures. Further, BREAKs, break
HEADERs, break FOOTERs, and DETAIL structures can print anywhere
within the detail print area, an area defined by the REPORT’s AT attribute.
The REPORT’s AT attribute, and the detail print area may be defined with
the Report Properties dialog, or the Report Formatter’s Page Layout View .

Processing Sequence

What you should remember about these structures is not so much where they
are printed (they may be printed anywhere you place them) but when they
are composed, that is, the order in which they are composed when your
report prints.

Once you know the order in which the report sections are composed at print
time, you can use them better. Page placement does not affect the order in
which the print engine composes the sections of the report. You can place a
page FOOTER above a DETAIL, and because the page FOOTER is
composed after the report engine processes all the DETAILs on the page,
you can place a page total at the top of the page!

The following procedure illustrates the order in which each report structure
is composed. Assume a report containing one BREAK structure, with a
DETAIL section inside it:

314 CLARION 5 USER’S GUIDE

1. The print engine composes the FORM, but does not send it to the print
spooler yet. The print engine composes the FORM only once.

2. The print engine composes the page HEADER.

3. The print engine composes the group HEADER for the first group.

4. The print engine composes the DETAIL section as many times as
necessary to fill the first page.

If a BREAK occurs on the page:

5. The print engine composes the group FOOTER for the first group.

6. The print engine composes the group HEADER for the next group.

7. The print engine composes the DETAIL section for the next group of
records, continuously checking for more group BREAKs.

At the bottom of the page:

8. The print engine checks for widows, increments the page count, and
checks the next page for orphans.

9. The print engine composes the page FOOTER.

10. The print engine sends the entire page to the print spooler.

11. Except for step 1, the print engine repeats this procedure for all
additional pages.

CHAPTER 7 REPORT FORMATTER 315

Report Formatter Interface

Opening the Report Formatter

You can access the Report Formatter from the Application Generator or from
the Text Editor.

To open the Report Formatter from the Application Generator

1. From the Application Tree, RIGHT-CLICK the report then choose Report
from the popup menu (or from the Procedure Properties dialog press the
Report button).

This opens the Report Formatter . You’re now ready to define the report
section by section.

Tip: When you open the Report Formatter with the Application
Generator, you have full access to the data dictionary “short
cuts”—the Populate Field toolbox, the Populate menu, the
Dictionary Fields tool, etc.

To open the Report Formatter from the Text Editor

1. Open a source code document.

2. Locate a blank line in the data section and place the cursor there.

This is where the Report Formatter places the Clarion language REPORT
structure.

3. Choose Edit ➤ Format Structure from the menu.

You may also press the keyboard accelerator, CTRL+F. This opens the New
Structure dialog.

4. From the New Structure dialog, choose Report (portrait) or Report
(landscape).

This opens the Report Formatter . You’re now ready to define the report.

Tip: To edit an existing report from the Text Editor, open the source
code file and place the cursor on any line within the REPORT
structure, then choose Edit ➤➤➤➤➤ Format Structure from the
menu, or press ctrl+f.

Band View

When you first open the Report Formatter , your report appears in Band View.
That is, each REPORT section (HEADER, BREAK, DETAIL, FOOTER,

316 CLARION 5 USER’S GUIDE

and FORM) appears in a separate “band” inside the window. This is true
even though the report sections may actually overlap when printed.

Rulers

To quickly determine each section’s position, look at the rulers. The
horizontal (X axis) ruler shows the position relative to the left edge of the
page. The vertical (Y axis) rulers show the positioning relative to the top of
each band. The measurement units are set in the Report Properties dialog
(see Report Formatter Structures and Properties).

Caption Bars

Each report section has it’s own caption bar. Each caption bar displays the
band type and an expand/contract button at the far right. Break section
caption bars also display the name of the variable the section breaks on.

Show/Hide Button

To expand or contract the report band, click on the expand/contract button at
the far right of its caption bar.

Report Formatter Toolboxes

Controls Toolbox

The Controls Toolbox works much like a palette of drawing tools, such as the
toolbox in the Windows Paintbrush accessory. Simply CLICK on an icon in the
toolbox, then CLICK inside the band you wish to add the control to. The upper

Rulers

Caption Bar

Controls Tools

Fields Tools

Alignment Tools

CHAPTER 7 REPORT FORMATTER 317

left hand corner of the control is placed at the intersection of the cursor
crosshair when you CLICK the mouse.

The Controls Toolbox appears by default when you start the Report
Formatter . Hide or re-display the Controls toolbox by choosing Option ➤
Show Toolbox. Resize the toolbox by placing the cursor on its border, then
CLICK and DRAG. Move the toolbox by CLICKING and DRAGGING its caption bar.

All the controls in the toolbox are available from the Controls menu and the
Populate menu.

Tip: Position the cursor over any tool and wait for half a second. A
tool tip appears telling you the type of control this tool
creates.

Drops the currently selected control tool.

Places a STRING control on the report under
construction. See Controls and Their Properties—
String Properties.

Places a TEXT control on the report under
construction. See Controls and Their Properties—
Controls and Their Properties—Text Properties.

Places a GROUP control (group box) on the report
under construction. See Controls and Their
Properties—Group Box Properties.

Places an OPTION control (OPTION structure,
which appears as a group box with radio buttons) on
the report under construction. See Controls and
Their Properties—Option Box Properties.

Places a CHECK control on the report under
construction. See Controls and Their Properties—
Check Box Properties.

Places a RADIO control on the report under
construction. See Controls and Their Properties—
Radio Button Properties.

No Tool String Text Box Group Box Option Box

Check Box Radio Button List Box Image Line

Box Ellipse Field VBX Template

318 CLARION 5 USER’S GUIDE

Places a LIST control on the report under
construction. See Controls and Their Properties—
Creating List Boxes.

Places an IMAGE control (graphic image) on the
report under construction. See Controls and Their
Properties—Image Properties.

Places a LINE control on the report under
construction. See Controls and Their Properties—
Line Properties.

Places a BOX control on the report under
construction. See Controls and Their Properties—
Box Properties.

Places an ELLIPSE control on the report under
construction. See Controls and Their Properties—
Ellipse Properties.

Places a control associated with a Data Dictionary
field or memory variable on the report under
construction.

Places a VBX control (Visual Basic custom control)
on the report under construction. See Custom
Controls—VBX Controls.

Places a control template on the report under
construction (adds one or more controls, along with
associated source code). See Control Templates in
the Application Handbook for more information.

Populate Field Toolbox

The Report Formatter contains a floating Populate Field toolbox. This toolbox
lets you quickly “populate” a report with fields from your data dictionary
files or with memory variables.

To populate a field, choose a file or variable scope from the drop-down list,
then DOUBLE-CLICK the field or variable you want to appear on your report.
The field is automatically aligned. To place the field manually, CLICK once on

CHAPTER 7 REPORT FORMATTER 319

the field, then CLICK in the desired location. The type of control (string, check
box, radio button, etc.) is determined by the settings for this particular field
in the Data Dictionary.

Display or hide the Populate Field toolbox by choosing Option ➤ Fieldbox.
Resize the Populate Field toolbox by placing the cursor on the border of the
box. When the cursor changes to a double headed arrow, CLICK and DRAG.
Move the toolbox by CLICKING and DRAGGING it’s caption bar.

You may also populate a report with fields from your files by using the
Populate menu or by using the Dictionary Fields tool in the Controls
toolbox.

Property Toolbox

The Report Formatter’s Property toolbox lets you quickly specify the
appearance and content of the text on each control within the report. Control
the typeface, size, style, and content of all your report text using standard
word processor buttons and drop-down lists.

In the Text field, type the control’s text or a picture token. See Controls and
Their Properties—The Picture Editor for more information.

Display or hide the Property toolbox by choosing Option ➤ Show
Propertybox. Resize the Property toolbox by placing the cursor on the border
of the box. When the cursor changes to a double headed arrow, CLICK and
DRAG. Move the toolbox by CLICKING and DRAGGING it’s caption bar.

Align Toolbox

The Report Formatter’s Align toolbox lets you quickly, professionally, and
precisely align the controls in your report. Select the controls to align
(CTRL+CLICK selects multiple controls), then click on the appropriate
alignment tool. All the alignment actions are also available from the
Alignment menu.

Tip: For most alignment functions, the first control(s) selected
(blue handles) are aligned with the last control selected (red
handles). That is, the last control selected is the anchor
control. It doesn’t move, the others do.

Align Left Align Right Align Top Align Bottom

Align Vertical Align Horizontal Spread Vertical Spread Horizontal

Center Vertical Center Horizontal Same Size Same Height

320 CLARION 5 USER’S GUIDE

Display or hide the Align toolbox by choosing Option ➤ Show Alignbox.
Resize the Align toolbox by placing the cursor on the border of the box.
When the cursor changes to a double headed arrow, CLICK and DRAG. Move
the toolbox by CLICKING and DRAGGING it’s caption bar.

Tip: Position the cursor over any tool and wait for half a second. A
tool tip appears telling you the type of alignment this tool will
accomplish.

Aligns the left borders of the selected controls with
the left border of the last control selected (red
handles).

Aligns the right borders of the selected controls with
the right border of the last control selected (red
handles).

Aligns the top borders of the selected controls with
the top border of the last control selected (red
handles).

Aligns the bottom borders of the selected controls
with the bottom border of the last control selected
(red handles).

Along a vertical axis, aligns the centers of the
selected controls with the center of the last control
selected (red handles).

Along a horizontal axis, aligns the centers of the
selected controls with the center of the last control
selected (red handles).

Equalizes the vertical space between the selected
controls.

Equalizes the horizontal space between the selected
controls.

Makes all selected controls the same height and
width as the last control selected (red handles).

Makes all selected controls the same height as the
last control selected (red handles).

CHAPTER 7 REPORT FORMATTER 321

As a group (relative positions of selected controls
don’t change), centers the selected controls
vertically within the report band.

As a group (relative positions of selected controls
don’t change), centers the selected controls
horizontally within the report band.

Report Formatter Menus

Popup Menu

Access the popup menu by RIGHT-CLICKING a band or a control. The popup
menu on the Report Formatter lets you manipulate and customize the report
sections, and the controls within them, depending on which is selected.

❏ To select a control, place the cursor on the control then RIGHT-CLICK.

❏ To select a report section, place the cursor anywhere on the band, but not
on a control, then RIGHT-CLICK.

Tip: Many of the popup menu commands are also available on the
Report Formatter Edit menu.

Following is a description of the popup menu choices:

Properties
Opens the properties dialog for the selected report section or
control. See the discussion of the selected item for more
information on it’s properties.

Font
Calls the Select Font dialog which lets you select the font
(typeface), size, style (such as bold or italic), color, and font
effects (underline and strikeout) for all the controls in the report
section. You may override the section font by setting a different
font in the Properties dialog for any specific control. As you
choose options, the dialog displays a sample of the selected font.

322 CLARION 5 USER’S GUIDE

Position
Opens the properties dialog to the Position tab. See the
discussion of the selected item for more information on it’s
positioning. Generally, you may also visually position items by
CLICKING and DRAGGING, and by using the Alignment tools.

List Box Format
Specify the appearance and functionality of a list box control.
See Window Formatter—List Box Formatter for more
information.

Duplicate
Copies the currently selected control to the cursor position.

Delete
Deletes the selected control or report band. Alternatively, press
the DELETE key.

Synchronize
Applies the control attributes specified in the Data Dictionary to
the selected control, or if a band is selected, to all the controls in
the band. The attributes are applied as specified in the
Synchronization tab of the Application Options dialog. See
Application Generator—Configuring the Application Generator.

Edit Menu

The Edit menu in the Report Formatter lets you manipulate and customize the
report and the controls in the report.

Tip: Many of the Edit menu commands are also available on the
popup menu that you access by right-clicking on the control
or the report band.

Next Band
Selects the next report band in sequence.

Delete Band
Deletes the selected report band. Alternatively, press the DELETE

key. This deletes the band and all controls in it.

CHAPTER 7 REPORT FORMATTER 323

Report Properties
Opens the Report Properties dialog.

Selected Properties
Opens the properties dialog for the selected section or control.
See the discussion of the selected item for more information on
it’s properties.

Font
Calls the Select Font dialog which lets you select the font
(typeface), size, style (such as bold or italic), color, and font
effects (underline and strikeout) for all the controls in the report
section. You may override the section font by setting a different
font in the Properties dialog for any specific control. As you
choose options, the dialog displays a sample of the selected font.

Position
Opens the properties dialog to the Position tab. See the
discussion of the selected item for more information on it’s
positioning. You may visually position items by CLICKING and
DRAGGING, and by using the Alignment tools.

List Box Format
Specify the appearance and functionality of a list box control.
See Window Formatter—List Box Formatter for more
information.

Duplicate
Copies the currently selected control to the current mouse cursor
position.

Delete Control
Deletes the selected control. Alternatively, press the DELETE key.

Synchronize
Applies the control attributes specified in the Data Dictionary to
the selected control, or if a band is selected, to all the controls in
the band. The attributes are applied as specified in the
Synchronization tab of the Application Options dialog. See
Application Generator—Configuring the Application Generator.

324 CLARION 5 USER’S GUIDE

Set Control Order
Opens the Order Control dialog, which displays all controls on
the report in a hierarchical list. Reorder the controls by selecting
a control and pressing the and buttons to move the
control up or down within the list.

Tip: When overlapping one control over another, for example, text
over a box, choose Edit ➤➤➤➤➤ Set Control Order to ensure the
underlying control is printed before the overlying control;
otherwise the overlying control may be obscured.

Synchronize Report
Applies the control attributes specified in the Data Dictionary to
the selected to all the controls in the report. The attributes are
applied as specified in the Synchronization tab of the Application
Options dialog. See Application Generator—Configuring the
Application Generator.

Control Templates
To add Extension templates to the procedure, or to edit the
Control and Extension template prompts for the procedure,
choose the Control Templates command. This opens the
Extension and Control Templates dialog where you can add
Extension templates, and you can edit either Control or
Extension templates. See Control Templates in the Application
Handbook for more information.

Controls Menu

The Controls menu lists the same controls that appear in the Controls
Toolbox, except Control Template and Dictionary Fields (See Populate
Menu). Executing a command from the Controls menu is identical to clicking
on the corresponding toolbox icon. The menu serves as a convenience. See
Report Formatter Toolboxes. Also see Controls and Their Properties.

Alignment Menu

The Alignment menu lists the same Alignment tools that appear in the Align
Toolbox. Executing a command from the Alignment menu is identical to
clicking on the corresponding toolbox icon (see Report Formatter
Toolboxes). The menu provides the following additional options.

Make Same Width
Makes all selected controls the same width as the last control
selected (red handles).

Bands Menu

The Bands menu lets you add new report sections or bands to your report.
Choose from the following:

CHAPTER 7 REPORT FORMATTER 325

Page Header
Adds a page header to your report. The header is the first section
of the page to be composed. Typically, you place the report title,
graphics and other “introductory” elements in the header.

Page Footer
Adds a page footer to your report. The footer is the last section
of the page to be composed. Typically, you place a page number
and page totals in the footer.

Page Form
Adds a “preprinted” form to your report. The form is composed
once and remains constant from page to page. Typically, you
display “overlays” or fixed data such as graphics and field labels
in the form, then print the variable data in other bands.

Detail
Adds detail lines to your report The DETAIL structure is the
“body” of the report. It contains the lowest level of data to be
printed.

Break Group
Adds a new detail, break, group header and group footer to your
report. Place the crosshair where you want the new group of
bands to appear, then CLICK. This opens the Break Properties
dialog. Specify the variable to break on then press OK.

Group Header
Adds a group header to an existing break. Place the crosshair on
the caption bar of the break you wish to modify, then CLICK. This
opens the Page/Group Header Properties dialog.

Group Footer
Adds a group footer band to an existing break. Place the
crosshair on the caption bar of the break you wish to modify,
then CLICK. This opens the Page/Group Footer Properties dialog.

Surrounding Break
Adds a break around an existing detail. Place the crosshair on
the detail you want to break on, then CLICK. This opens the Break
Properties dialog. Specify the variable to break on then press OK.

326 CLARION 5 USER’S GUIDE

View Menu

The View menu lets you toggle between Band View and Page Layout View ,
plus hide or display all bands at once.

Page Layout View
Accurately displays the positioning of report sections on a
sample page. Lets you move and resize the page header, page
footer, form, and print detail area by CLICKING and DRAGGING. See
Specifying Report Margins for instructions on using the Page
Layout View .

Band View
Displays each report section in a separate band with no
overlapping. Lets you add controls to your report and set their
properties.

Expand Bands
Collapses or expands all the bands at once.

Populate Menu

The Populate Menu appears in the Report Formatter only when the
Application Generator is active. It places an appropriate control in the report
to display the selected data dictionary field or memory variable.

Dictionary Field
Lets you place a variable string control tied to a data dictionary
field or a memory variable. When you CLICK in the report, the
Select Field dialog opens. Select a field or variable, then CLICK in
the report.

If you pre-formatted the field on the Report tab of the Field
Properties dialog (for example, specifying a text control), the
control you specified is placed, otherwise a string is placed.

Multiple Fields
Same as Dictionary Field , but in a repetitive fashion. Press the
Cancel button after you have placed the last field.

Control Template
Adds one or more controls to your report, along with associated
source code. See Control Templates in the Application
Handbook.

Option Menu

The Option menu lets you display and hide the various Report Formatter
toolboxes, zoom in and out, and apply grid behavior.

Zoom In
Magnifies the “view” in Preview mode.

CHAPTER 7 REPORT FORMATTER 327

Zoom Out
Reduces the “view” in Preview mode.

Snap to Grid
To turn grid snap on or off, choose the Snap to Grid command.
Grid snap forces the upper left corner of new controls to align
with a dot grid in the report. The grid is not printed; it is a design
tool only.

Grid Size
To set the size of the grid units, choose the Grid Size command.
You may enter different values for the X and Y axes.

To set the width and height spacing between the grid dots, enter
values in the Width and Height fields in the Grid Size dialog. The
values are in the measurement unit specified in the Report
Properties dialog.

Show Toolbox
Displays or hides the Controls toolbox.

Show Alignbox
Displays or hides the Align toolbox.

Show Propertybox
Displays or hides the Property toolbox.

Show Fieldbox
Displays or hides the Populate Field toolbox.

Preview!

Preview! lets you try out various report formats without actually compiling
and running the report. You can quickly “preview” alternative layouts for
DETAILs, BREAKs, HEADERs, and FOOTERs, and you can see the effects
of the page breaking options you have chosen.

The Report Formatter supplies test data in the format you specify. Fonts,
sizes, colors, and positions of report controls are all displayed.

To simulate a report similar to the one your user will see

 1. Choose the Preview! command.

This opens the Preview Print Details dialog. This dialog lets you generate
“filler” data for your report. The data have no values, but serve as
placeholders, so you can get a feel for the appearance of your finished
report.

328 CLARION 5 USER’S GUIDE

If you have more than one DETAIL, highlight one of them on the left
side of the dialog.

2. Press the Add button to generate filler data.

Generate as many as you need. Some reports will have only one record
per page, others will have many records. You can add enough records to
overflow the page and preview the page breaking behavior of your
report.

You can even mix two or more DETAILs. Use the up and down buttons
to rearrange the DETAIL placeholders.

3. Press the OK button to preview the report.

4. Choose Option ➤ Zoom in for a magnified view.

5. To exit Preview! mode, press ESC, or press Band View!

The Report Formatter reverts to Band View.

Preview page
HEADERs and

group HEADERs.

Preview DETAILs
and page breaking

behavior.

Preview
typeface, size,

style and color.

Preview Page
Orientation.

CHAPTER 7 REPORT FORMATTER 329

Report Structures and Properties
The REPORT structure contains all the information necessary to format and
print each report page. Following is an example of a REPORT structure with
empty headers, footer, and form, a break on “CustNumber,” and several
variable strings in the detail. This structure was generated by the Report
Formatter .

Report REPORT,AT(1000,2000,6000,7000),PRE(RPT),FONT(‘Arial’,10,,),THOUS
HEADER,AT(1000,1000,6000,1000)
END

CustBreak BREAK(CUS:CustNumber)
HEADER,AT(,,,1000)
END

Detail DETAIL
STRING(@n4),AT(125,52),USE(CUS:CustNumber)
STRING(@S20),AT(125,208),USE(CUS:Company)
STRING(@S20),AT(125,365),USE(CUS:Address)
STRING(@S20),AT(125,531),USE(CUS:City)
STRING(@S2),AT(125,688),USE(CUS:State)
STRING(@n5),AT(125,844),USE(CUS:ZipCode)

END
END
FOOTER,AT(1000,9000,6000,1000)
END
FORM,AT(1000,1000,6000,9000)
END

END

Report Properties

There are two Report Properties dialogs. One of these dialogs is associated
with the Report Procedure template. This dialog is accessed with the Report
Properties button in the Procedure Properties dialog and is discussed in the
Application Handbook. See Procedure Templates—Report Template.

The other Report Properties dialog is associated with every report, whether
or not the Report Procedure template is used. This dialog is accessed from
the Report Formatter by choosing Edit ➤ Report Properties , and is discussed
here. This dialog lets you set up basic report options, including page
orientation, measurement units, detail print area, and paper size. We
recommend setting these options before laying out other parts of your report.

The Report Properties dialog provides the following options.

General

Job Name
Names the print job, as listed in the Windows Print Manager
application.

330 CLARION 5 USER’S GUIDE

Label
Type a valid Clarion label to name the REPORT data structure.

Prefix
Specifies the label prefix for the REPORT structure.

Units
Specifies the default measurement for all controls placed in the
report. Choose Dialog Units, thousandths of Inches, Millimeters
or Points.

Freeze
“Freezes” all the controls on the report, so that subsequent data
dictionary changes are not applied. You can override the #Freeze
attribute for all controls, or for individual controls. See
Application Generator—Configuring the Application Generator.

Extra

Preview
Specifies the name of a QUEUE which stores the filenames for
the metafiles (*.WMF) generated for print preview. See the
PREVIEW attribute in the Language Reference.

If you are using the Report Procedure template, simply check the
Print Preview box in the other Report Properties dialog, and leave
this entry blank.

Colors
Specifies a Text or Background color for the report. See Window
Formatter—Common Control Attributes—Setting the COLOR
Attribute.

Position

Defines the location and size of the report’s detail print area, by filling in the
REPORT’s AT attribute. All DETAILS, group HEADERs, and group
FOOTERs print within the detail print area at an offset relative to the
previous item printed.

The measurement units for these values are specified on the General tab.

Top Left Corner
To set a precise starting point for your detail print area relative to

CHAPTER 7 REPORT FORMATTER 331

the top left corner of the paper, specify Top Left Corner
coordinates with this dialog. In effect, this establishes the top
and left margin for your report detail print area. These settings
may also be done visually by dragging the detail print area and
its borders in the Report Formatter’s Page Layout View .

Width/Height
To set the size of the detail print area, choose from the following
options for the Width and Height .

Note: When changing a report from portrait to landscape, or vice
versa, you should also change the width and/or height values
in this dialog.

Default
Sets a value based on the Paper Size.

Fixed
To set a specific size, mark the Fixed choices.

Paper Size

Paper Size
Choose from over 40 standard sizes, or choose Other to specify a
custom size.

Width
Specifies a custom paper width in units specified on the General
tab.

Height
Specifies a custom paper height in units specified on the General
tab.

Landscape
Specifies text-to-paper orientation. Landscape (checked box)
aligns the report text parallel with the longest paper edges (the
report is wider than it is tall). Portrait (cleared box) aligns the
report text with the shortest paper edges (the report is taller than
it is wide).

Tip: Before changing the paper size or orientation on an existing
report, move controls and resize the FORM, HEADERs,
FOOTERs, etc. to fit within the new paper dimensions.
Otherwise, these items will fall outside the boundaries
accessible by the Report Formatter.

Actions

Files
Access the File Schematic for the report.

332 CLARION 5 USER’S GUIDE

Embeds
Access the Embedded Source dialog for the report. See
Application Generator—Embedded Source Code.

Font

To set the default font for all controls in the report, press the Font button,
then choose the font and style in the Select Font dialog. You may override the
default by setting a different font in the Properties dialog for any specific
control. The options you choose in the dialog become the parameters for the
FONT attribute. As you choose options, the dialog displays a sample of the
formatting.

Form

To specify constant text or graphics which print on every page, place it in the
FORM. The print engine composes the FORM at the beginning of the print
job; it does not update it with each new page. Therefore, the FORM is not
suitable for holding variable data, or even a page number. You can, however,
print fields from a control file, if you wish to print the same field contents on
every page.

The form usually overlaps the other sections and may be used as a layer, to
hold graphic frames or “preprinted” material into which the data from the
other sections fit. You might use lines and boxes, for example, to divide the
DETAIL into compartments, grouping data for the user. You may even create
a ‘greenbar’ effect by alternating gray or light green color blocks. Another
use for the FORM is to simulate a watermark.

Tip: For best results when using a drawing tool to create a
watermark, on, for example, a 300 DPI printer, set the fill for the
watermark element to 10% gray, or light gray. At higher
printing resolutions, try 20% gray.

To add a form to your report, choose Bands ➤ Page Form .

Form Properties

RIGHT-CLICK on the form band, then choose Properties from the popup menu.
The Form Properties dialog provides the following options.

General

Use Type a field equate label to reference the FORM in your source
code.

Freeze
“Freezes” all the controls on the band, so that subsequent data
dictionary changes are not applied. You can override the #Freeze

CHAPTER 7 REPORT FORMATTER 333

attribute for all controls, or for individual controls. See
Application Generator—Setting Application Options.

Extra

Colors
Specifies a Text or Background color for the band. See Window
Formatter—Common Control Attributes—Setting the COLOR
Attribute.

Position

Lets you set the location and size of the form by filling in its AT attribute.
The measurement units for these values are specified on the General tab of
the Report Properties dialog.

Top Left Corner
To set a precise starting point for your form relative to the top
left corner of the paper, specify Top Left Corner coordinates with
this dialog. In effect, this establishes the top and left margins for
your form. These settings may also be accomplished visually by
dragging the form and it’s borders in the Report Formatter’s Page
Layout View.

Width/Height
To set the size of the page form, choose from the following
options for Width and Height .

Default
Sets a value based on the Paper Size.

Fixed
To set a specific size, mark the Fixed choices.

Tip: When changing a report from portrait to landscape, or vice
versa, you should change the width and/or height in this
dialog.

Actions

Files
Access the File Schematic for the report.

Embeds
Access the Embedded Source dialog for the report. See
Application Generator—Embedded Source Code.

334 CLARION 5 USER’S GUIDE

Font

Calls the Select Font dialog which lets you select the font (typeface),
size, style (such as bold or italic), color, and font effects (underline and
strikeout) for all the controls in the report section. You may override the
section font by setting a different font in the Properties dialog for any
specific control. As you choose options, the dialog displays a sample of
the selected font.

Page Header

To specify text and data to compose at the start of each page, place it in the
page HEADER. Remember, the page header may be physically positioned
anywhere on the page, not just at the top.

Typically, the HEADER includes a report title and the page number. It is also
a useful place to display your company logo. To add a page header to your
report, choose Bands ➤ Page Header .

Page HEADER Properties

RIGHT-CLICK on the header band, then choose Properties from the popup
menu. The Header Properties dialog provides the following options.

General

Use Type a field equate label to reference the page HEADER in
executable code.

Freeze
“Freezes” all the controls on the band, so that subsequent data
dictionary changes are not applied. You can override the #Freeze
attribute for all controls, or for individual controls. See
Application Generator—Setting Application Options.

Extra

Colors
Specifies a Text or Background color for the band. See Window
Formatter—Common Control Attributes—Setting the COLOR
Attribute.

Alone
Has no effect on a Page Header. See Group Header.

Absolute
Has no effect on a Page Header. See Group Header.

CHAPTER 7 REPORT FORMATTER 335

Position

Lets you set the location and size of the page header, by filling in its AT
attribute. The measurement units for these values are specified on the
General tab of the Report Properties dialog.

Top Left Corner
To set a precise starting point for your page header relative to the
top left corner of the paper, specify Top Left Corner coordinates
with this dialog. In effect, this establishes the top and left
margins for your header. These settings may also be
accomplished visually by dragging the header and it’s borders in
the Report Formatter’s Page Layout View.

Width/Height
To set the size of the page header, choose from the following
options for Width and Height .

Default
Sets a value based on the Paper Size.

Fixed
To set a specific size, mark the Fixed choices.

Tip: When changing a report from portrait to landscape, or vice
versa, you should change the width and/or height in this
dialog.

Actions

Files
Access the File Schematic for the report.

Embeds
Access the Embedded Source dialog for the report. See
Application Generator—Embedded Source Code.

Font

Calls the Select Font dialog which lets you select the font (typeface),
size, style (such as bold or italic), color, and font effects (underline and
strikeout) for all the controls in the report section. You may override the
section font by setting a different font in the Properties dialog for any
specific control. As you choose options, the dialog box displays a sample
of the selected font.

Group Breaks

Group breaks provide a means of grouping report data into sections and
optionally displaying subheadings, subtotals, or other information associated

336 CLARION 5 USER’S GUIDE

with the group. Each group consists of a set of records all sharing the same
value in the BREAK field.

When the value of the break variable changes, the old group ends and a new
group begins. Ending a group means that the last DETAIL in the group is
processed and the group FOOTER is composed. Beginning a group means
that the group HEADER is composed and the first DETAIL in the new group
is processed. In order to produce meaningful groups, the records must be
sorted on the same fields the BREAKs are declared on. See Specifying Sort
Order and Specifying Nested Group Breaks in the Creating Reports chapter.

Within a report, you may visually separate these groups with spaces,
subtotals, headers, or other summary information, either above the group,
below the group, or both. Displaying summary information for a group is
accomplished by placing text or graphic controls in a group HEADER or
FOOTER.

A BREAK structure may contain most of the same elements as a REPORT
structure: group HEADERs, DETAILs, group FOOTERs, and BREAKs.
Thus breaks may be nested, giving several levels of record grouping. The
Report Formatter displays group breaks in an indented outline structure
which lets you easily visualize nested group breaks.

Group BREAK Properties

This dialog lets you edit the properties of the group BREAK. RIGHT-CLICK on
the break band, then choose Properties from the popup menu. The Break
Properties dialog provides the following options.

General

Label
Type a valid Clarion label, naming the BREAK structure.

CHAPTER 7 REPORT FORMATTER 337

Variable
Press the ellipsis (...) button to select a break field. When the
value of this variable changes, the old group ends and a new
group begins.

Use Type a field equate label to reference the BREAK in source
code.

Freeze
“Freezes” all the controls on the band, so that subsequent data
dictionary changes are not applied. You can override the #Freeze
attribute for all controls, or for individual controls. See
Application Generator—Configuring the Application Generator.

Actions

Files
Access the File Schematic for the report.

Embeds
Access the Embedded Source dialog for the report. See
Application Generator—Embedded Source Code.

Tip: If the break variable is a global or local variable, you must be
sure that the executable code updates its value, so that it can
generate a group break.

Group Header

Though they print on the page at the same time, the print engine composes
the group HEADER before the group DETAIL. The group HEADER is a
good place to identify the group, but not a good place to display group totals
(because the group hasn’t been processed yet).

Group HEADER Properties

This dialog lets you edit the properties of the group HEADER. RIGHT-CLICK

on the header band, then choose Properties from the popup menu. The
Header Properties dialog provides the following options.

General

Use Type a field equate label to reference the group HEADER in
executable code.

Page Before
To print the group HEADER structure on a new page, check this
box. This sets the PAGEBEFORE attribute. The print engine
generates a page break before printing the page header.

The page number automatically increments, unless you reset it.

338 CLARION 5 USER’S GUIDE

To reset the page number to a value you specify, type the value
in the corresponding New Page No: field.

Page After
To print the group HEADER, then force a new page, check this
box. This sets the PAGEAFTER attribute. The print engine
generates a page break immediately after printing the page
header.

The page number automatically increments, unless you reset it.
To reset the page number to a value you specify, type the value
in the corresponding New Page No: field.

With Prior
To prevent ‘orphan’ elements in a printout, type a numeric value
in the this field. This sets the WITHPRIOR attribute. An
‘orphaned’ print element is the last element in a group and is
separated from the rest of the group by a page break.

The value specifies the number of preceding group items that
must appear on the same page as the last item.

With Next
To prevent ‘widow’ elements in a printout, type a value in this
field. This sets the WITHNEXT attribute. A ‘widowed’ print
element is the first element in a group and is separated from the
rest of the group by a page break.

The value specifies the number of subsequent group items that
must appear on the same page as the first item.

Freeze
“Freezes” all the controls on the band, so that subsequent data
dictionary changes are not applied. You can override the #Freeze
attribute for all controls, or for individual controls. See
Application Generator—Setting Application Options.

Extra

Colors
Specifies a Text or Background color for the band. See Window
Formatter—Common Control Attributes—Setting the COLOR
Attribute.

Alone
Specifies that the group HEADER section always prints alone on
a page, with no form, page header, or page footer. This adds the
ALONE attribute to the structure which is useful for printing
title pages and grand totals.

Absolute
Specifies that the group HEADER section always prints at the
same fixed position on the page. This adds the ABSOLUTE
attribute to the structure. See Position immediately below.

CHAPTER 7 REPORT FORMATTER 339

Tip: These settings are useful when your report has more than one
DETAIL. DETAILs may be printed conditionally and may be
used to print one-time only pages (title page or grand total
page).

Position

Sets the location and size of the group header by specifying its AT attribute.
The location is an offset relative to the top left corner of the detail print area,
or to the last item printed in the detail print area. The measurement units for
these boxes are specified on the General tab of the Report Properties dialog.

Top Left Corner
To set a precise starting point for your group header relative to
the top left corner of the print detail area, or relative to the last
item printed in the print detail area, specify Top Left Corner
coordinates with this dialog.

Width/Height
To set the size of the page header, choose from the following
options for Width and Height .

Default
Sets a value based on the Paper Size and print detail area (see
also Report Properties)

Fixed
To set a specific position and size, mark the Fixed choices.

Tip: When changing a report from portrait to landscape, or vice
versa, you should change the width and/or height in this
dialog.

Actions

Files
Access the File Schematic for the report.

Embeds
Access the Embedded Source dialog for the report. See
Application Generator—Embedded Source Code.

Font

Calls the Select Font dialog which lets you select the font (typeface), size,
style (such as bold or italic), color, and font effects (underline and strikeout)
for all the controls in the report section. You may override the section font by
setting a different font in the Properties dialog for any specific control. As
you choose options, the dialog displays a sample of the selected font.

340 CLARION 5 USER’S GUIDE

Detail

To specify the data for the body of the report, place it in a DETAIL. This is
typically where lowest level information is printed. High level, duplicate, or
summary information is better suited to HEADER or FOOTER structures. To
add a DETAIL, choose Bands ➤ Detail.

Note that a report may have multiple DETAILs that can be printed
conditionally (see Procedure Templates—Report Procedure in the
Application Handbook). This is useful for printing one-time only pages such
as title pages or grand total pages (see Creating Totals and Calculated Fields
in the Creating Reports chapter). You can also use embedded source
statements to control which DETAIL to print at run-time. Each DETAIL
structure requires its own PRINT statement.

The DETAIL prints within the print detail area defined by the REPORT’s AT
attribute. Additionally, any the group HEADERs, group FOOTERs, or group
BREAKs also print inside the detail print area.

Tip: For best automatic handling when it comes to placing
structures on the page, nest your DETAIL inside all other
structures. For example, if you have two BREAK structures,
one nested in the other, delete all DETAIL structures except
the one nested inside the innermost BREAK.

DETAIL Properties

RIGHT-CLICK on the detail band, then choose Properties from the popup menu.
The Detail Properties dialog provides the following options.

General

Label
Type a valid Clarion label, naming the DETAIL structure.

Use Type a field equate label to reference the DETAIL in your source
code.

Page Before
To print the DETAIL structure on a new page, check this box.
This sets the PAGEBEFORE attribute. The print engine
generates a page break before printing the DETAIL.

The page number automatically increments, unless you reset it.
To reset the page number to a value you specify, type the value
in the corresponding New Page No: field.

Page After
To print the DETAIL, then force a new page, check this box.
This sets the PAGEAFTER attribute. The print engine generates
a page break immediately after printing the DETAIL.

CHAPTER 7 REPORT FORMATTER 341

The page number automatically increments, unless you reset it.
To reset the page number to a value you specify, type the value
in the corresponding New Page No: field.

Tip: To print a separate page for each record, place the variable
strings and/or controls you wish in the DETAIL, and check the
PAGEAFTER box in the Detail Properties dialog.

With Prior
To prevent ‘orphan’ elements in a printout, type a numeric value
in the this field. This sets the WITHPRIOR attribute. An
‘orphaned’ print element is the last element in a group and is
separated from the rest of the group by a page break.

The value specifies the number of preceding group items that
must appear on the same page as the last item.

Tip: When placing subtotals or totals in a DETAIL, use the
WITHPRIOR attribute to ensure they print with at least one
member of the column above it when a page break occurs.

With Next
To prevent ‘widow’ elements in a printout, type a value in this
field. This sets the WITHNEXT attribute. A ‘widowed’ print
element is the first element in a group and is separated from the
rest of the group by a page break.

The value specifies the number of subsequent group items that
must appear on the same page as the first item.

Freeze
“Freezes” all the controls on the band, so that subsequent data
dictionary changes are not applied. You can override the #Freeze
attribute for all controls, or for individual controls. See
Application Generator—Configuring the Application Generator.

Extra

Colors
Specifies a Text or Background color for the band. See Window
Formatter—Common Control Attributes—Setting the COLOR
Attribute.

Alone
Specifies that the DETAIL always prints alone on a page, with
no form, page header, or page footer. This adds the ALONE
attribute to the structure.

Absolute
Specifies that the DETAIL always prints at the same fixed
position on the page. This adds the ABSOLUTE attribute to the
structure. See Position immediately below.

342 CLARION 5 USER’S GUIDE

Tip: These settings are useful when your report has more than one
DETAIL. DETAILs may be printed conditionally and may be
used to print one-time only pages (title page or grand total
page).

Position

Lets you set the location and size of the detail by specifying the AT attribute.
The location is an offset relative to the top left corner of the detail print area,
or to the last item printed in the detail print area. The measurement units for
these boxes are specified on the General tab of the Report Properties dialog.

Top Left Corner
To set a precise starting point for your detail relative to the top
left corner of the print detail area, or relative to the last item
printed in the print detail area, specify Top Left Corner
coordinates with this dialog.

Width/Height
To set the size of the detail, choose from the following options
for Width and Height .

Default
Sets a value based on the Paper Size and print detail area (see
also Report Properties)

Fixed
To set a specific position and size, mark the Fixed choices.

Tip: When changing a report from portrait to landscape, or vice
versa, you should change the width and/or height in this
dialog.

Actions

Files
Access the File Schematic for the report.

Embeds
Access the Embedded Source dialog for the report. See
Application Generator—Embedded Source Code.

Font

Calls the Select Font dialog which lets you select the font (typeface), size,
style (such as bold or italic), color, and font effects (underline and strikeout)
for all the controls in the report section. You may override the section font by
setting a different font in the Properties dialog for any specific control. As
you choose options, the dialog displays a sample of the selected font.

CHAPTER 7 REPORT FORMATTER 343

Group Footer

The group FOOTER, is composed after the group DETAIL. This is a good
place to display group totals or counts.

Group Footer Properties

This dialog lets you edit the properties of the group FOOTER. RIGHT-CLICK on
the footer band, then choose Properties from the popup menu. The Footer
Properties dialog provides the following options.

General

Use Type a field equate label to reference the group FOOTER in your
source code.

Page Before
To print the group FOOTER structure on a new page, check this
box. This sets the PAGEBEFORE attribute. The print engine
generates a page break before printing the group FOOTER.

The page number automatically increments, unless you reset it.
To reset the page number to a value you specify, type the value
in the corresponding New Page No: field.

Page After
To print the group FOOTER, then force a new page, check this
box. This sets the PAGEAFTER attribute. The print engine
generates a page break immediately after printing the group
FOOTER.

The page number automatically increments, unless you reset it.
To reset the page number to a value you specify, type the value
in the corresponding New Page No: field.

With Prior
To prevent ‘orphan’ elements in a printout, type a numeric value
in the this field. This sets the WITHPRIOR attribute. An
‘orphaned’ print element is the last element in a group and is
separated from the rest of the group by a page break.

The value specifies the number of preceding group items that
must appear on the same page as the last item.

With Next
To prevent ‘widow’ elements in a printout, type a value in this
field. This sets the WITHNEXT attribute. A ‘widowed’ print
element is the first element in a group and is separated from the
rest of the group by a page break.

The value specifies the number of subsequent group items that
must appear on the same page as the first item.

344 CLARION 5 USER’S GUIDE

Freeze
“Freezes” all the controls on the band, so that subsequent data
dictionary changes are not applied. You can override the #Freeze
attribute for all controls, or for individual controls. See
Application Generator—Setting Application Options.

Extra

Colors
Specifies a Text or Background color for the band. See Window
Formatter—Common Control Attributes—Setting the COLOR
Attribute.

Alone
Specifies that the group FOOTER always prints alone on a page,
with no form, page header, or page footer. This adds the ALONE
attribute to the structure.

Absolute
Specifies that the group FOOTER always prints at the same
fixed position on the page. This adds the ABSOLUTE attribute
to the structure. See Position immediately below.

Position

Lets you set the location and size of the group FOOTER by specifying the
AT attribute. The location is an offset relative to the top left corner of the
detail print area, or to the last item printed in the detail print area. The
measurement units for these boxes are specified on the General tab of the
Report Properties dialog.

Top Left Corner
To set a precise starting point for your group footer relative to
the top left corner of the print detail area, or relative to the last
item printed in the print detail area, specify Top Left Corner
coordinates with this dialog.

Width/Height
To set the size of the page footer, choose from the following
options for Width and Height .

Default
Sets a value based on the Paper Size and detail print area (see
also Report Properties)

Fixed
To set a specific position and size, mark the Fixed choices.

Tip: When changing a report from portrait to landscape, or vice
versa, you should change the width and/or height in this
dialog.

CHAPTER 7 REPORT FORMATTER 345

Actions

Files
Access the File Schematic for the report.

Embeds
Access the Embedded Source dialog for the report. See
Application Generator—Embedded Source Code.

Font

Calls the Select Font dialog which lets you select the font (typeface), size,
style (such as bold or italic), color, and font effects (underline and strikeout)
for all the controls in the report section. You may override the section font by
setting a different font in the Properties dialog for any specific control. As
you choose options, the dialog displays a sample of the selected font.

Page Footer

To specify text and data to generate at the end of each page, place it in the
page FOOTER. Remember, the page footer may be physically positioned
anywhere on the page, not just at the bottom. Typically, the page FOOTER
includes totals, page numbers, print dates, etc. To add a page footer to your
report, choose Bands ➤ Page Footer .

Page FOOTER Properties

RIGHT-CLICK on the footer band, then choose Properties from the popup menu.
The Footer Properties dialog provides the following options.

General

Use Type a field equate label to reference the page FOOTER in
executable code.

Freeze
“Freezes” all the controls on the band, so that subsequent data
dictionary changes are not applied. You can override the #Freeze
attribute for all controls, or for individual controls. See
Application Generator—Setting Application Options.

Extra

Colors
Specifies a Text or Background color for the band. See Window
Formatter—Common Control Attributes—Setting the COLOR
Attribute.

Alone
Has no effect on a Page Footer. See Group Footer.

346 CLARION 5 USER’S GUIDE

Absolute
Has no effect on a Page Footer. See Group Footer.

Position

Lets you set the location and size of the page footer, by filling in its AT
attribute. The measurement units for these boxes are specified on the General
tab of the Report Properties dialog.

Top Left Corner
To set a precise starting point for your page footer relative to the
top left corner of the paper, specify Top Left Corner coordinates
with this dialog. These settings may also be accomplished
visually by dragging the footer and it’s borders in the Report
Formatter’s Page Layout View.

Width/Height
To set the size of the page footer, choose from the following
options for the Width and Height .

Default
Sets a value based on the Paper Size.

Fixed
To set a specific size, mark the Fixed choices.

Tip: When changing a report from portrait to landscape, or vice
versa, you should change the width and/or height in this
dialog.

Actions

Files
Access the File Schematic for the report.

Embeds
Access the Embedded Source dialog for the report. See
Application Generator—Embedded Source Code.

Font

Calls the Select Font dialog which lets you select the font (typeface), size,
style (such as bold or italic), color, and font effects (underline and strikeout)
for all the controls in the report section. You may override the section font by
setting a different font in the Properties dialog for any specific control. As
you choose options, the dialog displays a sample of the selected font.

CHAPTER 8 CREATING REPORTS 347

8 - CREATING REPORTS

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

348 CLARION 5 USER’S GUIDE

About This Chapter
Clarion has many powerful reporting features and we want to systematically
cover all of them. However, you the developer, probably have a particular
report you need to produce by yesterday! You may only want to read about
those features that will help you produce your particular report right now.
Therefore, this chapter provides a “how to” reference for common report
effects and functions such as sorting, totaling, page breaking, etc.

This chapter provides a list of report functions and effects that developers are
frequently or occasionally asked to provide. It provides a general description
of how to create specific report effects, plus a reference to those parts of the
Report Formatter that are needed to produce the particular effect.

This chapter also suggests a proper sequence for building reports. For
example, we discuss the features that define files and keys and establish page
size, orientation, and margins before the features that lay out other parts of
the report.

The list of effects is not comprehensive, but instead attempts to launch you
quickly into doing a variety of report functions. Once you understand how to
create these basic effects, you will be well on your way to creating truly
dazzling special effects for your reports.

For more examples of how to create a variety of report effects and features,
see the Creating Reports chapter in the Learning Clarion book. For
systematic coverage of all Report Formatter tools and features, see the
Report Formatter chapter in this book.

CHAPTER 8 CREATING REPORTS 349

Common Reporting Tasks

Creating the Report Procedure

If you have not defined a report procedure, you may do so by opening the
Application Tree dialog and pressing the INSERT key, or choosing Procedure ➤
New from the menu. When the Select Procedure Type dialog opens, clear the
Use Procedure Wizard box then select Report . This creates a report procedure
and opens its Procedure Properties dialog. You should specify the report’s
files and keys as described immediately below.

Alternatively, you may use the Report Wizard to help you define your report
procedure. See the Wizards and Utility Templates in the Application
Handbook.

Specifying Files

The first logical step in preparing a report is to specify the files and keys
your report procedure uses. You can do this from the Procedure Properties
dialog, before even starting the Report Formatter .

The files you specify determine which data dictionary fields can appear on
your report. You may specify more than one file to report on, that is, a
primary file plus secondary related files and even other unrelated files. See
Dictionary Editor—Adding or Modifying Relationships.

To specify the files for your report

1. From the Application Tree dialog, DOUBLE-CLICK on the report procedure.

This opens the Procedure Properties dialog.

2. Press the Files button.

This opens the File Schematic Definition dialog. Use this dialog to tell the
Application Generator which files and keys your report procedure uses.

3. DOUBLE-CLICK the <ToDo> item for your report procedure.

This opens the Insert File dialog.

4. DOUBLE-CLICK the file you wish to report from.

This sets the file and closes the Insert File dialog. The <ToDo> item is
replaced by the primary file you chose.

350 CLARION 5 USER’S GUIDE

Printing From More Than One File (Adding Secondary Files)

1. From the File Schematic Definition dialog, DOUBLE-CLICK the primary file
for your report procedure.

This opens te Insert File dialog, listing only those files related to the
primary file.

2. DOUBLE-CLICK the additional file you wish to report from.

This sets the file and closes the Insert File dialog. Repeat these steps for
any other related files. When adding files, you may also DOUBLE-CLICK a
secondary file, then choose from files related only to the secondary file.

All the fields from the primary file and the secondary files may be
displayed on your report, and they are available for sorting and filtering
as well.

Specifying Keys (Sort Order)

The keys (or indexes) you specify for your report procedure will determine
the sequence in which the report items appear. The keys should also
determine break variables and nesting order of any group breaks.

Adding secondary files (see above) to your procedure also gives you another
logical field to break on—that is, the common fields linking the two files.

CHAPTER 8 CREATING REPORTS 351

Tip: The ABC Report Template lets you specify other sort fields in
addition to the key you set in the File Schematic Definition
dialog. See Procedure Templates—Report in the Application
Handbook .

To specify the keys for your report

1. From the File Schematic Definition dialog, press the Edit button, to
specify which key is used for this procedure.

This opens the Change Access Key dialog.

2. DOUBLE-CLICK the key you want for this report.

This sets the key and closes the Change Access Key dialog.

3. Press the OK button to close the File Schematic Definition dialog.

Specifying Which Records to Print (Range Limits & Filters)

You don’t always want to print all the records in a file. Often, you want to
specify a subset of records to print. You can specify a subset of records to
print by using Range Limits, Filters, or both.

You should use Range Limits whenever possible to specify your record
selection, because Range Limits use file keys and are therefore very fast.

352 CLARION 5 USER’S GUIDE

When Range Limits cannot provide a narrow enough selection criteria, you
can add Filters to restrict your report to precisely the records you need.

To specify Range Limits and Filters, open the Procedure Properties dialog
for your report, then press the Report Properties button. See Procedure
Templates—Report Template in the Application Handbook for specific
instructions on setting Range Limits and Filters.

Specifying Paper Size and Orientation

Paper size and text-to-paper orientation should be carefully thought out and
established early in the report development process. Changing these settings
after the report fields, headings, etc. have been laid out usually results in
redoing much of the layout work.

To set the paper size and orientation, choose Edit ➤ Report Properties , then
select the Paper Size tab. See Report Formatter—Report Properties.

Measurement Unit

To change the page measurement unit, choose Edit ➤ Report Properties , then
select the General tab. Select dialog units, thousandths of inches, millimeters,
or points from the Units drop-down list.

Dialog units (see the Glossary) are defined as one-quarter the average
character width by one-eighth the average character height. The size of a
dialog unit depends on the size of the default font for the report. This
measurement is based on the font specified in the FONT attribute of the
report or on the printer’s default font.

Specifying Report Margins

Margins for the various report sections (FORMs, page HEADERs, page
FOOTERs, and the detail print area) are all set independently of each other,

CHAPTER 8 CREATING REPORTS 353

therefore, there is no one margin setting that applies to the entire report. You
may specify these margins visually with the Report Formatter’s Page Layout
View. Please note that the boundaries of each of these structures may
overlap.

To use the Page Layout View effectively, you should maximize the window so
you can see as much of the report at one time as possible. Then use the TAB

key to select the report section to reposition (the Report Formatter displays
the selected section in the status bar at the bottom of the window). Finally,
set the position of the selected section by clicking and dragging its interior,
or position one or two edges of the selected section by clicking and dragging
one of its handles.

You may also specify the margins of the FORM, page HEADER, page
FOOTER, and detail print area on the Position tab of the respective Form
Properties, Page/Group Header Properties, Page/Group Footer Properties, and
Report Properties dialogs.

354 CLARION 5 USER’S GUIDE

The Detail Print Area

The detail print area is defined by the REPORT structure’s AT attribute. The
four rules you should understand and remember about the detail print area
are:

❏ Every DETAIL, group HEADER, and group FOOTER is printed within
the boundaries of the detail print area.

❏ The boundaries of the detail print area may be set with the Report
Formatter’s Page Layout View or with the Position tab of the Report
Properties dialog.

❏ Each item within the detail print area is printed relative to the previous
item printed.

❏ The relative position of items printed within the detail print area may be
set with the Position tab of the item’s Properties dialog, or by dragging
the item’s handles in Band View.

Positioning and Alignment

The AT Attribute

Use the Position tab to set the AT attribute for various report structures. The AT
attribute on print structures performs two different functions, depending upon
the structure on which it is placed.

When placed on a FORM, page HEADER, or page FOOTER, the AT attribute
defines the position and size of the structure. The position specified by the x
and y parameters is relative to the top left corner of the page.

When placed on a DETAIL, a BREAK, a group HEADER, or group FOOTER,
the structure is printed relative to the previous item printed, according to the
following rules (unless the ABSOLUTE attribute is present):

CHAPTER 8 CREATING REPORTS 355

◆ The width and height parameters of the AT attribute specify the minimum
size of the structure.

◆ The structure is actually printed at the next available position within the
detail print area.

◆ The position specified by the x and y parameters of the structure’s AT
attribute is an offset from the next available print position within the
detail print area.

◆ The first item is printed at the top left corner of the detail print area (at
the offset specified by its AT attribute).

◆ Next and subsequent items are printed relative to the ending position of
the previous item:

If there is room to print the next item beside the
previous item, it is printed there.

If not, it is printed below the previous item.

Precise Positioning and Alignment

There are four major tools to help you precisely align your report data: Grid
Snap, alignment tools, the Position tab of the respective properties dialogs,
and constrained dragging. Grid Snap is discussed in Report Formatter—
Menus. The alignment tools are discussed above in Report Formatter—
Toolboxes.

Tip: For super precise positioning, use the Position tab of the
respective properties dialogs. When you position a structure
on screen, the smallest unit you can move it is usually 1/96
inch. However, the Position tab lets you specify position by
thousandths of inches.

Constrained Dragging

Press and hold the SHIFT key while dragging a control to limit the control’s
movement to a single axis. That is, SHIFT + DRAG moves a control either
horizontally or vertically, but not both.

Skipping Blank Lines

Use the SKIP attribute on a STRING control to suppress printing an empty
string. That is, an empty STRING with SKIP attribute on a line by itself
takes up no vertical space on the page.

For labels or other reports that may have an empty STRING on the same line
as non-empty STRINGS, you can populate a series of local STRING

356 CLARION 5 USER’S GUIDE

variables, such as AddressField1 and AddressField2, on your report rather
than the optional database fields. Then embed source code such as:

 IF MBR:Address2 !If 2nd address line not empty
 AddressField1 = MBR:Address2 !assign it to the report field
 AddressField2 = CLIP(MBR:City)&’, ‘&MBR:State&’ ‘&MBR:Zip
 ELSE !If 2nd address line is empty
 AddressField1 = CLIP(MBR:City)&’, ‘&MBR:State&’ ‘&MBR:Zip
 AddressField2 = '' !skip it
 END

Alternatively, you can populate a TEXT control on your report whose USE
variable is a STRING that is long enough to contain the entire series of
optional and required database fields. Then embed source code such as:

TextField = CLIP(FirstName)&’ ‘&MBR:LastName&’<13,10>’!name + return
TextField = CLIP(TextField)&MBR:Address1&’<13,10>’ !address + return
IF MBR:Address2 !if address2 exists
 TextField = CLIP(TextField)&MBR:Address2&’<13,10>’ !address2 + return
END
TextField = CLIP(TextField)&CLIP(MBR:City)&’, ‘&MBR:State&’ ‘&MBR:Zip

Handling Different Size Memos

Use the RESIZE attribute on a TEXT control to allow the control (and the
report band) to expand to accommodate all of the text. That is, with the
RESIZE attribute, you need not make the report band or the TEXT control as
large as the largest data item to be printed. Make the controls as small as the
smallest item and the report engine expands the controls for larger items.

Specifying a “Pre-printed” Form

In the Report Formatter’s Band View , place text or graphic controls in the
form band. This specifies constant text or graphics which prints on every
page. This underlying “form” prints independently of and “underneath” all
other items on the report.

See Form in the Report Formatter chapter.

Specifying Page Headers and Footers

In the Report Formatter’s Band View , place text or graphic controls in the
page header band or the page footer band. Use the Bands menu to add bands
as required.

Page headers are composed prior to details and breaks. Page footers are
composed after details and breaks. Both HEADERs and FOOTERs may be
located anywhere on the page.

CHAPTER 8 CREATING REPORTS 357

The data printed in the page headers and footers may be constant or variable.
Page headers and footers are typically used to present report titles, fixed
column headings, page numbers, print dates, company logos, etc.

See Report Formatter—Page Header and Page Footer. See also Report
Formatter—Using the Bands Menu.

Specifying Column Headers and Report Titles

Static strings are good for printing column headings, report titles, and any
other text that doesn’t change. You will usually want to place your titles and
headings in the page header or the page form. If you need to print titles or
headings that change, see Specifying Fields to Print.

See Report Formatter—Toolboxes. See also Controls and Their Properties—
String Properties.

To place a static string control in your report

1. Select the String tool from the Controls toolbox, or choose Controls ➤
String .

2. CLICK in the band that displays the title (usually the page header).

The Report Formatter places a STRING control in the report structure.
The center of the crosshair positions the upper left corner of the string.

3. DOUBLE-CLICK the string control, or RIGHT-CLICK the control then choose
Properties from the popup menu.

4. Type the text to display in the Text field.

No quotation marks are needed.

5. Press the Font button to specify the typeface, size, color, and style of the
text.

358 CLARION 5 USER’S GUIDE

Tip: Alternatively you may specify the text and it’s font with the
Property toolbox. Choose Option ➤➤➤➤➤ Show Propertybox.

6. Specify the text justification with the Justification drop-down list.

For special effects

1. Select the Extra tab to set text color and angle.

2. Press the OK button to close the String Properties dialog.

Specifying Fields to Print (variable text)

Variable string controls are the basic unit for printing variable data in the
report. Variable strings are also used for displaying totals and other
calculated fields.

By using the USE variable, the report procedure accesses the memory
variable or data dictionary field you want to print. The Report Formatter
formats the data according to the picture token you specify.

See Report Formatter—Toolboxes and Menus. See also Controls and Their
Properties—String Properties.

To place a variable string control in your report

1. Select the Dictionary Fields tool from the controls toolbox, or highlight a
field in the Populate Field toolbox (choose Option ➤ Show Fieldbox).

Using the toolbox lets you place a data dictionary field only, without
ever leaving the Report Formatter . Using the Dictionary Fields toolbox
lets you select from data dictionary fields and memory variables using
the Select Fields dialog.

2. CLICK in the band which will contain the variable string (usually the
detail, group header or group footer).

If you are using the Dictionary Fields tool, select your variable using the
Select Fields dialog. The center of the crosshair positions the upper left
corner of the string.

The Report Formatter places a STRING control in the REPORT data
structure with a variable as the string’s Use attribute, and sets the follow-
ing string properties: the Variable String box is checked, a Picture token
and a Justification value is provided based on the data dictionary infor-
mation for the selected field or variable.

CHAPTER 8 CREATING REPORTS 359

Alternatively, you can place a string control, then set the string proper-
ties manually to accomplish the same result: check the Variable String
box, type the variable name in the Use field, type a picture token in the
Picture field, and select a Justification value from the drop-down list.

3. Press the Font button to specify the typeface, size, color, and style of the
text.

Tip: Alternatively you may specify the text and it’s font with the
Property toolbox. Choose Option ➤➤➤➤➤ Show Propertybox.

For special effects

4. Select the Extra tab to set text color and angle.

5. Optionally, select a total type from the Total Type drop-down list to create
sums, averages, tallies (counts), page numbers, etc. See Creating Totals.

6. Press the OK button to close the String Properties dialog.

Specifying Group Breaks

In order to have meaningful groups or subtotals in your report, the report
records must be sorted properly. See Specifying Sort Order. Also see Report
Formatter—Group Breaks.

To create a group break

1. In the Report Formatter , choose Bands ➤ Surrounding Break .

2. Move the cursor over the detail band, then, when the cursor changes to a
crosshair, CLICK in the DETAIL band.

This opens the Break Properties dialog.

3. In the Variable field, press the ellipsis (...) button to select a break
variable from the Select Field dialog.

At runtime, when the variable’s value changes, a new group begins.

4. In the Label field, type a valid Clarion label to use as a label for the
BREAK structure.

This label may be referenced by the RESET and TALLY attributes.

360 CLARION 5 USER’S GUIDE

5. In the Use field, type a field equate label to reference the BREAK in
your source code.

6. Press the OK button.

This inserts the group BREAK. When the break variable changes, the
report composes the group FOOTER and the next group HEADER
defined for the break.

Specifying Group Headers and Footers

The print engine composes the group HEADER before the group DETAIL.
The group HEADER is a good place to identify the group, for example, with
a static string saying “Customer:” followed by a variable string displaying
the customer name field.

The print engine composes the group FOOTER after the group DETAIL. The
group FOOTER is a good place to summarize the group, for example, with a
static string saying “Total:” followed by a variable string displaying a sum.
See Creating Totals. See also Report Formatter—Group Breaks—Group
Headers and Group Footers.

1. First, define a group break as described above.

2. Choose Bands ➤ Group Header from the menu to define a group
HEADER for the BREAK.

3. Move the cursor over the break band; when the cursor changes to a
crosshair, CLICK in the BREAK caption bar.

This opens the Page/Group Header Properties dialog. Specify a field
equate label and any special page breaking behavior. See Specifying
Page Breaks below.

4. Press the OK button.

This inserts the group HEADER band. You may place controls here just
as in any other report band. Group footers are added similarly, using
Bands ➤ Group Footer from the menu.

Specifying Nested Group Breaks

See Specifying Sort Order and Specifying Group Breaks above.

CHAPTER 8 CREATING REPORTS 361

A nested break is created the same way as the first break. The second break
may be nested “within” the first break by placing the second break on the
detail inside the first break. Alternatively, the second break may be added
“outside” the first break by placing the second break on the first break.

When establishing nested breaks, you should coordinate the nesting order of
the breaks with the sort order of the files being processed. For example, if
you have chosen a key composed of the Department, Title, and LastName
fields, then you could similarly break on LastName, within Title, within
Department.

You can review your key’s component fields in the Data Dictionary’s Field/
Key Definitions dialog.

Adding secondary files to your procedure also gives you another logical field
to break on: that is, the common fields linking the two files.

Specifying Page Breaking Behavior

Edit the properties of the group HEADERs, the DETAILs, and/or the group
FOOTERs. There are several options available. The options are Page Before,
Page After, With Next, and With Prior.

See Report Formatter—Group Header, Group Detail, Group Footer.

Creating Totals and Calculated Fields

See Specifying Fields to Print above.

A total field is simply a variable STRING control with the SUM attribute
added. The AVE, CNT, MAX and MIN attributes similarly create averages,
counts (tallies), maximum, and minimum fields. These attributes may be

362 CLARION 5 USER’S GUIDE

added by choosing from the Total type drop-down list in the String Properties
dialog.

In addition, you can precisely control the totalling behavior by specifying the
RESET attribute from the Reset on drop-down list and by specifying the
TALLY attribute from the Tallies list on the Extra tab. Finally, you can get
ultimate control by specifying a variable to receive intermediate values for
the SUM, AVE, CNT, MAX, and MIN operations with the Using field. You
can perform custom calculations in embedded source using the intermediate
variable to get any result you need.

Tip: You cannot automatically calculate intermediate group level
totals with Clarion’s Report Procedure templates and
STRINGs. For example, you cannot add together two group
level totals to create a third total. This type of calculation
requires manual tracking of group breaks.

In general, you place a total field in a page or group FOOTER so it can total
the records from the beginning of the report, from the beginning of the page,
or from the beginning of the BREAK group. However, you can also place a
total field in a DETAIL structure to provide a running total. A tally (CNT)
field in the DETAIL can number the records as they appear on the report.

To specify a total field

1. Place a variable string control as described in Specifying Fields to Print.

For example, if you want total sales from an order entry system, select
the data dictionary field containing the sales value.

2. Then DOUBLE-CLICK on the string control to open the String Properties
dialog.

3. Choose a total type from the Total type drop-down list. Choose from
Sum, Average, Minimum, Maximum, Count, and Page No.

4. Optionally, use the Reset on drop-down list to reset the total to zero
before each page or before each break.

For example, if your report is page-based so you need a total for each
page, select Page from the Reset on drop-down list. If you want totals
per customer and you have defined a break on customer, select the
customer break from the Reset on drop-down list. If you want a grand
total, select <None> from the Reset on drop-down list. See Grand Totals
below.

5. Optionally, use the Tallies list on the Extra tab to specify when the
calculation occurs.

CHAPTER 8 CREATING REPORTS 363

By default, the specified calculation (SUM, CNT, MAX, MIN, AVG)
occurs each time a report DETAIL is printed. This is true even if the
calculated field is not in the DETAIL band and even if the calculated
field is not in the lowest level child record of a multi-level file
relationship.

In other words, use the Tallies list to limit the occurrence of the
calculation to the printing of higher level breaks. For example, in a
report that prints a three level file relationship (Customer>Order>Item),
where the field to total resides in the middle level (Order) and the report
prints all three levels, select the OrderBreak in the Tallies list to
increment the total each time the Order BREAK prints rather than each
time the Item DETAIL prints.

Tip: Don’t choose the same break for both Reset on and Tallies. If
you do, the result is always zero.

6. Optionally, use the Using field to specify a variable to receive
intermediate values for the SUM, AVE, CNT, MAX, or MIN operation.

In effect, this gives you access to the Report Engine’s totalling
capabilities. You can use the specified variable within your own custom
calculations in embedded source code. Please note the Report Engine
only writes to the intermediate variable, it does not read or reuse the
variable for subsequent calculations. Therefore, you cannot alter a total
generated by the Report Engine, however, you can HIDE the field
calculated by the report Engine and replace it with your own custom
calculated field.

Sub-totals and Page Totals

Sub-totals are created simply by placing a total field within a page or group
footer, and reseting the total to zero at the beginning of each page or group.
Use the Reset drop-down list in the String Properties dialog to reset the total
to zero before each new page or group.

Grand Totals

In effect, grand totals are simply sub-totals based on a break variable that
never changes.

To create a grand total for your report, add a group break on a variable that
doesn’t change throughout the report. Any other group breaks should be
nested within this grand total group break.

364 CLARION 5 USER’S GUIDE

Next add a footer to the grand total group break. Finally, add the sub-total to
the group footer as described above. Do not reset the total to zero, that is,
select <None> from the Reset on drop-down list in the String Properties
dialog.

Alternatively, you can create a separate DETAIL to calculate the grand total:

1. Add a new Detail band outside of any BREAK structures in the report.

2. Place your grand total fields on the new Detail band. Be sure to set Reset
on to <None> and specify the detail or break structures on which to tally
the total in the Tallies list on the Extra tab.

3. Suppress the Detail band from automatically printing:

On the Band Properties dialog, name a field equate label as the detail
structure's USE attribute.

On the Procedure Properties for the Report, press the Report Properties
button, then select the Detail Filters tab. Highlight the grand total Detail
band then press the Properties button. Then, in the Filter field, type False
to suppress automatic printing.

4. Embed the following code to explicitly print your grand total detail
band:

Clarion Templates Before Print Preview
ABC Templates ReportManager Method Executable Code Section

AskPreview()—Priority 1300
PRINT(RPT:MyGrandTotalDetailBand)

CHAPTER 8 CREATING REPORTS 365

Row Totals

Displaying a row total (or any other calculation) requires two steps:
assigning a value to a variable, then displaying the variable value in a string
control (see Specifying Fields to Print above).

You can assign the value to the variable with embedded source code (see
Embedded Source Code in the Application Generator chapter) or with the
Formula Editor (see the Formula Editor chapter). There is a good example of
this process in the Creating Reports—An Invoice Report section of the
Learning Clarion book.

Whether you use the Formula Editor or embedded source, the key point to
know is that the assignment should be done just prior to the PRINT
statement. This table shows which embed point to use for each alternative:

Formula Before Print Detail
Clarion Templates Before Printing Detail Section
ABC Templates Process Manager Method Executable Code Section

TakeRecord(),BYTE

Page Numbers

Controlling/Resetting Page Numbers

See Report Structures and Properties—Group Header, Group Detail, Group
Footer.

Edit the properties of the group HEADERs, the DETAILs, and/or the group
FOOTERs. There are several options available. The options are Page Before,
Page After, With Next, With Prior, and New Page No.

Displaying Page Numbers

Use the ReportPageNumber template (see Control Templates in the
Application Handbook) or create your own page number control as follows:

1. Choose Controls ➤ String or select the string tool from the Controls
toolbox, then CLICK in the page header or footer band.

2. DOUBLE-CLICK on the string control you just placed.

 This opens the String Properties dialog.

3. Check the Variable String box.

4. In the Picture field of the String Properties dialog, type @pPage <<#p.

This picture token suppresses leading zeroes and displays the page
number following the word “Page.”

366 CLARION 5 USER’S GUIDE

5. In the Use field, type a field equate label to reference the string in source
code.

For example, type ?PageCount. This need not reference a variable. The
Report Engine generates its own variable to hold the page number.

6. From the Total type drop-down list, choose Page No .

7. Press the OK button to close the String Properties dialog.

Displaying Print Dates

To place a “Date Printed” in a report

Use the ReportDateStamp template (see Control Templates in the
Application Handbook) or create your own date stamp control as follows:

1. Choose Controls ➤ String , then CLICK in the appropriate report band.

For a print date you generally use the page header or page footer.

2. DOUBLE-CLICK on the string control you just placed.

 This opens the String Properties dialog.

3. In the Text field, type a date picture (@d1, for example), or press the
ellipsis button to use the Picture Editor

4. In the Use field, press the ellipsis (...) button to create a local variable
called PrintDate.

This opens the Select Field dialog.

5. Highlight Local Data, then press the New button.

This opens the New Field Properties dialog.

6. In the Name field, type PrintDate.

7. Choose Long from the Data Type drop-down list.

CHAPTER 8 CREATING REPORTS 367

8. Press OK to close the New Field Properties dialog.

9. Press OK to close the String Properties dialog.

10. Press Exit! to exit the Report Formatter .

To assign a value of TODAY() to PrintDate

1. CLICK the Embeds button in the Procedure Properties dialog.

2. In the Embedded Source dialog, DOUBLE-CLICK the following embed
point:

Clarion Templates Procedure Setup
ABC Templates WindowManager Method Executable Code Section

Init()

3. In the Select embed type dialog, DOUBLE-CLICK SOURCE.

4. In the Text Editor type:
PrintDate = TODAY()

5. Press Exit! and save your embedded source.

Implementing Print Preview

Generate a report procedure with the Report template or the Report Wizard
(see Wizards and Utility Templates and Procedure Templates in the
Application Handbook). In the report procedure’s Procedure Properties
dialog, press the Report Properties button, then check the Print Preview box
in the Report Properties dialog (see Report Properties above).

If you prefer to hand code your print preview process, see PREVIEW in the
Language Reference, for more information and examples.

368 CLARION 5 USER’S GUIDE

Printing Labels (Dynamically)

Printing labels simply means printing a multi-column report so that the
report rows and columns match up with the commercial label forms you use.

In the real world, different users will have different label papers at different
times, so ideally, the user should be able to specify the dimensions of the
label paper at run-time, and the label report should fit the specified label
paper.

❏ To print dynamically sized labels:

◆ Add a Labels file to your data dictionary.

◆ Create Browse and Update procedures for the Labels file.

◆ Create a Label Report procedure.

◆ Add the Label file to the Label Report File Schematic.

◆ Embed code to do the run-time resizing.

Add a Labels File to Your Data Dictionary

The file may use whichever file system you prefer, and should contain the
following fields. No keys are required, but using LabelType as a unique key
provides alphabetic sorting and prevents duplicate entries. See Dictionary
Editor—Adding Files to the Dictionary and Adding or Modifying Fields.

Name Type Length Initial Value

LabelType String 15
PageWidth Decimal 5,2
PageHeight Decimal 5,2
LabelWidth Decimal 5,2
LabelHeight Decimal 5,2
TopMargin Decimal 5,2
LeftMargin Decimal 5,2
FontSize Byte 11

Create a Browse and an Update Form for the Label File

The fastest way to build these procedures is to use the procedure Wizard. See
Wizards and Utility Templates in the Application Handbook.

1. From the Application Tree, press the INSERT key.

2. In the New Procedure dialog, type a name (BrowseLabels) then press OK.

3. In the Select Procedure Type dialog, check the Use Procedure Wizard box,
then select Browse

CHAPTER 8 CREATING REPORTS 369

4. Answer the Wizard’s questions:

Choose the Labels file. Do allow the user to update records. Do provide
a “Select” button. The Wizard builds both procedures, then opens the
Procedure Properties dialog for the Browse procedure.

5. Press the OK button to exit the Procedure Properties dialog.

Create a Label Report Procedure

Your report should observe these conventions. The report fields should have
Height and Width of Default and there should be only one field per line. Thus
if you need to display FirstName and LastName on the same line, you should
concatenate these fields into a single field.

1. Create a report for your address file.

Use the Report Wizard if you want, but don’t worry about formatting yet.
Just make sure the report contains all the name and address fields you
need for your labels.

Call the label report as you would any other report. See Application
Generator—Adding a Procedure to Your Application, and Window
Formatter—Creating Your Application’s Menu.

2. From the Application Tree, RIGHT-CLICK your report procedure and choose
Report from the popup menu.

3. Delete all report sections, except the Detail section.

CLICK on the section’s caption bar then press DELETE.

4. For report lines with more than one field, concatenate the fields and
remove trailing spaces.

This step improves the appearance of your labels by removing
unnecessary spaces. This step is also required to support the embedded
code recommended below.

Follow the steps described in the How to CLIP and Concatenate Name
Fields of the How Do I...? topic in the on-line help.

5. Set the properties for each report field.

Tip: Use the Property Toolbox to identify the fields: Choose Option
➤➤➤➤➤ Propertybox.

Arrange your name and address fields in a vertical format, that is, one
field below another, starting at the top left corner of the Detail band. Use
the Alignment tools for precise alignment. See Specifying Fields to Print
above.

Remember to set the Height and Width of each field to Default on the
Position tab.

Your report should look similar to the illustration.

370 CLARION 5 USER’S GUIDE

6. Specify a field equate label (USE attribute) for the Detail section.

CLICK on the detail then type ?detail in thePropertybox Use field.

7. Exit! the Report Formatter and save your changes.

Add the Label File to the Report File Schematic

This step ensures that the report procedure opens the Label file and therefore
has access to the Label file’s record buffer. The embedded code below uses
the position and size values in this record buffer to assign run-time positions
and sizes to the label report.

1. From the Application Tree, RIGHT-CLICK your label report procedure, and
choose Properties from the popup menu.

2. From the Procedure Properties dialog, press the Files button.

3. From the File Schematic dialog, DOUBLE-CLICK Other Files .

4. From the Insert File dialog, DOUBLE-CLICK Labels .

5. Press OK to exit the dialogs.

Embed Run-time Resizing Code

Now we will embed code at three points in the report procedure:

◆ Beginning of Procedure—call the BrowseLabels procedure to
allow the user to specify the label paper to use.

◆ After Opening Report—call the ResizeTheReport routine to
assign the label sizes specified by the user.

◆ Procedure Routines—the ResizeTheReport routine.

1. From the Application Tree, RIGHT-CLICK your label report procedure then
choose Embeds from the popup menu.

2. From the Embedded Source dialog, DOUBLE-CLICK the following embed
point:

CHAPTER 8 CREATING REPORTS 371

Clarion Templates Beginning of Procedure, After Opening Files
ABC Templates WindowManager Method Executable Code Section

Init()—Priority 7800

3. From the Select Embed Type dialog, DOUBLE-CLICK SOURCE and type the
following statements:

!Allow Run-time Specification of Label Paper
GlobalRequest = SelectRecord !enable select button
BrowseLabels !call BrowseLabels procedure

4. Exit the Text Editor and save your changes.

5. From the Embedded Source dialog, DOUBLE-CLICK the following embed
point:

Clarion Templates After Opening Report
ABC Templates WindowManager Method Executable Code Section

Open()—Priority 7800

6. From the Select Embed Type dialog, DOUBLE-CLICK SOURCE and type the
following statements.
DO ResizeTheReport

7. Exit the Text Editor and save your changes.

8. From the Embedded Source dialog, DOUBLE-CLICK the Procedure
Routines embed point (ABC and Clarion Templates).

9. From the Select Embed Type dialog, DOUBLE-CLICK SOURCE and type the
following statements.

If you specified a label for your REPORT structure, change the report
labels below to match your label.

ResizeTheReport ROUTINE
!!===
!! Modify the report to fit specified label paper.
!! Assumes Report Measurement Unit is 1/1000 of an inch.
!!===

SETTARGET(report) !Make report the target for property assignments

!!===
!! Define the REPORT's AT attribute (ie detail print area).
!! The detail print area should be the size of the entire page.
report{PROP:Width} = LAB:PageWidth * 1000
report{PROP:Height} = LAB:PageHeight * 1000
!! Adjust the margins to center the address text within each label.
report{PROP:Xpos} = LAB:LeftMargin * 1000
report{PROP:Ypos} = LAB:TopMargin * 1000

!!===
!! Define the DETAIL's AT attribute.
!! The DETAIL should be the size of each individual label.
?detail{PROP:Width} = LAB:LabelWidth * 1000
?detail{PROP:Height} = LAB:LabelHeight * 1000

372 CLARION 5 USER’S GUIDE

!!===
!! Adjust font size and vertical position of the report fields.
LOOP Fld#=FIRSTFIELD() TO LASTFIELD() !Process all report fields
Fld#{PROP:Fontsize} = LAB:FontSize !Set font size
IF Fld# > FIRSTFIELD() !Skip the first field,
Fld#{PROP:Ypos}=BottomOfPreviousField# ! reposition the rest

END
BottomOfPreviousField#=Fld#{PROP:Ypos}+(16*LAB:FontSize)

 END
SETTARGET() !Reset default target to the active window.

EXIT !Exit the ROUTINE.

That’s it! Make and run your application. When you run your label report,
you will have the opportunity to input the dimensions of your various label
papers. The dimensions are stored in the Label file where they are available
for your selection or modification each time you print labels.

Printing One Record per Page

To print a separate page for each record, check the PAGEAFTER box in the
Detail Properties dialog. See Report Structures and Properties—Detail.

Printing Mail-Merge Documents

For a mailmerge document, you usually place the name and address fields in
the HEADER, then reserve the DETAIL for a multi-line text control. See
Page Header above. See Printing Multi-Line Text below. The ClubMgr
example application also contains a simple mailmerge.

Printing Graphics

Graphic controls embellish the report and guide the reader’s eye to the data.
The following controls allow you to add pictures, lines, and shapes to your
report. See the Controls and Their Properties chapter for more information
on the following controls.

CHAPTER 8 CREATING REPORTS 373

Image

Most likely you will wish to place an image, such as a logo, in a HEADER.
You may choose any of the graphic file formats supported for window
controls; however, printing large images, especially .JPG files may present
problems for some printers.

The most important consideration when placing an image is its size—Clarion
automatically resizes the image to fit the control size. This may introduce
distortion. WMF files distort the least, however, the simplest way to prevent
distortion is to preserve the height to width ratio of your images.

To size a 640 x 480 pixel graphic, for example, determine its height-to-width
ratio, which is 4:3. Plan an image box in the same ratio—for example, 2000
x 1500 thousandths, which represents a 2 inch by 1.5 inch box on the page.

Tip: Whenever possible, use vectorized graphics such as the
Windows Metafile Format (*.WMF). When you need to shrink or
stretch them, their appearance is less subject to distortion
than a bitmap.

To place an IMAGE control in your report:

1. Select the Image control from the Controls toolbox, or choose Controls
➤ Image .

2. CLICK in the band where you want to place the control.

The Report Formatter places an IMAGE control in the report structure.
The center of the crosshair positions the upper left corner of the control.

3. DOUBLE-CLICK the control you just placed.

This opens the Image Properties dialog.

4. In the File field, type the fully qualified image file name, or press the
ellipsis (...) button to select the file from theWindows file dialog.

374 CLARION 5 USER’S GUIDE

Clarion automatically links the image file into the executable when the
file is explicitly named in the control, so you don’t have to ship the
image file separately.

5. In the Use field, type a field equate label to refer to the image control in
source code.

6. Select the Position tab.

7. Type the correct image size in the fixed Width and Height fields.

You may also resize the image by CLICKING and DRAGGING its handles.

8. Press OK.

Line

Lines are the simplest means of visually separating sections or fields within
your report. To place a line:

1. Select the Line tool from the Controls toolbox, or choose Controls ➤
Line —the cursor changes to a crosshair.

2. CLICK in the band in which you want to place the line.

The center of the crosshair positions the left end point. The Report
Formatter places a LINE control in the report structure. Relocate and
resize the line by dragging its handles.

3. DOUBLE-CLICK the line you just placed.

This opens the Line Properties dialog.

4. In the Use field, type a field equate label to refer to the line control in
source code.

5. Select the Position tab to specify exact coordinates for the line.

To specify a horizontal line, be sure to check the Fixed box in the Height
group, and type a zero (0) in the box next to it. The height is the measure
of the vertical distance between the origin and the end point; for a
horizontal line, this is equal to zero. In the Width group, type the length
of the line in the Fixed box.

To specify a vertical line, check the Fixed box in the Width group, and
type a zero (0) in the box next to it. The width is the measure of the
horizontal distance between the origin and the end point; for a vertical
line, this is equal to zero. In the Height group, type the length of the line
in the Fixed box.

To specify a horizontal or vertical line the full width or height of the
section, check the Full option

Tip: To create a horizontal divider line useful for splitting a
HEADER from the DETAIL section, for example, check Full
Width, and set the Fixed Height to zero.

CHAPTER 8 CREATING REPORTS 375

6. To specify a line color, press the Line Color button on the Extra tab, then
choose a color from the Line Color dialog.

Box

You can highlight a report field by placing a gray box underneath it. You can
frame an entire area of a report by placing a box with no fill around it.

Tip: When overlapping one control over another, choose Edit ➤➤➤➤➤
Set Control Order to ensure the underlying control is printed
before the overlying control; otherwise the overlying control
may be obscured.

To place a box:

1. Select the Box tool from the Controls toolbox, or choose Controls ➤
Box .

2. CLICK in the band in which you want to place the box.

The center of the crosshair positions the upper left corner of the box.
When you click, the Report Formatter places a BOX control in the report
structure. Resize and relocate the box by dragging its handles or its
interior.

3. DOUBLE-CLICK the box you just placed.

This opens the Box Properties dialog.

4. In the Use field, type a field equate label to refer to the control in source
code.

5. Select the Extra tab.

6. Set the COLOR attributes.

If you want a solid box filled with color, type a valid color equate in the
check Fill Color box or press the ellipsis (...) button to choose a color
from the Fill Color dialog.

If you want a colored border, type a valid color equate in the check
Border Color box or press the ellipsis (...) button to choose a color from
the Border Color dialog.

7. If you want rounded corners for the box, check the Round box to set the
ROUND attribute.

8. To set the size of the box by typing in coordinates, select the Position tab.

Type the measurements you wish in the Fixed Width and Fixed Height
boxes.

Tip: To create a border or ‘frame’ around the whole report, place a
box in the Form band. Be sure the FORM is the full size of the
page. Create a box with a border but no fill, and set the width
and height to Full.

376 CLARION 5 USER’S GUIDE

9. Press the OK button to close the Box Properties dialog.

Ellipse

When placing an ELLIPSE in a report, follow the same procedures as for
placing a box.

Printing Multi-line Text with Word-wrap

A multi-line text control can print a long string (such as a MEMO),
automatically word-wrapping and printing as many lines as the MEMO’s
contents requires.

1. Select the Text tool from the Controls toolbox, or choose Controls ➤ Text
Field .

2. CLICK in the band which will hold the control.

The center of the crosshair positions the upper left corner of the control.
The Select Field dialog appears. Use this dialog to select (or create) the
data dictionary field or memory variable to print.

3. Press the Select button.

The Report Formatter places a TEXT control in the report structure.
Resize the text box by using the mouse to drag its handles.

4. RIGHT-CLICK the text control and choose Properties from the popup menu.

5. Select the Extra tab, then check the Resize box.

At run-time, the text expands downward, expanding the detail if
necessary, to contain the entire text of the memo! If necessary, the text
flows onto the following page. The RESIZE attribute only adjusts the
height of the TEXT and the DETAIL.

CHAPTER 8 CREATING REPORTS 377

Reports That Look Like Windows

The Report Formatter gives you the ability to print on the page virtually
anything you can put on the screen. This includes specialized controls such
as list boxes, check boxes, group boxes, radio buttons, etc.

In most cases, setting control properties for a report is identical to setting
control properties for a window. See the Controls and Their Properties
chapter for more information on each of the following controls.

Option Box

You may print an OPTION structure within your report. This appears on the
page exactly as it does on screen—as an option box. You place an option
structure on the page only to hold radio buttons. You may hide the box
structure so that only the buttons print on the page.

1. Select the Option Box tool from the Controls toolbox, or choose Controls
➤ Option Box .

2. CLICK in the band in which you want to place the OPTION structure.

The center of the crosshair positions the upper left corner of the box. The
Report Formatter places an OPTION structure within the report structure.
Resize and relocate the option box by dragging its handles or its interior.

3. DOUBLE-CLICK the option box you just placed.

This opens the Option Properties dialog.

4. In the Text field, type a caption for the option box.

If you choose not to hide the option box when printing, the caption
appears at the upper left border of the box, just as it does on screen.

5. In the Use field, type a field equate label to refer to the control in source
code.

6. Select the Extra tab.

7. Clear the Boxed box to hide the box, but not the radio buttons.

8. Press OK.

You must add each radio button separately, placing them in the OPTION
box.

Radio Button

Placing RADIO buttons in a printed report provides a visual aid to the user
by showing the selected value as well as all the possible values for the field.

Before you place the radio buttons in the report, you must first place an
OPTION structure, by using the Controls ➤ Option Box command. The

378 CLARION 5 USER’S GUIDE

RADIO button must be placed inside the option box representing the
OPTION structure. If you attempt to place a radio button without an
OPTION structure, the Development Environment displays an error
message.

1. Place an option box.

2. Select the Radio Button tool from the Controls toolbox, or choose
Controls ➤ Radio Button .

3. CLICK inside the option box you just placed.

The center of the crosshair positions the upper left corner of the radio
button. The Report Formatter places an RADIO control within the
OPTION structure.

4. DOUBLE-CLICK the radio button you just placed.

This opens the Radio Button Properties dialog.

5. In the Text field, type a caption for the radio button.

The caption appears beside the radio button, just as it does on screen.

6. In the Use field, type a field equate label to refer to the control in source
code.

The radio button automatically turns ‘on’ or ‘off’ according to the value
of the variable specified in the OPTION box’s USE attribute.

7. Press OK.

Check Box

The check box (CHECK control) provides an attractive way to display a yes/
no choice for a field—the alternative might be an entire column that repeats
“one,” “yes,” or even “.T.” for each record.

The printed check box looks similar to an on screen check box. To place the
check box:

1. Select the Check Box tool from the Controls palette, or choose Controls
➤ Check Box .

2. CLICK inside the band in which you want to place the check box.

The center of the crosshair positions the upper left corner of the check
box. The Select Field dialog appears. Use this dialog to select (or create)
the data dictionary field or memory variable displayed by this control.
This should be a numeric variable which turns the check box on or off. A
value of zero indicates the box is unchecked; any other value, checked.

3. Press the Select button.

The Report Formatter places a CHECK structure within the report
structure.

CHAPTER 8 CREATING REPORTS 379

4. DOUBLE-CLICK the control, or RIGHT-CLICK the control and choose
Properties from the popup menu.

This opens the Check Box Properties dialog.

5. In the Text field, type a caption for the check box.

The caption appears beside the check box, just as it does on screen.

6. Press OK.

Group Box

The primary reason for placing a group box in a report is to make a group of
controls on paper resemble their appearance on screen.

To place the GROUP control:

1. Select the Group Box tool from the Controls toolbox, or choose Controls
➤ Group Box .

2. CLICK inside the band in which you want to place the Group Box.

The center of the crosshair positions the upper left corner of the group
box. The Report Formatter places a GROUP structure within the report
structure.

3. DOUBLE-CLICK the control, or RIGHT-CLICK the control and choose
Properties from the popup menu.

This opens the Group Properties dialog.

4. In the Text field, type a caption for the group box.

This appears at the upper left border of the group box when the report
prints, provided you check the Boxed box.

5. In the Use field, type a field equate label to refer to the control in source
code.

6. Select the Extra tab.

7. Clear the Boxed box to hide the box, but not the internal controls.

8. Press OK.

9. Add additional controls to the group.

List Box

When the data you require for the report exists in a QUEUE, you may place
a listbox in the report. The list box that appears on the page is similar to the
LIST control that appears on screen, though it will obviously not have the
same functionality—the printed page does not support scroll bars, for
example.

Because a queue is required for a listbox, and because Clarion’s report

380 CLARION 5 USER’S GUIDE

template does not normally use a queue, several embedded source statements
must be added to a template generated report procedure in order to use a
listbox. Alternatively, you may hand code the report procedure or use a
report template that uses a queue.

At print time, the first time the code cycles through the report, it prints the
LIST’s header and the first item in the queue. Each additional cycle prints
the next item of the queue without repeating the header. The LIST’s header is
automatically repeated for applicable page breaks and group breaks.

To place a listbox in your template generated report:

1. Select the List Box tool from the Controls toolbox, or choose Controls ➤
List Box .

2. CLICK in the band which should contain the control.

The center of the crosshair positions the upper left corner. When you
click, the List Box Formatter appears. Use the List Box Formatter just as
though you were designing a list box for the screen. See the Window
Formatter—List Box Formatter. When you are finished, press the OK
button.

Tip: Each listbox item prints as a “selected” item with the specified
selected item colors. The default Windows colors for a
selected item are “reverse video” (white-on-black). To produce
normal black-on-white printing, use the List Box Formatter to
set the Selected Text for each column to COLOR:Black and the
Selected Background to COLOR:White.

3. Make the list box one (1) row high (about .220 inches).

Drag the bottom handle until only the list box headings are visible. This
eliminates empty space between rows.

4. Make the detail band the same height as the list box.

Drag the list box to the top of the band or set its Y coordinate to zero (0),
then drag the bottom handle of the band to the bottom of the list box.
This eliminates empty space between rows. Your report should look
something like this illustration.

5. DOUBLE-CLICK the list box to open the List Properties dialog.

6. In the Use field, type a field equate label to refer to the control in source
code.

CHAPTER 8 CREATING REPORTS 381

7. In the From field, type the label of the queue the listbox displays, or press
the ellipsis (...) button to select or define the queue.

8. Press the OK button to close the List Properties dialog.

Embeds Required:

Generally speaking, the embedded source statements need to do two things:
declare the QUEUE and load the queue buffer with data.

1. Declare a QUEUE in the following embed point:

Clarion Templates Data Section, Before Report Declaration
ABC Templates Data Section, Before Report Declaration
CustomerView VIEW(Customer) !Template generated view

PROJECT(CUST:Name)
PROJECT(CUST:Phone)
PROJECT(CUST:Zip)

END

CusQ QUEUE,PRE !embedded QUEUE declaration
Name LIKE(CUST:Name)
State LIKE(CUST:Phone)
ZIP LIKE(CUST:Zip)

END

2. Load the queue in the following embed point:

Clarion Templates Before Printing Detail Section
ABC Templates ProcessManager Method Executable Code Section

Next(BYTE ProcessRecords=True),BYTE
Priority 7500

CusQ.Name = CUST:Name !copy VIEW buffer to QUEUE buffer
CusQ.Phone = CUST:Phone
CusQ.Zip = CUST:Zip

Custom Controls

You may place a .VBX CUSTOM control in your report. There are a number
of custom control libraries available which are very suitable for reports—
including graphs and other visual elements. To place the control:

1. Select the VBX tool from the Controls toolbox, or choose Controls ➤
Custom Control .

2. CLICK inside the band which will hold the control.

The center of the crosshair positions the upper left corner of the custom
control. When you CLICK, the Select Custom Control dialog appears. Use
this dialog to select a custom control.

3. Press the OK button.

The Report Formatter places a CUSTOM control within the report
structure. Resize and relocate the custom control by dragging its handles
or its interior.

382 CLARION 5 USER’S GUIDE

4. DOUBLE-CLICK the control you just placed.

This opens the Custom Control Properties dialog.

5. In the Text field, type a caption for the control.

The .VBX control may or may not display its title on the page, depend-
ing on the .VBX you use.

6. In the Use field, type the name of a variable.

The variable type depends on the .VBX control. The variable value is
passed to the .VBX control. Please see the Controls and Their Properties
chapter for more details.

7. Optionally, check the Meta box to print the control as a metafile (.WMF).

CHAPTER 9 TEXT EDITOR 383

9 - TEXT EDITOR

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

384 CLARION 5 USER’S GUIDE

About This Chapter
This chapter introduces the Text Editor. If you allow the Application
Generator to write most of your source code, you will probably only use the
Text Editor to write your embedded source code (see Application
Generator—Embedded Source Code). If you write your source code “from
scratch,” you will probably use the Text Editor extensively to create and
manage your code. The Text Editor features the following to help you
accomplish either purpose:

◆ Multiple Document Windows, in which you may edit as many
documents as your system allows.

◆ Color coded syntax highlighting, which makes reading individual code
lines easier. The color coding is fully customizable.

◆ Always available Search and Replace.

◆ Auto-indent, to make reading and writing code easier.

◆ Next Error and Previous Error locator.

◆ Current cursor position (row and column), displays on the status bar.

◆ Configuration options to customize the Text Editor to fit your needs.

CHAPTER 9 TEXT EDITOR 385

Opening the Text Editor
Anytime you view a source code document with Clarion, you use the Text
Editor. Here are several ways to open a source code document:

❏ Choose File ➤ New ➤ Source tab to open the New dialog.
Navigate to your source directory and fill in the name of your
new file in this standard dialog. Then press the Save button. This
opens a blank source code document.

❏ Choose File ➤ Open , select the Files of type Clarion source, then
DOUBLE-CLICK a source code file in the standard Open File dialog.

❏ Use the File ➤ Pick command to view your most recently edited
files. Select the Source tab, highlight a source code file, then
press the Select button.

❏ In the Project Editor dialog, highlight a source code (.CLW) file,
then press the Edit button. The Edit button is only enabled for
hand coded projects.

❏ After a compile that generates errors, press the Edit Errors
button.

❏ In the Application Tree dialog, RIGHT-CLICK a procedure, then
choose Source to open the Embeditor (Text Editor in a special
embedded source mode).

❏ In the Application Tree dialog, RIGHT-CLICK a procedure, then
choose Module to edit a generated source module.

386 CLARION 5 USER’S GUIDE

Managing Text Editor Windows
Each source code file appears in a separate document window. This section
provides a summary of actions you can take to change the layout of these
windows:

Close a window
Choose File ➤ Close from the main menu, or choose Close from
the window’s system menu, or double click the window’s system
menu, or press CTRL+F4.

Activate a window
Click anywhere within the window, or select the document name
from the Window menu. Alternatively, press CTRL+F6, or CTRL+TAB

until the window you wish is active.

Move a window
Drag the document window’s title bar with the mouse.
Alternatively, choose Move from the window’s system menu,
then use the cursor keys, then press ENTER to set the window in
place.

Resize a window
Drag its border with the mouse. Alternatively, choose Size from
the window’s system menu, use the cursor keys to resize, then
press ENTER to resume editing.

Maximize a window
Press the maximize button on the document window’s title bar;
or choose Maximize from the window’s system menu.

Iconize a window
Press the minimize button on the document window’s title bar;
or choose Minimize from the window’s system menu.

The Editor’s document
window features color

coded syntax
highlighting.

CHAPTER 9 TEXT EDITOR 387

Restore iconized
To restore an iconized document window, double click the
document window icon; or choose Restore from the icon’s
system menu.

Cycle to next window
To switch to the next window, press CTRL+F6 or CTRL+TAB.

Tile the windows
To arrange all open document windows side by side, choose
Window ➤ Tile vertically or Window ➤ Tile horizontally from the
main menu. This provides easy access to documents, as in the
illustration below.

Cascade windows
To arrange all open document windows so that the title bars are
all visible, choose Window ➤ Cascade from the main menu.

388 CLARION 5 USER’S GUIDE

Using the Text Editor Tools
Typing and editing source code with the Text Editor is similar to typing
documents with most word processor program. Type the code as if you were
typing at a typewriter, then use the various Text Editor tools and commands
to rearrange, duplicate, and modify your code.

File Menu

The Text Editor File menu has the following special file-oriented commands.

Print
To print the file, choose the Print command. This opens the
standard print dialog so you can one or more copies or one or
more pages of the file.

Save All
To save all open source files, choose this command.

Import File
Calls the Open File dialog, allowing you to insert the contents of
a file into the open file at the insertion point.

Export Block
Saves the selected text in a new source code document under a
new name which you specify. If the file exists, the Text Editor
overwrites the file; if the file does not exist, the Text Editor
creates it.

Edit Menu

To use an editing command, such as Cut or Copy , highlight the text you wish
the command to act on, then choose the command from the menu or the
toolbar.

When you wish to insert text, click with the I-Beam cursor at the place you
wish to insert text, then type or Paste the new text.

The Edit menu features the primary editing commands. The following
sections detail the commands on the Edit menu:

Undo
To undo the most recent editing action, choose the Undo
command. This menu item changes to which action will be
undone. Should you type a line of text, the menu item will show
that you may Undo Line Edits . Should you delete a line of code,
it will allow you to Undo Block Delete .

CHAPTER 9 TEXT EDITOR 389

Certain commands cannot be undone, such as a File Save, or a Replace All.

Cut To delete the highlighted text from the document and hold it in
the clipboard, choose the Cut command. The keyboard
accelerator is CTRL+X. The toolbar button with a scissors icon
also activates this command.

Copy
To copy the highlighted text and hold it in the clipboard, use the
Copy command. The keyboard accelerator is CTRL+C. The toolbar
button with the overlapping pages icon also activates this
command.

Paste
To place the contents of the clipboard (text only) into the
document at the insertion point use the Paste command. The
keyboard accelerator is CTRL+V. The toolbar button with the page
on clipboard icon also activates this command.

Select All
To highlight all the text in the document so that the next editing
command affects the entire document, choose the Select All
command. The keyboard accelerator is CTRL+.

Goto Line
To jump to a specific source code line to edit, choose Goto Line .
The keyboard accelerator is CTRL+G.

The Text Editor places the insertion point in the first column of
the line number you type in the dialog box. The status bar
reflects the current line and column numbers for the insertion
point position.

Goto Next Error
To move the insertion point to the next compiler error, choose
this command (or CTRL+). The Editor places the cursor at the part
of the statement where it detected the error. This command is
only enabled following a compile which generated errors.

Goto Previous Error
To move the insertion point to the previous location at which the
source code generated a compiler error, choose this command
(or CTRL-). The Editor places the cursor at the part of the
statement where it detected the error. This command is only
enabled following a compile which generated errors.

Set/Clear Tabstop
Places or removes a custom tab stop at the insertion point.

390 CLARION 5 USER’S GUIDE

Duplicate Line
To duplicate the entire line and insert the copy on the next line,
choose this command or press CTRL+2. The original line need not
be highlighted; simply position the cursor anywhere on the line.

Toggle Case
To change the case of next character following the insertion
point, choose this command or press CTRL+/. A lower case letter
becomes upper case, and vice versa.

Delete Line
To delete the entire line on which the insertion point is located,
choose this command, or press CTRL+Y.

Delete Word
To delete the word following the insertion point, choose this
command, or press CTRL+T.

Format Structure
Think of this as ‘visually editing’ a window or report. Just place
the insertion point on any line within the structure, and choose
this command, or press CTRL+F. The toolbar button with the
pencil and paper icon also activates this command. The Window
Formatter (or Report Formatter) displays a visual representation
of the structure, ready for editing.

When you exit the Window Formatter (or Report Formatter),
your source code reflects the changes you made. This provides
seamless interaction at the source code level with the visual
design tools.

You may also place the insertion point on a blank line, then call
the Window Formatter to create a new structure. When you
return to the Text Editor, the source code document will contain
the new structure you created with the Window Formatter (or
Report Formatter). Be sure to place the structure in the data
section of the program.

Tool Bar

The Text Editor toolbar provides quick access to the most frequently used
edit commands: Cut, Copy, Paste, and Format Structure. These commands
are the same commands accessed with the edit menu. Additionally there is a
print button to call the standard windows print dialogs. CLICK these buttons to
quickly access your favorite commands.

Cut Copy Paste Print Format Prev Next
 Structure Error Error

CHAPTER 9 TEXT EDITOR 391

Populate Field Toolbox

The Text Editor Populate Field toolbox provides quick access your data
dictionary fields and memory variables. Place your insertion point, then
DOUBLE-CLICK a field or variable in the Populate Field toolbox. The Text
Editor enters the fully qualified variable name at the insertion point!

This toolbox is available when you are embedding source code. See
Application Generator—Embedded Source Code.

Search Menu

The Search menu makes it easy to find and change text in your source code
documents. You may search for specific text, change single or multiple
occurrences of text throughout the document, or simply highlight a variable,
then jump to the next occurrence of it in the code.

The commands on the Search menu are:

Find

To find the next occurrence of a word, type it in the Find dialog and press the
Find Next button. The keyboard accelerator is ALT+F3.

The Find dialog is modeless. This means that the dialog will remain on
screen so that you may easily search again.

1. In the Find What field, type the text to search for.

The default contents of the Find What field is the last text searched for.

The Find dialog,
searching for

“QUEUE.”

392 CLARION 5 USER’S GUIDE

2. Optionally check the Match whole word only box, the Match case box, or
both.

For example if you search for ‘find’ with Match whole word only , you will
not get ‘findings.’ If you search for ‘Find’ with Match case you will not
get ‘find.’

3. Specify whether to search upwards or downwards.

4. Press the Find Next button to start the search.

Replace

To change a specific text string, type the original text and the replacement
text in the Replace dialog. You may make the changes one at a time,
throughout a selected text block, or throughout the entire document.

The Replace dialog is modeless. This means that the dialog will remain on
screen so that you may easily search and replace again.

1. In the Find What field, type the original text to search for.

The default contents of the Find What field is the last text searched for.

2. In the Replace with field, type the replacement text.

The default contents of the Replace with field is the previous replacement
text.

3. Optionally check the Match whole word only box, the Match case box, or
both.

For example if you search for ‘find’ with Match whole word only , you will
not get ‘findings.’ If you search for ‘Find’ with Match case you will not
get ‘find.’

4. Press the Find Next button to display the next occurrence of the original
text and stop before changing it.

The Replace dialog —
changing the name of

an equate from
?MainExit to

?GoodBye.

CHAPTER 9 TEXT EDITOR 393

The dialog will ask you to confirm the change.

5. Press the Replace button to replace the next occurrence of the original
text without confirmation.

6. Press the Replace All button to change all the occurrences of the original
text without confirmation.

Replace All operates only on the selected block of text. If no text is
selected, it operates on the entire document.

Find Next

To search for the same text you last searched for, choose this command or
press the F3 key. This searches in a ‘forward’ direction.

Find Previous

To search for the same text you last searched for in a backward direction,
choose this command or press SHIFT+F3.

Find Marked Text

To quickly find the next occurrence of the currently highlighted text, choose
this command or press CTRL+F3. This is equivalent to executing the Find
command, typing the currently selected text in the Find What field, and
specifying a forward search.

Block Indent

The Text Editor supports block indents, that is you can shift multiple lines of
code to the left or right so all those pesky IFs line up with their ENDs.

To move a block of text, simply select the block then press the tab key. The
Block Indent dialog appears. Specify the amount and direction of the indent,
then press OK.

Macros

The Text Editor supports simple macros.

To create a macro

1. Press CTRL+=.

That is, while holding the CTRL key, press the = key. The Press Key for
Macro dialog appears.

2. Press the key that will invoke the macro, for example CTRL+z.

394 CLARION 5 USER’S GUIDE

3. Press OK.

The macro recorder is now active and recording your keystrokes.

4. Perform the operation to save.

Type text, TAB, ENTER, function keys, etc.

5. When you are finished, press CTRL+= again.

The macro is saved and may be invoked by pressing the key you
specified.

Note: The macro is not saved between sessions and is only available
until you close Clarion.

CHAPTER 9 TEXT EDITOR 395

Editing Errors
One of the chief entry points into the Text Editor or Embeditor is through the
make results dialog—when an error aborts the make.

The Edit errors button automatically calls the Text Editor, and places the
insertion point at the position where the compiler detected the error. You may
then edit the source code to correct the mistake. The Edit ➤ Goto Next Error
command is available to jump to the next compile error once you correct the
first error. Alternatively, CTRL+ and CTRL- jump to the next error and previous
error, respectively.

You can control the mode in which the Text Editor/Embeditor opens. See
Application Generator—Configuring the Application Generator—Edit errors
in context for more information.

Note: If you directly edit a generated source module, your changes
will be overwritten the next time you generate source. Clarion
warns you if you attempt to directly edit a generated source
module from the make results dialog.

To make permanent changes in a generated source module
you must change a template prompt, use the Embedded
Source dialog, or use the Embeditor.

396 CLARION 5 USER’S GUIDE

Configuring the Text Editor
To personalize your editing environment, use the Editor Options dialog, the
Application Options dialog, and optionally, the ..\BIN\C5EDT.INI file.

Application Options Dialog

To open the Application Options dialog, choose Setup ➤ Application Options .
Select the Editor tab to set Text Editor options. See Application Generator—
Configuring the Application Generator for more information.

Editor Options Dialog

To open the Editor Options dialog, choose Setup ➤ Editor Options . Select the
corresponding tab to set specific Text Editor options.

Insertion

This tab provides the following text insertion options.

Indent New Line
To automatically give a new line the same indention as the
previous line, check this box. This will make your code more
readable.

Insert Within Column
When the insertion point is in the middle of a line, ENTER adds a
new line after the current line.

Automatic Word-wrap
To cause automatic line breaks at column 70, check this box.

CHAPTER 9 TEXT EDITOR 397

Split Line at Cursor
When this box is checked, ENTER splits the current line at the
insertion point (cursor). The second part of the line moves to a
new line. When this box is not checked, ENTER inserts a blank
line below the current line, without splitting the current line.

Tab Size
To set the default spacing between tabs, enter a number in the
Tab Size box.

Block

This tab provides the following block selection options.

Automatic Block Delete
To delete the selected text when pasting, check this box. To
insert before a selected block, clear the box.

Remove Block On Copy
To delete the selected text when copying, check this box.

Colors

These options let you set color choices for twenty-one different Clarion
language elements. Make Clarion keywords appear in red, or make equates
appear in green.

Select a language or text element in the Color Groups list box, then CLICK on
a color selection box. The sample text shows you how the selected language
element will appear in the Text Editor.

Color Groups
Highlight the language or text element to receive a color
assignment.

Color
To assign a color to the selected language element, CLICK on a
color selection box.

398 CLARION 5 USER’S GUIDE

Default
To assign the default color to the selected language element,
check this box.

Custom
To reset the custom color for the selected language element,
check this box.

Sample Text
Shows how the selected language element will appear in the Text
Editor.

Enabled
To apply the color syntax highlighting to the file types listed in
the Source Extensions box, check this box.

Source Extensions
To specify the file types that color syntax highlighting is applied
to, type a list of file extensions separated by semicolons.

Restore Defaults
To assign the default colors to all language and text elements,
check this box.

Saving

These options let you determine when the Text Editor creates backup files
and saves primary files.

Make Backup Files
To make a backup file (.BAK) each time you explicitly save a
source file, check this box. The .BAK file contains the source as
it was previously saved.

Prompt for Reload if file changed
To receive a “source.CLW has changed on disk. Do you want to
reload?” message whenever the Text Editor detects such a
change, check this box.

Automatic Save time (minutes)
Specify the time interval between automatic saves. When the
interval expires, the Text Editor saves the file under its original
name. Despite the automatic saves, cancelling the edit session
restores the file to its unedited state.

Extra

This tab provides the following miscellaneous options.

Home to First Column
This box controls the action of the HOME key in the Text Editor.
Check the box to make the HOME key position the cursor to
column 1. Clear the box to make the HOME key position the
cursor to the first non-blank column.

CHAPTER 9 TEXT EDITOR 399

Show Field Box in Embed Editor
Check this box to show the Populate Field toolbox when editing
embedded source code. This lets you choose variable names
from a pick list, so you don’t have to remember them.

Text Editor INI File

The Clarion Text Editor has its own .INI file that you can edit to customize
the Text Editor’s behavior. The behaviors you can set with the .INI file are
Key Mapping and Color Mapping. After you have changed the .INI file, you
must restart Clarion before your changes will take effect.

Key Mapping

Through the Key Mapping section of the C5EDT.INI file, you can specify
the Text Editor functions associated with specific keys on your keyboard.

For example, the default NewLine function is mapped to the ENTER key:

NewLine=EnterKey

You can change this association simply by typing a new keycode equate (see
..\LIBSRC\KEYCODES.CLW) to the right of the equal (=) sign:

NewLine=TabKey

Please be careful not to map the same key twice.

Some handy but unmapped functions you may want to map are:

SetMark1 through SetMark9
These functions set “bookmarks” within a source module. You
can jump back to the bookmarks with the corresponding
JmpMark function. Bookmarks are not persistent between
sessions or across multiple files.
SetMark1=CtrlAlt1
SetMark2=CtrlAlt2

JmpMark1 through JmpMark9
These functions jump to previously set “bookmarks” within a
source module. You can set the bookmarks with the
corresponding SetMark function.
JmpMark1=Alt1
JmpMark2=Alt2

UpperCaseWord
This function changes the selected text to uppercase.
UpperCaseWord=CtrlU

CommentBlock
This function changes the selected block to comments by

400 CLARION 5 USER’S GUIDE

inserting an exclamation point in the first column of each line.
CommentBlock=CtrlShiftC

UnCommentBlock
This function changes the selected block to compiled code by
removing the exclamation point from the first column of each
line.
UnCommentBlock=CtrlShiftU

Color Mapping

We recommend using the Color Options tab of the Editor Options dialog to
customize the Text Editor colors. However, if you want more color
customization, please back up your \BIN\C5EDT.INI file, then experiment
with the various color assignments available in the .INI file.

CHAPTER 10 FORMULA EDITOR 401

10 - FORMULA EDITOR

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

402 CLARION 5 USER’S GUIDE

Overview
The Formula Editor helps you to quickly generate a statements or structures
that assign a value to a variable. You can use the Formula Editor to create
unconditional or conditional assignments.

◆ An unconditional assignment assigns the evaluation of an expression to
the variable you specify: variable = expression. For example, a field
called GrossPrice might receive the result of adding two fields called
BasePrice and Tax.

◆ A conditional assignment places multiple possible assignments within a
structure that executes only one of them. The Formula Editor builds IF
structures and CASE structures for this purpose. The assignment
statement executed depends on the evaluation of the IF or CASE
condition. For example, a conditional field called “Tax” could equal 0
when “Taxable” (the IF condition) evaluates as false, or “Tax” could
equal Price times TaxRate if “Taxable” is true.

The Formula Editor dialog provides access to data dictionary fields, as well
as global and local memory variables, and helps you create syntactically
correct expressions. This is its prime advantage: automatic syntax checking.

To create an expression, you press buttons to add expression components to
the Statement line. You can also type in your expression then check the syntax
upon completion.

CHAPTER 10 FORMULA EDITOR 403

Expressions
An expression is made up of two types of components: operands and
operators. Operators perform an operation (such as addition, subtraction,
etc.) on one or more operands of the expression. Operands are the
components on which operations are performed. Operands either contain or
return a value. Constants, data dictionary fields, memory variables, and
functions are examples of operands. An operand can be made up of more
than one component, such as a function and its parameters.

The Formula Editor lets you choose operators and operands, then insert them
into the Statement line.

The table below lists all the components used in Clarion expressions.

Math Operators

+ Plus sign: Adds two operands together.

- Minus sign: Subtracts one operand from another.

* Asterisk: Multiplies one operand by another.

/ Slash: Divides one operand by another.

% Percent sign: Returns the remainder from a division
operation (modulus division).

^ Caret: Raises one operand to the power of the other.

() Parentheses: Groups components together within an
expression.

Logical (Boolean) Operators

= Equal: Evaluates whether one expression is equal to
the other.

< Less Than: Evaluates whether one expression is less
than the other.

> Greater Than: Evaluates whether one expression is
greater than the other.

<> Not Equal: Evaluates whether one expression is not
equal to the other.

>= Greater or Equal: Evaluates whether one expression
is greater than or equal to the other.

<= Less or Equal: Evaluates whether one expression is
less than or equal to the other.

404 CLARION 5 USER’S GUIDE

AND Connects two logical expressions together. For an
expression containing an AND to be true, both
expressions of the AND must be true.

OR Connects two logical expressions together. An
expression containing an OR is true if either
expression of the OR is true.

XOR Connects two logical expressions together. An XOR
expression is true if either expression is true, but not
both.

NOT Reverses the evaluation of an expression.

~ Reverses the evaluation of an expression.

String Operators

& Ampersand: Appends one text string to another.

Operands

Data Includes data dictionary fields, global, and local
memory variables.

Functions All of the built-in functions of the Clarion language.
These functions all perform some operation on
parameters (other operands) and return a value.

User Any FUNCTION in your application. These
functions perform some operation on parameters
(other operands) and return a value.

Constant Text You can type constant text surrounded in single
quotes (‘A’) on the Statement line.

Constant Number You can type constant numbers on the Statement
line. Constant numbers can be represented in any
valid format, such as Decimal (1 or 1.2345),
Scientific Notation (22e4), Binary (0101b), or
Hexadecimal (1AFFh).

Example Expressions
Lastname & ‘, ‘ & FirstName !concatenated string constants & variables
ABS(Amount) * 100 !function, numeric variable & constant
TaxCode = True AND Amount > .25 !Boolean with variables & constants

CHAPTER 10 FORMULA EDITOR 405

Formula Editor Tools
The Formula Editor consists of three dialog boxes:

Formulas Manages all the formulas you have created for the
procedure.

Formula Editor Creates simple assignment statements.

Conditionals Creates conditional structures (IF..THEN or
CASE..OF).

Formulas Dialog

Formula Editor

Deletes the
highlighted

formula

Selects the
highlighted

formula for editing
List of Formulas
for a procedure

with its execution
class and a
description

Enables creation of
a new formula

Creates Conditional structures

Accesses
FUNCTIONS

in your
application

Accesses Clarion’s
built-in functions

Operator buttons

Displays additional
information about an

expression’s
component

Validates your
expression’s syntax

Variable to which the
value is assigned

Determines when the
expression is evaluated

A descriptive label

Accesses the Data
Dictionary fields

and memory
variables

406 CLARION 5 USER’S GUIDE

Conditionals Dialog

Expression to insert
into the structure

Control structure
expanding tree

Creates an IF
structure

Creates or expands
a CASE structure

Accesses
FUNCTIONS

in your
application

Accesses Clarion’s
built-in functions

Operator buttons

Accesses the Data
Dictionary fields

and memory
variables

CHAPTER 10 FORMULA EDITOR 407

All Formula Editor Assignments
The Formula Editor helps you to quickly generate a statements or structures
that assign a value to a variable. You can use the Formula Editor to create
unconditional or conditional assignments. In either case, you must always
name the variable that is the target of the assignment, and you must choose
the point in the generated procedure the expressions are evaluated and the
assignment is executed.

To create any formula (conditional or unconditional) with the Formula
Editor, you begin with the following steps.

Preliminary Steps

1. From the Procedure Properties dialog, press the Formulas button.

This opens the Formulas dialog.

2. Press the New button to begin a new formula.

This opens the Formula Editor dialog.

3. In the Name field, type a name for the formula.

This does not affect the formula operation. It simply serves as an
identifier or documentation for the formula.

4. Press the ellipsis (...) button next to the Class field to choose a Formula
Class.

A formula class is simply a template embed point. The formula class
determines where in the generated source code, the calculation is per-
formed. Each Clarion procedure template has its own set of formula
classes. For example, in the Form Template there is a class called “After
Lookups” which tells the Application Generator to compute the formula
after all lookups to secondary files are completed for the procedure.

 The formula class you select displays in the Formulas dialog.

Choosing a formula
class.

408 CLARION 5 USER’S GUIDE

Note: Do not confuse formula classes with template classes. A
template class is simply a group of templates. A formula class
is a point within a procedure template where the formula is
evaluated (a template embed point).

5. In the Description field, type a description of the formula.

This does not affect the formula operation. It simply serves as an
identifier or documentation for the formula. The Description displays in
the Formulas dialog.

6. In the Result field, type the variable to which the result of the expression
is assigned, or press the ellipsis (...) button to choose a variable from the
Select Field dialog.

You can choose a local, module, or global variable, or a data dictionary
field. This variable name displays in the Formulas dialog.

CHAPTER 10 FORMULA EDITOR 409

Unconditional Assignments
The Formula Editor helps you to quickly generate a statements or structures
that assign a value to a variable. To create an unconditional assignment of the
form variable = expression, do the following:

1. Follow the steps described in Preliminary Steps.

This establishes the target of the expression as well as when the
expression is evaluated and the assignment executed.

2. In the Statement field, create the expression.

You may type the expression, use the Formula Editor’s buttons, or both.
The first component of an expression must be an operand, a left paren-
thesis, or a unary minus (the negative sign).

For example, press the Data button and choose a variable, press the
Multiply by (*) button, then press the Functions button to choose a
Clarion built-in function. See Expressions for more information.

3. Press the Check button to check the syntax of the expression.

If the syntax is correct, a large green check mark appears to the left of
the statement. If the syntax is incorrect, a large red X appears indicating
you need to correct the syntax.

4. When the syntax is correct, press the OK button.

Some of the built-in
Clarion functions

you can choose
from.

410 CLARION 5 USER’S GUIDE

Conditional Assignments
Creating conditional expressions with the Formula Editor actually creates
control structures in the source code. There are two structures you can create
with the Formula Editor —an IF or a CASE structure. You can also nest either
of these structures, creating complex conditional statements.

An IF structure assigns a value to the Result variable based on the true/false
evaluation of a single logical expression. There are only two possible
assignments, because only one condition is tested for. If the condition tested
is true, one assignment is made, if not true (false), then the other assignment
is made. See IF in the Language Reference for more information.

Nesting IF structures allows additional alternative assignments. However, the
CASE structure offers a less complicated method for assigning values based
on the evaluation of multiple logical expressions. See Creating a CASE
Structure.

Creating an IF Structure

Use a simple IF structure to assign one of two values to the Result field
depending on a condition. For example, you may want to determine the tax
for an order. The tax depends on a condition—is the customer taxable or
nontaxable? The resulting control structure would be:

IF CUS:Taxable ! conditional expression
 TAX = ORD:Total * CUS:TaxRate ! True assignment expression
ELSE
 TAX = 0 ! False assignment expression
END

The control structure in the Conditionals dialog would look like the
illustration below.

CHAPTER 10 FORMULA EDITOR 411

To create an IF structure:

1. Follow the steps described in Preliminary Steps.

This establishes the target of the expression as well as when the
expression is evaluated and the assignment executed.

2. Press the Conditionals button.

This opens the Conditionals dialog.

3. Press the IF..THEN button.

This inserts an IF structure in the Structure window.

Define the IF condition to evaluate

1. CLICK on IF in the Structure window.

2. On the Statement line, enter the IF condition to evaluate.

You can type the expression, or you can use the Operators and Operands
buttons to select expression components, or you can do both.

3. Press the Check button to check your syntax.

If the syntax is correct, a large green check mark appears to the left of
the statement. If the syntax is incorrect, a red X appears indicating you
need to correct the syntax.

4. When the syntax is correct, press the Accept button to insert your
expression into the IF structure.

Define the true assignment expression

1. CLICK on line immediately below the IF in the Structure window.

This is where the “True” assignment expression goes.

2. On the Statement line, enter the “True” assignment expression.

You can type the expression, or you can use the Operators and Operands
buttons to select expression components, or you can do both. If the IF
condition is true, this expression is evaluated and the resulting value is
assigned to the target variable.

3. Press the Check button to check your syntax.

If the syntax is correct, a large green check mark appears to the left of
the statement. If the syntax is incorrect, a red X appears indicating you
need to correct the syntax.

4. When the syntax is correct, press the Accept button to insert your
expression into the IF structure.

Define the false assignment

1. CLICK on line immediately below the ELSE in the Structure window.

412 CLARION 5 USER’S GUIDE

This is where the “False” assignment expression goes.

2. On the Statement line, enter the “False” assignment expression.

You can type the expression, or you can use the Operators and Operands
buttons to select expression components, or you can do both. If the IF
condition is false, this expression is evaluated and the resulting value is
assigned to the target variable.

3. Press the Check button to check your syntax.

If the syntax is correct, a large green check mark appears to the left of
the statement. If the syntax is incorrect, a red X appears indicating you
need to correct the syntax.

4. When the syntax is correct, press the Accept button to insert your
expression into the IF structure.

Note: Neither a “true” nor a “false” assignment expression is
required. If you don’t enter an assignment expression, then the
application generator generates an “empty” IF structure and
no assignment occurs.

5. When your control structure is complete, press the OK buttons in the
Conditionals, Formula Editor, and Formulas dialogs.

Creating a CASE Structure

A CASE structure selectively assigns a value to the Result variable based on
the evaluation of multiple OF expressions against the CASE expression.
Practically speaking, there are unlimited alternative assignments because any
number of expressions may be evaluated. See CASE in the Language
Reference for more information.

A simple CASE structure can be used to assign one of several values to the
Result field depending on which OF expression is equal to the CASE
expression. For example, you may wish to offer varying discounts for large
purchases depending on the customer’s discount code. The resulting CASE
structure might be:

CASE CUS:DiscountCode !CASE expression, compared to OF expressions
 OF ‘A’ ! 1st OF comparison expression
 Discount = 0 ! 1st OF assignment expression
 OF ‘B’ ! 2nd OF comparison expression
 Discount = ORD:Total * .1 ! 2nd OF assignment expression
 OF ‘C’ ! 3rd OF comparison expression
 Discount = ORD:Total * .15 ! 3rd OF assignment expression
 ELSE
 Discount = 0 ! catchall assignment
END

This control structure appears in the formula editor as shown below.

CHAPTER 10 FORMULA EDITOR 413

To create a CASE structure:

1. Follow the steps described in Preliminary Steps.

This establishes the target of the expression as well as when the
expression is evaluated and the assignment executed.

2. Press the Conditionals button.

This opens the Conditionals dialog.

3. Press the CASE..OF button.

This inserts a CASE structure in the Structure window.

Define the CASE condition to evaluate

1. CLICK on CASE in the Structure window.

2. On the Statement line, enter the CASE expression to evaluate.

The CASE expression is compared to the multiple OF expressions.You
can type the expression, or you can use the Operators and Operands
buttons to select expression components, or you can do both.

3. Press the Check button to check your syntax.

If the syntax is correct, a large green check mark appears to the left of
the statement. If the syntax is incorrect, a red X appears indicating you
need to correct the syntax.

4. When the syntax is correct, press the Accept button to insert your
expression into the CASE structure.

Build the OF expressions

1. CLICK on the OF line below the CASE line in the Structure window.

This is where the first OF comparison expression goes.

414 CLARION 5 USER’S GUIDE

You can type the expression, or you can use the Operators and Operands
buttons to select expression components, or you can do both. At run-
time, if the CASE expression equals this OF expression, then the subse-
quent expression is evaluated and the resulting value is assigned to the
target variable.

3. Press the Check button to check your syntax.

If the syntax is correct, a large green check mark appears to the left of
the statement. If the syntax is incorrect, a red X appears indicating you
need to correct the syntax.

4. When the syntax is correct, press the Accept button to insert your
expression into the CASE structure.

5. Highlight the line below the OF line in the Structure window.

This is where the first OF assignment expression goes.

6. On the Statement line, insert the OF assignment expression.

You can type the expression, or you can use the Operators and Operands
buttons to select expression components, or you can do both. At run-
time, if the CASE expression equals the above OF expression, then this
assignment expression is evaluated and the resulting value is assigned to
the target variable.

7. Press the Check button to check your syntax.

If the syntax is correct, a large green check mark appears to the left of
the statement. If the syntax is incorrect, a red X appears indicating you
need to correct the syntax.

8. When the syntax is correct, press the Accept button to insert your
expression into the structure.

To add additional OF statements

1. Highlight an OF line in the Structure window.

2. Press the Case..OF button

3. Insert your expressions in the same manner as above.

4. When your control structure is complete, press the OK buttons in the
Conditionals, Formula Editor, and Formulas dialogs.

Nesting Structures

Either of the available control structures can be nested inside another. This
lets you create complex structures simply by combining the instructions in
the previous sections for creating IF and CASE structures.

CHAPTER 11 PICTURE EDITOR 415

11 - PICTURE EDITOR

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

416 CLARION 5 USER’S GUIDE

Edit Picture Dialog
Many controls, such as ENTRYs, COMBOs, STRINGs, etc., display variable
values as well as constant text. These controls provide a Picture field instead
of the Text field. The Picture Editor (Edit Picture String dialog) helps you
supply an appropriate picture token (display format) in the Picture field.

You can invoke the Edit Picture String dialog from the Dictionary Editor (see
Dictionary Editor—Defining Field Properties) or from the control Properties
dialog (see Controls and Their Properties—Setting the Display Picture)

To set the display picture for variable values, type a picture token in the
Picture field or press the ellipsis button to use the Edit Picture String dialog.
See the Language Reference for more information on picture tokens.

There is a great variety and diversity of picture token syntax which depends
on the type of data you format: strings, numbers, currency, scientific, dates,
times, etc.

The Edit Picture dialog lets you quickly and easily build an appropriate
picture token without memorizing picture token syntax. Invoke this easy to
use dialog by pressing the ellipsis (...) button beside the Picture prompt in the
control Properties dialog or the Field Properties dialog.

Example
An example of the display format currently specified in the
dialog. What you see is what you get.

Favorite Pictures Pool

Pool
Select a predefined picture from the drop list.

CHAPTER 11 PICTURE EDITOR 417

Save As
Press this button to save the displayed picture to the Pool, and
name the saved picture. The saved pictures are available in the
Pool drop-list. You can save your most frequently used pictures,
then quickly reuse them from the Pool.

Tip: The Picture Editor stores the pictures in the ..\BIN\C5Pict.ini
file.

 Delete
Press this button to delete the displayed Pool picture currently
displayed in the Pool field.

Picture
The picture token currently specified. This picture token
produces the example shown.

Picture Type
Choose the type of data to format from this drop-down list.
Choose from String, Numeric and Currency, Scientific Notation,
Date, Time, Pattern, and Key-in Template.

String

String picture tokens specify a length with no other formatting. See String
Pictures in the Language Reference.

Length
Specify the length of the string. This length also determines the
width of the control if the width is not otherwise specified by the
control’s AT attribute.

Numeric and Currency

Numeric and currency picture tokens specify a length, plus conventional
formatting to convey positive and negative values, various currencies, etc.
See Numeric and Currency Pictures in the Language Reference.

Size
The total number of significant digits, plus any formatting
characters. For example, $22.25- is 4 significant digits + 3
formatting characters for a size of 7.

Decimal Digits
The number of digits to the right of the decimal.

Currency
Choose from None, Leading, and Trailing. None shows no
currency symbol. Leading puts the currency symbol to the left of
the number and Trailing puts the symbol right of the number.

418 CLARION 5 USER’S GUIDE

Symbol
The currency symbol to display: either a dollar sign ($) or a
string constant.

Negative Sign
Specify how negative values are formatted. Choose from:

Bracket Negatives surrounded by parentheses.

Leading Negatives get a leading minus sign.

Trailing Negatives get a trailing minus sign.

None No sign display.

Decimal Separator
Specify the character inserted between the integer and fractional
portion of the value. Choose from:

Period Period is the separator.

Comma Comma is the separator.

None Displays no separator.

Grouping
Specify the character inserted at every third digit to aid
readability. Choose from:

Comma Comma is the separator.

Period Period is the separator.

Space Space is the separator.

Hyphen Hyphen is the separator.

Leading Character
Specify the character to represent leading zeroes.

Clip Remove leading zeroes so that any leading format
characters abut the left most digit.

Zero Leading zeroes display as zeroes (0).

Space Leading zeroes display as spaces ().

Asterisk Leading zeroes display as asterisks (*).

Blank When Zero
Check this box to display nothing when the value is zero.

CHAPTER 11 PICTURE EDITOR 419

Scientific

Scientific Notation picture tokens let you display very large or very small
numbers with a decimal format raised by a power of ten. The display takes
the form -9.99e+999. See Scientific Notation Pictures in the Language
Reference.

Number of Characters
The total number of characters, including the 7 format
characters. For example, -1.96e+007 requires 10 characters.

Leading Digits
The number of digits to the left of the decimal point (typically
1).

Decimal Separator
Specify the character inserted at every third digit to aid
readability.

Point Period is the separator.

Comma Comma is the separator.

Space Space is the separator.

Separator
Specify the character inserted between the integer and fractional
portion of the value.

Point Period is the separator.

Comma Comma is the separator.

Blank When Zero
Check this box to display nothing when the value is zero.

420 CLARION 5 USER’S GUIDE

Date

Date Notation picture tokens let you display dates in a number of different
formats. Choose the format you want from the Format drop-down list. See
Date Pictures in the Language Reference.

Better still, date picture tokens in entry fields automatically invoke Clarion’s
run-time date parsing functions, so you can enter ‘21’ and Clarion expands it
to the 21st day of the current month and year. Or you can enter ‘DEC’ and
Clarion expands it to the 1st day of December of the current year. The date is
then formatted according to the picture token.

Tip: The MASK attribute (Entry Patterns check box) on a window
preempts the date parsing functions.

Format
Choose the format you want from the drop-down list. What you
see is what you get except for the Windows Short and Windows
Long formats. Additionally, the separator character and leading
zeroes may be specified independent of the chosen format.

Windows Short Uses the short date format specified in the Windows
control panel or the Windows 95 Regional Settings
control panel.

Windows Long Uses the long date format specified in the Windows
control panel or the Windows 95 Regional Settings
control panel.

Separator
Choose from Standard (/), Period (.), Dash (-), Space (), and
Comma (,).

CHAPTER 11 PICTURE EDITOR 421

Leading Characters
Specify the character to represent leading zeroes.

Zero Leading zeroes display as zeroes (0).

Blank Remove leading zeroes.

Asterisk Leading zeroes display as asterisks (*).

Two digit date range
Change the default century interpretation for dates input with a
two digit year. By default, Clarion assumes any date input with a
two digit year (i.e. the century value is omitted) falls between
today-80 years and today+19 years.

For example, if today is June 1, 1996 and the date input is 9/2/
59, Clarion assumes the 59 means 1959 since 1959 falls between
today-80 years (June 1, 1916) and today+19 years (June 1,
2015). To force a different interpretation, set the Two digit date
range to 30. Now Clarion assumes the 59 means 2059 since
2059 falls between today-30 years (June 1, 1966) and today+69
years (June 1, 2065).

Blank When Zero
Check this box to display nothing when the value is zero.

Time

Time Notation picture tokens let you display times in a number of formats.
Choose the format you want from the Format drop-down list. See Time
Pictures in the Language Reference.

Format Choose the format you want from the drop-down list. What
you see is what you get except for the Windows Short and
Windows Long formats. Additionally, the separator character
and leading zeroes may be specified independent of the chosen
format.

Windows Short Uses the time format specified in the Windows
control panel.

Windows Long Uses the time format specified in the Windows
control panel.

Separator
Choose from Standard (:), Period (.), Dash (-), Space (), and
Comma (,).

Leading Character
Specify the character to represent leading zeroes.

422 CLARION 5 USER’S GUIDE

Zero Leading zeroes display as zeroes (0).

Blank Remove leading zeroes.

Blank When Zero
Check this box to display nothing when the value is zero.

Pattern

Pattern picture tokens let you build custom display formats for various
numbers: phone numbers, social security numbers, room numbers, dates,
times, measurements, etc. See Pattern Pictures in the Language Reference.

Picture
Type the picture token between the ‘P’s according to the Legend
below. Your picture token can include any displayable
characters, including all the standard keyboard characters.

At runtime, the constants in the picture token display just as they
appear in the token. The left angle (<) and the pound sign (#)
resolve into the individual digits from the display variable.

Legend
< integer, blank if zero
integer
constant (any displayable character except < and #)

Blank When Zero
Check this box to display nothing when the value is zero.

Tip: To use a lowercase p in your picture, use an uppercase P at
the start and end of your picture token. To use an uppercase P
in your picture, use a lowercase p at the start and end of your
picture token.

Key-in Template

Pattern picture tokens let you build custom edit formats for STRINGs,
CSTRINGs and PSTRINGs containing mixed alphanumeric characters.
Although Key-in tokens affect output as well as input, their primary purpose
is to provide custom field editing and validation on input. See Key-in
Template Pictures in the Language Reference.

Picture
Type the picture token between the ‘K’s according to the Legend
below. Your picture token can include any characters
(displayable or not), including all the standard keyboard
characters.

CHAPTER 11 PICTURE EDITOR 423

Legend
< accept an integer, blank if zero
accept an integer
? accept any character (even non-display)
^ accept an upper case character
_ accept a lower case character
| input may stop here
constant (any displayable character except <#?^_| or \)
\ display next character (lets you display <#?^_| or \)

Only alphabetic characters
Check this box to accept only alphabetic characters.

Blank When Zero
Check this box to display nothing when the value is zero.

Tip: To use a lowercase k in your picture, use an uppercase K at
the start and end of your picture token. To use an uppercase K
in your picture, use a lowercase k at the start and end of your
picture token.

424 CLARION 5 USER’S GUIDE

CHAPTER 12 PROJECT SYSTEM 425

12 - PROJECT SYSTEM

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

426 CLARION 5 USER’S GUIDE

Overview
The project file (.PRJ) or the application file (.APP) tracks all the
components that are used to create the final executable (target file) for your
application. It also stores the compiler options ranging from whether to
include debug code or not, to setting a preferred optimization method. The
compiler and the linker depend on this project information to tell them how,
and what, to compile and link. The project information is functionally
equivalent to a MAKE file for other language compilers.

The Clarion Project System visually manages the project information. It
maintains tree diagrams of the source files, external libraries, resources, and
other project components.

This chapter discusses the Project System and related topics. It shows you
how to:

◆ Add source code files to the Project Tree.

◆ Add external libraries to the Project Tree, and how to access their
functions and procedures in your source code.

◆ Specify the target file and set other compiler options. The target file is
the ultimate executable created for your application or project

The Project Editor
dialog contains the

Project Tree. The tree
controls expand and
contracts when you

click them. When
expanded, they list the
component files. When

contracted, the box
contains a plus (+) to

show that you can
expand the control.

CHAPTER 12 PROJECT SYSTEM 427

Hand Coded Projects
This section provides an overview of the steps necessary to create a project
file (*.PRJ). The Project file tracks all the components that are used to create
the executable file. It also sets the compiler options ranging from whether to
include debug code or not, to setting a preferred optimization method.

If you use the Application Generator to create your source code, no separate
.PRJ file is created, and the only thing you will probably use the Project
System for is to set debugging options. The Application Generator takes care
of maintaining most everything else for you. Therefore, this chapter is
primarily concerned with using the Project System for hand-coded programs.

The Project Tree dialog organizes all the project components and provides
access to other dialogs that manage your project file.

To create a project file

1. Choose File ➤ New ➤ Project .

This opens the New Project dialog.

2. In the Project Title field, type a descriptive name for your project.

This is documentary only.

3. In the Main File field, type the name of your main source code file, or
press the ellipsis (...) button to choose a source file with the Windows
File dialog.

This step automatically fills in the Target file, Project file and Target Type
fields as well. If you wish to set non-default values you may do so.

4. Press the OK button.

 This opens the Project Tree dialog.

Add Project Components

1. CLICK on a Project Tree component category (such as Database driver
libraries), then press the Add File button.

428 CLARION 5 USER’S GUIDE

This opens a dialog where you can select a component of the specified
type. For Database driver libraries, the Add File button calls the Select
Driver dialog so you can choose from a list of valid Clarion database
drivers. In all other instances, the Add File button opens the Windows
File dialog to help you locate the component file.

2. DOUBLE-CLICK the component fileto add it to your project.

3. Repeat the above steps for all component files.

Set Global Make Options

1. CLICK on the Project (first) line then press the Properties button.

This opens the Global Options dialog. This dialog sets various compile
and link options for your entire project, including optimization method,
type of executable created, whether to include debug code, etc.

Select the tabs in the Global Options dialog to get an idea of the available
options, or press the Help button to see a description of each option. See
Compile and Link Options for more information on these compile and
link options.

Set Local Make Options

1. CLICK on the Project: (first) line, then press the Properties button.

This opens the Global Options dialog. This dialog sets various compile
and link options for your entire project, including optimization method,
type of executable created, whether to include debug code, etc.

Like the Add File button, the Properties button behaves differently
depending on which Project Tree folder is highlighted. When a source
file is highlighted, the Properties button calls the Compile Options dialog.
This dialog sets compile options for the specific source file highlighted.
Specific compile options take precedence over global compile options.

For now, press the tabs in the Global Options dialog to get an idea of the
available options, or press the Help button to see a description of each
option. When you are finished, press the OK button. See Setting Project
File Options below, for more details on setting these compile and link
options.

CHAPTER 12 PROJECT SYSTEM 429

Compile and Link Options
This section provides an overview of the steps necessary to maintain a
project file. Maintaining the project file includes adding and removing
source files, object files, libraries, etc. from the compile and link process. In
addition, you may set both global and local compile and link options in the
project file.

Global Compile and Link Options

Select the first line of the Project Tree listing and press the Properties button
to open the Global Options dialog. This includes the following options:

Global Tab

Title
To add a short text description, type it in the Title field. The
Project System will list the description next to the Project name
in the Project Tree list.

Target Type
To specify the executable file type, choose .EXE, .LIB , or .DLL
from the Target Type drop list.

Target OS
To specify the executable’s targeted operating system, choose
Windows 16-bit or Windows 32-bit from the Target OS drop list.

Note: You can compile and link 32-bit executables with Windows 3.1
if you have Win32S installed, but you must have Windows 95 or
Windows NT to run them.

Memory Model
The Clarion model is not optional.

430 CLARION 5 USER’S GUIDE

Run-Time Library
To specify how the run-time library is called by the target file,
choose Standalone, Local , or External from the Run-Time Library
drop list. Available only in Professional and Enterprise Editions.
See Development and Deployment Strategies for more
information.

Standalone Creates the target file so it calls the Clarion run-time
library as C5RUN[x].DLL. The [x] indicates 32-bit
library.

Local Creates the target file with the Clarion run-time
library linked internally (a “one-piece” executable).
Available only in Professional and Enterprise
Editions.

External Links the application so it calls the Clarion run-time
library from a .DLL which you have created with
the run-time library linked internally and exported.
Available only in Professional and Enterprise
Editions. See the Programmer’s Guide for more
information on the export file (.EXP).

Build Release System
To create an executable for release, check the Build Release
System box. To create an executable for use with the Debugger,
clear the Build Release System box.

Debug Tab

Debug Mode
To specify the level of debug capability, choose Off, Min , or Full
from the Mode drop list.

For 16-bit programs, the compiler generates debug information
into separate .DBD files. By default the .DBD files are in the
\CLARION5\OBJ folder. For 32-bit programs, the compiler
generates the debug information into the .EXE or .DLL.

CHAPTER 12 PROJECT SYSTEM 431

Line Numbers
To specify line numbers be built into the object file, check the
Line Numbers box. This is not necessary for the Clarion
debugger, but may be helpful when using other debuggers.

Stack Overflow
To enable stack overflow warnings at run-time, check the Stack
Overflow box.

NIL-Pointer
To allow compiler warnings when dereferencing null pointers,
check the NIL-Pointer box.

Array Index
To enable array index larger than the array size warnings at run-
time, check the Array Index box.

Optimize Tab

Clarion 5 fully optimizes all executables. These options have no effect.

Defines Tab

Defines
To define a switch, or switches for use with the COMPILE and
OMIT compiler directives, type a list of valid Clarion labels.
Each label defines a separate switch. The default value of each
switch is ‘on.’

To specify a non-default value for the switch, type label=>value.

Defines refers to the Project System language statement
#PRAGMA DEFINE(). The #PRAGMA DEFINE() statement
creates a switch that can be toggled on and off. See the
Programmer’s Guide for more information on #PRAGMA
DEFINE(). The switch can then be interrogated by the
COMPILE and OMIT compiler directives. See the Language
Reference for more information on COMPILE and OMIT.

For example, type ‘Demo’ in the Defines field. The Project

432 CLARION 5 USER’S GUIDE

System will create a switch called Demo and turn it “on.” Now
you can use the switch in conditional COMPILE and OMIT
statements within your source code. For example:

COMPILE(‘END COMPILE’,DEMO=ON)
IF TODAY() > FirstRunDate + 30
#ReturnCode = MESSAGE(‘Beta period expired’)
RETURN

END
END COMPILE

Zero Divide
To enable division by zero using floating point variables (REAL,
SREAL, BFLOAT4, etc.) in Clarion subexpressions, the
zero_divide switch should be set in the application’s project file.

Type ‘zero_divide’ in the Defines field. The Project System
creates the switch and turns it “on.” Compile your application,
then, at run-time, a division by zero will return a zero rather than
a floating point exception.

Link Tab

Create Map File
To create a map file, which contains information about segment
sizes and public functions, check the Create Map File box. The
map file may be used with third party debuggers.

Pack Segments
To pack the data and program segments in the .EXE file, check
the Pack Segments box.

Stack Size
To specify the stack size, type a number and unit of measure in
the Stack Size field.

CHAPTER 12 PROJECT SYSTEM 433

Individual Source Module Compile Options

You may set compile options for individual source modules as well as for the
project as a whole. Individual compile settings take precedence over global
compile settings. By setting the compile options for individual source
modules, you may specify full debug information for one module and none
for another.

Highlight a source code file in the Project Tree dialog, then press the
Properties button. This opens the Compile Options dialog, showing most of
the same options as the Global Options dialog. This dialog sets compile
options for the individual source module highlighted.

See Debug Tab, Optimize Tab, and Defines Tab above for information on
using this dialog.

434 CLARION 5 USER’S GUIDE

Component Files

Projects to Include

The Project System can compile and link other projects referenced in the
current project file. The other project can even specify yet another, in a
cascading sequence of compile references.

Cascading projects lets you split the development process into separate
projects, then link them all together when you’re ready.

❏ To add a project to the Project Tree, highlight Projects to include in the
Project Tree list. Then press the Add File button and select the project file
you wish to add with the standard Open File dialog.

Application Icon

You can specify icon files to link first into your executable. Windows
displays the first linked icon in various contexts, for example, on the
Windows 95 taskbar, or in the Windows 3.x File Manager. To specify the first
linked icon file, highlight Application Icon , then press the Add File button and
select the icon file with the standard Open File dialog.

To specify the icon for individual windows, use the ICON attribute for the
window. See Window Formatter—Window Properties Dialog for more
information on specifying icons.

For windows with no icon specified, the default (Clarion) icon is used. You
can use System{PROP:Icon} to specify the default icon for your application.

Source Code Files

Source code files are those files that contain your Clarion Language
statements (or other language statements, if you have TopSpeed compilers to
support them). Adding a source code file to the Project Editor dialog is
simply a matter of DOUBLE-CLICKING a file name.

External Source Files

❏ To add “hand-coded” source code files, highlight External source files.
Then press the Add File button and select the file you wish to add with
the Windows file dialog.

If you choose the wrong type of file (for example, a generated source
file, or a .LIB file), the Project System adds the file to the appropriate
Project Tree folder.

CHAPTER 12 PROJECT SYSTEM 435

Generated Source Files

For .APP files,Generated source files cannot be added or deleted with the
Project System. They can only be added or deleted with the Application
Generator. Any attempt to add source modules to the will add the source file
to the External source files.

Database Driver Libraries

Your application calls various database driver routines to access your
database files. These routines are in libraries supplied with Clarion and
installed by default in the \LIB subdirectory by the Clarion setup program.
During the link process, references to these external routines can only be
resolved if the library containing the routines is added to your project file.

The Application Generator automatically adds the appropriate driver
libraries based on the Data Dictionary file driver selections and the Project
System’s 16-bit or 32-bit settings. For hand coded projects, you should
manually add the appropriate driver libraries.

❏ To link a database driver library, highlight Database driver libraries in
the Project Tree list. Then press the Add File button and select the driver
to add from the Select Driver dialog.

Library, Object, and Resource Files

Libraries and Objects

An object (.OBJ) file contains objects—routines, functions, or procedures
that can be linked into your program during the link process. A library (.LIB)
file is simply a file that contains multiple objects. When properly linked,
your program can call on these objects to perform certain tasks.

Tip: You can create .LIB files for use with your Clarion applications.
See Setting the Target File below and see Development and
Deployment Strategies .

Objects used in this manner need not be written with Clarion. Your Clarion
programs can call objects compiled from C, C++, Pascal, etc.

❏ To link a library, object or resource file, highlight Library, object, and
resource files in the Project Tree list. Then press the Add File button and
select the file you wish to add with the Windows file dialog.

The .LIB, .OBJ, .RSC, etc. file appears in the Project Tree, and any
objects from the file that are properly referenced in your source code are
linked into your target (executable) file.

436 CLARION 5 USER’S GUIDE

Resource Files

A resource file is any other file (.RSC, .ICO, .BMP) that should be linked
into your program. One of the most likely things you’ll do with the Project
System is to specify resources to link into your executable. By linking them
into the executable, you avoid having to ship them as separate, external files.

Tip: For 16-bit projects with Run-Time Library set to Local, you
should add to your project all the.RSC, .ICO, .BMP, etc. files
used within the project’s LIBs. By default, the .RSC files are in
the \CLARION5\OBJ folder. Failure to add required .RSC files
generates a WSLDIAL error.

If you directly reference a graphic file within a data structure, the compiler
automatically links the graphic, so there is no need to add the graphic file to
your Project Tree. For example, if you place an IMAGE control in a window,
and specify a file by name in the Image Properties dialog, the linker
automatically includes that file in your executable. But if you assign a
different graphic to a control using a run-time property assignment
statement, the linker will only include the new file in your executable if you
add the file to your Project Tree.

Tip: The Clarion runtime libraries assume the .EXE or .DLL where a
window was most recently opened is where any referenced
icons are located.

To add graphic files to the executable

1. Highlight Library, object and resource files then CLICK on the Add File
button.

Select the bitmap, icon, or metafile graphic from the standard Open File
dialog.

2. Press the OK button to return to the Project Editor dialog.

3. Highlight the source code file that references the graphic, then CLICK on
the Edit button.

The Text Editor opens the source code file.

4. Place a tilde (~) in front of the graphic file name in the source code
assignment statement (not in the data section).

For example: change ?Image{PROP:Text} = ‘I.ICO’ to
?Image{PROP:Text} = ‘~I.ICO.’ The tilde indicates the program should
find the item as a linked in resource, not as an external file.

Optionally, choose Search ➤ Find to locate the file name.

5. Choose File ➤ Exit , then CLICK on Yes when asked if you want to save.

Now, when you recompile and link, the executable will no longer require
the external graphic file.

CHAPTER 12 PROJECT SYSTEM 437

Programs to Execute

Programs to execute lets you customize the compile and link process by
executing the program(s) of your choice at the end of the process. These can
be .BAT files or more sophisticated .EXE files that perform any additional
tasks you specify as part of the compile and link process. The programs
execute in the order they appear in the Project Tree, commencing
immediately after the target file is made. That is, after the entire compile and
link process is completed.

❏ To add a program to execute to the Project Tree, highlight Programs to
execute in the Project Tree list. Then press the Add File button and select
the program file you wish to add with the Windows file dialog.

438 CLARION 5 USER’S GUIDE

The Target File
Using the Project System, you can create .EXE, .LIB, and .DLL files. This
section describes these three target file types and how to create them. See
Adding Object Files and Libraries and Distributing Files for more
information. See also Development and Deployment Strategies.

❏ By default, the project system creates a standard executable (.EXE +
C5RUN[x].DLL) file. When you name the project file in the New Project
File dialog, it automatically sets the Target File extension to .EXE and the
Run-Time Library to Standalone.

❏ To create a library (.LIB file), simply change the target file extension in
the Project Tree. Highlight Target file in the Project Tree then press the
Add File button. Then type in the name of the .LIB file you wish to
create, including the file extension. Press the OK button.

❏ To create a dynamic link library (.DLL), change the target extension in
the Project Tree. Highlight Target file in the Project Tree then press the
Add File button. Then type in the name of the .DLL file you wish to
create, including the file extension. Press the OK button.

Tip: Setting the Project’s Target Type is equivalent to setting the
Application’s Destination Type and vice versa.

.LIB Files

Library files (.LIB) contain procedures and functions which are linked into
your executable at compile time. To create library files which may be
accessed by Clarion, or by any of the other TopSpeed compilers, just set a
.LIB file as the target file.

To use procedures and functions from a precompiled .LIB file, you must
prototype the procedures and functions called by your program. Prototyping
is accomplished by adding a MODULE structure to your application’s MAP.
To call an external .LIB procedure from “hand coded” source:

CHAPTER 12 PROJECT SYSTEM 439

1. Add a MODULE structure to your application’s MAP.

The MODULE should reference the external library file. In the Applica-
tion Generator, you can place this in the Inside the Global Map embed
point.

2. Add the procedure prototypes:

MAP
MODULE(‘EXTERNAL.LIB’)
ExtProc(*CSTRING),RAW
ExtFunc(USHORT, *BYTE[]),USHORT

END
END

Each prototype specifies the name of the procedure, the data types of any
parameters (in parentheses), and the return data type (if any).

In the example above, the ExtProc procedure ExtProc expects the
address (without the length, hence the RAW attribute) of a CSTRING to
be passed to it as a parameter.

The ExtFunc procedure expects the value of a USHORT variable, the
address of an array of BYTEs, and will return a USHORT.

3. To specify a different calling convention, add it to the prototype.

You may use .LIB or .OBJ files created by other compilers.

Modifying the above examples, the first line below identifies a procedure
expecting the C calling convention. The second line identifies a proce-
dure expecting the PASCAL calling convention, which is the Windows
standard calling convention:
ExtProc(*CSTRING),C,RAW
ExtFunc(USHORT, *BYTE[]),USHORT,PASCAL

4. To optionally specify a third party linker’s identifier, add it to the
prototype.

Some compilers, most notably ‘C’ language compilers, add a leading
underscore to the name of procedures and functions at compile time. The
examples below add the NAME attribute:

ExtProc(*CSTRING),C,RAW, NAME(‘_ExtProc’)
ExtFunc(USHORT, *BYTE[]),USHORT,PASCAL,NAME(‘_ExtFunc’)

See the Language Reference for more information on MODULE, MAP,
PROCEDURE, and prototypes.

440 CLARION 5 USER’S GUIDE

.DLL Files

Dynamic Link Libraries (.DLL) contain procedures which are linked to your
application at run-time. To create dynamic link libraries, just specify .DLL as
the target file extension.

To call a .DLL procedure follow the steps outlined for calling a .LIB
procedure, above.

Tip: Setting the Project’s Target Type is equivalent to setting the
Application’s Destination Type and vice versa.

CHAPTER 12 PROJECT SYSTEM 441

Distributing Files

Choosing a Configuration

This section is included to help you decide what kind of target file to specify
for your project. See Setting the Target File. Also see Development and
Deployment Strategies.

Clarion produces executable files which you may distribute on a royalty-free
basis. The applications you distribute require Windows 3.10, 3.11, 95, or NT.

Clarion executables come in two flavors: .EXE files, and .DLL files. An
.EXE file is simply an executable program. A .DLL (Dynamic Link Library)
file is executable code that is linked into an .EXE file at run-time. This is in
contrast to .OBJ and .LIB files which are linked into an .EXE at compile
time. The most obvious benefit of the .DLL is that it provides a method of
modifying .EXE operation without remaking (compiling and linking) the
.EXE.

Clarion executables may be distributed in the following four configurations
where [x] indicates the 32-bit runtime library for applications running on 32-
bit operating systems (Windows 95 or Windows NT); no [x] indicates the 16-
bit runtime library for 16-bit operating systems (Windows 3.10, 3.11):

◆ *.EXE (available only in Professional and Enterprise Editions)

A one-piece .EXE will usually be larger than an .EXE distributed with
.DLLs. However, the one-piece .EXE will probably be smaller than the
combined sizes of an .EXE and its associated .DLLs.

The one-piece .EXE is made as small as possible by Clarion’s smart
linking process that only links in procedures actually called by the
application program (whereas the .DLL contains a fixed set of proce-
dures, whether or not they are actually called by your program).

A one-piece .EXE cannot have conflicts or problems that arise from
linking with the wrong .DLLs at run time.

Make (compile and link) time for a one-piece .EXE is greater than for an
.EXE combined with .DLLs.

Tip: To make a one-piece .EXE follow the steps described in the
Development and Deployment Strategies appendix.

◆ *.EXE + C5RUN[x].DLL

Splitting the executables between .EXEs and .DLLs allows for more
efficient use of disk space. Many Clarion applications (.EXEs) can share
a single C5RUN[x].DLL. Or, a single application suite with several

442 CLARION 5 USER’S GUIDE

.EXEs can share a single C5RUN[x].DLL. However, as a developer, you
must ensure that your application accesses the correct version of
C5RUN[x].DLL.

An example of .DLL usage is the typical accounting system where the
.EXE controls the system main menu, and calls system subparts such as
Accounts Receivable and Accounts Payable from separate .DLLs. This
method of distribution allows for program parts to be sold and main-
tained separately.

Tip: Splitting executables between .EXEs and .DLLs allows for
more efficient use of disk space, but less efficient use of RAM.
This is because Windows 95 loads an additional
C5RUN[x].DLL into memory for each active Clarion executable,
and because the C5RUN[x].DLL contains some procedures
your .EXE never calls.

Tip: To make an .EXE + C5RUN[x].DLL: in the Global Options
dialog, set Target Type to .EXE and set Run-Time Library to
Standalone .

◆ *.EXE + C5RUN[x].DLL + *.DLL
1
 + ... + *.DLL

n

This configuration offers the same advantages and disadvantages as the
.EXE + C5RUN[x].DLL configuration. It is listed here to illustrate that
you are not limited to a single .DLL, nor are you limited to Clarion
.DLLs. Your Clarion applications may make use of .DLLs compiled
from other languages as well as the C5RUN[x].DLL and TopSpeed
database driver .DLLs. See the Application Handbook—Database
Drivers for more information on database drivers.

◆ *.EXE + *.DLL
1
 + ... + *.DLL

n

This configuration offers most of the same advantages and disadvantages
as the .EXE + C5RUN[x].DLL configuration. It is listed here to illustrate
that the C5RUN[x].DLL may be linked into another .DLL. This tech-
nique “hides” the C5RUN[x].DLL and ensures that your application will
never get the wrong version of C5RUN[x].DLL, because, technically, it
isn’t looking for C5RUN[x].DLL.

Tip: To “hide” C5RUN[x].DLL in another DLL, follow the steps
described in the Development and Deployment Strategies
appendix.

CHAPTER 12 PROJECT SYSTEM 443

Installing and Accessing Your Application’s DLLs

If you distribute C5RUN[x].DLL, it must reside in the same directory as the
application program, in the Windows\System subdirectory, or in a directory
referenced in the system PATH. We recommend that you install
C5RUN[x].DLL to the application directory.

Remember, multiple Clarion applications may use the same C5RUN[x].DLL
file, thus saving space on the users’ hard drive. On the other hand, sharing a
single C5RUN[x].DLL raises the possibility of conflicts among applications
developed under different versions of Clarion. To avoid possible conflicts,
install a separate C5RUN[x].DLL to each application directory, or distribute
the application as a single .EXE file, or link the C5RUN[x].DLL into another
.DLL that is unique to your application.

The Ship List

For generated applications, Clarion templates automatically create a ship file
(.SHP) that contains the names of the files that are needed to run your
application. The file is called application.SHP and is in the same
subdirectory as your .APP file.

This ship file only includes those files that are visible to the templates. Any
DLLs loaded in EMBEDs or INCLUDE files may not be visible to the
templates, and may not be in the list.

In the case of external library modules, the .LIB file is also included in the
list. Some of the .LIBs (WINDOWS.LIB for example) do not have
associated DLLs; however, most do have associated .DLLs that you will
need to distribute with your application.

In the case of an external library module generated by Clarion, you must
ensure that all files on the shipping list for that LIB/DLL are also included.

Tip: You can modify your application’s ship list by embedding text
at the Inside the Shipping List Global Embed point.

444 CLARION 5 USER’S GUIDE

CHAPTER 13 DEBUGGERS 445

13 - DEBUGGERS

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

446 CLARION 5 USER’S GUIDE

Overview
Clarion ships two debuggers: a 16-bit debugger for 16-bit applications and a
32-bit debugger for 32-bit applications. Both are powerful tools for finding
and diagnosing errors in your applications. You can examine source code and
data as your program executes, and exercise complete control over your
program’s execution.

This chapter tells you how to:

◆ Prepare your projects for debugging.

◆ Start the debugger.

◆ Customize the debugger’s operation to your work environment.

◆ Monitor your program’s execution and check its state at specific points
by setting breakpoints and watch expressions.

The Debugging Process

The debuggers are very flexible, quite complex, and there are many
windows, options, and features available. This overview of the debugging
process suggests a general sequence of steps that introduces you to the most
important features of the debuggers with the least amount of confusion. Keep
this sequence in mind as you explore the debuggers.

1. Shut down other applications, then start the debugger.

This offers two benefits. First, more system resources are available to
your application and the debugger. Second, you won’t lose data from
other active applications if a system crash occurs during the debugging
process.

2. Load only the source files you need to debug.

Each source file you select becomes a child window in the debugger. The
fewer source files you select, the less clutter you have on your debugger
screen, and the less overhead the debugger must manage.

3. Set Debug Options.

Take a few minutes to read Setting Debugger Options. Options such as
Clarion Soft Mode, Autotile, Clean Desktop, Debugger on Top, Global
Find Text, and others can make the (16-bit) debugger easier to read and
work with.

CHAPTER 13 DEBUGGERS 447

Tip: We recommend Clarion Soft Mode for most 16-bit projects.
However, under Windows 95, you must use Hard Mode. In Hard
Mode, all other system activity is suspended while the
debugger is active. This means the desktop is not redrawn,
which can be confusing if you are not expecting it. It also
means correct debugger configuration is critical to successful
debugging. See Setting Debugger Options .

4. Set a breakpoint.

5. Run your application (the debuggee) with Go or Step commands.

6. Select and arrange the debugger windows.

Many of the debugger windows will be empty until your application
stops at a breakpoint. Once your application stops, and the windows are
populated, they will be more meaningful and easier to understand and
work with. Iconize or close the windows you don’t need to see.

7. Set breakpoints, set watch expressions, and change variable values.

8. Run your application with Go or Step commands.

9. Repeat steps 7 and 8 as needed.

10. Exit your application (debuggee).

It is very important that you exit the debuggee program before you exit
the 16-bit debugger. Exiting the debugger while the debuggee is still
active can cause system crashes.

Preparing Your Projects for Debugging

The Project System lets you set the debug options for your application in the
Global Options dialog. To make your executable (.EXE or .DLL) suitable for
debugging:

Generate Global Debug Information

1. Create your project file, and make it the current project (the Project
System chapter explains how).

2. Choose Project ➤ Edit to view the Project Editor dialog.

3. Select the top level of the tree, which contains the name of the project,
then press the Properties button.

4. When the Global Options dialog appears, select the Debug tab, then
choose Full from the Debug Mode drop list.

For 16-bit programs, the compiler generates debug information into
separate .DBD files. By default the .DBD files are in the \OBJ folder.

448 CLARION 5 USER’S GUIDE

For 32-bit programs, the compiler generates the debug information into
the .EXE or .DLL.

5. Optionally check the Line Numbers box.

Line numbers are automatically available to the Clarion debugger,
however, if you are using another debugger, checking this box will make
line numbers available to it.

6. Press the OK button to close the Global Options dialog, then the Project
Editor dialog.

7. Press the Make button on the toolbar to compile and link the application.

The application now includes the information the debugger needs.

Generate Local Debug Information

You can also turn on debugging information for a single module in the
project. This reduces the overhead for the debugger. To do so, follow the
steps above for Global Options , except choose None from the Debug Mode
drop list. Then follow the steps below:

1. Choose Project ➤ Edit to view the Project Editor dialog.

2. Select only the source module you need to debug, then press the
Properties button.

3. When the Compile Options dialog appears, choose Full from the Debug
Mode drop list.

4. Press the OK button to close the Project Editor dialog and the Compile
Options dialog.

5. Press the Make button on the toolbar to compile and link the application.

This includes debug information for that module only.

Debug Configuration

You can tell the 16-bit debugger to remember and apply settings
(breakpoints, window coordinates, watch variables, etc) from the previous
debug session. To remember and apply the previous sesssion settings:

1. Choose Project ➤ Auto Resume on Debug .

Locating Page Faults (GPF)

The debuggers can identify a specific line of code where your program is
crashing. For 16-bit programs, simply start the debugger, then start the
debuggee and let it crash. The debugger displays the line of code that caused
the crash. For 32-bit programs, make the debugger the system debugger (see
Setting Debugger Options), then run your program. When it crashes, select
debug to invoke the 32-bit debugger to take you to the offending line.

CHAPTER 13 DEBUGGERS 449

Starting the Debugger from a Popup Menu

When you start the debugger from Windows, you should take steps to set the
proper working directory—usually the directory that contains the debuggee.
For example, create a Windows 95 shortcut that sets the “Start in” directory.

Or you can use Regedit to make Windows 95 registry entries to start the
debugger by RIGHT-CLICKING on the .exe to debug. Here are some example
registry entries that start the debugger with the appropriate working
directory:

[HKEY_CLASSES_ROOT\exefile\shell\16bit Debugger]
[HKEY_CLASSES_ROOT\exefile\shell\16bit Debugger\command]
@=“c5db.exe c:\\clarion5\\bin\\clarion5.red c:\\clarion5\\bin\clarion5.ini %1”

[HKEY_CLASSES_ROOT\exefile\shell\32bit Debugger]
[HKEY_CLASSES_ROOT\exefile\shell\32bit Debugger\command]
@=“c5dbx.exe c:\\clarion5\\bin\\clarion5.red c:\\clarion5\\bin\clarion5.ini
%1”

[HKEY_CLASSES_ROOT\exefile\shell\Restart Debugger]
[HKEY_CLASSES_ROOT\exefile\shell\Restart Debugger\command]
@=“c5db.exe /r”

450 CLARION 5 USER’S GUIDE

16-bit Debugger
Under Windows 95, the 16-bit debugger only operates in hard mode. In hard
mode, all other system activity is suspended while the debugger is active;
therefore, proper debugger configuration is critical for successful debugging.
The tutorial shows how to configure the 16-bit debugger for best results
under hard mode.

The 16-bit debugger is not compatible with Windows NT. To debug under
Windows NT, develop and debug in 32-bit mode, then return to 16-bit mode.

Tutorial

Note: This tutorial uses the Clarion Template chain. You must
register these templates (CW.tpl) before doing the tutorial.

Prepare Your Program for Debugging

In this tutorial you will debug the Orders application, installed by default as
\EXAMPLES\TUTOR\ORDERS.APP. We have deliberately created a bug in
this application. To begin, start Clarion and open the Orders application.

To debug your program with the 16-bit debugger, you must use the 16-bit
compiler and tell the compiler to generate debug information. These two
settings (16-bit with debug information) are the default for Clarion
applications. However, you should confirm these settings before you begin.

1. Open the Orders application with Clarion.

2. Press the Project button to open the Project Editor .

3. Press the Properties button to open the Global Options dialog.

4. On the Global tab, select Windows - 16 bit from theTarget OS drop-list.

5. On the Debug tab, select Full from the Mode drop-down list.

6. Press OK twice to return to the application tree.

CHAPTER 13 16-BIT DEBUGGER 451

Identify the Bug

We have deliberately created a bug in the Orders application. To see it:

1. Press the button to make and run the Orders program.

2. From the Orders program menu, choose Browse ➤ Browse Customer
Information File .

This opens the customer browse list.

3. With the customer list open, press the button to scroll down one row.

The list doesn’t scroll! This bug only occurs with next record and next
page (downward scrolling). Prior record, prior page, first page, and last
page, all work fine.

You’ve identified the bug: it is in the BrowseCustomers procedure and it
only occurs when scrolling downward.

4. Shut down the Orders program.

The Clarion environment gains focus.

5. Select the Module tab (or open the Procedure Properties dialog for the
BrowseCustomer procedure).

Two ways to
identify the

module name.

452 CLARION 5 USER’S GUIDE

6. Note the name of the source module that contains the BrowseCustomer
procedure—ORDER002.

You can have the debugger load all the source modules for an
application, but is more efficient to debug only the affected modules.

Start the Debugger

To start the debugger:

1. From the Clarion environment, press the button to start the debugger.

You may want to shut down other applications to conserve resources
because you will be running the Clarion environment, the debugger, plus
the Orders program in addition to any others.

Tip: You can run the debugger independent of the development
environment to save even more resources: run C5DB.EXE,
then choose File ➤➤➤➤➤ File to Debug .

The Clarion environment verifies all files are current, then starts the
debugger. The debugger opens the Sources to include in session dialog.

2. Press the Expand >> button to show the source modules selected for
debugging.

3. Select ORDER002 and ORDERS.

ORDERS.CLW contains the Program that declares global data such as
record buffers. You should usually include the Program module so you
can use the debugger to review and manipulate your program’s global
data. ORDER002 contains the BrowseCustomer procedure.

The debugger “remembers” the source modules between sessions.

CHAPTER 13 16-BIT DEBUGGER 453

4. Press OK.

The debugger opens several iconized windows.

Configure the Debugger

To successfully use the 16-bit debugger in hard mode you should do the
following.

1. Maximize the debugger.

You will usually want to see several debugger windows at once, so you
need as much screen space as possible; besides, all other activity is
suspended while the debugger is active, so you can’t access other
applications that are sharing screen space with the debugger.

2. Choose Options ➤ Setup .

This opens the debugger’s Setup dialog.

3. Check the Bring debugger to the top on hard mode break box.

When the debugger hits a breakpoint, it automatically gains focus and
displays the active source code line.

4. Check the Smart single stepping box.

When enabled, STEPping on a line with a procedure call automatically
loads the debug information for the called procedure, if available.

5. Press OK.

Arrange the Debugger Windows

Another key to successful debugging is to optimally arrange the debugger
windows so you can quickly access pertinent information. You should restore
only those windows you need to see often, and you should arrange the
windows so they are easy for you to work with.

For this tutorial, you need to see the ORDER002.CLW source code window,
the Global Variables window, and the Active Procedures window.

454 CLARION 5 USER’S GUIDE

1. Restore the ORDER002.CLW window.

2. Restore the Global Variables window.

3. Restore the Active Procedures window.

4. Reposition and resize the windows so they are easy for you to work with.

The debugger “remembers” the window positions between sessions.

We recommend a configuration that shows lots of source code, shows as
many global and local variables as possible, and provides a small overlap
for easy “switching” between windows.

Set BreakPoints

You want to suspend (or break) the program at the point the bug occurs, then
look for the cause of the problem, usually in the form of incorrect variable
values or incorrect execution sequence. Recall the bug is associated with
scrolling downward. To set the breakpoint:

1. Choose Window ➤ Order002 to access the BrowseCustomers source
window.

2. Choose Edit ➤ Find Text (or press CTRL+F) to open the Find Text dialog.

3. In the Find Text dialog, type scrolldown, then press the Find button.

Tip: The search is not case sensitive.

CHAPTER 13 16-BIT DEBUGGER 455

This finds the EVENT:ScrollDown where the BRW1::ProcessScroll
routine is called. This routine is a likely location for the breakpoint you
need.

4. Choose Edit ➤ Find Text (or press CTRL+F).

5. In the Find Text dialog, type BRW1::ProcessScroll routine, then press the
Find button.

This finds the BRW1::ProcessScroll routine.

6. CLICK on the first executable statement after the routine label:
IF BRW1::RecordCount

Note: Although you can set a breakpoint on routine labels, you may
get unexpected results. We recommend setting breakpoints
only on executable statements.

7. Press the INS key to set an unconditional breakpoint on this statement.

The debugger displays the break statement in bright pink.

Debug the Program

The debugger is now set to suspend program execution at the first statement
in the BRW1::ProcessScroll routine. To debug the program:

1. Choose Go! or type G to start the Orders program.

The Orders program begins execution. Its main window opens on top of
the debugger.

2. Choose Browse ➤ Browse Customer Information file .

This opens the customer browse list.

3. With the customer list open, press the button to scroll down one row.

The debugger detects the breakpoint, suspends the Orders program, and
displays the next source statement to execute with a green background.

4. Choose Step! or type S to execute the next statement.

456 CLARION 5 USER’S GUIDE

The debugger executes a single statement, then displays the next source
statement to execute with a green background.

5. Repeat step 4 until the first statement in the BRW1::ScrollOne routine
executes:
IF BRW1::CurrentEvent = Event:ScrollUp AND BRW1::CurrentChoice > 1

 BRW1::CurrentChoice -= 1
 EXIT
 ELSIF BRW1::CurrentEvent = Event:ScrollDown AND BRW1::CurrentChoice < BRW1::RecordCount
 BRW1::CurrentChoice += 1
 EXIT
 END

Notice that none of the conditional statements execute. This is because
neither the primary IF condition nor the ELSIF condition are true.

Examine Local Variable Values

You can surmise that the above IF condition must be true in order for the
customer list to scroll up one row, and the ELSIF condition must be true in
order for the customer list to scroll down one row. You can examine (and
modify) the values of the variables within the ELSIF condition to test this
theory—BRW1::CurrentEvent must equal Event:ScrollDown, and
BRW1::CurrentChoice must be less than BRW1::RecordCount.

To examine and edit the variable values:

1. Choose Go! or type G to continue executing the Orders program.

The Orders program continues execution where it left off; however, it
has not regained focus, so you cannot see it.

2. Minimize the debugger to reveal the Orders program.

The Orders program window gains focus.

3. Again, press the button to scroll down one row.

Again, the debugger detects the breakpoint, suspends the Orders
program, and displays the next source statement to execute with a green
background.

4. CLICK in the Active Procedures window, or choose Window ➤ Active
Procedures .

5. In the Active Procedures window, CLICK on the (+) to expand the list of
local variables.

CHAPTER 13 16-BIT DEBUGGER 457

6. Choose Edit ➤ Find Text (or press CTRL+F) to open the Find Text dialog.

7. In the Find Text dialog, type BRW1::CurrentChoice, then press the Find
button.

Find only searches the displayed text, so you should expand the list
before searching.

The Active Procedures window shows the label of the variable on the left
and its value on the right. The value of BRW1::CurrentChoice is 1.
Several rows down, you can see the value of BRW1::RecordCount is also
1. These values would cause the ELSIF condition to fail because the
condition requires BRW1::CurrentChoice to be less than
BRW1::RecordCount, when in fact, they are equal.

Again, you can surmise that BRW1::RecordCount is the offender
because you certainly saw more than one record in the customer browse
list. Test this theory by changing the value of BRW1::RecordCount to a
larger number, for example, 20.

Edit Local Variable Values

1. In the Active Procedures window, CLICK on BRW1::RecordCount to
select it.

2. Choose Edit ➤ Edit or press F2 to open the Edit Variable dialog.

Tip: You can only edit fully expanded variables; that is, if there is a
+ sign beside the variable, you cannot edit it’s value. click on
the + sign to expand, then edit.

3. In the Edit Variable dialog, type 20, then press OK.

The debugger changes the value of BRW1::RecordCount to 20. Now you
can continue execution of the Orders program to see if it scrolls properly.

4. Choose Step! or type S to execute the next statement.

The debugger displays the next source statement to execute with a green
background.

5. Repeat step 4 until the first statement in the BRW1::ScrollOne routine
executes.

458 CLARION 5 USER’S GUIDE

Notice that the ELSIF conditional statements do execute. This is because
the ELSIF condition is now true: BRW1::CurrentChoice is less than
BRW1::RecordCount.

6. Choose Go! or type G to continue executing the Orders program.

The Orders program continues execution where it left off; however, it
has not regained focus, so you cannot see it.

7. Minimize the debugger to reveal the Orders program.

The customer list scrolls correctly! This confirms the theory that
BRW1::RecordCount contains an incorrect value at this point in the
program.

Examine Global Variable Values

Often you will want to examine global variables and record buffer values.

To examine and edit global variable values:

1. Again, press the button to scroll down one row.

Again, the debugger detects the breakpoint, suspends the Orders
program, and displays the next source statement to execute with a green
background.

2. CLICK in the Global Variables window, or choose Window ➤ Global
Variables .

3. In the Global Variables window, CLICK on the (+) to expand the list of
global variables.

CHAPTER 13 16-BIT DEBUGGER 459

The Global Variables window shows global variables and record buffers.
The labels are on the left and the values are on the right.

4. Choose Edit ➤ Find Text (or press CTRL+F) to open the Find Text dialog.

5. In the Find Text dialog, type CONTACT, then press the Find button.

Find only searches the displayed text, so you should expand the list
before searching.

Tip: You may edit global variables the same way you edited local
variables.

Set a Watch Expression

The Watch Expressions window lets you pick specific variables (local,
global, or both) to monitor during the debugging process. That is, rather than
searching through the Active Procedures window and Global Variables
window with each debugging cycle, you can add the variables to the Watch
Expressions window and examine all the pertinent values in one place.

1. In the Global Variables window, DOUBLE-CLICK the CONTACT variable,
then choose Copy Variable to Watch to add it to the Watch Expressions
window.

The debugger adds the variable to the Watch Expressions window. The
illustration shows both local and global variables in the Watch
Expressions window.

2. Choose Go! or type G to continue executing the Orders program.

When the debugger detects a breakpoint, it suspends the Orders program,
and displays the next source statement to execute with a green
background.

3. CLICK in the Watch Expressions window, or choose Window ➤ Watch
Expressions .

The Watch Expressions window shows the selected variable values. The
labels are on the left and the values are on the right.

460 CLARION 5 USER’S GUIDE

Tip: You may set breakpoints that suspend the program based on
the evaluation of a Watch expression (see Setting
BreakPoints—Conditional Breakpoints).

Close the Debugger

When you shut down the debugger, you should first shut down the debuggee
to preserve Windows resources.

1. In the Orders program, choose File ➤ Exit .

2. In the debugger, choose File ➤ Exit .

Starting the Debugger

The 16-bit debugger runs as a separate application, but you can start it either
from the development environment, or directly from Windows. Starting from
Windows, with the development environment unloaded, means more system
resources are available for your application and the debugger.

Start the debugger from the development environment

1. Choose Project ➤ Debug or press the button on the toolbar.

The development environment checks the project information to deter-
mine if your application is 16-bit or 32-bit, and starts the corresponding
debugger.

or...

2. Compile and link your application by pressing the button, then, with
the compile results dialog still open, press the Debug button.

Two ways to start
the debugger.

CHAPTER 13 16-BIT DEBUGGER 461

Starting the debugger from the environment sets the working directory to the
debuggee program’s directory. This ensures the debugger will use any
applicable configuration (.INI) files and redirection (.RED) files.

Start the debugger from Windows

When you start the debugger from Windows, you should take steps to set the
proper working directory—usually the directory that contains the debuggee.
For example, create a Windows 95 shortcut that sets the “Start in” directory.

1. With your preferred method (Start menu, Explorer, Program Manager,
etc.) start C5DB.EXE.

2. Choose File ➤ File to Debug , then choose the .EXE file to debug in the
Windows file dialog.

You can load the debugger, then debug a program which was already
running before you loaded the debugger. This is useful for situations
where the program under development unexpectedly “misbehaves,” but
hasn’t yet produced a fatal error.

Start the debugger as usual, then choose File ➤ File to Debug . Choose the
.EXE file for the running program from the Windows file dialog. The
debugger asks you to confirm that you wish to debug a running program.

Tip: When debugging, run only the debugger and the debuggee
programs. By doing so, you won’t lose data in other
applications if a crash occurs during the debugging process.

Loading the Source Files

When you run the debugger, you must select the source code files to debug.
For this purpose, the Sources to include in session dialog automatically
appears when you start the debugger.

To load the source files when the debugger starts

1. Select the source code files in the Sources to include in session dialog by
CLICKING on them.

The debugger remembers the files you select between debug sessions.
We recommend selecting the main souce file (appname.CLW) so that
global variables are available in the Global Variables window during the
debugging process.

2. Optionally, press the Select All button to include all project source files.

Generally we don’t recommend loading all source files because it results
in extra overhead for the debugger and visual clutter.

3. Press the Expand/Contract button for a list of only the selected source
files.

462 CLARION 5 USER’S GUIDE

4. Press the OK button.

The debugger windows appear.

Setting Debugger Options

Because of its broad range of flexibility, the debugger is quite complex, so
setting some basic options prior to using the debugger can pay off in reduced
learning curves. In particular, we recommend enabling Clarion Soft Mode for
most projects developed under Windows 3.1.

The debugger Options menu provides several toggles which can help fine
tune the way you debug your project.

Soft Mode
Toggles hard and soft mode debugging. Soft Mode is unavailable
under 32-bit Windows (95 and NT).

In soft mode, when the program being debugged is suspended in
the debugger, part of the debugger attempts to simulate the
behavior of the program being analyzed (debugee).

In hard mode, when the program being debugged is suspended
in the debugger, the only window to operate is the debugger. All
other activity is suspended. One consequence of this is that the
desktop is not redrawn. Another is that other active applications
are inaccessible until the debugger returns control to the
debuggee.

Tip: When working in Hard mode, type D to bring the debugger to
the top.

Clarion Soft Mode
The debugger will use part of the run-time library to simulate the
behavior of the program being debugged. This is the

The Debugger prompts
you to select the source

code files to debug.

CHAPTER 13 16-BIT DEBUGGER 463

recommended mode for most projects. Clarion Soft Mode is
unavailable under 32-bit Windows (95 and NT).

Extended Stack Trace
The debugger shows information about procedures when no
debug information is available. A disassembly window opens,
containing the relevant segment.

Disassembly On
The Disassembly Windowdisplays assembler code. It “shadows”
the active source window. When you select a line of source, the
cursor in the Disassembly Window moves to the corresponding
line of assembler code.

This menu is a toggle option. If the Disassembly Window is
closed when you turn on the option, you can open it by DOUBLE-
CLICKING on a source line, then pressing Cancel in the Breakpoint
dialog.

Assembly Single Step
Toggles step mode for assembler breakpoints. When execution
reaches an assembler breakpoint, step mode is set on. When
execution reaches a source breakpoint, it turns off.

Control Panel
Displays a toolbox window with buttons corresponding to the
four Go! commands. The next time the program being debugged
is suspended, the control panel receives focus.

Tip: When debugging in hard mode, when you activate the main
debugger window, you cannot access the control panel, so
don’t use the control panel for hard mode debugging.

Setup
Opens the Setup dialog. See Debugger Setup Options.

Debugger Setup Options

Access the debugger Setup dialog using the Options ➤ Setup command. The
dialog provides the following options.

Ignore Dll’s Instructs the debugger to ignore debug information in
.DLL files. This reduces the start-up time for the debugger.

Disable Kernel messages
If you are running the Debug version of Windows (available in
the Microsoft Windows 3.1 SDK), the debugger will
automatically trap error messages posted by the kernel (one of
the three main dynamic link libraries used by Windows). You can
locate such errors with the Find Last Error command.

If you are not using the AUX device to report messages, add the

464 CLARION 5 USER’S GUIDE

line OutputTo=NUL in the [DEBUG] section of your
SYSTEM.INI file.

Report Missing Source Files
The debugger automatically prompts for source code files it
cannot locate.

Iconize debugger when inactive
Automatically iconizes the debugger when the program being
debugged is active.

Bring debugger to the top on hard mode break
The debugger appears on top of any other open windows when
active; relevant for hard mode debugging only.

Tip: When working in Hard mode, type D to bring the debugger to
the top.

Disassembly opcodes only (in disassembly window)
The disassembly window contains only opcodes, eliminating the
space taken up by binary codes.

Smart single stepping When enabled, single stepping on a line with a
procedure call will load the debug information for the target
procedure, if available. This option extends to .DLL’s with debug
information.

No horizontal scrollbars
Hides the horizontal debugger scroll bars.

Global Find Text
When disabled, each source window “remembers” its own
search text string. When enabled, the default search text will be
the same as the last search, regardless of the window.

Order record fields by address
When enabled, it orders the RECORD variables by memory
address.

CHAPTER 13 16-BIT DEBUGGER 465

Auto Tile
Tiles the open debugger windows.

Clear Desktop
When enabled, it minimizes all other running applications (other
than the debuggee) when the debugger activates. This has no
effect under hard mode.

Max # of source windows open
Specifies the maximum number of source windows the debugger
will open at one time.

Max # of disassembly windows open
Specifies the maximum number of disassembly windows the
debugger will open at one time.

Additional Debugger Options

In addition to the normal debugging window and setup options, you can
activate special modes and options from these menu commands:

Redirection
To use a redirection file other than CLARION5.RED with the
debugger, choose File ➤ Load Redirection . The Redirection file
helps the debugger locate files such as *.DBD, and *.CLW. See
Clarion’s Development Environment—Search Paths—the
Redirection File.

Active DLL’s
To add a related dynamic link library (*.DLL) to the debug
session, choose File ➤ Debug Active DLL . Choose a file from the
Active Module dialog. This option is available for hard mode
debugging only.

Sleep
To set the debugger into sleep mode, in which it waits for a
general protection fault (GPF), CTRL+ALT+SYSRQ, or an
INTERRUPT(INT3), choose File ➤ Sleeper Mode . This option is
available for hard mode debugging only.

You can start the debugger in sleep mode from a DOS prompt by
adding /s to the command line.

Tip: If the program being debugged goes into an infinite loop,
CTRL+ALT+SYSRQ will break it.

Restart
To start a debug session with the watch expressions and
breakpoints from a previously terminated session, choose File ➤
Restart . This option is available, provided the source code has
not changed. See also Reapply Settings from Last Session below.

Position
To size the debuggee’s window to the maximum desktop area

466 CLARION 5 USER’S GUIDE

not taken up by the debugger, choose Window ➤ Position
Debuggee . This has no effect when the debugger is maximized.

Message Groups
To set up your own custom message groups to watch, choose
Options ➤ Custom Groups . Type a name for the group, then
choose the Windows messages from the list box in the Selective
Breakpoint Groups dialog.

Colors
To customize the debugger selection colors, choose Options ➤
Custom Colors . Select the colors for the Current Line , General
Cursor , Inactive Code and Breakpoints in the Color dialog.

Reapply Settings from Last Session

You can tell the debugger to remember and apply settings (breakpoints,
window positions and sizes, watch variables, etc) from the previous debug
session. To do so choose Project ➤ Auto Resume on Debug . The development
environment button “restarts” the debugger by adding the “/r” parameter.

Debugger Windows

The debugger contains a collection of child windows which track
information about the debuggee program. These windows are:

◆ The source code window

◆ The Watch Expressions window

◆ The Global Variables window

◆ The Active Procedures window

◆ The Disassembly window

◆ The Machine Registers window

◆ The Library States window

◆ The Windows Messages window

CHAPTER 13 16-BIT DEBUGGER 467

After you start the debugger, take a moment to arrange the various windows
in a format that is comfortable for you. Position the most important windows
where you can quickly scan for the information you need. Close or iconize
unneeded windows.

Source Code Windows

The source code windows display the selected source code modules. The
title bar shows the source module name. By default, the next line to execute
is green. Lines manually elected by you are light cyan.

Tip: If the debugger opens without listing any source code
documents in the Sources to include in this session dialog,
the most probable cause is that none of the source code files
listed in the Project Tree contained debug information. See
Preparing Your Projects for Debugging .

Watch Expressions Window

The Watch Expressions window lets you pick specific variables (local,
global, or both) and expressions to monitor during the debugging process.
That is, rather than searching through the Active Procedures window and
Global Variables window with each debugging cycle, you can add the
variables to the Watch Expressions window and examine all the pertinent
values in one place.

The title bar is Watch Expressions . See Editing Watch Expressions to learn
the syntax for watch expressions. To add a variable to the Watch Expressions
window:

1. DOUBLE-CLICK on an empty line in the Watch Expressions window.

468 CLARION 5 USER’S GUIDE

2. When the Watch Expression dialog opens, type a variable name (as it
appears in the global variables list) then press OK.

3. Alternatively, press the Browse button, select a variable from the list,
then press OK twice.

The expression or variable appears in the Watch Expressions window,
and its current contents appear next to it.

You can also add a variable to the Watch Expressions window by DOUBLE-
CLICKING on a variable in either the Global Variables window or the Active
Procedures window.

You can edit a variable in the Watch Expressions window by DOUBLE-CLICKING

on it, and typing an expression in the Watch Expression dialog. See Editing
Watch Expressions.

Tip: To quickly add a structured variable (such as a record, string
or array) to the watch list, DOUBLE-CLICK on it in the Global
Variables or Active Procedures windows, then press the Copy
Variable to Watch button.

Global Variables Window

The Global Variables window shows the current value of each component of
each global variable. For example, a string variable of eight characters,
appears on eight separate lines showing the contents of each position of the
string.

The Global Variables window contains tree controls, so you can display only
the variables you want to examine. Controls containing a (+) are expand-
able by CLICKING on them. Controls containing a (-) are contractible by
CLICKING on them.

The top level is the source code module which contains the variable. The
next level is the variable names.

Tip: To edit global variable values, select an expanded item, then
choose Edit ➤➤➤➤➤ Edit.

CHAPTER 13 16-BIT DEBUGGER 469

Active Procedures Window

The Active Procedures window lists the local variables in scope, plus the
currently executing procedures and routines, which lets you monitor nested
procedure calls. The window appears in tree format. The upper levels
represent the names of procedures and the lower levels represent their
variables. Procedure and routine names are listed in the order they are called.

DOUBLE-CLICKING on an active procedure displays its source or disassembly.
DOUBLE-CLICKING on a variable copies it to the Watch Expressions window.

The Active Procedures window displays information for the current thread
only.

Tip: To edit local variable values, select an expanded item, then
choose Edit ➤➤➤➤➤ Edit.

Disassembly Window

The Disassembly window is optional for a project with debug information:
choose Options ➤ Disassembly On to display it.

If you run the debugger on a program with no debug information, the Disas-
sembly window automatically displays the assembly language instructions.
The current instruction is selected.

DOUBLE-CLICKING (or pressing ENTER) on a line in the Disassembly window
which contains a jump or call instruction moves the cursor to the target
location. ESC returns the cursor to the original location.

470 CLARION 5 USER’S GUIDE

INS inserts an unconditional breakpoint at the cursor. DEL removes one.
Pressing the SPACE BAR displays the Breakpoint dialog.

Machine Registers Window

The Machine Registers window shows the current register values; choose
Window ➤ Registers to display it.

The Machine Registers window shows the register in the left column, and its
value to the right.

Library States Window

The Library States window displays return values for common Clarion
library functions; choose Window ➤ Library State to display it. These
functions represent all the field and other events.

Functions include ACCEPTED, SELECTED, FIELD, FOCUS,
FIRSTFIELD, LASTFIELD, ERRORCODE, AND ERRORFILE.

The names listed in EQUATES.CLW and KEYCODES.CLW appear next to
the return values.

Windows Messages Window

The Windows Messages window displays up to 200 of the most recent
message events generated by or directed to your application; choose Window
➤ Messages to display it.

The debugger adds a separator line (“——”) to indicate a breakpoint oc-
curred.

CHAPTER 13 16-BIT DEBUGGER 471

Every action the user takes—from mouse movement to menu commands—is
first processed by Windows. If Windows determines the action is for your
application, it passes the information to your application with a message. For
example, if the user types the letter “A,” it sends a WM_KEYDOWN mes-
sage to your application, with the key code for “A” as the first message
parameter.

Tip: If you include DDE services in your application, we
recommend testing your application with another DDE
application and monitoring the DDE messages. For more
information, see the Microsoft Windows 3.1 Programmers
Reference, Volume 3 , available from Microsoft Press.

Setting Breakpoints

Normally, when debugging an application, you identify a small part of the
program which produces incorrect output, or crashes. The Debugging
process for this situation will probably require running just that part of the
program, and stopping it at one or more points to check its status.

Breakpoints let you automatically halt execution at the line of code at which
(or near which) you think the problem occurs. Your program runs up to the
breakpoint, then halts and turns control back to the debugger. You can then
check the contents of variables and expressions to identify the cause of the
problem.

You can also set conditions on the breakpoint, telling the program to
continue executing if the condition is false, or turning control over to the
debugger if true.

When you set a breakpoint, the source code line where the breakpoint occurs
appears in magenta in the source window.

Unconditional Breakpoints

An unconditional or “sticky” breakpoint is placed on a source code line, and
stops execution whenever the program encounters that statement. To set an
unconditional breakpoint:

472 CLARION 5 USER’S GUIDE

1. Open the source code or disassembly window.

2. Locate the line of code to break on and DOUBLE-CLICK on it.

This opens the Breakpoint dialog.

3. Select Always then press the OK button.

When you execute the Go! command, the program will run until it reaches
the breakpoint, then stop.

Tip: When a source code or disassembly window is the active
window, press INSERT to add an unconditional breakpoint, or
DELETE to remove one.

Conditional Breakpoints

To narrow the search for bugs, you can tell the debugger to break only when
a certain condition exists. The condition takes the form of an expression
which can include program variables, operators and constants. You can also
tell the debugger to break when it detects a particular Window message or
messages.

Breakpoint conditioned on a watch expression

1. Establish a watch expression as described in Editing Watch Expressions.

2. Locate the line of code to break on then DOUBLE-CLICK on it.

3. When the Breakpoint dialog appears, select Watch Expression #0 .

4. Type the number of the watch expression (from the watch expressions
window) in the Watch Nr field.

This associates the breakpoint with an expression to evaluate.

5. Press the OK button.

When you execute the Go! command, the program runs until it reaches
the breakpoint, evaluates the watch expression, then stops if the expres-
sion is true, i.e., evaluates to a non-zero value.

CHAPTER 13 16-BIT DEBUGGER 473

For example, if variable X should have a maximum value of 999, but
increments to 1000 anyway, causing havoc, you can tell the debugger to
break at 999, then step through the program to see when and how it
reaches 1000.

Breakpoint conditioned on a Windows message

1. Locate a line of code to break on and DOUBLE-CLICK on it.

2. When the Breakpoint dialog appears, select Windows Message .

3. Select a Windows message from the Windows Message combo box.

4. Press the OK button.

For example, you could place a breakpoint in a loop which checks for a
WM_RBUTTONDOWN message, which is the message Windows sends
when the user clicks the right mouse button in your window. When you
run the program, you RIGHT-CLICK inside it, and Windows sends a
WM_RBUTTONDOWN message to your application. The breakpoint
condition would be true.

Breakpoint conditioned on one of several Windows messages

1. Locate the line of code to break on and DOUBLE-CLICK on it.

2. When the Breakpoint dialog appears, select Message Group ; or Message
Not in Group .

3. Select a message group from the list. This can indicate a category of
messages, such as mouse or key messages. You can also set up a custom
message group (by pressing the Custom Groups button) to remember
several specific messages, so that the breakpoint will occur only on one
of these messages.

4. Press the OK button.

For example, you could place a breakpoint in a loop which checks for a
Key message. When you run the program, when you press a key, Win-
dows sends a message to your application, and the breakpoint condition
would be true.

Breakpoint conditioned on an unexpected Windows message

1. Locate the line of code at which you want to establish the breakpoint and
DOUBLE-CLICK it.

Setting a breakpoint upon
receipt of any KEY related

message from Windows.

474 CLARION 5 USER’S GUIDE

2. When the Breakpoint dialog appears, select Message not in Group .

3. Select a message group from the combo box. The breakpoint occurs only
when the application receives a message not in this group.

4. Press the OK button.

Running the Program

The Go! , GoCursor! , Step! , and ProcStep! commands execute your
application while the debugger monitors it in the background. They allow
you to test your application in a controlled environment which helps you
identify bugs faster.

Tip: These commands are all top level menu commands. No pull
down menus appear below them; just place the cursor on the
menu command and click, or press ALT plus the underlined
letter to execute.

Go! To run the program from its current state to the next breakpoint,
choose Go!

When a source or disassembly window is active, the G key
executes the command.

GoCursor!
To run the program from its current state to the selected source
or assembler line in the source code or disassembly window,
choose GoCursor!

When a source or disassembly window is active, the C key
executes the command.

Step!
To advance the program from the currently selected source or
assembler line, one line of code at a time, choose Step!

When a source or disassembly window is active, the S key
executes the command.

ProcStep!
To advance the program from the currently selected source or
assembler line to the next, but to execute through procedure calls
without stopping, choose ProcStep!

When a source or disassembly window is active, the P key
executes the command.

CHAPTER 13 16-BIT DEBUGGER 475

Working with Source Code

When the source code window is active, you can navigate through the source
code document with the Edit menu.

Tip: DOUBLE-CLICKING on a source code line containing a call to a
procedure takes you to the first line of that procedure. ESC
returns you.

The following commands are available:

Find Text
Locate the line which contains the text you type into the Find
Text dialog.

Find Next
Locates the next line which contains text you previously
searched for with the Find Text command.

Find Procedure
Locates the first source code line for the procedure you pick
from the Find Procedure dialog. The application’s procedures
appear in a combo box inside the dialog.

Goto Line
Advances the cursor to the line number you specify.

Current Line
Advances the cursor to the source code line which contains the
next statement to execute.

Find Last Error
Places the cursor on the last error.

This command will even work after most General Protection
Fault errors. The cursor will appear at the source code line where
the error took place, or at the line calling the function causing
the problem.

Breakpoints
Displays the Breakpoints dialog, which lists the breakpoints
you’ve set for this debug session. The breakpoints appear in the
format Source Module: Procedure: Line Number. Select a
breakpoint from the list, then press one of the following buttons:
Locate , Delete , Edit , OK, or Help.

Locate
Scrolls the source window to the line containing the breakpoint.

Delete
Removes the breakpoint.

476 CLARION 5 USER’S GUIDE

Edit Opens the Breakpoint dialog, See Setting Breakpoints.

Editing Watch Expressions

The debugger contains an expression editor dialog which lets you edit a
watch expression. Sometimes you want to suspend the program depending
on the value of a variable or an expression. For example, you may want to
stop the application and look at a variable only if it’s value is negative.

To edit a watch expression, select a line in the Watch Expressions window
(choose Window ➤ Watch Expressions) then choose Edit ➤ Edit . This opens
the Watch Expression dialog.

Type an expression in the Expression to Evaluate field, then press the OK
button. When the debugger runs the program and reaches a breakpoint
associated with the expression (see Setting BreakPoints—Conditional
Breakpoints), it tests the expression and halts if the expression evaluates true.

The Edit Expression dialog contains the following tools to help you build
your expression.

Browse button
Press this button to see a list of the variables local to the
procedure you’re currently debugging.

The Make Abs button automatically prefixes variable names with their
memory addresses, module names, and procedure names.

Duplicate button
Press this button to duplicate the selected watch expression.

Memory Overrides
Use these options to fine tune how the debugger displays the
watched item. Choose from:

Bytes Select this button to add mem[] to your expression
to display it as an array of bytes. This is useful for
string variables containing unprintable values.

CHAPTER 13 32-BIT DEBUGGER 477

Words Select this button to add memw[] to your expression
to display it as an array of words. This is useful for
string variables containing unprintable values.

Ascii Select this button to add mema[] to your expression
to display it as ascii text. This is useful for numeric
variables that containing ascii (printable) values.

Make Absolute Check this box to use the absolute address of a
variable rather than the current variable address.
This lets you continue to view local reference
variables (or parameters) that would otherwise go
out of scope when the procedure returns.

You can prefix the variable name with a procedure name, a module name, or
both. This lets you name a variable not currently in scope, for example, a
variable in another procedure that would not be visible for the current
procedure.

❏ To specify a procedure and variable, prefix the variable with the
procedure name plus a period (“.”).

For example, “RoyalFlush.King” refers to a variable called King in the
procedure called RoyalFlush.

❏ To specify a module and global variable, prefix the variable with the
module name plus a period (“.”).

For example, “NewDeal.Shuffled” refers to a global variable called
Shuffled in the module called NewDeal.

❏ To specify a local variable in a procedure in another module, combine
the prefixes.

For example, “Poker.RoyalFlush:King” refers to the variable called King
in the procedure called RoyalFlush in the module called Poker.

478 CLARION 5 USER’S GUIDE

❏ You may specify register names (for example, ax) in a watch expression.

❏ You may use the unary operator (@) to denote the address of a memory
object.

Tip: The debugger automatically applies the correct prefix if the
variable is unique.

The following list presents the operators and expression syntax for the Edit
Expression dialog. The operators are language independent, derived from
Clarion, C/C++, and Modula 2/Pascal operators.

Key Function

+ add
- subtract
* multiply
/ or DIV divide
% or MOD modulus (remainder)
| bitwise OR
& bitwise AND
< less than
<= less than or equal to
> greater than
>= greater than or equal to
= equal
!= or <> not equal
! or NOT logical NOT
& or AND logical AND
| or OR logical OR
* indirection (when prefix)
^ indirection (when post-fix)
-> point at member
. select member (record field)
::={e,d} display expression e as if it was the same type d

Editing Variables at Run Time

Using the debugger, you can change the value contained in a variable while
the program is suspended. You can then resume the program to test execution
with the variable containing the new value.

To change the contents of the variable

1. Select the variable in either the Global Variables or the Active Procedures
windows.

Tip: You can only edit fully expanded variables; that is, if there is a
+ sign beside the variable, you cannot edit it’s value. click on
the + sign to expand, then edit.

2. Press F2, or choose Edit ➤ Edit .

CHAPTER 13 16-BIT DEBUGGER 479

This opens the Edit Variable dialog.

3. Type a new value for the variable and press the OK button.

When you choose Go! , GoCursor! , Step! , or ProcStep! , the program
resumes execution with the variable changed to the new value.

480 CLARION 5 USER’S GUIDE

32-bit Debugger
The 32-bit debugger provides debugging for 32-bit programs under Windows
95 and Windows NT. It may also be used as the system debugger.

Tutorial

Note: This tutorial uses the Clarion Template chain. You must
register these templates (CW.tpl) before doing the tutorial.

Prepare Your Program for Debugging

In this tutorial you will debug the Orders application, installed by default as
\EXAMPLES\TUTOR\ORDERS.APP. We have deliberately created a bug in
this application. To begin, start Clarion and open the Orders application.

To debug your program with the 32-bit debugger, you must use the 32-bit
compiler and tell the compiler to generate debug information. Use the Project
Editor to establish these two settings (32-bit with debug information).

1. Open the Orders application with Clarion.

2. Press the Project button to open the Project Editor .

3. Press the Properties button to open the Global Options dialog.

4. On the Global tab, select Windows - 32 bit from theTarget OS drop-list.

5. On the Debug tab, select Full from the Mode drop-down list.

6. Press OK twice to return to the application tree.

Identify the Bug

We have deliberately created a bug in the Orders application. To see it:

1. Press the button to make and run the Orders program.

CHAPTER 13 32-BIT DEBUGGER 481

2. From the Orders program menu, choose Browse ➤ Browse Customer
Information File .

This opens the customer browse list.

3. With the customer list open, press the button to scroll down one row.

The list doesn’t scroll! This bug only occurs with next record and next
page (downward scrolling). Prior record, prior page, first page, and last
page, all work fine.

You’ve identified the bug: it is in the BrowseCustomers procedure and it
only occurs when scrolling downward.

4. Shut down the Orders program.

The Clarion environment gains focus.

Start the Debugger

To start the debugger:

1. From the Clarion environment, press the button to start the debugger.

You may want to shut down other applications to conserve resources
because you will be running the Clarion environment, the debugger, plus
the Orders program in addition to any others.

Tip: You can run the 32-bit debugger independent of the
development environment to save even more resources: run
C5DBx.EXE.

The Clarion environment verifies all files are current, then starts the
debugger. The debugger opens the Globals window, the Procedures in
window, and the Stack Trace (local variables) window.

482 CLARION 5 USER’S GUIDE

 The debugger also opens the Trace window and the Disassembly
window in the iconized state.

Arrange the Debugger Windows

To successfully use the 32-bit debugger you should optimally arrange the
debugger windows so you can quickly access pertinent information. You
should restore only those windows you need to see often, and you should
arrange the windows so they are easy for you to work with.

1. Maximize the debugger.

You will usually want to see several debugger windows at once, so you
need as much screen space as possible.

2. In the Procedures in window, DOUBLE-CLICK BROWSECUSTOMERS@F
to open the source window for the BrowseCustomers procedure.

The debugger opens a source code window for ORDER002.CLW, the
source module containing the BrowseCustomers procedure.

The Procedures in window shows all the procedures and routines for the
program you are debugging. DOUBLE-CLICK on any procedure to see the
source code for that procedure.

3. Reposition and resize the windows so they are easy for you to work with.

The debugger “remembers” the window positions between sessions.

We recommend a configuration that shows lots of source code, shows as
many local variables as possible (in the Stack Trace window), and
provides a small overlap for easy “switching” between windows.

CHAPTER 13 32-BIT DEBUGGER 483

Set BreakPoints

You want to suspend (or break) the program at the point the bug occurs, then
look for the cause of the problem, usually in the form of incorrect variable
values or incorrect execution sequence. Recall the bug is associated with
scrolling downward. To set the breakpoint:

1. CLICK on the ORDER002.CLW window to give it focus.

2. Press F to open the Search for dialog.

Tip: RIGHT-CLICK on the source code window for a popup menu of all
the source window functions and their keyboard shortcuts.

3. In the Search for dialog, type scrolldown, then press the OK button.

484 CLARION 5 USER’S GUIDE

This finds the EVENT:ScrollDown where the BRW1::ProcessScroll
routine is called. This routine is a likely location for the breakpoint you
need.

Tip: The search is not case sensitive.

4. Press F to open the Search for dialog.

5. In the Search for dialog, type BRW1::ProcessScroll routine, then press
the OK button.

This finds the BRW1::ProcessScroll routine.

6. CLICK on the first executable statement after the routine label:
IF BRW1::RecordCount

Note: Although you can set a breakpoint on routine labels, you may
get unexpected results. We recommend setting breakpoints
only on executable statements.

7. Press the button or type B to to set a breakpoint on this statement.

The debugger displays breakpoints in red; however, because this is also
the currently selected line (green), the breakpoint appears yellow.

Debug the Program

The debugger is now set to suspend program execution at the first statement
in the BRW1::ProcessScroll routine. To debug the program:

1. Press the button or type G to start the Orders program.

The Orders program begins execution. Its main window opens on top of
the debugger.

2. Choose Browse ➤ Browse Customer Information file .

This opens the customer browse list.

3. With the customer list open, press the button to scroll down one row.

The debugger detects the breakpoint, suspends the Orders program, and
displays the breakpoint statement (with a yellow background).

4. Press the button or type T to execute the next statement.

The debugger executes a single statement, then displays the next source
statement to execute with a green background.

5. Repeat step 4 until the first statement in the BRW1::ScrollOne routine
executes:
IF BRW1::CurrentEvent = Event:ScrollUp AND BRW1::CurrentChoice > 1

 BRW1::CurrentChoice -= 1
 EXIT
 ELSIF BRW1::CurrentEvent = Event:ScrollDown AND BRW1::CurrentChoice < BRW1::RecordCount
 BRW1::CurrentChoice += 1
 EXIT
 END

CHAPTER 13 32-BIT DEBUGGER 485

Notice that none of the conditional statements execute. This is because
neither the primary IF condition nor the ELSIF condition are true.

Examine Variable Values

You can surmise that the above IF condition must be true in order for the
customer list to scroll up one row, and the ELSIF condition must be true in
order for the customer list to scroll down one row. You can examine (and
modify) the values of the variables within the ELSIF condition to test this
theory—BRW1::CurrentEvent must equal Event:ScrollDown, and
BRW1::CurrentChoice must be less than BRW1::RecordCount.

To examine and edit the variable values:

1. Press the button or type G to continue executing the Orders program.

The Orders program gains focus and continues execution where it left
off.

2. Again, press the button to scroll down one row.

Again, the debugger detects the breakpoint, suspends the Orders
program, and displays the breakpoint statement.

3. CLICK in the Stack Trace window, or choose Window ➤ Stack Trace .

4. In the Stack Trace window, CLICK on the (+) beside the
ORDER002.BROWSECUSTOMER@F to expand the list of local
variables.

The debugger shows the label of the variable on the left and its value on
the right. The value of BRW1::CurrentChoice is 1. Several rows down,
you can see the value of BRW1::RecordCount is also 1. These values
would cause the ELSIF condition to fail because the condition requires
BRW1::CurrentChoice to be less than BRW1::RecordCount, when in
fact, they are equal.

486 CLARION 5 USER’S GUIDE

You can surmise that BRW1::RecordCount is the offender because you
certainly saw more than one record in the customer browse list. Test this
theory by changing the value of BRW1::RecordCount to a larger
number, for example, 20.

Edit Variable Values

1. In the Stack Trace window, RIGHT-CLICK on BRW1::RecordCount, then
choose Edit variable to open the Edit dialog.

2. In the Edit dialog, type 20, then press OK.

The debugger changes the value of BRW1::RecordCount to 20. Now you
can continue execution of the Orders program to see if it scrolls properly.

3. Press the button or type T to execute the next statement.

The debugger displays the next source statement to execute with a green
background.

4. Repeat step 3 until the first statement in the BRW1::ScrollOne routine
executes.

Notice that the ELSIF conditional statements do execute. This is because
the ELSIF condition is now true: BRW1::CurrentChoice is less than
BRW1::RecordCount.

5. Press the button or type G to continue executing the Orders program.

The Orders program continues execution where it left off.

CHAPTER 13 32-BIT DEBUGGER 487

This time, the customer list scrolls correctly! This confirms the theory
that BRW1::RecordCount contains an incorrect value at this point in the
program.

Examine Global Variable Values

Often you will want to examine global variables, record buffer values, and
the values of Clarion’s built-in “Library State functions (ACCEPTED(),
EVENT(), ERRORCODE(), etc.).

To examine and edit these global variable values:

1. Again, press the button to scroll down one row.

Again, the debugger detects the breakpoint, suspends the Orders
program.

2. CLICK in the Globals window, or choose Window ➤ Globals .

3. In the Globals window, CLICK on the (+) beside ORDERS to expand the
list of global variables for the ORDERS module.

4. In the Globals window, CLICK on the (+) beside
CUSTOMER$CUST:RECORD to expand the list of customer record
buffer fields.

5. In the Globals window, CLICK on the (+) beside CUST:CONTACT to see
the value of each byte in the CUST:CONTACT field.

The Global Variables window shows global variables, record buffers, and
Library States. The labels are on the left and the values are on the right.

Tip: You may edit global variables the same way you edited local
variables.

488 CLARION 5 USER’S GUIDE

Watch Selected Variables

The Watch window lets you pick specific variables (local, global, or both)
and “Library States” to monitor during the debugging process. That is, rather
than searching through the Stack Trace window and the Globals window
with each debugging cycle, you can add the variables to the Watch window
and examine all the pertinent values in one place.

To place variables in the Watch window:

1. In the Stack Trace window or the Globals Window, RIGHT-CLICK on an
item (variable or Library State), then choose Watch variable.

This opens the Watch window and places the selected item in the
window.

2. Repeat step 1 for all the pertinent variables and Library States.

Close the Debugger

1. In the debugger, choose File ➤ Exit .

The debugger automatically shuts down the debuggee (the Orders
program) too.

Starting the Debugger

The 32-bit debugger runs as a separate application, but you can start it either
from the development environment, or directly from Windows. Starting from
Windows, with the development environment unloaded, means more system
resources are available for your application and the debugger. The 32-bit
debugger can debug multiple programs at the same time.

Start the debugger from the development environment

1. Choose Project ➤ Debug or press the button on the toolbar.

The environment checks the project information to determine if your
application is 16-bit or 32-bit, and starts the corresponding debugger.

or...

CHAPTER 13 32-BIT DEBUGGER 489

2. Compile and link your application by pressing the button, then, with
the compile results dialog still open, press the Debug button.

Starting the debugger from the environment sets the working directory to the
debuggee program’s directory. This ensures the debugger will use any
applicable configuration (.INI) files and redirection (.RED) files.

Start the debugger from Windows

When you start the debugger from Windows, you should take steps to set the
proper working directory—usually the directory that contains the debuggee.
For example, create a Windows 95 shortcut that sets the “Start in” directory.

1. With your preferred method (Start menu, Explorer, Program Manager,
etc.) start C5DBx.EXE.

3. Choose File ➤ File to Debug , then choose an .EXE file in theWindows
file dialog.

Tip: When debugging, run only the debugger and the debuggee
programs. By doing so, you won’t lose data in other
applications if a crash occurs during the debugging process.

Loading the Source Files

The source associated with the debuggee program is automatically loaded
and is available for your examination. However, you may specify any
additional source files you want the debugger to manage.

To specify additional source files

1. Choose Window ➤ Source.

Two ways to start the
debugger.

490 CLARION 5 USER’S GUIDE

This opens the Select Source dialog.

2. Highlight a source file then press the OK button.

Repeat for each source file you want to debug.

Setting Debugger Options

The debugger Options menu provides two choices: Setup and Install as
System Debugger . Use Setup to customize the debugger.

Setup

Choose the Options ➤ Setup command to access the following options:

Redirection File
The debugger uses the redirection file to find project
components. A redirection file is optional and follows the same
conventions as the Project redirection file. See Clarion’s
Development Environment—Search Paths—Redirection File.

Clarion Run-time Dll
Specifies the Clarion dynamic link library (DLL) linked into the
.EXE being debugged.

Stop At Program Entrypoint
Tells the debugger to stop the debuggee program at its entrypoint
upon initial program load. Initial program load (and start) occurs
when you choose File ➤ File to Debug and select the .EXE file
from the Windows file dialog.

Checking this option lets you survey the status of your program
at the earliest possible point of execution without explicitly
setting a breakpoint.

Stop At First Source Line

CHAPTER 13 32-BIT DEBUGGER 491

Tells the debugger to stop the debuggee program at its first line
of executable code upon initial program load. Initial program
load (and start) occurs when you choose File ➤ File to Debug and
select the .EXE file from the Windows file dialog.

Give Debugger Focus When Debuggee Suspended
When the debuggee is suspended at a breakpoint, focus
immediately returns to the debugger.

Open Procedure Window on Startup
Tells the debugger to open the Procedures In window on
debugger startup. See Debugger Windows.

Stop on dynamic DLL load
Tells the debugger to suspend debuggee execution when a
dynamic DLL load (demand load) is detected. This gives you the
opportunity to examine the newly loaded code and set
breakpoints before anything else happens.

Allow stepping into Kernel
Lets the debugger examine the Windows Kernel32.dll. This
setting can cause system lock ups.

Show unmangled procedure names
Check this box to display procedure names as they appear in
source code. Clear the box to show the mangled names that
allow procedure overloading.

Install as System Debugger

Installs the 32-bit debugger as the system debugger. In this configuration, the
debugger is automatically invoked whenever a program crashes.

Debugger Windows

The debugger contains a collection of child windows which track
information about the debuggee program. These windows are:

◆ The Procedures In window

◆ The Globals window

◆ The Stack Trace window

◆ The Watch window

◆ The source window

◆ The disassembly window

◆ The memory window

After you start the debugger, take a moment to arrange the various windows
in a format that is comfortable for you. Position the most important windows

492 CLARION 5 USER’S GUIDE

where you can quickly scan for the information you need. Iconize or close
unneeded windows. Use the Window menu to open windows of special
interest.

By default, the debugger initially opens three windows: the Procedures in
window, the Globals window, and the Stack Trace window. A fourth window,
the source window, is opened as soon as you click on a procedure in the
Procedures in window.

The Procedures In window

The Procedures in windowlists the procedures in the debuggee and their asso-
ciated source modules. CLICK on a procedure name to display its associated
source or assembler code.

Tip: Use the Procedures In window to navigate through your
source code.

The Globals window

The Globals window displays the current value of each global variable, as well
as various Library States (Clarion runtime library functions such as AC-
CEPTED, EVENT(), FIELD(), etc.).

The Globals window contains expandable tree controls, so you can hide vari-
ables you don’t want to see. Variables with a (+) button are expandable by
CLICKING on them. Variables with a (-) button are contractible by CLICKING on
them.

Tip: RIGHT-CLICK on a variable to change its value.

CHAPTER 13 32-BIT DEBUGGER 493

The Stack Trace window

The Stack Trace window shows the current register and local variable values.
The variable name is on the left and its value in decimal format then in hexa-
decimal format is on the right. This information is for the current thread only.

The Stack Trace window contains expandable tree controls, so you can hide
variables you don’t want to see. Variables with a (+) button are expandable
by CLICKING on them. Variables with a (-) button are contractible by CLICKING

on them.

The Stack Trace window has a step locator: type a letter to search for
variables beginning with that letter.

Tip: The Stack Trace window has the following special
functionality:

RIGHT-CLICK on a variable to change its value.
RIGHT-CLICK on a variable to monitor its value.
RIGHT-CLICK on a call to locate its corresponding source line or
assembler line.
RIGHT-CLICK on a register to examine the memory pointed to by
the register.

The Watch window

The Watch window lets you pick specific variables (local, global, or both)
and “Library States” to monitor during the debugging process. That is, rather
than searching through the Stack Trace window and the Globals window
with each debugging cycle, you can add the variables to the Watch window
and examine all the pertinent values in one place.

494 CLARION 5 USER’S GUIDE

To place variables in the Watch window: in the Stack Trace window or the
Globals window, RIGHT-CLICK on an item (variable or Library State), then
choose Watch variable. This opens the Watch window and places the selected
item in the window.

The Source window

Displays a source module. There may be multiple source windows open
showing different source modules. The title bar shows the module name.
The cursor is green. This cursor simply marks a line for your use. It may or
may not mark the program’s current position. Breakpoint lines are red. If the
current line is also a breakpoint line, it is yellow.

Use the source window’s task bar buttons to control the execution of the
debuggee and to set and remove breakpoints. The taskbar buttons correspond
to the options on the popup menu which can be accessed by RIGHT-CLICKING

anywhere in the window. See Running the Program below for a description
of each command.

Tip: RIGHT-CLICK anywhere in the window to access the popup menu.

The Disassembly window

Displays assembler code. There may be multiple disassembly windows
open. The title bar shows the .EXE name. The cursor is green. This cursor
simply marks a line for your use. It may or may not mark the program’s
current position. Breakpoint lines are red. If a line is both the cursor and a
breakpoint line, it is yellow.

The Source
Window Taskbar.

The Source
Window popup

menu and
keyboard

shortcuts.

CHAPTER 13 32-BIT DEBUGGER 495

Blue text has a corresponding source statement associated with it. Moving
the cursor to a line with blue text moves the cursor in the source window to
the corresponding source line.

Use the disassembly window’s task bar buttons to control the execution of
the debuggee, and to set and remove breakpoints. The taskbar buttons
correspond to the options on the popup menu which can be accessed by
RIGHT-CLICKING anywhere in the window. See Running the Program below for
a description of each command.

The disassembly window has two vertical scroll bars. The left bar scrolls 64K
of code at a time, the right bar scrolls 1 display line at a time.

Tip: RIGHT-CLICK anywhere in the window to access the popup menu.

The Memory window

Displays memory allocated to the debuggee. The title bar shows the .EXE
name. The memory window has two vertical scroll bars. The left bar scrolls
64K of memory at a time, the right bar scrolls 1 display line at a time.

Setting Breakpoints

Normally, when debugging an application, you identify a small part of the
program which produces incorrect output, or crashes. The debugging process
for this situation will probably require running just that part of the program,
and stopping it at one or more points to check its status.

496 CLARION 5 USER’S GUIDE

Step Over Assembler

Step Assembler

Breakpoint

Go

Go To Cursor

Step Source

Step Over Source

Locate

Breakpoints allow you to automatically halt execution at the line of code at
which (or near which) you think the problem occurs. Your program runs up
to the breakpoint, then halts and turns control back to the debugger. You can
then check the contents of variables to identify the cause of the problem, and
step through from that point on.

When you set a breakpoint, the line where the breakpoint occurs appears in
red in the source and disassembly windows.

Tip: Breakpoints appear yellow when you first create them because
both the red breakpoint color and the green cursor color are
present.

To set a breakpoint

1. Navigate to the source or assembler code where you want the debugger
to break.

CLICK on a procedure name in the Procedures In window to jump to that
procedure. Or RIGHT-CLICK in the source window to access the Find
command to find a text string.

2. Highlight the line of code to break on.

3. Press thebreakpoint button.

The breakpoint button appears on the source and disassembly window
taskbars as a round red icon. The breakpoint button acts as a toggle.
Pressing it a second time removes the breakpoint.

Running the Program

The taskbar buttons on the source windows and the disassembly windows
control execution of your program. Similar taskbars appear on each source
and disassembly window. It makes no difference which taskbar you use.
Program execution always continues from the point at which it stopped.

Alternatively, you can use the popup menus available in each window. The
taskbar commands are duplicated on the respective popup menus of the
source and disassembly windows. RIGHT-CLICK anywhere in the window to
access the popup menu.

The Breakpoint button.

CHAPTER 13 32-BIT DEBUGGER 497

Go Advances the program from its current position to the next
breakpoint. If no breakpoints are encountered, the program
keeps running.

Step Assembler
Advances the program from its current position, one line of
assembler code at a time.

Step Over Assembler
Advances the program from its current position to the next
assembler breakpoint, without executing any statements in
between.

Step Source
Advances the program from its current position, one line of
source code at a time.

Step Over Source
Advances the program from its current position to the next
source breakpoint, without executing any statements in between.

Go Cursor
Advances the program from its current position to the cursor.
This has the effect of making the cursor a temporary, one-time-
only breakpoint.

Locate Line/Offset
Advances the cursor (not the program) to the line number (or
offset for assembler) you specify.

Find
Advances the cursor (not the program) to the source string you
specify (source window only).

Find Again
Advances the cursor (not the program) to the source string
specified for the previous Find command (source window only).

Editing Variables at Run Time

Examining Variable Values

The best way to examine variable values at run-time is to look for them in
either the Globals window or the Stack Trace window. Global variables are
shown in the Globals window and local variables are shown in the Stack
Trace window in both decimal and hexadecimal format.

Both windows contain tree controls, so that you can expand only the
variables you want to examine. Controls containing a (+) are expandable by
CLICKING on them. Controls containing a (-) are contractible by CLICKING on
them.

498 CLARION 5 USER’S GUIDE

The Stack Trace window also shows machine register values and locates the
memory area the register points to. RIGHT-CLICK the register, or highlight it
and press ENTER, to examine the correct memory location in the memory
window.

Changing Variable Values

RIGHT-CLICK on a variable, or highlight it and press ENTER, in either the Globals
window or the Stack Trace window to change its value.

Tip: RIGHT-CLICK on a variable to change its value.

CHAPTER 14 DATABASE MANAGER 499

14 - DATABASE MANAGER

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

500 CLARION 5 USER’S GUIDE

Overview
The Database Manager provides you direct access to data files without the
need of creating an application. With the database Manager you can :

◆ Interactively browse through your data files.

◆ Add, delete, or change records.

◆ Add, delete, or change memos.

◆ Examine data files

◆ Print data

◆ Sort data

◆ Use Query-by-Example to Filter data

◆ Search data

◆ Convert data files to new formats

Database Manager is designed to allow application developers free access to
their data files. The only entry constraint is the picture assigned to a column.
The controls for Data Integrity and Referential Integrity in your Data
Dictionary and application are not used.

Normally, Data Integrity is enforced in the end-user applications by the
Validity Checks specified in the Database Dictionary, allowing the user to
input only valid values in the field to which it applies.

Referential Integrity is ensured in generated applications by the Relationship
Constraints you specify in the Database Dictionary. Changing the values in
fields which link records in two files, or deleting a Parent record with
existing Child records can compromise the Referential Integrity of your
Database. This is discussed further in the Dictionary Editor chapter.

CHAPTER 14 DATABASE MANAGER 501

Browsing Data Files

There are several ways to browse data files with the Database Manager includ-
ing:

◆ With the Dictionary Editor’s File ➤ Browse FileLabel menu
command.

◆ By choosing File ➤ Open (or pressing the Open button on the
Pick List)

◆ By choosing File ➤ Browse Database... .

The method you use to call the Database Manager affects its behavior. If you
open a file through the Dictionary Editor (with the appropriate .DCT file
open) the Database Manager uses all the information in the dictionary. If you
open a file from any other area, only the information stored in the file itself is
available. This offers maximum flexibility by allowing you to browse a file
without a Data Dictionary file (.DCT). The information stored in a file varies
with different file systems.

From the Dictionary Editor

This is the best method to call the Database Manager because it provides the
most information about the file.

1. Open the appropriate dictionary file (.DCT).

2. In the Files list, highlight the desired file.

3. Choose File ➤ Browse <FileLabel>.

The <FileLabel> is the Clarion Label for the file as specified in the
dictionary. The File menu display this choice based on the highlighted
file.

If the file does not exist, a dialog appears asking if you want to create it.
With the Database Manager, you can create a file even if the file does not
have the CREATE attribute (the Enable File Creation check box in the
File Properties).

If the file exists but does not match the layout in the dictionary, a dialog
appears asking if you want to convert the file to the current layout. See
Converting Data Files for more information.

The Database Manager opens and displays the file.

File ➤➤➤➤➤ Open

To open an existing data file:

1. Choose File ➤ Open (or press the Open button on the Pick List).

502 CLARION 5 USER’S GUIDE

This opens the Windows file dialog.

2. Select Database Files in the Files of type drop-list.

This filters the files list to files that have default database file extensions.

3. Highlight the file to open, then press the Open button.

The Database Manager prompts for the File Driver and owner informa-
tion.

4. Select the Database Driver from the Driver drop-down list.

5. Optionally, specify the Owner name and Options.

The Owner name is a password for access to the file. For an ODBC
database, this is the Data Source, user ID, and password separated by
commas.

The Options are additional instructions to pass to the database driver
(driver strings). See the Database Drivers in the Application Handbook
for more information on valid driver strings for each driver.

 6. Press the OK button.

The Database Manager opens and displays the file.

File ➤➤➤➤➤ Browse Database

The Browse Database menu command displays a specialized pick list
displaying recently opened data files or tables.

1. Choose File ➤ Browse Database.

This opens the Database Manager’s Pick List, displaying recently
opened files.

CHAPTER 14 DATABASE MANAGER 503

2. Highlight a file in the list and press Select or press the Open button to
choose one from a standard File Open dialog.

3. If you are opening a file for the first time, you are prompted to supply
the File Driver to use. Select the driver, then press the OK button.

4. If you are browsing an ODBC Data Source or a TopSpeed superfile with
multiple tables, the Database Manager prompts you to select the table to
browse.

The Database Manager opens and displays the file.

Closing Data Files

Database Manager asks if you want to creates a backup copy before
modifying any data in a file. Creating a backup file lets you cancel changes
you make while browsing a file. However, some file drivers do not support
the creation of a backup. When using one of those file systems, you are not
prompted for a backup.

Note: If you do not make a backup copy of the file when modifying it,
you will not be able to revert the file to its original state.

To close a file:

1. Choose File ➤ Close .

If you have modified the data, a dialog appears asking if you want to
save your changes.

Yes Saves your changes.

No Reverts the data file to its last saved state.

Cancel
Returns you to the Database Manager.

Sort Order

Once a file is open, you can change the sort order by specifying a different
key.

1. Choose Browse ➤ Order (or press CTRL+O).

This opens the Select File Order dialog, listing the available Keys and
“Record Order”.

2. Highlight the key (or Record Order) you want, then press the Select
button.

The file is displayed in the selected sort order, and ready for any Database
Manager operation.

504 CLARION 5 USER’S GUIDE

File Statistics

The File Statistics command lets you examine file information.

To view File Statistics

1. Choose File ➤ File Statistics to open the File Statistics dialog.

Filename
The filename and path for the data file.

Driver
The File System the file uses.

Records
The number of records in the file (including deleted records).

Record Length
The size of each record in bytes.

Fields
The number of fields in the file. Press the ellipsis (...) button to
display the field layout.

Keys
The number of keys in the file. Press the ellipsis (...) button to
display the key components.

Memos
The number of memos (and BLOBs) in the file. Press the ellipsis
(...) button to display the memo field layout.

Indexes
The number of indexes in the file. Press the ellipsis (...) button tp
display the index components.

Options
These check boxes indicate whether the corresponding
(CREATE, RECLAIM, and ENCRYPT) attributes are present.
See the Language Reference for more information.

CHAPTER 14 DATABASE MANAGER 505

Working with Columns
Database Manager lets you specify which columns (fields) you wish to see
on your screen, the size of those columns, and the order in which columns
are displayed.

Hiding Columns

Hiding columns removes a column from view. This does not affect the data
file in any way. By hiding columns, you see only the desired data columns.

1. Highlight the column to hide.

2. Choose Column ➤ Hide (or press CTRL+I).

The column is no longer displayed.

Showing Columns

Once columns are hidden, you can restore them to view or “unhide” them.

1. Choose Column ➤ Show .

This opens the Select Columns to Show dialog which lists the hidden
columns.

2. Highlight the column to restore then press the OK button (or press the All
button to restore all columns).

The Show Fields dialog reopens, allowing you to select another field to
restore. Repeat the last step for any other fields you wish to show.

3. When you have all the desired fields displayed, press the Cancel button.

Reformatting Columns

The Reformat command lets you quickly define the desired view. You can
specify the fields to hide or show and set the order of the columns all at once.

1. Choose Column ➤ Reformat .

This opns the Reformat Fields dialog.

❏ To show all fields, press the Show All button.

❏ To hide all fields, press the Hide All button.

❏ To hide individual fields, highlight the field in the Shown Fields list box,
then press the Hide button.

506 CLARION 5 USER’S GUIDE

❏ To Show individual fields, highlight the desired field in the Hidden Fields
list box, press the Show button. The field reappears in its original
location.

Column Justification

You can specify left, right, center, or decimal justification for individual
columns.

1. Choose Column ➤ Justify (or press CTRL+J).

2. Select the justification type from the drop-down list.

Left Places the beginning of the display value against the left edge of
the display field.

Right
Places the end of the display value against the right edge of the
display field.

Center
Centers the display value in the display field.

Decimal
Aligns numeric data on the decimal point.

3. Press the OK button.

Column Width

You can adjust the column display width for individual fields.

1. CLICK-AND-DRAG the grid line to the right of the column.

CHAPTER 14 DATABASE MANAGER 507

Column Display Pictures

You can change any column’s display picture. This lets you view data in any
supported format.

1. Highlight the column to change.

2. Choose Column ➤ Picture (or press CTRL+P).

3. Type the desired Picture Token in the Picture field.

The data is displayed in the specified format. See Picture Tokens in the
Language Reference for more information.

Column Headers

You can change any column’s header.

1. Choose Column ➤ Header.

This opens the Header sub-menu which lists the valid options. A check
mark next to an option indicates it is enabled. Choose from:

Field Label
Displays the field’s label from the data dictionary.

Picture
Displays the field’s display picture from the data dictionary.

Type
Displays the field’s data type from the data dictionary.

Group Information
Displays the field’s GROUP information from the data
dictionary.

Column Heading
Displays the Default Column Heading from the data dictionary.

Prompt
Displays the default prompt from the data dictionary.

508 CLARION 5 USER’S GUIDE

Working with Data Files
This section describes how to use Database Manager to work with data files.

Navigating Through a File

Database Manager uses the following keystroke conventions to navigate
through files:

◆ In browse mode, LEFT and RIGHT ARROWS move between columns. In edit
mode, LEFT and RIGHT ARROWS move between characters.

◆ UP ARROW and DOWN ARROW, scroll bars, or VCR buttons move between
records.

◆ CTRL+LEFT ARROW and CTRL+RIGHT ARROW swaps columns.

◆ HOME and END keys move to first and last columns, respectively.

◆ PAGE UP and PAGE DOWN scroll up and down.

◆ CTRL+PAGE UP and CTRL+PAGE DOWN moves to the first or last record.

◆ INSERT adds a record.

◆ DELETE deletes a record.

◆ In browse mode, ENTER edits the highlighted field of the current record.
In Edit mode, ENTER accepts your entry in the current field.

Database Manager also provides VCR controls to navigate through files:

Locate (Key) Command

The locate command searches for the first record containing the value you
specify in the key field(s). This option is only available when the data file is
displayed in a keyed sequence, not in Record Number order. This command
only searches fields which are components of the selected key. To search
other fields, use the Search command.

1. Choose Edit ➤ Locate.

Bottom of List

Page Down

Entry DownLocate or Search

Top of List

Page Up

Entry Up

CHAPTER 14 DATABASE MANAGER 509

2. Type the search values in the Key fields.

3. Press the OK Button.

The highlight bar is positioned on the first occurrence of the specified
values in the key fields. If the value entered does not exist, the next
highest match is highlighted

Search and Find Next

The Search command searches for the first record containing the value you
specify. The search may be limited to one field or all fields in the record. You
may search for:

◆ An exact match

◆ A record with a field beginning with the value specified

◆ A record with a field ending with the value specified

◆ A record with a field containing the value anywhere within it.

To begin a search

1. Choose Edit ➤ Search (or press the ? VCR button).

2. Type the search value in the Search For field.

3. Select the appropriate radio buttons for the desired type of search.
Choose from:

Exact match
Searches for values that match the specified search string
exactly.

Starts With
Searches for values that begin with the specified search string.

Contains
Searches for values that contain the specified search string.

510 CLARION 5 USER’S GUIDE

Ends With
Searches for values that end with the specified search string

4. If you want the search to match case, check the Case Sensitive box.

5. If you want the search to consider all fields, check the All Fields box.

6. Press the OK Button.

When searching large files, the Search Status window reports the
search’s progress by displaying the number of records searched and
provides the opportunity to abort the search. When the search is com-
plete, the highlight bar is positioned on the first record that matches the
search criteria.

To cancel a search in progress

1. Press the Cancel button on the Search Status dialog.

To continue a search

1. Choose Edit ➤ Find Next (or press CTRL+N).

Database Manager searches forward from the current record.

Sending Driver Strings

Database Manager lets you communicate with the file driver for the open
file. This is equivalent to issuing a SEND command. See SEND in the
Language Reference form ore information. See Database Drivers in th
Application Handbook for valid driver strings for each file driver.

Saving File Definitions as Source Code

Database Manager lets you export the file definition to Clarion source code.
This code can later be “pasted” into another code segment or used as part of
a source code procedure.

To export a file definition

1. Choose File ➤ Save as Source .

2. Specify the file label and filename for the source code.

3. Press the OK button.

The source code for the file definition is created.

CHAPTER 14 DATABASE MANAGER 511

Using Query-by-Example
Query-by-Example (QBE) is a powerful tool to find information in a data
file. This lets you ask questions of your database based on examples of the
desired results. Query-by-Example filters records, allowing you to display a
subset of the records based upon a specified example. The filter is in the
form of an expression. Most often this expression will compare a specific
value to a field.

You specify your query in a QBE list box. A filter expression is built based
on expressions entered in this list box. Each column represents a field, and
each row represents logical groupings. Expressions entered in different
columns on the same row have the effect of an AND operator. Expressions in
separate rows have the effect of an OR operator. The filter expression
displays below the list box as you enter expressions in the list box.

For example, to find all records with an ID number between 10 and 100, with
a last name of Smith or Smythe, you create a query:

IDNumber FirstName LastName

>10&<100 =’Smith’

>10&<100 =’Smythe’

Use the ampersand character (&) to represent the AND operator and the
vertical bar (|) to represent the OR operator when used in the same field. The
example above can also be represented in this fashion:

IDNumber FirstName LastName

>10&<100 =’Smith’ | =’Smythe’

Both examples produce a filter expression of (IDNumber > 10 OR
IDNumber < 100) AND (LastName = ‘Smith’ OR LastName = ‘Smythe’).
The expression displays below the QBE list box.

Note: Although the expression created and displayed in a query is
not optimized, the run-time evaluator performs its own
optimization. Thus performance is not affected.

The Query is stored in the .INI file when you exit. The next time you open
the file in the Database manager, you can filter the records with the same
QBE filter.

512 CLARION 5 USER’S GUIDE

Editing Data
One of Database Manager’s primary functions is the ability to update records
without creating procedures to do so. For example, you may need to create a
file of twenty choices which are unlikely to change. You could use the
Database manager to create the file, enter the twenty records into the data
file, and ship the file with your application.

Note: Caution should be used when making any changes to data
files with the Database Manager. This is a programmer’s tool
for data file examination and correction, not an end user’s tool
for data maintenance. There are no controls to prevent you
from making changes which could compromise the Data
Integrity (invalid data values) or the Referential Integrity
(“orphan” Child records) of your Database.

Database Manager asks if you want to create a backup copy before
modifying any data in a file. Creating a backup file lets you cancel changes
you make while browsing a file. However, some file drivers do not support
the creation of a backup. When using one of those file systems, you are not
prompted for a backup.

Note: If you do not make a backup copy of the file when modifying it,
you will not be able to revert the file to its original state.

Editing Records

You can edit any field of any record in Database Manager.

1. Highlight the field to change.

2. Choose Edit ➤ Change (or press ENTER).

You may now “edit-in-place.” New data is entered in either insert or
overwrite mode, depending on the last setting used.

3. To move between fields, press TAB to edit the next field, or SHIFT+TAB to
edit the previous field.

Adding Records

Database Manager lets you enter new records in a file.

1. Choose Edit ➤ Insert (or press INSERT).

A new record is added at the bottom of the list. The cursor is positioned
in the first field.

CHAPTER 14 DATABASE MANAGER 513

2. Type the information you want to enter in a field, then press TAB to edit
the next field (or SHIFT+TAB to edit the previous field). Repeat for all
fields in which you want to enter data.

3. When you have completed all data entry for the record, press ENTER.

The Database Manager adds the record to the file and updates the keys.

Editing Memos

You can edit a memo in ASCII Text or Hexadecimal format (Hex Mode).
Hex Mode editing is useful for memos which contain binary data.

To Edit a Memo in Text Mode

1. Highlight the record.

2. Choose Edit ➤ Edit Memo (or press CTRL+E).

3. If the file has more than one memo field, a list box appears. Select the
appropriate memo field.

4. Edit the memo.

To Edit a Memo in HEX mode

1. Highlight the record.

2. Choose Edit ➤ Hex Edit Memo (or press CTRL+X).

3. If the file has more than one memo field, a list appears. Select the
appropriate memo field.

4. Edit the memo.

Showing Deleted Records

By default only active records are shown; however, you can display deleted
records. You can use this feature to browse recently deleted records or undelete
deleted records.

You can view deleted records in any file that does not have the RECLAIM
attribute. If a file does have the RECLAIM attribute, you may still view a
deleted record unless new a record has been added in its place.

1. Choose Window ➤ Show Deleted.

A check mark appears next to the menu choice to indicate deleted
records are displayed.

When a deleted record is highlighted, the word Deleted displays at the
bottom of the window.

514 CLARION 5 USER’S GUIDE

Undeleting Records

You can undelete a record in a file— if the file system supports it and the file
does not have the RECLAIM attribute. If a file does have the RECLAIM
attribute, you may still undelete a record unless new a record has been added
in its place.

1. Make sure your view includes deleted records (choose Window ➤ Show
Deleted).

2. Choose Edit ➤ Undelete (or press CTRL+DELETE).

Holding and Releasing Records

Holding a record arms record locking in a multi-user environment.
Generally, this excludes other users from writing to, but not reading, the
record. The specific action HOLD takes is file driver dependent. See HOLD
in the Language Reference and see Database Drivers in the Application
Handbook.

To hold the highlighted record

1. Choose Edit ➤ Hold (or press CTRL+H).

To release the highlighted record

1. Choose Edit ➤ Release (or press CTRL+R).

When a held record is highlighted, the Held box below the list box is
checked.

You can also hold or release the highlighted record by checking or
clearing the Held check box at the bottom of the window.

CHAPTER 14 DATABASE MANAGER 515

Converting Data Files
The file conversion utility lets you convert the records in an existing data file
to a new file format. For example, when you modify a data dictionary, you
can use the conversion utility to convert your existing data to the new format.

The file conversion utility provides two methods of converting a file:

◆ Immediate Conversion, and

◆ Generating Source for File Conversion.

Tip: It is always a good idea to make backup copies of your files
before running any conversion process.

Immediate Conversion

Immediate conversion handles simple conversions (same file driver, same
field names, new or changed fields and keys) between files with the same file
system. The conversion is done by the Database Manager, but the Dictionary
Editor must also be active.

Note: If you change the name of a field or if you change file drivers,
you must generate source code and edit the source code to
make the field assignments.

1. Open the data dictionary that describes the file you wish to convert.

2. Modify the data file definition as needed (add or change fields or keys).

3. With the modified file highlighted, choose File ➤ Browse Filelabel to
load the data file in the Database Manager.

A message appears, warning that the physical file structure does not
match the dictionary declaration.

4. Press the Yes button to convert the file.

The Database Manager converts the file and displays its contents.

Generating Source for File Conversion

Generating Source for File Conversion creates a source code file and a
Project file, so you can handle more complex conversions, and you can run
the program as often as you want. Generating and compiling source creates
an executable file that you can ship to end users to convert their data files to
the new format. The Database Manager generates the source code.

516 CLARION 5 USER’S GUIDE

Tip: If there are several files that your customers must convert on-
site, you can combine the generated conversion programs into
a single conversion application by adding each program to the
application as an external source module or as a source
template. This way, your customers will have access to all the
conversion programs in an easy-to-use menu driven
application that is consistent with their other applications.

Backup the Original File Description

1. Open the data dictionary that describes the file you wish to convert.

2. Copy the data file definition to a new name. To copy a file definition,
highlight the file to copy in the Files List and press CTRL+C, then press
CTRL+V to paste it. You are prompted to supply a new name and prefix
(for example, copy Customer to OldCustomer).

An alternative would be to copy the entire data dictionary to a new name.
You might use this method if there are several files to convert in one
session.

Make the New File Description

1. Make any necessary changes (add fields, change the file driver type, etc.)
to the definition with the original name. In the example above, the
Customer file is the file to modify.

2. Close the Dictionary and save it.

Open the Data File

1. Choose File ➤➤➤➤➤ Open from the menu.

2. Select Database files from the Files of type drop-down list.

3. Navigate to the file to convert, then select it.

The Database Manager prompts you to specify a file driver

4. Select the file’s driver from the Driver drop-down list.

The Database Manager opens the file and displays it’s contents.

Generate Conversion Source Code

1. Choose File ➤➤➤➤➤ Convert File (or press CTRL+V).

This opens the File Convert dialog, prompting for the information below:

2. The Source Filename field defaults to the file you are browsing.

3. In the Source Dictionary field, specify the dictionary which contains the
source file definition.

CHAPTER 14 DATABASE MANAGER 517

4. In the Source Structure field, specify the structure within the source
dictionary which defines the file to convert (e.g., OldCustomer).

5. In the Target Filename field, specify the name of the new file.

This defaults to the current file name. Specify a new file name if you
have not backed up your data file!

6. In the Target Dictionary field, specify the dictionary which contains the
new (target) file definition.

7. In the Target Structure field, specify the structure within the target
dictionary which defines the target file.

8. In the Generated Source field, press the ellipsis button to specify the full
pathname for the generated source code.

Note: By default, the conversion utility writes CONVERT.CLW to the
subdirectory of the active application or project file, not
necessarily to the subdirectory containing the data or the data
dictionary.

9. Press the OK button.

This generates a source file and a corresponding project file (.PRJ)
which you can now compile and link to create an executable program to
perform the file conversion.

Make and Run the Conversion Program

1. Press the Exit button to close the data file in the Database Manager.

Note: Prior to executing the generated conversion program, you
must close the data file open in the Database Manager.

2. Load the conversion program by choosing File ➤➤➤➤➤ Open .

3. Select CONVERT.CLW (or the file name you specified) in the Windows
file dialog.

4. Edit the source code as required to make the field assignments.

See Editing Source Code to Make Field Assignments.

5. Choose Project ➤➤➤➤➤ Set to load the project file.

Navigate to the project file and select it. This defaults to
CONVERT.PRJ.

6. Press to Make and Run the conversion program.

Note: If you set Runtime Library to LOCAL, the conversion program
may “lose” the database driver. It issues a “File not found”
message. If this happens, re-add the database driver dll to
your project.

518 CLARION 5 USER’S GUIDE

Finish Up

1. Check the file that has just been converted by opening it with the
Database Manager.

2. Delete the “old” file definition from the active dictionary, or archive it
into a backup dictionary file.

3. If the converted file is located in a different directory, you may now copy
it into the working program directory. If you renamed the file, you may
rename it to the original file name at this time.

The conversion process is now complete. This example creates
CONVERT.EXE which you may be ship to end users to convert their
files.

Editing Source Code to Make Field Assignments

The File Conversion Utility creates source code to convert a file to a different
specification. The conversion is automatic except in the following cases:

◆ If a field’s label is changed

◆ If a field is split into two separate fields.

◆ If two or more fields are combined.

◆ If a date is converted to a Clarion standard date from some other
file system date format.

In these cases you must modify the source code to handle the field
assignments. The portion of the source code you need to examine is the
AssignRecord ROUTINE. This is where field assignments are made. Here is
an example:

AssignRecord ROUTINE
CLEAR(CUS:Record)
CUS:NUMBER = IN::NUMBER
CUS:FIRSTNAME = IN::FIRSTNAME
CUS:LASTNAME = IN::LASTNAME
CUS:ADDRESS = IN::ADDRESS
CUS:CITY = IN::CITY
CUS:STATE = IN::STATE
CUS:ZIP = IN::ZIP
CUS:PHONENUMBER = IN::PHONENUMBER
CUS:ENTRYDATE = IN::ENTRYDATE

If you examine the source code, you’ll see that the first line in the routine
clears the record buffer. Next, each field in the output file is assigned the
value from the matching field in the input file.

CHAPTER 14 DATABASE MANAGER 519

Changing a Field’s Label

However, if the field labels do not match, no assignment is made. For
example, if you change the LastName field to Surname, the File Conversion
utility generates a comment to alert you of an assignment you may need to
make:

AssignRecord ROUTINE
CLEAR(CUS:Record)
CUS:NUMBER = IN::NUMBER
CUS:FIRSTNAME = IN::FIRSTNAME
! CUS:SURNAME = ‘’
CUS:ADDRESS = IN::ADDRESS
CUS:CITY = IN::CITY
CUS:STATE = IN::STATE
CUS:ZIP = IN::ZIP
CUS:PHONENUMBER = IN::PHONENUMBER
CUS:ENTRYDATE = IN::ENTRYDATE

To assign the values from the original file, edit the line containing the
assignment to assign the value of LastName to the SurName field as shown
below:

CUS:SURNAME = IN::LASTNAME

Splitting a Field into Two Fields

Writing the assignment statements to split the contents of a field into two
fields involves a little more work, but string slicing minimizes the effort. For
this example, let’s assume you had a single field in the original file for a
phone number and area code. You now want to store the area code in one
field and the phone number in another. Assuming that these fields are
numeric data types, you need to temporarily assign the value to a string, then
“slice” the string to assign the desired portion to each new field.

In this example the original PhoneNumber field is a ten-digit number, the
area code is a three-digit number, and the new PhoneNumber field is a seven-
digit number. The AssignRecord ROUTINE in the generated file conversion
source code looks like this:

AssignRecord ROUTINE
CLEAR(CUS:Record)
CUS:NUMBER = IN::NUMBER
CUS:FIRSTNAME = IN::FIRSTNAME
CUS:LASTNAME = IN::LASTNAME
CUS:ADDRESS = IN::ADDRESS
CUS:CITY = IN::CITY
CUS:STATE = IN::STATE
CUS:ZIP = IN::ZIP
! CUS:AREACODE =
CUS:PHONENUMBER = IN::PHONENUMBER
CUS:ENTRYDATE = IN::ENTRYDATE

Notice there is an assignment from the original PhoneNumber field to the
new PhoneNumber field. However, since the new field only stores seven

520 CLARION 5 USER’S GUIDE

digits, you should change this. To handle the field assignments, create an
implicit string variable, assign to it the value of the original PhoneNumber
field, then use string slicing to assign the desired portions to the new fields,
as shown below:

AssignRecord ROUTINE
CLEAR(CUS:Record)
CUS:NUMBER = IN::NUMBER
CUS:FIRSTNAME = IN::FIRSTNAME
CUS:LASTNAME = IN::LASTNAME
CUS:ADDRESS = IN::ADDRESS
CUS:CITY = IN::CITY
CUS:STATE = IN::STATE
CUS:ZIP = IN::ZIP
TempPhoneNumber” = IN::PHONENUMBER
CUS:AREACODE = TempPhoneNumber”[1:3]
CUS:PHONENUMBER = TempPhoneNumber”[4:10]
CUS:ENTRYDATE = IN::ENTRYDATE

For more information on String Slicing, see Implicit Arrays and String
Slicing in the Language Reference.

Combining Two or More Fields

In this example the original PhoneNumber field is a seven-digit number, the
AreaCode is a three-digit number, and the new PhoneNumber field is a ten-
digit number. The AssignRecord ROUTINE in the generated file conversion
source code looks like this:

AssignRecord ROUTINE
CLEAR(CUS:Record)
CUS:NUMBER = IN::NUMBER
CUS:FIRSTNAME = IN::FIRSTNAME
CUS:LASTNAME = IN::LASTNAME
CUS:ADDRESS = IN::ADDRESS
CUS:CITY = IN::CITY
CUS:STATE = IN::STATE
CUS:ZIP = IN::ZIP
CUS:PHONENUMBER = IN::PHONENUMBER
CUS:ENTRYDATE = IN::ENTRYDATE

Notice there is an assignment from the original PhoneNumber field to the
new PhoneNumber field, but the original AreaCode is omitted. To handle the
field assignments, create two implicit strings and assign them the original
AreaCode and PhoneNumber values, then concatenate the strings and assign
the result to the new PhoneNumber as shown below:

AssignRecord ROUTINE
CLEAR(CUS:Record)
CUS:NUMBER = IN::NUMBER
CUS:FIRSTNAME = IN::FIRSTNAME
CUS:LASTNAME = IN::LASTNAME
CUS:ADDRESS = IN::ADDRESS
CUS:CITY = IN::CITY
CUS:STATE = IN::STATE
CUS:ZIP = IN::ZIP
TempAreaCode” = IN::AREACODE

CHAPTER 14 DATABASE MANAGER 521

TempPhoneNumber” = IN::PHONENUMBER
CUS:PHONENUMBER = CLIP(TempAreaCode”) & TempPhoneNumber”
CUS:ENTRYDATE = IN::ENTRYDATE

For more information on String Slicing, see Implicit Arrays and String
Slicing in the Language Reference.

Converting a Date

Let’s assume the ENTRYDATE field contains a string date in MM/DD/YY
format. We want to convert this string date into a Clarion standard date so we
can perform calculations against it and display it in various other formats.

We use the DEFORMAT function to perform the conversion as shown below.
The @D1 represents the Clarion Date Picture that corresponds to the MM/
DD/YY format. See Date Pictures in the Language Reference for more
information.

AssignRecord ROUTINE
CLEAR(CUS:Record)
CUS:NUMBER = IN::NUMBER
CUS:FIRSTNAME = IN::FIRSTNAME
CUS:LASTNAME = IN::LASTNAME
CUS:ADDRESS = IN::ADDRESS
CUS:CITY = IN::CITY
CUS:STATE = IN::STATE
CUS:ZIP = IN::ZIP
! CUS:AREACODE =
CUS:PHONENUMBER = IN::PHONENUMBER
CUS:ENTRYDATE = DEFORMAT(IN::ENTRYDATE,@D1)

Converting Legacy Data

As a developer, you may often be asked to write a program to support
existing or “legacy” data. Although you initially have no data dictionary
describing the data, you can easily convert this legacy data by creating a data
dictionary then following the steps described in Generating Source File for
Conversion.

1. Import the file into a data dictionary by following the steps in Dictionary
Editor—Importing File Definitions.

2. Follow the steps described in Generating Source File for Conversion and
Editing Source Code to Make Field Assignments.

522 CLARION 5 USER’S GUIDE

Printing Data
You can print data from Database Manager. You can use these simple reports
to look at the data in your files.

To print data

1. Choose File ➤ Print.

This opens the Print dialog, allowing you to select the report’s format.

2. Select the appropriate radio buttons from the Print... group to specify the
records to print. Choose from:

Current Record
Prints only the currently highlighted record.

Current Page
Prints only the records currently displayed on screen.

All Records
Prints all records in the file.

Use Filter
Prints only those records which match the filter created in the
Query-by-Example dialog.

3. Select the appropriate radio buttons from the Print Mode group to specify
the report format. Choose from:

Columnar
Prints the records in a “spreadsheet” type of format in which
each field in the record is a separate column.

Tabular
Prints the records in a “form” type of format in which each field
in the record is on its own separate print line.

4. If you selected Columnar, specify the number of records to print side-by-
side in the Columns field.

CHAPTER 14 DATABASE MANAGER 523

5. If you selected Tabular, specify the total number of characters to print for
one record in the Table width field.

6. If you want to print column headings in Columnar Mode or field labels
in Form Mode, check the Print Header box.

7. Press the Print Button to print the selected record(s).

524 CLARION 5 USER’S GUIDE

CHAPTER 15 APPLICATION CONVERTER 525

15 - APPLICATION CONVERTER

Window Formatter
Visual Window Design,

Menus, Toolbars, Controls,
Visual List Box Design

Report Formatter
Visual Report Design,

Report Controls,
Visual List Box Design

Generated Source Code
*.CLW

Source Editor
Configurable, Macros,

Immediate Syntax Help,
Select Variable Names,

Color Coded Source

Compile & Link Process

Executable
*.EXE, *.DLL

Debugger

Project System
Compile & Link Options,

Object Libraries,
Database Drivers,

Windows Resources

Template Registry
Code Generation Wizards,
Customizable Procedures,

Procedure Extensions,
Controls with Source Code

Formula Editor
Formulas & Calculations,

Simple Assignments,
Complex (conditional)

Assignments

Database Manager
Browse, Edit, Search, Sort,
Query & Convert Data Files

Data Dictionary
Files, Keys, Record Layouts,

File Relationships, Data
Validation, Control Properties

*.DCT

Application Generator
Configure the Environment,

Program Organization,
Source File Management,

Global & Local Data,
Embedded Source

*.APP

Application Converter
Convert 2.00x to ABC,

Teach conversion issues,
Extendable conversion rules

526 CLARION 5 USER’S GUIDE

Overview
The Application Converter is a utility that takes a Clarion application (.APP)
or text application (.TXA) as input, applies conversion rules that you specify,
and produces a converted application or .TXA as output. By default, the
Converter leaves the original application completely intact.

Interchangable, Modifiable Conversion Rules

The conversion rules are encapsulated from the reading, parsing, and writing
of the application files so that conversion rules can be easily added,
modified, and deleted.

Clarion 5 supplies two sets of conversion rules. One set of rules converts
Clarion for Windows 2.00x applications to Clarion 5 ABC applications. The
other set of rules converts Clarion 4 beta applications to Clarion 5
applications.

TopSpeed will provide additional rule sets with future releases of Clarion to
help developers upgrade their applications. In addition to the TopSpeed rule
sets provided, you may write your own rules to convert applications based on
your own templates or third-party templates. See Writing Your Own
Conversion Rules for more information.

Wizard Interface

The Application Converter provides a “wizard” style interface that guides
you through the application conversion in a friendly, straight-forward way.
The conversion rules participate in the wizard interface in two ways. First,
each rule provides a switch that determines whether or not to apply the rule
(see Configure the Conversion Rules). Second, if the rule applies, it explains
the underlying reason for the change, and it provides an opportunity for you
to confirm each proposed change (see Dispose of Proposed Changes).

This approach, coupled with TopSpeed’s conversion rules makes the
Application Converter more than a conversion utility. The Application
Converter is a teaching tool that not only converts your application from one
version to another, it also shows you what it is changing, and tells you why it
is changing it.

CHAPTER 15 APPLICATION CONVERTER 527

Application Converter Goals

Initial Scope
Converts Clarion for Windows 2.00x applications to Clarion 5
ABC applications, and converts Clarion 4 beta applications to
Clarion 5.

Speed
Speeds up the conversion of your applications, especially where
many applications are involved.

Teach
Teaches developers the most commonly encountered conversion
issues and their solutions. To this end the program is visual and
interactive.

Reusability
Provides an extendable, configurable utility to port Clarion
applications between any two template sets, including non-
TopSpeed templates.

528 CLARION 5 USER’S GUIDE

Using the Conversion Wizard
By default, the Converter leaves the original application completely intact.
So you may run it as many times as you want without affecting the original
application. The original application can stay up and running until you are
completely satisfied that the converted application is ready for prime time.

Tip: The ABC Templates must be registered to succesfully convert
applications with the Application Converter. The ABC
Templates are preregistered when you install Clarion. See
Application Generator—Registering Templates .

Starting the Conversion Process

Start the Application Converter

From the main menu, choose File ➤➤➤➤➤ Convert Application to start the
Application Converter. You may also run the Application Converter
independent of the Clarion environment by running C5conv.exe. This starts
the Application Converter and opens the Welcome page. Press the Next
button to open the Application Source and Destination Files page.

Set Source and Target Applications

The Application Source and Destination Files page provides the following
prompts.

Source Application
Type the pathname of the source .APP or .TXA file, or press the
ellipsis button to select the source from the Windows file dialog.
By default, the Application Converter only reads from the source
application.

Destination Application
The Application Converter provides a default target pathname

CHAPTER 15 APPLICATION CONVERTER 529

derived from the source pathname. To change the default, type
the pathname of the target .APP or .TXA file, or press the
ellipsis button to select the target from the Windows file dialog.
We recommend naming a target application other than the source
application.

New Target Name
Type the pathname of the target application’s target file, or press
the ellipsis button to select the target file from the Windows file
dialog. By default, the converted application retains the same
target file as the source application, so making the converted
application overwrites the existing target file, unless you specify
a new target name.

Configure the Conversion Rules

Press the Next button to open the Application Conversion Options page.
This page lets you configure the conversion rules applied to the source
application to create the target application.For each rule in each family
(except the Hints rule), you may apply the rule automatically, manually or
not at all.

None
The converter ignores the conversion rule.

Manual
The converter applies the rule interactively by showing you each
affected instance of code and the proposed changes to the code.
You have the option of ignoring, marking, applying, or editing
and applying the proposed changes on an instance by instance
basis. The Manual rule application is the teaching mode, and we
recommend it for your initial conversions because it gives you
the most control over the conversion process and the most
information about the conversion process. You can see each
change that is made (original source and proposed source) along
with an explanation of why the change is needed. If you think the
change is not needed or you want to postpone the change until
later, you may do so. See Dispose of Proposed Changes.

530 CLARION 5 USER’S GUIDE

Automatic
The wizard unconditionally applies the rule as it is written.

Tip: RIGHT-CLICK on this page to configure all the rules in all rule
families.

CW 2.00x to Clarion 5 ABC Rules

Press the Clarion 2.0 Application button to configure the Clarion 2.00x to
Clarion 5 ABC conversion rules. Each drop-list represents a separate rule.
Some of the rules such as Browse Queue, Browse FEQ’s and Toolbar
Equates apply new naming conventions or new references to data structures,
while other rules such as Files Accesses, 2.0 Std Functions, and Browse
Routines, replace calls to CW 2.00x procedures and routines with calls to
their Clarion 5 ABC counterparts.

Tip: RIGHT-CLICK on this page to configure all the rules in the Clarion
2.00x to Clarion 5 ABC family.

The Hints rule does not offer an Automatic application, because it does not
apply any changes. It only offers suggestions for ambiguous circumstances
where it is not completely clear that a change is needed.

Press the OK button to return to the Application Conversion Options page.

Clarion 4 Betas Rules

Press the Clarion 4 Betas button to configure the Clarion 4 Beta to Clarion 5
Gold conversion rules. Each drop-list represents a separate rule. These rules
are designed to convert Clarion 4 Beta1 and Beta2 applications to Clarion 5.

Tip: RIGHT-CLICK on this page to configure all the rules in the Clarion
4 Beta to Clarion 5 Gold family.

You need not apply these rules to Clarion 2.00x applications.

CHAPTER 15 APPLICATION CONVERTER 531

Press the OK button to return to the Application Conversion Options page.

Start the Conversion Process

Press the Next button on the Application Conversion Options page to open
the Start Conversion Process page. This page explains that the rules are
applied automatically, manually, or not at all. If all rules are applied
automatically, the conversion proceeds with no further input. If some rules
are applied manually, the Application Converter opens the Confirm
Conversion window, where you can see the proposed changes, the reason
for the proposed change, and you can decide how to handle each proposed
change.

In either case, the Application Converter displays progress indicators to
advise you of the conversion’s progress. Press the Proceed button to start the
conversion or press the Cancel button to stop now.

When the Application Converter has applied all the conversion rules, it
creates the target file (.APP or .TXA). If the target file is an application, it
loads the file in the Clarion environment so the application is ready to make
and run.

Tip: The Application Converter cannot load the new application if
its data dictionary is unavailable. Place a copy of the
associated data dictionary in the target directory before you
convert the applicaion.

Dispose of Proposed Changes—Confirm Conversion Window

If any rules are applied manually, the Application Converter opens the
Confirm Conversion window, where you can see the proposed changes, the
reason for the proposed change, and you can decide how to handle each
proposed change.

Applied Rule

Procedure being
converted

Embed point affected

Proposed change

RIGHT-CLICK edit and
navigation options

532 CLARION 5 USER’S GUIDE

The Confirm Conversion window identifies the rule being applied as well
as the procedure and the embed point the rule is applied to. In the Confirm
Conversion window, proposed code changes are shown in red in the right-
hand list box. The original code is in the left-hand list box. A brief
explanation of each proposed change is in the bottom list box.

This window is resizable so you may enlarge it to reveal as much code as
you want.

The proposed code changes are editable in a number of ways: you may click
one of the buttons to dispose of a single proposed change or for all proposed
changes for the rule. You can RIGHT-CLICK a specific line of code to edit or
delete that line. You can even add new lines of code.

Choose from the following disposition buttons:

All Check this box to apply a button’s action to all the proposed
changes for this rule. Clear the box to dispose of each proposed
change individually.

Assertion
The proposed (red) code replaces the original code in the new
application. The converter inserts a runtime marker
(ASSERT(False)) before the new code so the program offers to
GPF prior to executing the new code.

Uncomp
The proposed (red) code replaces the original code in the new
application. The converter inserts a compile time marker (***)
before the new code so the compiler issues a message locating/
identifying the new code, and so the program will not
successfully compile.

Omit
The proposed (red) code replaces the original code in the new
application. The converter inserts an OMIT statement and
terminator around the new code so it is neither compiled nor
executed.

Apply
The proposed (red) code replaces the original code in the new
application.

Ignore
The original code remains in place in the new application.

Abort
Stops the conversion process without generating a new
application. The Application Converter returns to the
Application Conversion Options page so you can start over, or
cancel.

CHAPTER 15 APPLICATION CONVERTER 533

Writing Your Own Conversion Rules
The Application Converter conversion rules are encapsulated from the
reading, parsing, and writing of the application files so that conversion rules
can be easily added, modified, and deleted.

Clarion 5 supplies two sets of conversion rules. One set of rules converts
Clarion for Windows 2.00x applications to Clarion 5 ABC applications. The
other set of rules converts Clarion 4 beta applications to Clarion 5
applications. You can use these rules as models for writing your own rules.

TopSpeed encourages you to write your own rules to convert applications
based on your own templates and applications. Toward that end, the source
code for the TopSpeed conversion rules and for the Application Converter are
installed (by default) to the \Clarion5\Convert directory.

If you write your own rules, you should recompile them using the C5Conv.pr
project file, and you should update the C5Conv.INI file (installed by default
to the \Clarion5\bin directory) to include your new rule .DLLs.

Compiling Conversion Rules

If you write your own rules, you will need to compile them with the
C5Conv.pr project file (installed by default to the \Clarion5\Convert
directory).

You may make the C5Conv.pr project just as you would any other Clarion
project. You should update the C5Conv.INI file (installed by default to the
\Clarion5\bin directory) to include your new rule .DLLs.

534 CLARION 5 USER’S GUIDE

APPENDIX A WINDOWS DESIGN ISSUES 535

APPENDIX A - WINDOWS DESIGN ISSUES

About This Chapter
This chapter provides an introduction to:

◆ The design principles which Microsoft suggests for designing the user
interface of Windows-based applications.

◆ Event driven programming and how it should influence your
application’s design process.

◆ The types of windows, controls, cursors, and other objects common to
Windows applications.

◆ The standard menus and menu commands recommended for Windows
applications.

◆ The use of color and how it relates to the user.

536 CLARION 5 USER’S GUIDE

Design Principles
If you make your program look and act like other Windows programs, your
users will learn it more quickly, and feel more confident using it to
accomplish the tasks you designed it to do. The Graphical User Interface
(GUI) environment demands that you address your users on their terms. The
program design must reflect that the user is in control, both visually and in
the underlying structure of program flow.

Apple, in its Human Interface Guidelines, IBM, in its Common User Access:
Advanced Interface Design Guide, and Microsoft, in The Windows Interface:
an Application Design Guide have all published detailed design principles
for software designers working in popular GUI environments. Creating a
standard for program design offers these advantages:

◆ Given consistency between applications, users learn new applications
more quickly and easily, minimizing the need for training.

◆ Consistency between applications increases the level of confidence in the
user, resulting in increased productivity.

There are two especially important Windows design principles for the
Clarion programmer to keep in mind when designing the user interface. The
first is user control—providing a real-world based metaphor for the
program’s organization, and maintaining a consistent look and feel for all
parts of the program, builds the user’s confidence. The second is to
remember that Windows programming is event driven—the user decides the
next action. The programmer’s responsibility is to provide a visual list of
options the user can act upon.

User Control

Metaphors

Your users may not have years of experience using a wide variety of
programs. Providing a metaphor from the real world will help provide a
‘setting’ or group of expectations to apply to your program. A word
processing program, for example, uses a ‘paper’ metaphor—the document is
like a piece of paper to write on, erase characters from, etc. Many database
programs use Rolodex card metaphors. By establishing a relation to the real
world, you increase the comfort level of your users, and actively engage
them in the work of the program.

Visual Consistency

Visual consistency is very important. As much as possible, an application
should use a single way to implement actions. A user learning a new
procedure in your program builds upon prior experience with other

APPENDIX A WINDOWS DESIGN ISSUES 537

procedures in the same program. Creating a standard look for your dialog
boxes, and making screens for similar tasks look like one another, also
reduces the time it takes you to design the different screens your program
requires.

Directness

Directness makes a user feel they are in charge. Moving a document from
one folder to another, or moving one icon to another, such as the Recycle Bin
icon, can seem to a user to be a real action. Clarion provides drag-and-drop
server support, which lets you create, for example, an icon with a picture of a
person on it, representing an employee record. A user might drag the icon to
another representing money, to open a dialog box displaying the employees’s
payroll records.

Simplicity

Simplicity is usually the best design. Cluttering the screen with too many
windows, buttons, icons, lists and other objects can confuse the user. Dialog
boxes especially, usually must fit in a small space, so their messages must be
simple. The same is true for colors. Limit the use of colors to areas where
they are needed to provide emphasis, such as red text for an important
message.

Feedback

Let the user know what’s going on—provide feedback. When the user
chooses a command or begins an operation, visual feedback should confirm
it is being carried out. The confirmation may be graphical, such as a cursor
change, or simply a progress bar or message on the status bar. If there will be
a delay while the program finishes another operation, inform the user, and
advise, if possible, how long it will take.

Plain Language

Your application should use plain language. When designing an application
for a corporate environment, technical terms are often essential. Watch out
for the times when plain English is better. Of special importance to the
programmer, who may be new to Windows programming—beware of
“Window-isms.” It’s very easy to create two buttons marked “OK” and
“Cancel.” Yet “Yes” and “No” are far better button labels when the question
is: “Do you wish to delete this record?”

538 CLARION 5 USER’S GUIDE

Event Driven Programming

Related to user control issues, and the most important concept for new
Windows programmers, is that you must design Windows programs to be
event-driven. In a multi-tasking environment, a program simply cannot direct
the sequence of program action—the user directs it.

The underlying structure of Windows is such that the operating system
informs the program with messages just what it is the user wants the program
to do. This is the opposite of DOS programming.

Windows messages tell a program when a menu is selected, when a window
is selected, when the user wants to shut down the operating system—the
Windows 3.1 Software Development Kit documentation devotes over 200
pages just to listing and explaining the different messages. Most
programming languages require elaborate message handling procedures to
branch program flow upon receiving different types of Windows messages.

Clarion automatically handles the housekeeping associated with message
handling. The ACCEPT loop frees the Clarion programmer from worrying
about system messages. Yet you still must consider the event-driven model
when designing your program.

A Windows program must constantly look for input—in the form of data
entry in an edit box, for example. In a window with several fields, the user
can TAB or CLICK with the mouse to make any of them active. You must plan
your input dialogs accordingly.

Additionally, your users will expect a complete set of user interface
elements, including menus, multiple windows and graphical controls, all
available simultaneously.

You may create an application which allows the user to open two windows,
with markedly different functions. Clarion will automatically handle events
generated within each window. Yet what about the menu commands, or the
tool bar? You should plan these so that the commands will act on any active
window. Clarion helps you do this automatically when creating an
application using Multiple Document Interface. There may be times,
however, when you may need to manually disable and re-enable menu
commands.

Finally, the event-driven model should influence the windows you design for
your application. Plan on using your main application window as the
backbone for your program. Generate another window only upon some user
action in the main window.

APPENDIX A WINDOWS DESIGN ISSUES 539

Background Processing

Background processing is another important concept for Windows
programmers. In a multi-tasking environment, your program should always
leave the user in control, especially when it is doing a lengthy process such
as reading or writing a large file.

At the language level, Clarion supports background processing through the
invocation and detection of TIMER events. That is, specifying a TIMER for
a WINDOW tells the operating system to generate a timer event for the
Window at regular intervals. The TIMER:Events may be detected and acted
upon within the WINDOW’s ACCEPT loop. Your program performs a small
portion of a larger process for each timer event. The net effect is that your
program can work concurrently with other programs that employ a similar
technique.

Note: The YIELD statement accomplishes a similar result for
programs that do not contain an ACCEPT loop.

See the Language Reference for more information on TIMER, ACCEPT,
EVENT(), and YIELD.

At the template level, all the Clarion templates automatically support
background processing with the TIMER technique described above. The
ABC Templates dynamically adjust records per cycle to optimize sharing of
machine resources.

You can control the sharing of machine resources by adjusting the amount of
time between timer events and the amount of processing that occurs for each
timer event. For example, a small TIMER interval with a high volume of
processing per interval hogs resources, whereas a large TIMER interval with
a small volume of processing per interval lets the machine sit idle.

 A reasonable TIMER interval ranges from 1/100 to 30/100 of a second
depending on the process performed and the hardware doing the processing.

MyWindow WINDOW(‘With a Timer’),TIMER(1) !1/100 of a second
...
CODE
...
MyWindow{PROP:Timer} = 30 !30/100 of a second

A reasonable number of iterations or LOOP cycles per interval may range
from 1 to 1000, depending on the length of the timer interval, the process
performed, and the hardware doing the processing. See the RecordsPerCycle
variable generated by the Process template.

Your choice of 16-bit or 32-bit applications or 16-bit or 32-bit operating
systems has no impact on the technique you use to implement background
processing.

540 CLARION 5 USER’S GUIDE

Windows
This section describes common window types. Choosing the right window
for the right job helps your users get the most out of your program.

Multiple Document Interface (MDI)

Clarion enables Multiple Document Interface (MDI) programs. This
manages multiple documents or multiple views of the same document, each
in a separate window which appears inside the main application window. If
the user resizes the application window to make it smaller than the document
window, the document window will appear clipped.

There are three types of windows in a typical MDI program: application,
document and dialog boxes.

Application Window

The application window should usually “contain” all the other windows your
program may generate. If you open a browse window, it should appear inside
the application window. If a user resizes an application window to a smaller
size, you may allow your other windows to appear partially outside it.
Additionally, you may allow users to move moveable dialog boxes outside
the application window.

Application windows should always contain a title bar that contains the name
of your application. Microsoft recommends that application windows also
contain resizable frames, a Control-menu box, and Minimize and Restore
buttons. In Clarion, you add these attributes to the window with the
Application Properties dialog.

To create an application window with Clarion, you select Frame - Multiple
Document Main Menu from the Select Procedure Type dialog, or select
MDI Parent Frame in the New Structure dialog, or declare an
APPLICATION structure in your source code.

Document Windows and Dialog Boxes

Document windows and dialog boxes are very similar in that they are both
defined as Clarion WINDOW structures. They differ in the conventional
context in which they are commonly used and the conventions regarding
appearance and attributes. In many cases, the difference is not
distinguishable and does not matter. The generic term for both document
windows and dialog boxes is “window” and that is the term used throughout
this text.

APPENDIX A WINDOWS DESIGN ISSUES 541

Document Windows

Microsoft recommends each document window contain a title bar with the
name of the document, a system menu, and a Maximize button. Optionally,
you can include a minimize button. Document windows usually display data.
For example, in the Windows environment, the “Main” program group
window that appears when you DOUBLE-CLICK on the “Main” icon in the
Program Manager’s desktop, is a document window.

Dialog Boxes

The Windows design guidelines for dialog boxes are very flexible. They may
be movable, or maintain a fixed position. They may have a single size, or a
‘More >> ’ button to make it unfold and offer additional options. They may be
modal or modeless. They may present a brief message with only an ‘OK’
option, or provide complex choices, controls, and entry options.

Here are a few pointers which will help you design windows (Document
Windows and Dialog Boxes) that are easier to use.

❏ Using either the caption bar or static text in the window, briefly explain
the function of the window, or indicate which command caused it to
appear.

❏ Set as many controls to the default setting as possible, so that you require
the least amount of entry on the part of the user.

❏ Place the most important information at the upper left, the least
important at the lower right. Your users read from left to right, top to
bottom—this is the natural way in which they expect to enter
information.

❏ Set the focus to the first entry box. This lets the user type a word or
words at the keyboard without repositioning the cursor.

❏ Place default buttons—the most likely user choice—on the right. This
gives the user to opportunity to ‘read’ the choices on the left before
presenting the ‘decision.’

❏ When presenting a brief message, take advantage of the default icons
available with the MESSAGE function. The Stop, Information, and
Question icons are familiar to users from other applications.

542 CLARION 5 USER’S GUIDE

Window Elements
This section describes common window elements. Choosing the right
element for the job at hand helps your users get the most out of your
program.

Buttons

A button initiates an action. When the user presses a button, the button
appears to be depressed. When a button action is unavailable, the button label
should be dimmed.

Clarion lets you use text, graphical labels (picture buttons), or both. If you
are using picture buttons you should include tool tips to allow the user to see,
in words, what action the button will initiate. Stick to standard bitmaps (such
as the icons many bestselling applications use for File ➤ Open , File ➤ Save,
etc). Too many picture buttons in a window can be confusing to the user.
Some reviewers have accused programs of “iconitis”—having so many
graphical buttons on the screen at once that it’s impossible for users to
remember which button executes which action.

Buttons can perform several types of actions.

◆ A button may initiate an action.
◆ A button may close the active dialog box, then open another, related

dialog.
◆ A button may open another dialog on top of the current one, without

closing the current one.
◆ A button may “unfold” or resize the dialog window to include more

options.
◆ A button can turn the “page” on a wizard dialog.

Always designate one button as the default. When the user presses ENTER, it
will initiate the default button action. Microsoft also suggests that you not
assign a mnemonic—for example, “&OK ,” which appears as OK—to a default
button.

Check Boxes

Check boxes control true/false, yes/no, on/off or logical variables. The user
toggles the state by CLICKING on the box, or pressing the SPACEBAR. If a check
box option is unavailable, the label should be dimmed.

APPENDIX A WINDOWS DESIGN ISSUES 543

Radio Buttons

Radio buttons, also referred to as option buttons, present the user with a
single choice in a mutually exclusive set of choices. The user may select only
one at a time. If space is at a premium, and the number of choices is greater
than four, consider a drop-down list box, which takes up less space.

List Boxes

List boxes display choices for the user. If a choice is unavailable, in general
you should drop it from the list. If the choice is important enough that the
user should know it is unavailable, Microsoft recommends it appear in the
list box as a dimmed selection.

Always allow your list boxes enough room. Try to allow vertical space for
three to eight choices; horizontal space for the average length of selection
text plus several extra spaces.

Remember that a list box can present a user with a great deal of
information—keep it simple!

Combo Boxes

A combo box is a combination of text box and list box. They are appropriate
where the data lends itself to possible responses, but allows the user to type
in a response not in the list.

The design guidelines for list boxes apply to combo boxes.

Drop-Down List Boxes

Drop-down single-selection lists perform the same function as list boxes, but
take up less space. When closed, the drop-down is only tall enough to show
one selection. Opened, the list will show more items, like a standard list box.

Novice users often have much more difficulty selecting an item from a drop-
down than from a normal list box. Whenever space permits, use radio buttons
(for four choices or less) or normal list boxes.

544 CLARION 5 USER’S GUIDE

Text Boxes

Text boxes allow the user to type in information. They may be single line or
multi-line. Multi-line edit boxes should usually provide a vertical scroll bar.

The standard Windows accelerator keys for copy, paste, etc., are active by
default. This is useful, because it enables the user to copy, for example, a
paragraph from another application, then paste it directly into a multi-line
text box in your application. For this reason, we recommend you do not
reassign the default windows editing shortcut keys—such as CTRL+C for
copying or CTRL+V for pasting—to alternate commands in your Clarion
application.

Fixed-length, auto-exit text boxes may speed up data entry. As soon as the
user fills the text box (by typing the maximum allowable characters), the
focus moves to the next control. Microsoft recommends applications use this
type of text box sparingly, as the shift of focus may be disconcerting if it
catches a user by surprise. We recommend using this type of text box when
there are many fields to enter in a dialog. For dialogs with only a few fields,
the programmer should try to anticipate what the end user will expect, and
choose accordingly.

Clarion lets you select the font for text boxes. We suggest using the default
system font. Microsoft specifically chose this font for menus and other
system items because it is especially easy to read on a monitor.

Spin Boxes

Spin boxes are specialized text boxes with a pair of arrows (spin buttons)
attached to the right of the text box. Spin boxes accept a limited set of
values, which the user may type in, or by using the arrows, increase or
decrease the value by a specified unit. Spin boxes can provide an alternative
to drop-down lists when the set of values is limited in quantity and fits into a
natural progression; for example, ‘Spring, Summer, Fall, Winter.’

Besides increase or decrease controls for simple numbers or choices, you
may use spin boxes to manipulate values that consist of several components.
You may display time in hours, minutes and seconds, for example. Be sure to
visually separate each component with a relevant separator character, such as
a colon.

Static Text

Static text should present read-only information, such as directions for
entering data in the other controls in the dialog box. You should also use

APPENDIX A WINDOWS DESIGN ISSUES 545

static text to label controls not automatically labelled by the Window
Formatter, such as a text box.

Clarion lets you select the font for static text. We suggest using the default
system font. Microsoft specifically chose this font for menus and other
system items because it is especially easy to read on a monitor. You should
certainly feel free to make the text bigger, as in creating a ‘title’ for a dialog
box ‘form.’

We also advise you to resist the temptation to use odd or too many different
colors for static text. You never can tell what the default window background
will be.

Group Boxes

Group boxes provide a visual grouping for related controls. They consist of a
rectangular frame with a label at the upper left.

A group box can guide the user directly to the controls that are most
important to the task at hand. If your application requires a dialog with more
than ten controls or fields, we highly recommend taking a moment to
consider whether some of the controls fit into logical groups.

Sheets and Tabs

The Property Sheets with tabs provide another method of grouping related
controls, by allowing you to place controls with similar or related functions
on separate “pages.”

Tabbed dialogs can “flatten” your application, by reducing the number of
visible controls and displaying only those that are most important to the task
at hand. If your application requires a dialog with more than ten controls or
fields, you should consider a “multi-page” approach.

Keep in mind that Required Entry fields should be on the first visible tab.

Wizards

The WIZARD attribute on a Property Sheet control lets you control the
user’s movement through the tab “pages.” This lets you present a series of
dialogs in a linear fashion. Optionally, you can control the next “page” based
on the answers the user provides in previous pages.

Wizards have become increasingly popular because they let users answer
only one question at a time, decreasing the chances of confusion or error.

546 CLARION 5 USER’S GUIDE

Control Labels

The Window Formatter automatically supplies labels for many, but not all
controls. You may supply labels for the other controls using static text. Not
only will this identify the control for the user, but it also will allow keyboard
users to quickly direct the focus to the control.

When the user keys in the mnemonic (such as the “S” in ‘Daily Sales ’),
Windows automatically directs the focus to the next control after the static
text label. Thus, you may place ‘Daily &Sales’ to the left of a drop-down
box. When the user presses ALT+S, the combo box will receive the focus. The
keyboard user will merely have to press the DOWN ARROW key to view the
choices in the list.

Microsoft suggests the following guidelines for control label text:

❏ Capitalize the first letter of each word, except for articles (e.g., a, an,
the), coordinate conjunctions (e.g., and, or, for), prepositions (e.g., by,
with) or the word “to” in infinitives.

❏ Try to use the first letter of the first word for the mnemonic. Since the
mnemonics need to be unique, however, this isn’t always possible.
Alternately, use another letter if it allows a stronger mnemonic link: such
as the “x” in “Exit ”. If the first word in the control label is less important
than another, use the other (e.g., “by Ascending Order ”).

❏ Choose consonants over vowels: they are more distinctive and more
easily remembered.

Microsoft also suggests the following positioning for control labels for the
following controls:

◆ Command buttons: inside the button.

◆ Check boxes, radio buttons: to the right of the control.

◆ Text boxes, spin boxes, lists, combo boxes: above or to the left of the
control. Place a colon after the last word of the label. Left align the label
with the section of the dialog box in which it appears.

Cursors

In a graphical environment such as Windows, the mouse cursor, or screen
pointer, is the means by which the user shows the application what to do
next. For example, the I-bar, or insertion point, may tell a word processing
application where the next characters typed by the user should appear. This is
a key part of the ‘event driven programming’ referred to earlier in this
chapter.

APPENDIX A WINDOWS DESIGN ISSUES 547

Though Microsoft has not set specific guidelines for the use of each system
cursor, the following uses have evolved into standards across GUI platforms:

Arrow: selects controls and menu commands.

I-beam: selects and inserts text.

Crosshairs: draws and manipulates graphics.

Plus sign: selects fields in an array.

Hourglass: shows that a lengthy operation is in progress.

548 CLARION 5 USER’S GUIDE

Menus
Menus display the range of commands available for the user to execute.
Windows users are accustomed to standard menus and commands which
appear in many different applications. If you use these same menus, new
users may learn your application more easily, and the sense of familiarity
will increase all users’ confidence and productivity levels.

When designing additional, custom menus and commands, bear in mind that
the model for GUI design is the ‘Noun-Verb.’ principle. Apple fancifully
refers to this as ‘Hey you—do this!’

In the ‘Noun-Verb’ model, the user points to something—for example, an on
screen object such as text. This is the noun. The model assumes that the next
command action the user chooses will tell the application what to do to the
noun. The action is the verb. If you word your menus and commands in a
way that the menu - command is a short ‘do this’ sentence—such as “Insert ➤

Record ,” “ View ➤ Transaction ,” “ List ➤ Activity ,” or “Select ➤ Current Group ,”
your menus will gain added clarity.

This guideline should not severely limit you. There are times when it is most
appropriate to use a single menu item to initiate complicated instructions,
such as bringing up a dialog box with many different preferences and options
for the user to set. When doing so, add an ellipsis (...) following the last word
of the menu command.

The following discusses the standard menu implementations recommended
by Microsoft:

File Menu

Many database applications do not naturally lend themselves toward
allowing the user to open and close external document files. In the simplest
case, a database or databases open automatically with the application, and
user editing is limited to editing individual records. Clarion programmers
may wish to limit commands on the file menu to those that affect the global
operation of the application—Printer Setup and Exit , in the most extreme
case. At the very minimum, your Clarion applications should have a File ➤

Exit command: this is how users expect a Windows application to allow them
to quit the program.

New or New...
Creates a new file with a default name such as ‘Untitled.’ This is
sometimes a problematical menu item when creating database
applications. Unless your application allows the user to create a
new database, or creates separate editable external files (such as
text files) Clarion programmers may wish to drop this command.

APPENDIX A WINDOWS DESIGN ISSUES 549

Open
Displays the File Open dialog, from the Windows common
dialog library. Allows the user to open external files.

Save
Saves the active document. For a new file, calls the Save As
dialog.

Save As
Displays the Save As dialog, from the Windows common dialog
library.

Print or Print...
Prints the active document, or leads to a dialog allowing the user
to set print options.

The Print command can be an interesting one in a database
application. Many times, a database application allows the user
only to print pre-formatted reports.

Other ‘docu-centric’ Windows applications may simply go ahead
and print the current document in its entirety—but a database
application can hardly be expected to print a 30,000 record
database as the default print preference.

One solution some popular applications use is to drop the print
command entirely and provide a separate Report menu. This is a
good solution for an application with a limited number of
reports. Alternatively, an application with a limited number of
reports might also use a cascading menu, attached to the File ➤

Print command.

For an application with a large number of pre-formatted reports,
one solution might be to present a list box in a dialog window
when the user selects the File ➤ Print command.

Print Setup
Displays the Printer Setup dialog, from the Windows common
dialog library.

This dialog allows the user to change the active printer and/or
specify settings for the selected printer.

Exit Closes all application windows and terminates the application. If
don’t have a File menu in your application, place your Exit
command on the leftmost application menu, as the last command
on the menu.

Edit Menu

The Edit menu usually provides commands for reversing the user’s last
action, plus the clipboard editing commands: cut, copy and paste.

550 CLARION 5 USER’S GUIDE

Undo
The Undo command should reverse the user’s last action. It must
always be the first command on the Edit menu, if your
application supports undo.

Clearly, database programs present special problems for Undo.
In general, Windows applications disable the Undo command
after a file operation, such as when a File ➤ Save command saves
an edited document to disk. A database application may easily
present a situation in which it writes data to disk every few
seconds when, for example, a user enters a group of new
records.

Cut Transfers a selected object to the clipboard and deletes it from
the field.

Copy
Places a copy of a selected object in the clipboard.

Paste
Places a copy of an object previously placed in the clipboard into
the current field.

Clarion automatically enables clipboard support for Cut , Copy
and Paste when in an edit box. The default accelerator keys for
these actions are CTRL+X, CTRL+C and CTRL+V respectively.

View Menu

Microsoft defines the View menu as optional, and states that it includes
commands for changing how the program presents the data to the user,
without changing any of the data. As such, it presents a natural means for a
database application to allow different browse options on a single database.

The View menu may also present options for displaying various interface
elements such as toolbars, status bars, and other special controls that are part
of the application window. There are no specific command text suggestions
for the View menu.

Window Menu

This is an optional menu. If you choose to support the Multiple Document
Interface (MDI) in your application, the Window menu allows the user to
manipulate entire child windows.

The commands for this menu are flexible. Common commands include:

Tile Arranges child windows end-to-end, so that all are visible.

Cascade

APPENDIX A WINDOWS DESIGN ISSUES 551

Arranges child windows in an overlapping fashion, so that the
title bar of each is visible.

The Window menu may also contain a numbered list of up to nine open child
windows. A number should precede each child window name. When the user
chooses a window from the list, the window should receive the focus.

Help Menu

The Help menu provides the user with access to the Windows Help system. It
should always be the last menu on the right. The Help menu usually contains
the following commands:

Contents
Loads the Windows Help system, then opens the external Help
file to the main contents page.

Search for Help On
This loads the external Help file, then automatically opens the
Search dialog. This allows the user to type in a word; if the word
appears as a topic title, the Help system jumps to the title.

How to Use Help
This opens the Windows Help system, and displays the
instructions for using it. The file “WINHELP.HLP,” which
Windows automatically installs, contains the instructions.

Accelerator Keys

A number of commands have gained standard accelerator (or alert, or hot)
keys. When creating your application, should you use any of the following
commands, we recommend you use the following keys:

Command Accelerator

File ➤ New CTRL+N

File ➤ Open CTRL+o
File ➤ Save CTRL+s, or SHIFT+F12

File ➤ Exit ALT+F4

Edit ➤ Undo CTRL+z
Edit ➤ Cut CTRL+x
Edit ➤ Copy CTRL+c
Edit ➤ Paste CTRL+v
Edit ➤ Select All CTRL+A

552 CLARION 5 USER’S GUIDE

Color
Color can greatly affect how your user works with your application.
Microsoft does not publish standard guidelines on color usage—yet. When
designing your application, the following guidelines may help you:

❏ Windows allows users to select default colors for window text and
background. It’s best to accept these default colors for the parts of the
program which require the most data entry: the user has expressed a
preference, so you should respect it!

❏ Without forgetting the first point, you may choose to accentuate
windows and screen elements by using color. Color can set off specific
areas in a window—it can be more effective than a group box.

❏ Use color to discriminate between different parts of your program. For
example, you may associate one window background color for dialog
boxes related to accounts receivable data entry, and another for payables.

❏ Use color to visually relate similar parts of the program. For example,
you may associate one window background color with phone number
data.

❏ Use standard cultural associations for special alerts. In western culture,
the most ‘meaningful’ colors are probably the ones on the traffic lights:
red, yellow and green. You may use red to signal a halt in a procedure.
You may use yellow to signal a warning. Green, of course, means go, all
clear.

❏ When adding color to text elements, remember that most colors look best
against a neutral grey background. If you don’t use grey, be sure there is
a high contrast between the text and the background color. In dim
lighting, color tends to wash out.

❏ Bear in mind that 8% of males in Europe and America have some degree
of color blindness. The most common type reduces the ability to
distinguish red and green from gray. In a less common type, the user
cannot distinguish between yellow, blue and gray.

❏ Remember that on monochrome LCD screens, light blue is very hard to
distinguish from gray and white.

APPENDIX B MAKING API CALLS 553

APPENDIX B - MAKING API CALLS

Overview
This appendix provides an introduction to Application Programming
Interface (API) calls. This appendix is meant only to provide an outline of
what API calls are, what they do, and to provide some basic examples to get
you started.

API calls provide a method for your program to call functions external to
your application. In other words an API call is simply calling a function from
someone else’s dynamic link library (DLL). A DLL is a file that contains
executable code that is linked into your .EXE at run-time. You can use API
calls to implement Object Linking and Embedding (OLE) and multimedia
processing in your applications.

Generally, making API calls from Clarion involves two steps: prototyping the
API functions, and linking the API functions into your program. However,
many Windows API calls are already linked for you. See Linking API
Functions below.

554 CLARION 5 USER’S GUIDE

Prototyping API Functions
Each API function you wish to call must first be prototyped in the Clarion
MAP structure. Functions written in a language other than Clarion can be
referenced in a Clarion program by creating an equivalent Clarion prototype.

The prototypes are placed in a MODULE structure which identifies the name
of the DLL’s library as the MODULE parameter. For example, if the DLL
name is WIN32.DLL then the module structure and prototype for the
GetWindowsDirectory function is:

MAP
MODULE(‘WIN32.LIB’)
GetWindowsDirectory(*CSTRING,USHORT),USHORT,RAW,PASCAL

END
END

In order to proceed with your prototyping, you will need a technical
reference describing the DLL’s functions, purposes, and parameters.

For Windows API calls, we have provided some prototype examples in
\LIBSRC\WINDOWS.CLW as well as the WINAPI.APP in the
\EXAMPLES\RESOURCE\WINAPI folder. If you need to call the Windows
API from your Clarion application or program, the WINAPI program can
help you build an include file with the necessary Windows API prototypes
and associated data declarations. The prototypes use the OMIT compiler
directive to accomodate transparent toggling between 16-bit and 32-bit
applications.

You may also want to read How to use DLLs not created in Clarion in the
How Do I...? section of Clarion’s on-line help. See also Procedure
Prototypes in the Language Reference.

There are several issues to consider when creating Clarion prototypes which
depend upon a DLL’s source code language. A primary consideration is
finding equivalent data types between the two languages. You can determine
equivalent data types by considering the underlying machine representation
of the data. For example, the Clarion data type SREAL stores a four-byte
signed floating point in Intel 8087 format, while a BFLOAT4 stores a four-
byte signed float in Microsoft Basic format.

APPENDIX B MAKING API CALLS 555

Here are some Clarion and C or C++ data type equivalents:

C/C++ Clarion
 unsigned char BYTE
 short SHORT
 unsigned short USHORT
 long LONG
 unsigned long ULONG
 float SREAL
 double REAL

 struct { Struct1 GROUP
 unsigned long ul1; ul1 ULONG
 unsigned long ul2; ul2 ULONG
 } Struct1; END

A second important prototyping consideration is the function calling
convention used by another language. Clarion provides support for three
different calling conventions: PASCAL, C, and TopSpeed’s Register Based.

556 CLARION 5 USER’S GUIDE

Linking API Functions
In order to call an API function, you must first link the function into your
program. This can be accomplished in several ways. Some functions
(WIN16.LIB and WIN32.LIB) are automatically linked. Other .DLL
functions must be explicitly linked from a corresponding .LIB file. Finally,
functions can also be dynamically linked using Clarion’s CALL function.

Windows API Functions

From a Clarion Language perspective, API calls can be divided into two
categories: Windows API calls and other API calls. Windows API calls are
calls to the functions that live in the three main Windows libraries
(USER.EXE, GDI.EXE and KERNEL.EXE).

Because the Clarion Language makes extensive use of Windows API calls,
many Windows API functions are already linked into Clarion’s run-time
libraries. This means you can make Windows API calls from your Clarion
programs simply by prototyping and calling. The linking is already done for
you.

Clarion ships \LIB\WIN16.LIB and \LIB\WIN32.LIB in this package so
references to these functions can be resolved during the compile and link
process. Many windows-based technical references or Windows API Bible
can provide information on the functions available in these Windows
libraries.

Here is an example of how to call a Windows API function:

PROGRAM
MAP
MODULE(‘WIN16.LIB’)
MessageBox(USHORT,*CSTRING,*CSTRING,USHORT),PASCAL,RAW

END
END

Caption CSTRING(18)
MessageText CSTRING(32)

CODE
Caption = ‘Title’
MessageText = ‘This is the text’
MessageBox(0,MessageText,Caption,30)

APPENDIX B MAKING API CALLS 557

Other API Functions

For API functions not in WIN16.LIB or WIN32.LIB, you must have a library
file (.LIB) that corresponds to the .DLL. Once you have a .LIB that
corresponds to the .DLL, add the .LIB to your Project File so the linker can
resolve the external reference during the compile and link process. Prototype
the functions your application calls, then compile and link as usual. The
function can then be dynamically linked into your program at run-time.

Creating a .LIB from a .DLL

You can make and use a .LIB that corresponds to a .DLL as follows:

1. Create an Export (.EXP) File for the DLL.

2. Create a Library (.LIB) File for the DLL.

3. Reference the Library (.LIB) File in the Project System.

Create an Export File for the DLL

The TopSpeed Tech Kit includes a program (TSIMPLIB.EXE) that can be
used to create .LIB files from .DLLs. The TopSpeed Tech Kit ships with
TopSpeed C, C++, Modula-2, and Pascal.

You can also extract the set of accessible DLL function names from a DLL
by using the EXEHDR.EXE DOS command line utility program. This
program appears on most DOS diskettes earlier than version 6.0. If this
utility program is not available then some other utility program or method
may be substituted which provides the same list of names.

Append the extracted function names (stripped of any surrounding text) to
the export file header information provided below. Substitute the appropriate
DLL name for the word “dllname” on line 1 of the header information. Save
the Export file under the same file name as the DLL with the extension .EXP.

—————————— Start of EXPORT File —————
LIBRARY dllname
CODE MOVEABLE DISCARDABLE PRELOAD
DATA MOVEABLE SINGLE PRELOAD
HEAPSIZE 1024
STACKSIZE 32678
SEGMENTS
 ENTERCODE MOVEABLE DISCARDABLE PRELOAD
EXETYPE WINDOWS
EXPORTS
 function and function names go here (one name per line)
—————————— End of EXPORT File ——————

558 CLARION 5 USER’S GUIDE

Create a Library .LIB File for the DLL.

Once you have created an Export (.EXP) file, you can create a .LIB file for
the DLL using the #implib project system command. The #implib command
creates or updates a Library (.LIB) file based on the information contained in
an Export (.EXP) file. The command’s syntax is:

#implib <library file name> <export file name>

where

<library file name> is the DLL name with the extension .LIB

<export file name> is the DLL name with the extension .EXP.

Using a text editor, create a Clarion Project File (.PRJ) and enter a single line
in the file containing the #implib project system command with the
appropriate parameters. Note the #implib must be in lowercase. Save the
project file under an appropriate name (i.e. the DLL file name with the .PRJ
extension). See the Programmer’s Guide for more information on #implib.

Under Clarion, set the project file you just created as the current project:

1. Choose Project ➤ Set.

2. Select the project file and press the OK button.

3. Make the project by pressing the Make button on the Toolbar.

If the Make was successful and the Library (.LIB) file was created then a
confirmation window appears with a green check mark in the bottom-right
corner and appropriate completion messages display. The Library (.LIB) file
is ready to use.

Reference the .LIB File in the Project System.

Place the Library (.LIB) file in the Project Tree (under ‘Library and Object
files’) of any Project when you use the associated DLL’s functions. During
the link phase of the Make, the linker recognizes any referenced functions in
the Library (.LIB) file.

CALL

If you do not have a .LIB file that corresponds to the .DLL you wish to
access, and cannot make one, the Clarion CALL procedure gives limited
access to .DLL functions without explicitly linking the function. There is
more overhead incurred with the CALL procedure than with calling the API
function directly. CALL uses an intermediate API function to access the
target API function, and requires that you know where in the .DLL the
desired function resides. You cannot pass parameters to the CALLed
function, nor can it return any values. See the Language Reference for more.

Appendix C D EVELOPMENT AND DEPLOYMENT STRATEGIES 559

APPENDIX C - DEVELOPMENT AND DEPLOYMENT

STRATEGIES

Overview—EXEs, .LIBs, and .DLLs
The way you organize your application files can have a significant impact on
the efficiency of your work processes throughout the life cycle of the
application. For example, developing all of your procedures within a single
.APP file keeps everything under one roof. This can be a benefit for smaller
applications—keeping all files in a single directory makes finding and
backing up the files quite easy if there are reasonably few files. This benefit
can become a problem for larger applications—backing up or compiling
hundreds of files at once can be time consuming and tricky. So you can see
how organization affects the development phase of your application.

The ultimate size and number of your application’s executable files affects
your ability to quickly and easily distribute upgrades and bug fixes to your
end users. This is one way that organization affects the maintenance phase of
your application.

This appendix discusses of some of the factors you should consider when
deciding how to structure your application files, both for the development
and maintenance phases of the application. This includes instructions on how
to implement the organization that best suits your needs.

Generally speaking, the benefits of breaking large programming projects into
smaller logically related pieces are:

Development Phase

◆ Smaller, more manageable problems.

◆ The ability to test and debug smaller pieces of code.
The smaller the code, the easier it is to isolate
problems.

◆ Faster compile and link times.

◆ The ability to genericize and reuse code.

◆ The ability to delegate programming tasks to
multiple programmers.

Maintenance Phase

◆ The ability to sell and distribute discrete application
components.

◆ The ability to deploy bug fixes and upgrades with
small files.

560 CLARION 5 USER’S GUIDE

◆ For reused code, the ability to affect many
procedures by changing a single source file.

These benefits are most easily realized by creating multiple .APP files that
are used to make separate .DLLs or .EXEs that are developed and tested
independently. As the project nears completion the executable files are linked
together and tested as a whole.

Some problems associated with breaking large programming projects into
smaller pieces include:

Development Phase

◆ Managing more files: backing up, naming
conventions, and synchronization of files becomes a
bigger job.

◆ Correctly linking together related pieces of
executable code.

Maintenance Phase

◆ Managing more files: version control is more
difficult. The end user must have a complete set of
compatible files.

◆ For reused code, unintentionally affecting many
procedures by changing a single source file.

◆ Accidentally omitting a required file during
deployment.

Appendix C D EVELOPMENT AND DEPLOYMENT STRATEGIES 561

Multi-Programmer Development
Clarion modular approach to source code management, its procedure-
oriented language, and its ability to produce .DLL and .LIB files allows your
team to split the work on big programming projects.

Our recommended methods for group development assume the team is
linked by a LAN which supports the ability to grant read-only or read-write
privileges to individual developers. It doesn’t matter whether the LAN is
peer-to-peer or a more traditional network operating system. We also assume
the project will have a Team Leader or Project Manager to coordinate the
overall efforts of the team. Finally we assume, as per our license agreement,
each Clarion programmer has a licensed copy of Clarion.

The first step to prepare for a team-development project is to create a data
dictionary available to all developers, but which only the team leader may
edit. An Application Generator option (Multi user Development check box
under Setup ➤ Application Options) provides support for opening the Data
Dictionary and REGISTRY.TRF in read only mode, so that many developers
working with separate .APP files can work with the same dictionary. Prior to
beginning the project, all team members should synchronize their
REGISTRY.TRF and their template source files. The Team Leader should be
responsible for the dictionary and the template set.

Once the data dictionary is created, there are three basic approaches your
team can take to use Clarion as a group development tool:

◆ Procedure-oriented:

The team divides the application into procedures, as listed in the
Application Tree. These should be organized around the various
windows, dialog boxes, menu items, and command buttons that form the
user interface.

The Team Leader prepares a “shell .APP,” (or master) upon which all the
others build. Each team member receives a copy of the .APP file, then
works on a procedure (or procedures). The Team Leader imports the
completed procedures into the master .APP file for compiling. This
approach is suitable for small to medium size projects.

◆ Module-oriented:

The team divides the application into its target-file-level components
(.DLL’s, .LIB’s, and executables). Each team member creates a single
target file. Separate project files (.PRJ) compile the individual
components. A master project file may include all the other project files,
building all target files at once. This approach is suitable for medium to
large size projects.

562 CLARION 5 USER’S GUIDE

◆ Sub-Application:

The team divides the application into its target-file-level components
(.DLL’s). Each team member creates a single application or Dynamic
Link library (.DLL). A master application calls each .DLL. This
approach is suitable for medium to large size projects. This method
provides the most flexibility and minimizes version control concerns.

Enabling and Organizing Team Projects

This section describes how to set up the Clarion Development Environment
at each workstation, and where to store the files necessary for all three group
development approaches:

1. Create the data dictionary in a shared directory.

All team members working on the project must have read rights to the
directory. Those permitted to edit the dictionary should also have write
privileges, though it may be best that only the Team Leader be allowed
to edit it.

2. Create a shared directory for resource files.

Provide read rights for all team members to icon, cursor, bitmap, and
other resource files.

3. Within Clarion, at each workstation, choose Setup ➤ Application
Options.

This opens the Application Options dialog.

4. Check the Multi User Development checkbox.

This specifies that when working in the Application Generator, the copy
of Clarion residing at each workstation opens the dictionary file on the
network in read-only mode. The purpose is to ensure that no one acci-
dentally deletes a field, file, or key needed by other team members. For
this reason, we recommend that only the Team Leader have write
privileges to the directory containing the dictionary. To modify the
dictionary, all team members must close all applications which use the
dictionary. The Team Leader must clear the Multi User Development
box in order to modify the dictionary and ,upon completion, check the
box again.

5. Press the OK button to close the dialog.

6. Create a directory on each workstation’s local drive to hold each team
member’s individual .APP and source files.

The real work is planning how to split the development project, which is
what the remainder of this chapter discusses.

Appendix C D EVELOPMENT AND DEPLOYMENT STRATEGIES 563

Note: If your application’s .DLLs use your application files, the FILE
definitions and all Global variables must be declared in a .DLL
(not the .EXE) and exported. See the Sub-Application
Approach for more information.

Procedure Oriented Approach

The Application Generator lets you import and export procedures from other
.APP files. With careful management, a Team Leader can organize
development so that each team member can compile and test a copy of the
application which includes the parts he or she works on. Each views the
entire menu and the application’s most important dialog boxes, yet executes
only the procedures for which that team member is responsible.

Note: This approach is only necessary If your team members are not
using Enterprise Edition, or do not have Version Control/team
Developer.

To accomplish this, each team member requires a copy of a “master” .APP
file, containing the MAIN procedure (which would most likely be an
Application Frame procedure), plus other procedures inserted below it as
“ToDo” procedures. Each team member then “plugs in” the procedures he or
she is responsible for.

To assemble the complete application, using the File ➤ Import from
Application command, the Team Leader imports each finished procedure into
the master .APP file.

The following outlines a possible implementation of the procedure oriented
approach:

1. Create the data dictionary and set up the workstations as described
above.

2. Create a “master” .APP file in a directory to which only the Team Leader
has write privileges.

3. Within the .APP file, edit the MAIN procedure’s most important user
interface elements and declare its global variables.

The user interface elements may include any dialog boxes or windows of
particular importance to the application. As you specify procedure calls
to menu items and/or toolbar controls, the Application Generator auto-
matically adds “ToDo” procedures the application tree.

4. Save and copy the .APP file to each team member’s local drive.

If the team prefers, you can rename each copy; for example,
MASTER01.APP, MASTER02.APP, etc. or JIM.APP, JANE.APP, etc.

564 CLARION 5 USER’S GUIDE

5. Team members work on the procedures for which they are responsible,
using their own copy of the .APP file.

With the .APP file containing the complete user interface, each team
member can compile an interim build locally, to test their own proce-
dures while under development.

6. Each team member synchronizes their local directory with an equivalent
directory on the network at the end of each work session, or copies
renamed .APP files to a “master” directory.

7. To update the master .APP file with the latest work from a developer, the
Team Leader replaces a “To Do” procedure in the Application Tree with
a completed procedure in a team member’s .APP by importing it. The
Team Leader chooses File ➤ Import from Application , indicating the same
procedure in the .APP file in the developer’s network directory.

Any sub-procedures added by the team members will be brought along
as new “To Do” procedures. When the Team Member completes these,
they can be imported in the same manner. As the Team Leader’s master
.APP file “grows”, it can be copied back to team members’ individual
directories (but only if all the work done by the individual team member
was imported). This way, each team member has access to all the work
completed by other members of the team. Keep in mind that each of the
other member’s modules will need to be compiled on the member’s local
drive.

If the Team Leader is also a team member—i.e., also responsible for
coding procedures—it’s best to maintain a completely separate directory
and copy of the master .APP file for that work.

8. After importing the updated procedure, the Team Leader checks to see if
it added any new “To Do” procedures to the tree, and imports those, if
ready.

Communication at this step is vital. In fact, based on E-Mail messages
within the team, the Team Leader could optionally import “works in
progress.”

9. The Team Leader compiles the project, so that it now includes each team
member’s work added through importing procedures.

10. The Team leader repeats the last three steps on a periodic basis until all
work by all team members is complete, and the entire application can be
tested.

Module Oriented Approach

With this approach, each team member creates a separate target file. This
requires splitting the application into a “Main” executable and “secondary”
executables or dynamic link libraries. The individual team members maintain
separate project files (.PRJ) for each component. The Team Leader creates a
master project file to build all target files at once.

Appendix C D EVELOPMENT AND DEPLOYMENT STRATEGIES 565

The key to successfully implementing this strategy is extensively pre-
planning the “division of labor” between the various target files created by
the application. The Notes section below provides a few helpful suggestions.

The following outlines a possible implementation of this strategy:

1. Create the data dictionary and set up the workstations as described
above.

2. Each team member creates their own .APP and .PRJ files, specifying the
dictionary file on the network as the data dictionary, and a directory on
the local drive as the default directory for the .APP file. Each team
member specifies a different target file.

One particular .APP or .PRJ file creates the executable which launches
or calls library functions or procedures in the others. To the end user, this
is the .EXE program to start when working with the complete
application.

3. Each team member synchronizes their local directory with an equivalent
on the network at the end of each day.

4. The Team Leader creates a master .PRJ file which includes all the other
.PRJ files, in a network subdirectory.

The Team Leader inserts the name of each .PRJ file (previously copied
to the network) in the Projects to Include item in the Project Tree.

5. The Team Leader compiles the master project, which in turn compiles all
the target files one by one.

6. The Team leader repeats the last step on a periodic basis until all work
by all developers is complete, and the entire application can be tested.

Notes on Splitting the Project

There are probably as many ways to split a project as there are projects; this
section provides a few general suggestions.

◆ If a task associated with a menu command requires extensive coding,
store it in its own external .DLL, so that only a single developer can
work on it.

A typical example might be an accounting program, which could store
all procedures and functions associated with accounts receivable in one
.DLL file, accounts payable in another, and so forth.

◆ Organize .DLL’s by function; for example, place utility procedures and
functions such as backups and file exports in a UTILITIES.DLL.

◆ Store user defined functions in .LIB files; distribute the compiled .LIB
files to each team member as they become available so that each may test
any functions required in their own work.

566 CLARION 5 USER’S GUIDE

Notes on File Management

Each multi-developer project has its distinct properties, so you’ll
undoubtedly adapt the following suggestions to fit your needs:

◆ Create a subdirectory for each team member on the network drive, either
at the same level or below the one holding the data dictionary file. Give
each developer write privileges only to their own directory, and use a
network utility to synchronize the directories at the end of the day.

This not only serves as a backup, but provides the Team Leader access to
the latest work done by all members of the team.

◆ If the application under development creates an .INI file, a copy of it
should reside in a network directory to which all team members have
write privileges, so that if anyone should need to add a variable to the
file, other members of the team can see it.

Sub-Application Approach

This section describes the steps to create a program using one main
application and several sub-applications compiled and linked as external
.DLLs. Dividing a large project into multiple .DLLs provides many benefits:

◆ Each sub-application can be modified and tested independently.

◆ Developers can work on their portion of the project without interfering
with others on the development team.

◆ Each sub-application can be compiled as a .DLL and tested in the main
program without recompiling the entire project. This reduces compile
and link time.

◆ Dynamic Pool Limits are avoided in large projects.

◆ Future updates can be deployed by shipping a new .DLL, reducing
shipping costs.

Tip: The Clarion runtime libraries assume the .EXE or .DLL where a
window was most recently opened is where any referenced
icons are located.

With this approach, each Team Member creates a separate .DLL that is
called by a “master” application. This requires splitting the application into a
“Main” executable and “secondary” .DLLs. The individual team members
maintain separate application files for each component. The Team Leader
creates a master application that calls the sub-applications and a “data”
application that contains (and exports) all the File definitions and Global
variables. Optionally, members can call procedures from another member’s
.DLL.

Appendix C D EVELOPMENT AND DEPLOYMENT STRATEGIES 567

This method also requires extensive pre-planning of the “division of labor”
between the various target files created by the application. The previous
section provides a few helpful suggestions.

The following outlines a possible implementation of this strategy:

1. Create the data dictionary and set up the workstations as described
above.

2. Create a “data” application to store and export all data declarations. All
Global variables or structures and all file definitions are defined (and
exported) in this application. Use the following settings:

In the Application Properties dialog:

Dictionary File: master dictionary
First Procedure: none
Destination Type: .DLL

In the Global Properties dialog General tab:

Generate template globals and ABCs as External: OFF
In the Global Properties dialog General tab:

Generate All File declarations: ON
External : NONE EXTERNAL
Export All File declarations: ON

Note: You do not need (and should not have) OWNER, NAME or
PASSWORD on those FILES which have the EXTERNAL
attribute. These attributes should only be on FILEs not
declared EXTERNAL.

3. Team member create their own sub-application .APP files, specifying the
dictionary file on the network as the data dictionary, and a directory on
the local drive as the default directory for the .APP file. Each team
member specifies a different target file using the following settings:

In the Application’s Module Tree:

Choose Application ➤ Insert Module, then in the Select Module Type
dialog, select ExternalDLL, then in the Module Properties dialog,
select the corresponding .LIB for the .DLL containing the data
definitions.

In the Application Properties dialog:

Dictionary File: master dictionary
Destination Type: .EXE for development

.DLL for release

568 CLARION 5 USER’S GUIDE

Note: Changing the Destination Type enables procedures to be
exported. Make sure that every procedure that is called by the
master application or another .DLL has the Export Procedure
check box in the Procedure Properties checked (the check box
is only available after changing the destination type).

In the Global Properties dialog General tab:

Generate template globals and ABCs as External: ON
In the Global Properties dialog File Control tab:

Generate All File declarations: OFF
External: ALL EXTERNAL
All Files declared in another .App: ON
Declaring Module: Leave this blank

In the Global Properties dialog External Module Options tab:

Standard ABC LIB/DLL? ON

One particular .APP creates the executable which launches or calls
library functions or procedures in the others. To the end user, this is the
.EXE program to start when working with the complete application.

4. Team members synchronize their local directory with an equivalent on
the network at the end of each day.

5. Team Members release their compiled and linked .DLLs to the Team
Leader.

Each sub-application has a “dummy” frame (not exported) that calls the
sub-application’s procedures so the Team Member can test the sub-
application by compiling it as an .EXE. Once it passes testing, the
member compiles it to a .DLL by changing the Application Properties’
Destination Type to .DLL and releases the file to the Team Leader.

Tip: If you edit the Redirection file to include “.” at the start of the
*.DLL and *.LIB search paths, Clarion generates the *.DLL and
*.LIB files into the local sub-application subdirectory instead
of \CLARION5\BIN and \CLARION5\OBJ. This is a little safety
precaution that prevents the *.DLL and *.LIB from getting into
other Team Members’ hands before it’s ready. In addition,
adding the Master directory to the end of these search paths
enables the sub-application or main application to find the
completed .LIB’s and .DLL’s belonging to other sub-
applications in the master subdirectory.

6. The Team Leader copies the released .DLLs into the master directory
and creates a master .APP file which calls the entry point procedures in
the .DLLs.

Appendix C D EVELOPMENT AND DEPLOYMENT STRATEGIES 569

The Master .APP is typically just a bare bones application with just a
splash screen and a main frame with a menu and toolbar. The .DLLs are
called at run-time so you don’t need to compile a large Master .EXE.
The Master .APP should have the same settings as the sub-applications
except that it is always compiled as an .EXE.

The master .APP should have these settings:

In the Application Properties dialog:

Dictionary File: master dictionary.
Destination Type:

In the Global Properties dialog General tab:

Generate template globals and ABCs as External: ON
In the Global Properties dialog File Control tab:

Generate All File declarations: OFF
External: ALL EXTERNAL
All Files declared in another .App: ON
Declaring Module: Leave this blank

In the Application’s Module Tree:

Choose Application ➤ Insert Module, then in the Select Module Type
dialog, select ExternalDLL, then in the Module Properties dialog,
select the corresponding .LIB for the .DLL containing the data
definitions.

Choose Application ➤ Insert Module, then in the Select Module Type
dialog, select ExternalDLL, then in the Module Properties dialog,
select the corresponding .LIB for the sub-application .DLL. Repeat
this step for each sub-application.

For each procedure the main application calls, edit the ToDo
procedure as follows:

Template: External template.

Module name: Select the .LIB from the drop-down list.

If necessary delete any empty generated modules.

7. The Team Leader compiles the master .APP and tests the calls to the
.DLLs.

8. The Team leader repeats the last step on a periodic basis until all work
by all developers is complete, and the entire application can be tested.

570 CLARION 5 USER’S GUIDE

One-Piece EXEs
A one-piece .EXE is an .EXE file that contains everything it needs to run
except files that cannot be linked in (.VBXs, data files, etc.). That is, the
.EXE needs no associated .DLLs, .ICOs, etc., because they are already
linked into the .EXE.

When to Use One-Piece EXEs

Development Pros and Cons

Potentially none, because the final state of the .EXE does not necessarily
affect the organization of the project at development time.

For example, an application may be developed using several .APP files to
generate separate executables (.EXE or .LIB). Eventually the separate
executables are linked together to make a one-piece .EXE.

The make time for the one-piece .EXE is greater than the make time for its
individual components, so at the point in the development cycle where you
link in and test all components, make times increase.

Maintenance Pros

You deploy a single file. There’s no chance of forgetting a required
executable file or of deploying an incompatible set of .EXEs and .DLLs.
There’s no chance of a conflict with a different version of a .DLL with the
same name.

Maintenance Cons

Your changes require relinking the entire project, plus deploying a larger file.
Larger files are generally more difficult to deploy. Your end user cannot
share .DLLs between mutiple programs; that is, if two or more one-piece
.EXEs execute the same code, that code is duplicated within each .EXE—an
inefficient use of disk space.

Conclusion

Use a one-piece .EXE for small and medium applications that are
infrequently deployed. That is, the application is reasonably stable or the
application is distributed to only a few end users.

Use .LIBs when you want to separate your development process into
multiple applications, but you want to deploy your application as a one-piece
.EXE. You can initially make each application an .EXE so it can be
independently developed and tested. When you are ready to integrate all the

Appendix C D EVELOPMENT AND DEPLOYMENT STRATEGIES 571

applications together, make the called applications into .LIBs, then link them
into the parent application.

How to Implement One-Piece EXEs

Create a one-piece .EXE from one or several .APP files. The simplest
approach is to create an .EXE from a single .APP file. Alternatively, you may
use several .APP files to create one or more .LIBs which are linked into the
one-piece .EXE.

Tip: You may want to create .EXEs rather than .LIBs during the
development cycle in order to reduce link times and to permit
isolated testing and debugging of discrete executables. Near
project completion, convert to .LIBs by changing the Project’s
Target Type or the Application’s Destination Type to LIB.

To create a one-piece .EXE from one or more .APP files:

Set the Parent Application’s Destination Type to EXE

The highest level (parent) application’s Destination Type should be set to
.EXE in the Application Properties dialog. The parent application is the one
whose procedures are not called by any other application’s procedures.

1. Open the parent application.

2. Choose Application ➤ Properties from the menu.

3. In the Application Properties dialog, choose executable(.EXE) from the
Destination Type drop-down list.

Tip: Setting the Project’s Target Type is equivalent to setting the
Application’s Destination Type and vice versa.

Set the Parent Application’s Run-Time Library to Local

Set the parent application’s Run-Time Library to Local in the Project Editor’s
Global Options dialog. This links the Clarion runtime functions, including all
referenced file drivers into the application’s .EXE.

1. Open the parent application.

2. Choose Project ➤ Properties from the menu.

3. In the Project Editor dialog, press the Properties button.

4. In the Global Options dialog, choose Local from the Run-Time Library
drop-down list.

572 CLARION 5 USER’S GUIDE

Note: Run-Time Library in this context automatically includes all file
drivers used by your application!

If there are no LIBs, then you are ready to make your one-piece EXE. Skip
to the last step in this section Make and Run Your One-Piece EXE.

Make the LIBs

You may make LIBs for other purposes than creating one-piece .EXEs. The
following information, except Set the LIB Application’s Run-Time Library to
Local, applies for any LIBs you make.

Make and test your LIB application just as you would any other application.
Note the name of your LIB and it’s procedures because you will reference
these names in your parent application.

When you are finished testing, remake your LIB application with the
following settings to create a LIB file to link into the parent EXE.

1. Choose Application ➤ Properties from the menu.

2. Choose Library(.LIB) from the Destination Type drop-down list then
press OK.

Declare the LIB’s Procedures Globally

By default, the ABC Templates declare procedures locally using local MAPs.
Local MAPs minimize compile times but are inappropriate when making a
LIB and will produce a “Link Error: procedure@F is unresolved...” when
making the calling application. Within the LIB’s application, you should
declare globally, each procedure called by the parent application. So either

1. In the Procedure Properties dialog, check the Declare Globally box for
each called procedure;

or

1. Choose Setup ➤ Application Options from the menu, select the
Generation tab, then clear the Create Local Maps box to declare all
procedures globally.

Set the LIB Application’s Run-Time Library to Local

Set the LIB application’s Run-Time Library to Local in the Project Editor’s
Global Options dialog. This tells the linker that the Clarion run-time
functions, including all referenced file drivers, are in the parent application’s
EXE.

1. Choose Project ➤ Properties from the menu.

2. In the Project Editor dialog, press the Properties button.

Appendix C D EVELOPMENT AND DEPLOYMENT STRATEGIES 573

3. In the Global Options dialog, choose Local from the Run-Time Library
drop-down list, then press OK.

4. Choose Project ➤ Make from the menu to make the .LIB.

Add the LIB Modules to Your Parent Application

The following steps tell your parent application that some external
procedures are called from a particular .LIB.

1. Open the parent application.

2. Choose Application ➤ Insert Module from the menu.

3. In the Select Module Type dialog, choose ExternalLIB.

4. In the Module Properties dialog Name field, type the name of the .LIB
then press OK.

5. In the Module Properties dialog Map Include File field, type the name of
the include file that contains the called procedures’ prototypes.

You must create this file. You can do so by copying the procedure
prototypes from the generated appname.clw file and saving them into a
separate .inc file.

Add the External Procedures to Your Parent Application

1. Open the parent application.

2. Choose Procedure ➤ New from the menu.

3. In the New Procedure dialog, type the name of the external procedure
and press OK.

4. In the Select Procedure Type dialog, select External.

This opens the Procedure Properties dialog. The Files , Procedures ,
Formulas , and Extensions buttons on this dialog are not meaningful for
external procedures and you should ignore them.

5. In the Module Name drop-down list, select the .LIB that contains the
external procedure then press OK.

This tells the parent application where to find the external procedure.

Add RSC Files to Your Parent Application’s Project

For 16-bit applications only, add any .RSC, .ICO, .BMP, etc. files used by
the .LIB to the parent application’s project.

1. Open the parent application.

2. Choose Project ➤ Edit from the menu.

3. Highlight Library and Object files then press the Add File... button.

574 CLARION 5 USER’S GUIDE

4. Navigate to the .RSC file then press OK.

By default, the .RSC files are in the same directory as the .OBJ files for
the .LIB; that is, \CLARION5\OBJ.

Tip: You can tell the Application Generator to generate the .RSC
files into your application directory by editing the redirection
file (..\CLARION5\BIN\CLARION5.RED). Insert a period and
semicolon in the *.rsc line as follows:

*.rsc = .;\CLARION5\obj

See Project System—Library, Object, and Resource Files for more
information.

Make and Run Your One-Piece EXE

1. Open the parent application.

2. Choose Project ➤ Run from the menu.

The Application Generator and the Project System generate source code,
then compile and link the one-piece EXE based on:

◆ Application Properties’ Executable(.EXE) Destination Type

◆ Project Editor—Global Options .EXE Target Type

◆ Project Editor—Global Options Local Run-Time Library

◆ The .LIB Modules and external procedures you inserted into
your application tree.

Note: Do not mix 16-bit and 32-bit applications by trying to link a 16-
bit .LIB or .DLL into a 32-bit .EXE, or vice versa.

Appendix C D EVELOPMENT AND DEPLOYMENT STRATEGIES 575

EXE Plus DLLs
.EXE Plus .DLLs is an .EXE that requires some associated files that could
have been linked into the .EXE at compile time. That is, the .EXE does need
associated .DLLs, .ICOs, etc., because they are not already linked into the
.EXE.

The use of this configuration primarily affects the maintenance cycle of the
application; however, the creation of one or more .DLLs implies the presence
of multiple .APP files, which also affects the development cycle.

The .DLLs often include the Clarion run-time .DLL and one or more file
driver .DLLs. Please be aware that these .DLLs may be hidden by creating a
one-piece .EXE, or by linking them into another .DLL that you create! See
Hiding the Clarion Run-time Library.

Tip: The Clarion runtime libraries assume the .EXE or .DLL where a
window was most recently opened is where any referenced
icons are located.

When to Implement

Use an .EXE plus .DLLs for two or more applications that share a common
.DLL. This saves disk space. A good example of this is two Clarion
applications that use the same TopSpeed file driver: C5TPSx.DLL. The
applications and shared .DLLs should be fairly stable so you don’t have two
different .DLLs with the same name on the same machine. Different .DLLs
with the same name can lead to confusion and worse if the .DLL files are not
managed properly.

Use an .EXE plus .DLLs for very large applications or for applications that
are deployed frequently. This lets you deploy only the portions of the
application that actually change.

How to Implement

To create an .EXE plus .DLLs:

Set the Parent Application’s Destination Type to EXE

Set the parent application’s Destination Type to .EXE in the Application
Properties dialog.

Note: Typically, an .EXE calls .DLLs, however, a.DLL may call other
.DLLs.

576 CLARION 5 USER’S GUIDE

1. Open the parent application.

2. Choose Application ➤ Properties from the menu.

3. In the Application Properties dialog, choose executable(.EXE) from the
Destination Type drop-down list.

Tip: Setting the Project’s Target Type is equivalent to setting the
Application’s Destination Type and vice versa.

Set the Parent Application’s Run-Time Library to Standalone

The parent application’s Run-Time Library should be set to Standalone in the
Project’s Global Options dialog. This allows the .EXE to link in Clarion
external functions at run-time from C5RUN[x].DLL.

1. Open the parent application.

2. Choose Project ➤ Properties from the menu.

3. In the Project Properties dialog, press the Properties button.

4. In the Global Options dialog, choose Standalone from the Run-Time
Library drop-down list.

If you are not making your own .DLLs, that is, if there is only one .APP file,
then you are ready to make your .EXE plus .DLLs. Skip to the last step in
this section, Make and Run Your .EXE Plus .DLLs.

Generate Global Data and ABCs EXTERNAL

Note: If your application’s .DLLs use your application files, the FILE
definitions and all Global variables must be declared in a .DLL
(not the .EXE) and exported. See Sub-Application Approach
above for more information.

Generate the parent application’s global data and ABC Library declarations
with the EXTERNAL attribute. This allows the ABC Library objects, the
GlobalRequest and GlobalResponse variables, plus global variables you
define to be shared between local and external functions.

1. Open the parent application.

2. Choose Application ➤ Global Properties from the menu.

3. In the Global Properties dialog, check the Generate template globals and
ABCs as EXTERNAL box.

4. If there is a green check beside the Data button, then press it.

5. In the Global Data dialog, press the Properties button.

6. In the Field Properties dialog, select the Attributes tab.

7. In the Storage Class drop-down list, select EXTERNAL-DLL .

Appendix C D EVELOPMENT AND DEPLOYMENT STRATEGIES 577

Repeat 5 through 7 for each global data item.

Make the DLLs

Make and test your .DLL application just as you would any other
application. Note the name of your .DLL and it’s procedures because you
will reference these names in your parent application.

Typically one of the .DLLs (the “Data DLL”) contains file declarations and
ABC Library objects only, with no other procedures. We recommend this
configuration because it is easy to set up and to maintain. If needed (your
system uses more than one data dictionary), you can make a separate DLL
for each data dictionary, and a separate DLL for the ABC Library objects.
See Sub-Application Approach above for more information.

When you are finished testing, remake each DLL application with the
following settings to create a DLL file to link into the parent EXE at runtime.

1. Choose Application ➤ Properties from the menu.

2. Choose Dynamic Link library(.DLL) from the Destination Type drop-
down list and press OK.

Choosing a Destination Type of .DLL automatically exports (makes
public) each procedure in the application.

Tip: To optimize performance, export only the procedures called by
another executable.

3. In the Procedure Properties dialog, clear the Export Procedure box for
each procedure not called externally.

Procedures that are only called within the .DLL application need not be
exported.

Set the DLL Application’s Run-Time Library to Standalone

Set the .DLL application’s Run-Time Library to Standalone in the Project
Editor’s Global Options dialog. This lets the .DLL link in Clarion functions at
run-time from C5RUN[x].DLL.

1. Choose Project ➤ Properties from the menu.

2. In the Project Editor dialog, press the Properties button.

3. In the Global Options dialog, choose Standalone from the Run-Time
Library drop-down list, then press OK.

4. Choose Project ➤ Make from the menu.

578 CLARION 5 USER’S GUIDE

Add the DLL modules to the Parent Application

The following steps tell your parent application that some external
procedures are called from a particular .DLL.

1. Open the parent application.

2. Choose Application ➤ Insert Module from the menu.

3. In the Select Module Type dialog, choose ExternalDLL.

Note: When you make a .DLL with Clarion, you also generate a
corresponding stub .LIB. The linker links the stub .LIB at
compile time so your application can call the .DLL at run-time.

4. In the Module Properties dialog, press the Module Name ellipsis button to
select the stub LIB (or type the LIB name) that corresponds to the .DLL,
then press OK.

Add the External Procedures to the Parent Application.

1. Open the parent application.

2. Choose Procedure ➤ New from the menu.

3. In the New Procedure dialog, type the name of the external procedure
then press OK.

4. In the Select Procedure Type dialog, select External.

This opens the Procedure Properties dialog.

The Files , Procedures , Formulas , and Extensions buttons on this dialog
are not meaningful for external procedures and you should ignore them.

5. In the Module Name drop-down list, press the Module Name ellipsis
button to select the stub LIB (or type the LIB name) that corresponds to
the .DLL, then press OK.

Make and Run Your EXE Plus DLLs

1. Open the parent application.

2. Choose Project ➤ Run from the menu.

The Application Generator and the Project System generate source code,
then compile and link the .EXE plus .DLLs based on:

◆ Application Properties’ Executable(.EXE) Destination Type

◆ Project Editor—Global Options .EXE Target Type

◆ Project Editor—Global Options Standalone Run-Time Library

◆ The .DLL Modules and external procedures you inserted into
your application tree.

Appendix C D EVELOPMENT AND DEPLOYMENT STRATEGIES 579

Note: Do not mix 16-bit and 32-bit applications by trying to link a 16-
bit .LIB or .DLL into a 32-bit .EXE, or vice versa.

Hiding the Clarion Run-time Library

Making a one-piece .EXE hides the Clarion run-time Library within the
.EXE. You can also hide the run-time Library by linking it into another .DLL
as follows:

Set the Parent Application’s Destination Type to .EXE

The parent application’s Destination Type should be set to .EXE in the
Application Properties dialog. The parent application is the one whose
procedures are not called by any other application’s procedures.

1. Open the parent application.

2. Choose Application ➤ Properties from the menu.

3. In the Application Properties dialog, choose Executable(.EXE) from the
Destination Type drop-down list.

Tip: Setting the Project’s Target Type is equivalent to setting the
Application’s Destination Type and vice versa.

Set the Parent Application’s Run-Time Library to External

The parent application’s Run-Time Library should be set to External in the
Project’s Global Options dialog. This tells the .EXE to link in Clarion
external functions at run-time from a .DLL other than C5RUN[x].DLL.

1. Open the parent application.

2. Choose Project ➤ Properties from the menu.

3. In the Project Properties dialog, press the Properties button.

4. In the Global Options dialog, choose External from the Run-Time Library
drop-down list.

Note: Run-Time Library in this context automatically includes all file
drivers used by your application!

Note: If your application’s .DLLs use your application files, the FILE
definitions and all Global variables must be declared in a .DLL
(not the .EXE) and exported. See the Sub-Application
Approach above for more information.

580 CLARION 5 USER’S GUIDE

Generate Global Data and ABCs EXTERNAL

Generate the parent application’s global data as EXTERNAL. This allows
the GlobalRequest and GlobalResponse variables, plus global variables you
define to be shared between local and external functions.

1. Open the parent application.

2. Choose Application ➤ Global Properties from the menu.

3. In the Global Properties dialog, check the Generate template globals and
ABCs as EXTERNAL box.

4. If there is a green check beside the Data button, then press it.

5. In the Global Data dialog, press the Properties button.

6. In the Field Properties dialog, select the Attributes tab.

7. In the Storage Class drop-down list, select EXTERNAL-DLL .

Repeat 5 through 7 for each global data item.

Make the DLL Containing Clarion’s Run-time Functions

1. Choose File ➤ New from the menu.

2. In the New dialog, select the Application tab.

3. In the File Name field, type the name of the application.

4. Press the Create button.

The Application Properties dialog appears.

5. If applicable, select a data dictionary.

6. Choose Dynamic Link Library(.DLL) from the Destination Type drop-
down list and press OK.

Set the DLL Application’s Run-Time Library to Local

1. Choose Project ➤ Properties from the menu.

2. In the Project Editor dialog, press the Properties button.

3. In the Global Options dialog, choose Local from the Run-Time Library
drop-down list, then press OK.

4. Choose Project ➤ Make from the menu.

This links the Clarion functions into your .DLL at compile time so that
they can eventually be linked into your .EXE at run-time. It also
generates a Module Definition file (.EXP) for your .DLL. You edit the
.EXP file in the following step to export the run-time functions from
your .DLL.

Appendix C D EVELOPMENT AND DEPLOYMENT STRATEGIES 581

Export the Clarion Run-time Functions

1. Open the parent application.

2. Choose Project ➤ Make from the menu.

Because the run-time functions have not been exported, the linker
generates an “unresolved” error for each function. Expect several
hundred to one thousand plus error messages, depending on your
application.

In the following steps we use the Clarion Text Editor to convert the error
messages into EXPORT statements. You may use any text editor for this
purpose.

3. Press the Edit Errors button, then press OK to edit the error messages.

4. Delete all messages except the “...function is unresolved...” messages.

5. Choose Search ➤ Replace from the menu.

6. In the Find what field, type is unresolved in file <filename.ext>.

Replace <filename.ext> with the filename and extension in the first
message.

7. In the Replace with field, type an ampersand and a question mark with no
spaces, like this: @?.

8. Press the Replace All button.

This converts the error messages for file <filename.ext> into EXPORT
statements. Repeat steps 5 through 8 until all the ...function is
unresolved... messages are converted.

9. Delete any duplicate statements.

Select all the statements and copy them to the clipboard, then paste them
into a word processor or spreadsheet that has sort capabilities. Sort the
statements so that duplicate statements appear together, then delete the
duplicates. Select all the remaining statements, copy them to the
clipboard and save your work.

Insert the EXPORT statements into the export file (.EXP) for the .DLL
application in the following steps.

10. If you have not already done so, choose Exit! from the menu to exit the
Text Editor.

11. Choose File ➤ Open from the menu.

12. In the File Name field, type *.exp, then press ENTER.

13. Select the .EXP file associated with your .DLL (not your parent
application), then press OK.

This opens the .EXP file with the Text Editor.

582 CLARION 5 USER’S GUIDE

14. Scroll to the end of the file then CLICK the mouse to set the insertion
point.

15. Choose Edit ➤ Paste from the menu.

Tip: You can modify the .EXP file by embedding text in .EXP related
Global Embed points.

Make the DLL Application with the Exported Functions

1. Open the .DLL application.

2. Choose Project ➤ Make from the menu.

This links the Clarion run-time functions into your .DLL and exports
them so they can be called at run-time by your .EXE.

Make the Parent Application.

1. Open the parent application.

2. Choose Project ➤ Make from the menu.

Now that the Clarion run-time functions are exported, the linker resolves
calls to those functions and issues no more unresolved messages.

Making LIBs and DLLs for Other Environments

Unlike most non-Clarion development tools (Delphi, PowerBuilder, Visual
C++, Visual Basic, etc.), Clarion generates executables that use register
based parameters. Since Clarion uses register based parameters and these
other tools do not, when making DLLs for other tools, you must prototype
your exported Clarion procedures with the C or PASCAL attribute,
depending on the calling environment. See C and PASCAL calling
conventions in the Language Reference for more information.

Non-Clarion environments generally cannot link Clarion created LIBs
because of memory model incompatibility. However, they can link the stub
LIBs associated with Clarion DLLs.

APPENDIX D DDE—DYNAMIC DATA EXCHANGE 583

APPENDIX D - DDE—DYNAMIC DATA EXCHANGE

Overview
This chapter introduces Dynamic Data Exchange
(DDE). For a complete discussion of Clarion and
DDE, see the Language Reference. This appendix is
meant only to provide a description of what DDE
can do, to demonstrate that it’s easy to implement,
and to suggest a tip or two to help you explore DDE.

DDE is a Windows Inter-Process Communication (IPC) protocol. A DDE
“conversation” consists of two applications trading messages. Within the
DDE conversation, one application acts as the client, the other as the server.

The application which starts the conversation, requesting data or services
from the other, is the client. The contacted application is the server. The
server must “register” with Windows that it has server capability.

Clarion lets you create both DDE clients and DDE servers. An application
can be both. In fact, your application can act as both a client and server at the
same time, though it requires separate DDE conversations.

See the Programmer’s Guide for information on using Clarion as a DDE
server.

584 CLARION 5 USER’S GUIDE

Capabilities
As a DDE client, your application can:

◆ Initiate a DDE conversation with a DDE server with the DDECLIENT
function.

◆ Receive data from a server with the DDEREAD statement.
EVENT:DDEdata tells your application when there is data for it to read.

◆ Send a command string to a server with the DDEEXECUTE statement.

Many existing Windows applications allow access to their functionality
through command messages. For example, you can execute any
Microsoft Excel macro statement by enclosing it in square brackets and
sending it as a string parameter in the DDEEXECUTE statement.

◆ Send unsolicited data to a server with the DDEPOKE statement.

Typically, you provide the server with an “item” description, and its
value (string). For example, to place a value in a specific cell in an Excel
spreadsheet, the item is the cell address, in R1C1 format. The value is
the actual value you want to put in the cell.

As a DDE server, your application can:

◆ Check the “topic” which the client contacting your server application
specifies.

When a client contacts your server application, it specifies, in a string,
what the conversation should be about. You code your application to
check the string against a list that you specify, then take an appropriate
action when the topic matches an item in your list.

The de facto Windows DDE “standard topics” are the current document
name, and the “System” topic. The current document is the name of any
open file associated with the server application. The “System” topic
usually triggers a return message, listing the available “topics” which
your server supports, each separated by a comma.

◆ Provide automatic data updates with the DDEWRITE statement, when
the “mode” is set to DDE:auto.

This lets you specify a variable. The server will automatically send a
message to the client when the value of the variable changes.

◆ Allow access to “commands.”

The server application retrieves the command string with the DDEITEM
function. You code your application to check the string against a list that
you specify, then take an appropriate action when the command matches
an item in your list.

APPENDIX D DDE—DYNAMIC DATA EXCHANGE 585

See the Language Reference for explanations of all DDE statements and
functions. The remainder of this chapter describes these capabilities with a
generalized example, in which a Clarion DDE client sends a sample Client
request to Microsoft Excel, then sends unsolicited data to place in a single
spreadsheet cell.

586 CLARION 5 USER’S GUIDE

DDE Conversation—Client to Server
Starting a DDE conversation is as easy as using the DDECLIENT function.
The only requirement is that both applications must already be running to
open the channel.

The simplest way to ensure that the conversation takes place at run time is to
use an IF structure. The DDECLIENT function returns zero if the server
application isn’t already running. Test its return value, and use the RUN
statement to start the server application if it returns zero.

Many of the DDE procedures and functions require that you specify the
DDE channel number, which is an integer that Windows returns when you
open the DDE conversation. Create a local variable to hold the return value.
Begin at the Procedure Properties dialog of the procedure you wish to
contain the code for the DDE conversation.

Create a variable to hold the DDE channel number

1. Press the Data button in the Procedure Properties dialog.

2. Press the Insert button in the Local Data dialog.

3. Type Channel in the Name field.

4. Choose LONG from the Type drop-down list.

5. Press the OK button to close the Field Properties dialog.

6. Press the Close button to close the Local Data dialog.

Initializing the Conversation

You must embed the code to initialize the DDE conversation, starting the
server application if it’s not already started. Assuming a menu choice in your
application begins the conversation, embed the code at a field event
associated with the Accepted event for the menu choice.

1. Choose the appropriate field event in the Embedded Source list.

2. Press the Insert button.

3. Highlight the Source item in the Embedded Source dialog, then press the
Select button.

This opens the Text Editor to the selected embed point.

4. Type the following code, substituting the file name (without extension)
of the Server application for “Excel.”

APPENDIX D DDE—DYNAMIC DATA EXCHANGE 587

Channel = DDECLIENT(‘Excel’,’System’) ! Excel re System topic
IF Channel < 1 ! If no contact made
 RUN(‘Excel’) ! Attempt to start Excel
 Channel = DDECLIENT(‘Excel’,’System’) ! And try again
ELSE
 RETURN
END

The code example is deliberately simplistic; it would be more efficient to
LOOP through the attempt to contact twice, then warn the end user of
the failure.

The code attempts to open a DDE conversation with Excel named as the
server. The DDECLIENT function returns a value corresponding to the
channel; it doesn’t matter what the channel number is. If it’s less than
one, it failed. You must therefore start the server and try to open the
conversation again.

The second parameter of the DDECLIENT function is the DDE “Topic.”
It tells the server what the DDE conversation is “about.” In most cases,
the topic is a file name. In this case, the code names the “System” topic,
which tells Excel the conversation is not regarding a particular document
file.

Sending DDE Commands

Once the DDE channel is open, you can then use the DDE functions to send
commands, data, or requests to the server.

The example code below sends a command to Excel to open a new file and
save it under a specified file name. This is a common DDE task when
working with commercial applications. Often, the server application allows
access to “document” functions only when you specify a document name in
the DDECLIENT function. The document name must be a file that already
exists.

In this particular case, to execute any “document” actions, such as entering a
value in a cell, Excel (and many other applications) require the DDE channel
“topic” to be the name of document. Therefore, if your application is
providing new data it wants the server to save in a new document file, your
application:

❏ Opens a conversation about the “System” topic.

❏ Sends a command asking the server to save a document file under a
specified name.

❏ Closes the conversation.

❏ Opens a second conversation with the server, this time specifying the
newly created file’s name as the topic.

588 CLARION 5 USER’S GUIDE

❏ Sends the “unsolicited” (because the server didn’t ask for it) data and
then tells the DDE Server (Excel) to execute commands or other requests
for data that apply to the file.

❏ Closes the conversation.

The following therefore should execute only if the example code previously
shown was successful.

Open a new (spreadsheet) file

DDEEXECUTE(Channel,’[NEW(1)]’) ! Excel’s File/New command

The DDEEXECUTE statement takes the DDE channel number as its
first parameter, and the command string as the second. Excel requires
you to enclose all DDE commands in square brackets (a standard DDE
convention). This command creates a blank spreadsheet.

The Excel command string enclosed by the square brackets is an Excel
macro statement. Excel, and many other applications allow you to send a
macro statement with the DDEEXECUTE statement. In this particular
case, you don’t have to know the name of the open Excel file to execute
the statement.

Tip: Many commercial applications with their own macro
languages allow you to both record and edit macros. Use the
application to make a “dry run” of the actions you need it to
execute, with its macro recorder turned on. Edit the resulting
macro, and use the clipboard to copy each macro statement to
your embedded source window. Put each macro statement in
the second parameter of the DDEEXECUTE statement, and you
can be assured of the correct syntax for the DDE command!

Save the new (spreadsheet) file

DDEEXECUTE(Channel,’[SAVE.AS(“DDE_TEST.XLS”,1,””,FALSE,””,FALSE)]’)

Knowing the name lets you close this channel, then open another speci-
fying the file name as the topic. Note that the Excel command string
requires double-quote marks.

Close the channel

DDECLOSE(Channel) ! Close first DDE channel

APPENDIX D DDE—DYNAMIC DATA EXCHANGE 589

Sending Data from Client to Server

To continue the example, to send data to Excel, you need to open another
DDE conversation, this time with the newly created file name as the topic:

Open the DDE channel

Channel = DDECLIENT(‘Excel’,’DDE_TEST.XLS’)
! New channel under known file name

Send the Data

To place data in a spreadsheet cell, use the DDEPOKE statement.

DDEPOKE(Channel,’R1C1’,’999’)

Following the successful placement of the value in the spreadsheet, you
could then send more Excel macro statements using DDEEXECUTE. This
would allow you to. for example, send additional spreadsheet data, highlight
a range, then tell Excel to draw a chart.

You’ll find all the DDE commands and functions in their own section in the
Language Reference.

590 CLARION 5 USER’S GUIDE

APPENDIX E GLOSSARY 591

APPENDIX E - GLOSSARY

All definitions should be considered general terms, except where otherwise indicated. The context
for definitions marked (Clarion) pertain to the Clarion language or the Clarion development
environment. Likewise for (SQL), which applies to generalized Structured Query Language usage.

ACCEPT loop (Clarion) An event handling loop beginning with the ACCEPT statement. The loop transparently
processes the Windows messages and related events which affect the application’s window. A
single ACCEPT loop automatically gets end user input for all controls within a given window.

accepted event (Clarion) An event generated when an end user interacts with a window control, such as when
moving the focus to a field, that results in the event being reported in the ACCEPT look.

access key (Clarion) A specified key or index to set the order for processing records in a procedure.

active window The document or active window which currently has the focus; Windows sends the next keyboard
or mouse action to the ACCEPT loop of the active window.

alias An alternate name for a data file, which allows multiple, independent operations on it. Clarion
provides a separate record buffer for each alias, increasing the performance of the separate
operations.

ANSI character set Character set standardized by the American National Standards Institute. Many ANSI characters
are different then the corresponding ASCII character set. The ANSI set contains more non-English
characters. The standard Microsoft Windows character set is the ANSI character set.

API Application Programming Interface; generally refers to the Windows API. Allows applications to
dynamically link function calls to the three main Windows libraries (USER.EXE, GDI.EXE, and
KERNEL.EXE), plus the external libraries such as MMSYSTEM.DLL. Just about everything that
every Windows program does is accomplished with the API.

append Add a record to a data file, usually without updating a key or index.

applet A small, single purpose application; applets are not necessarily stand alone executable programs.
The “programs” managed by the Windows Control Panel, for example, are called applets, though
they are actually dynamic link libraries with specialized entry points. The accessories which ship
with Windows are also known as applets.

592 CLARION 5 USER’S GUIDE

application A computer program designed for a specific type of work; the terms “application” and “program”
are interchangeable.

application generator A program which combines prewritten, generalized executable code modules or fragments to
create an application.

application generator (Clarion) The part of the development environment which manages pre-written template
procedures, obtains customizations from the developer, and generates Clarion language source
code files.

application tree (Clarion) An Application Generator dialog which graphically depicts the hierarchy of procedures
for an application.

application window In a Multiple Document Interface application, the parent window, usually containing no controls,
in which all child document windows appear.

array A ordered series or group of dimensioned values or data items.

ASCII character set Character set standardized as the American Standard Code for Information Interchange. The
standard IBM PC character set.

assignment statement A statement placing a value in a variable; for example, A = 6 places the value 6 in variable “A.”

attribute (Clarion) A modifier to a data declaration which specifies an optional property.

auto-increment field (Clarion) A key field which stores a value which increases with each successive record, and is
generally not available to the end user. The application places the value in the field immediately
upon appending the record.

background priority A measure, expressed in a ratio, for the amount of CPU processing time allocated to a program or
task which does not currently have system focus. In the Windows 16-bit environment, all
multitasking is cooperative; therefore, all background processing is dependent on all executing
applications properly yielding at regular intervals.

band view (Clarion) A specialized layout mode within the Report Formatter. Displays the contents of each
part of the report structure in separate panes.

binary memo (Clarion) A memo field suitable for holding non-ASCII contents, such as images.

bind (Clarion) A statement which allows a variable name to be used in a dynamic expression which is
assembled and processed at run-time.

GLOSSARY 593

bitmap A binary file representation of a graphic or picture; raster format defines the image by absolute
pixels. Popular bitmap formats supported by Clarion include .BMP, .GIF, .ICO, .PCX, .JPG.
Sometimes refers specifically to the .BMP file format, an uncompressed, but widely supported file
format.

Boolean A logical expression which evaluates to true or false, one or zero.

Border or Line Color The color designated for the outside line of a graphical control.

break field (Clarion) A field or variable monitored when processing a report structure. When the value in the
field changes while sequentially processing records, the print engine processes the next element in
the report structure (usually the group footer).

breakpoint A debugger stopping point, relative to a source or disassembly code statement. The application
executes up to the breakpoint, then halts and turns execution over to the debugger, which can then
examine variables and expressions to search for bugs.

BringWindowToTop Windows API function for forcing a window to always display on top of all other windows on the
desktop. Implemented in Clarion by the TOOLBAR attribute.

Browse A specialized list box procedure dedicated to displaying database records arranged in columns and
rows.

built-in (Clarion) Default map definitions, as provided in source code format in the BUILTINS.CLW file.

button A control that initiates a command, or selects an option. An end user chooses a button by clicking
with the mouse.

calculated field A field created via an expression which may include one or more database fields.

cascading menu A hierarchical submenu, sometimes called a child menu. Parent menus that lead to cascading
menus usually have a right-pointing triangle at the right side of the menu item, to cue the user to
the submenu.

case sensitive A characteristic indicating whether a command treats text typed with capital (uppercase) letters
differently than those typed with lower case, or a combination of both.

case structure A control structure which branches execution to a statement (or group of statements) based upon a
single condition or expression.

character string An alphanumeric data type.

594 CLARION 5 USER’S GUIDE

check box A control consisting of a small square or diamond, in which an end user indicates a on/off, yes/no,
or true/false choice.

child window An MDI document window displaying a document or view within the main application window.

Clarion standard date (Clarion) The number of days elapsed since December 28, 1800; the valid range is from Jan. 1,
1801 through Dec. 31, 2099.

 class The Clarion CLASS structure declares an object class containing properties and declaring the
methods that operate on those properties. In Clarion, the properties of the class are the data
members declared in the CLASS and methods are the PROCEDUREs and FUNCTIONs
prototyped in the CLASS structure.

click To place the mouse pointer on a control or window, then press and release the left mouse button.

client A system attached to a network that accesses shared network resources.

client application A program that makes requests of a server application using a defined interface such as DDE,
RPC, or NetBIOS.

client server architecture A network configuration by which linked workstations request services from a dedicated program
running on a server.

client server networking A network architecture in which shared resources are concentrated on powerful server machines
and the attached desktop systems fulfill the role of clients, making requests across the network for
centralized information.

clipboard A temporary storage area in memory for holding data, maintained by Windows.

Close To normally terminate processing of a window or file.

code section (Clarion) The portion of source code containing executable code statements.

color dialog Standard Windows dialog for choosing color.

column (SQL) Generally refers to a list of database field contents arranged by records.

combo box A window control consisting of a synchronized edit box and list box.

GLOSSARY 595

command An executable code statement or program instruction.

comment Text inserted in a source code file to annotate or explain the code. Clarion language comments
begin with the exclamation point (!) character. Each comment terminates at the end of the line it
appears on.

commit Terminates a successful transaction and commits it to disk.

common file dialog A standard Windows dialog for displaying drives, directories, and file names. The Clarion
FILEDIALOG function displays the dialog and returns a file name to the calling application.

compiler directive An instruction directing a compiler to build an application to meet a certain condition.

concatenate Append two string data elements to form a longer string comprised of both.

concurrency checking The process of guarding against two users updating the same record at the same time. Usually
consists of checking the record on disk still contains the same values as when it was first retrieved
for updating.

conditional statement An IF statement which branches subsequent execution based on a logical condition.

constant A static value.

context menu See popup menu.

control A fundamental object in Windows that defines the appearance and behavior of a particular visual
element such as a menu, an entry field, or a scroll bar.

control alignment The “Snap-To” behavior, as found in the Window and Report Formatters, by which you may “line
up” window and report elements.

control menu Contains commands for resizing, repositioning, or closing a window.

control properties (Clarion) Attributes which determine the appearance and functionality of a window or report
control.

cool switch The Windows procedure for switching between active applications by holding down the ALT key
and pressing the TAB key.

596 CLARION 5 USER’S GUIDE

cooperative multitasking An operating system scheduling technique that relies on running applications to yield control of
the processor to the operating system at regular intervals.

criteria (SQL) An expression containing a condition which limits the records for processing.

current directory The default DOS subdirectory, in which Windows or DOS searches for files not identified with a
fully qualified file name.

current record (Clarion) The current database record in the record buffer.

cursor The mouse pointer. Changing the cursor “shape” can indicate the type of action or selection the
end user can effect on a given control or window.

data dictionary (Clarion) ASCII file describing the individual data files which comprise the database, their
structure, keys, relations, and other information describing how an application will process the
contents of the database.

data file Generally, a collection of data elements in an organized format, usually arranged by records (rows)
and fields (columns).

data section (Clarion) The section of source code containing variable and data structure declarations, such as
FILE, WINDOW, REPORT, and QUEUE.

data type A physical description of the type of storage supported by a variable; what sort of values it can
hold.

data validation An expression or the process of checking data against a condition prior to accepting the data for
entry into the database.

database A structured collection of data, contained in one or more data files, plus the key files and other
information which describes the order and relations of the data elements.

database administrator (DBA) A person responsible for designing and maintaining a multi-user database system.

database definition file (*.DDF). A Btrieve file, separate from the data file, containing the database structure. Equivalent
to the header contained internally in most other PC database file formats.

database design The process of planning and describing the most efficient application or system for storing and
managing data for a specific project.

GLOSSARY 597

database driver A collection of functions and procedures contained in a dynamic link library, supporting low level
access to a specific database file format.

database integrity Under the relational model, database integrity consists of two general rules:

1. Each database file or table must have a primary key serving as a unique identifier for all records.

2. When a table has a foreign key matching the primary key of another table, each value in the
foreign key must either equal a value in the primary key of the other table, or be null.

dBase format PC database file format popularized by dBase III.

DBMS Database Management System: generic term for a program that enables a system to perform all the
functions associated with managing a database.

DDE Dynamic Data Exchange: a message protocol for exchanging data between Windows applications.

debug To test, diagnose and (hopefully) solve software bugs. The Clarion debugger offers two general
modes:

1. Hard mode debugging, in which all keyboard and mouse input goes to the debugger first, before
being sent to the application. This effectively suspends all other applications which may have been
running prior to starting the debugger in hard mode.

2. Soft mode debugging, in which the debuggee runs as a normal windows application.

debugee The program being analyzed or debugged.

deep assignment (Clarion) Automatically assigns multiple components from one data structure to another, between
elements with the same labels (but different prefixes).

default An assumed state or action, which the end user accepts or executes with little or no action.

default button A command button which is activated by default when the user presses the enter button.

default window position The default location at which a new window appears unless a position is specified. The top left
corner of the new window is usually below and to the right of the top left corner of the last
window, when it first appeared.

598 CLARION 5 USER’S GUIDE

delimiter A character marking the boundaries of one database field from another.

dependent entity (SQL) A set of data elements dependent on other related entities in the database to identify them..

desktop The screen area in which all windows, dialog boxes, and icons appear.

DETAIL structure (Clarion) The portion of a report structure which usually conveys the main data within the printed
report. The application loops through, updates, and prints the detail band controls with the
contents of all the records being processed.

dialog By convention, a window of fixed size, that is usually designed to interact with the user.

dialog unit Special fractional measurement units, based on the system font. Windows automatically calculates
the horizontal measurement unit in fourths of the average system character width, and the vertical
in eighths of character height. The net effect supports a proportional placement of dialog box
elements regardless of the resolution Windows is running in.

disabled A window, menu, or control visible but prevented from gaining focus.

document-centric design A design technique that focuses the user on documents and the information therein rather than on
the applications generating the data that combine to form the document.

document Any file which stores data associated with an application.

DOS buffer A (normally) small amount of memory maintained by the operating system for short-term storage
of data transferred to/from a disk drive. The size is set by the BUFFERS setting in the
CONFIG.SYS file, where one unit equals 512 bytes.

double-click To press and release the left mouse button twice, quickly. Executes the default action on a
selection.

drag To press the left mouse button, then move the mouse while continuing to hold the button down.
Usually a visual cue indicates a process such as moving a selected object, or rubber-banding a
region. Releasing the button completes the action.

drag and drop To select an object in a window or dialog box, press down the left mouse button, move the mouse
while continuing to hold the button down, then release the button when the pointer is on top of
another object. When drag and drop is supported by the program(s), the action generally indicates
the dropped object is to be processed in some way by the recipient object.

GLOSSARY 599

driver string (Clarion) The second parameter of the DRIVER attribute. Consists of valid codes switches that
operate on file open for the particular driver.

drop-down list A list box control which only displays only the current selection when closed. When the user
opens the list box, it expands to include additional choices.

dynamic link library (DLL) A library of shared functions that applications link to at run-time, as opposed to compile
time.

embedded source (Clarion) Executable code statements, written by the developer, and inserted into generated source
at predefined points within a procedure generated by the Application Generator.

Embeditor (Clarion) Clarion’s Text Editor opened in a special mode that lets you embed source code within
the context of the surrounding generated code.

enabled Normal window, menu, or control state allowing focus and/or user input.

encapsulation Bundling the properties of a class (its data members) together with its methods (the procedures
that operate on the data members) into one coherent unit.

encryption The storage on disk of data in scrambled or encrypted form, such that an unauthorized user may
not access the data in an intelligible format.

equi-join (SQL) A join which takes two database files (or tables) and creates a new, wider table consisting of
all possible concatenated records (or rows), where there are matching values in the join fields.

event An action that is of interest to one or more software components. Triggers a Windows message to
the application’s message queue. Clarion handles most of the actual messages internally.

event driven programming A programming technique in which the application responds to events as opposed to data.

Excel format File format used by the Microsoft Excel spreadsheet application. Note: an ODBC driver exists for
this format, and is available in the Microsoft ODBC 2.0 Software Development Kit.

exclusive access Opening a DOS file so that no other user in a multi-user environment may update the same file.

executable A standard .EXE application file capable of being launched by the Microsoft Windows shell.

expand To decompress, usually for installation purposes, a compressed file.

600 CLARION 5 USER’S GUIDE

expression A mathematical formula containing any valid combination of variables, functions, operators, and
constants.

extension A file name suffix; up to three characters in the DOS file system. Windows 3.1 matches document
files to their application via the [Extensions] section in the WIN.INI file.

external name (Clarion) An attribute which holds the native format name (such as a DOS file name) for a given
data element. The Clarion source code refers to the file by the Clarion label.

external procedure (Clarion) A procedure contained in an external library, such as a library file linked at the time the
application is built, or a .DLL, linked at run time.

field A basic data element or category which names all the values in a column of data within a database
file or table.

field equate label (Clarion) A symbolic constant which references an integer, which references a window control.

field event (Clarion) An event generated and processed within an ACCEPT loop, specific to a control in a
window structure.

file handle An operating system pointer to a file. The “FILES=“ line in the CONFIG.SYS file sets the system
limit on the total number of allowable open files at one time.

fill color The color designated for the inside of a graphical control.

filter An expression which isolates a subset of records for an operation.

focus A visual cue indicating the window control which will receive the next action resulting from user
input.

folder A logical container implemented by the shell, within which the user may group a collection of
items. Analogous to a file directory.

font The family name of related type face files. For example, “Times New Roman” is the font name,
and “Times New Roman plain,” “Times New Roman Italic,” “Times New Roman Bold,” and
“Times New Roman Bold Italic” are the styles, which are stored in separate files.

font dialog A standard Windows dialog for picking a typeface, style, size, and optionally, the text color.

font style Character formatting applied to a font face, such as bold, italic, or bold italic.

GLOSSARY 601

foreground priority A measure, expressed in a ratio, for the amount of CPU processing time allocated to a program or
task which currently has system focus.

foreign key (SQL) A key in one table (database file) whose values match the primary key of another table.

form A window that displays a single record for editing. By convention there is a separate entry box for
each field displayed, and fields are stacked in a vertical arrangement.

form letter A mailmerge document containing “boiler-plate” text, in which controls reference fields from
which to obtain information when creating letters to individuals.

form report style A report format generally containing one record per page, with field labels and values arranged in
a vertical format.

format string (Clarion) A string specifying the display format for a list box or drop down list box control.

formatter (Clarion) A specialized window which allows you to visually define the formatting for a data
structure in “WYSIWYG” fashion.

function (Clarion) A specialized procedure which returns a value. The function declaration may optionally
define parameters which are passed when calling the function. A function may be used within
computed or conditional fields.

GDI Abbreviation for Graphics Device Interface, the Microsoft Windows dynamic link library
responsible for outputting text and images to the screen and printer.

GIF image Graphics Interchange File format; an image format popularized by CompuServe. Generally
acknowledged to offer the best compression ration for 256 color or less images. Attention: should
you utilize the word “GIF” anywhere within an application or program, you must add a trademark
notice: “GIF (Graphics Interchange Format) is a trademark of CompuServe Information Services.”

global variable (Clarion) A variable accessible from all levels of a program. Global variables are allocated
memory that is not released until the entire program finishes execution.

graph A graphical representation of related data elements, on screen or paper.

Graphical User Interface (GUI) An operating system or program environment relying heavily on images to present
information to the user and to gather the user’s input.

grayed A visual cue to the user that the window, menu, or control is unavailable or disabled.

602 CLARION 5 USER’S GUIDE

grid snap A series of coordinates, represented by dots, such as those used by the Clarion Window and Report
Formatters, to force controls to exact positioning.

group (Clarion) A compound data structure which allows you to reference its component variables with a
single label.

groupbox A rectangular line frame with a label at upper left, used to define related controls.

handle In Windows, an integer serving as a pointer to the memory location for a given object, most
commonly a handle to a window (HWND). The handle has approximately the same importance to
most API functions as the zip code on a first class letter. In Clarion, its functionality is
implemented via field equate labels. You can obtain the actual handle to a window or control by
examining PROP:handle. The property is read only.

help context string A unique identifier for a topic or page in a help file, which can be passed to the help engine.

help system Comprised of the Windows help application (WINHELP.EXE) and a help document (*.HLP)
distributed by individual applications. When displaying help, both the application which called it,
and WINHELP.EXE are running.

help topic A page in a Windows help document.

help compiler A utility available from Microsoft for converting a Rich-Text-Format (.RTF) document into a
Windows help (.HLP) document.

hide Prevent a control or window from displaying on screen; the control exists but is not seen by the
end user.

I-beam A special cursor usually indicating the end user can type text into an edit control.

I/O Input/Output. The process of moving information into and out of the system.

icon A graphical representation of a physical object in the system, such as a printer. Also, any small
image representing an action, concept or program, as when an icon appears on a command button.
The normal icon file format carries the .ICO extension; one of its main features is built-in support
for transparency. This enables you to display a small picture without obliterating the background.

IDE Integrated Development Environment; a complete compiler product which includes tools for
producing source code, creating resources, compiling, linking, and debugging an application.

identifier A label uniquely identifying a variable or other program element.

GLOSSARY 603

implicit variable (Clarion) A specialized variable not declared within the data structure of an application, nor
defined before its first use. The compiler creates them when it first encounters them (usually
within executable code) and automatically initializes them to zero.

import library A compile time library (.LIB) used to satisfy references to external functions that will ultimately
be resolved at run-time by a DLL.

include file An external source file read and preprocessed at compile time. In Clarion, the Equates and ABC
Library files in the LIBSRC subdirectory are the default include files.

independent entity (SQL) A set of data elements sharing a set of properties independent of other related entities in the
database. Independent entities have unique identifiers, and therefore, primary keys.

index file An external key file ordered according to the contents of a specified field or expression. An index
file usually must be manually updated when adding, deleting, or changing records.

INI file A Windows Initialization file in ASCII format. The .INI file is divided into sections separated by
an identifier enclosed in square brackets. Variables and their values follow, each pair separated by
a carriage return, with an equal sign between the variable name and its value. Values may be stored
as strings or integers.

inheritance The mechanism that allows us to build hierarchies of classes. A derived class inherits all the
properties and methods of the class from which it is derived (its base class).

insertion point The point in a document at which the next characters typed by the end user will appear.

interface The communication between the computer and the user; it presents information to the user and
accepts the user’s input.

ISAM Indexed Sequential Access Method; a database organization in which data files are ordered by
keys, and may be retrieved in the sequence of the keys.

join A join takes two database files (or tables) and creates a new, wider table consisting of all possible
concatenated records (or rows).

JPG image A true-color graphics file format featuring 24-bit color storage. It usually provides for adjustable
lossy compression, which allows for greater compression but loss of some resolution.

Kernel The Windows memory management, process management, and file management functions.

604 CLARION 5 USER’S GUIDE

key An indexed file ordered according to the contents of a specified field or fields. Keys are usually
dynamically updated whenever the value in a key field changes.

key-in template picture (Clarion) A formatting option, which when combined with the MASK attribute, restricts and
verifies end user keyboard input according to a specified character pattern applied upon a variable.

keyboard accelerator A combination of keystrokes that immediately executes a command.

keyword A reserved word or Clarion language statement.

label (Clarion) A unique identifier for a variable, procedure, function, routine, or data structure.

library file A precompiled file (.LIB) containing procedures or functions which may be statically linked to the
executable and utilized by a program.

license file A proprietary key file distributed by a VBX vendor only to a licensed user of the VBX library. The
license file allows an IDE to incorporate the VBX control within a window or dialog box. This file
is not distributable to the end user.

list box A window control presenting data arranged in rows, and optionally, columns.

literal A constant referred to in source code by its value. For example, the literal “MyString” refers to a
seven byte data item containing ASCII codes for the letters in “MyString.”

local data Data created by, residing in memory specific to, and accessible only to a specific procedure or
function.

lock A concurrency control mechanism to prevent more than one user from updating the same record at
the same time. Within Clarion, the HOLD statement arms record locking.

locked field or record A field or record currently being updated by one user within a multi-user database, such that an
attempt by another user to update the same record at the same time will fail.

logical operator A true/false or bitwise comparison of two values; logical operators are: =, >, <, <>, >=, <+, NOT,
AND, OR, and XOR.

lookup table A database file on one side of a one to many relation, upon which a variable is searched for, and a
corresponding field in the related table is returned.

GLOSSARY 605

LOOP structure (Clarion) A control structure which repeats the execution of the statements it encloses for a
specified count.

many-to-many relationship A connection between two data entities in which there may exist many corresponding values in the
foreign key in one database file or table, to many corresponding values in the foreign key of
another table. Usually implemented via a “join” file breaking them into two 1:Many relations.

many-to-one relationship A connection between two data entities in which there may exist many corresponding values in the
foreign key in one database file or table, to only one value in the primary key of another “look-up”
table. The relationship implicitly describes the direction of the relation. For example, the relation
of cities to states implies many cities may belong to the same state. Also called a child-parent
relation.

MASK (Clarion) Specifies pattern editing of user input, converting data to a predefined format. The
pattern is specified for an individual control, and enabled when the MASK attribute is added to the
window in which the control appears.

maximize box A window control which resizes a window to full size of the desktop, or if a child window, to the
full size of the client area of the application window.

Media Control Interface The multimedia API support component of Microsoft Windows. Managed by the
MMSYSTEM.DLL library and related driver files; abbreviated as MCI.

memo A free-form, variable length text field, suitable for storing very long strings. In most PC file
formats, the memo is stored in a file separate from the fixed-length database fields. A binary memo
field is a specialized type of memo field suitable for storing binary information such as graphics.

menu An element of the user interface listing available actions which the end user may effect upon a
document or selected portion of a document.

message box A standard windows element, usually consisting of a short message string, an OK button, often a
standard icon such as “stop” or “information.” It may optionally contain additional buttons such as
“Cancel,” and “Retry.”

message queue The “place” in which Windows holds all messages for an application, which the application checks
on a regular basis. The messages consist of everything the application needs to know regarding the
user interface—keyboard, mouse and menu events; the system—shutdown messages, and all the
other operations which may affect the application. Clarion processes the entire messaging process
transparently in the ACCEPT loop.

metafile In Windows, the representation of a graphic or line art in vector (device independent) format;
defines the image as a series of lines and curves, allowing for smooth resizing. Clarion supports
the .WMF (Windows Metafile) vector format. The metafile is actually a stored collection of the
commands which instruct the GDI (Windows Graphics Device Interface) to display the graphic on
the output device.

606 CLARION 5 USER’S GUIDE

minimize box A window control which resizes a window to iconic size, usually at the bottom of the desktop, or if
a child window, to iconic size, usually at the bottom of the application window.

mnemonic access key The underlined letter in the command names on Microsoft Windows menus. When a user activates
a pull down menu, the key executes the command.

modal window A dialog or window which prevents the end user from activating controls from any other of the
application’s windows (or of any other application, if system modal), until processing of the modal
window is completed and the window closed.

modeless dialog A dialog which remains open even while the user “works” in another of the application’s
document windows. The modeless dialog remains available, so that the user can utilize its
functionality; as in a Search dialog, as practiced by most applications.

module (Clarion) A source or library file for a given project.

multi-tasking The capability of an operating system to execute multiple programs at the same time. Preemptive
multi-tasking allots percentages of CPU time to each individual task, with the operating system
automatically switching to the next task at the end of its time allotment. Cooperative multi-tasking,
supported by Windows 3.1, relies upon the currently executing program to finish a task, or part of
one, then yield to the next program. See also Thread.

multiple selection An extended list box selection, signifying the user has marked more than one item for a
subsequent action.

multilevel index To speed up access to a large table or data file, a multilevel index functions as an index to an
index. For example, index level one could contain pointers to four subindexes which respectively
index entries beginning with A-E, F-L, M-R, and S-Z. This example describes a classic B-TREE
index structure.

Multiple Document Interface (MDI) A Windows programming convention which allows an application to manage several
documents, or views of documents, each in its own child window, all in an application frame
window.

multi-user database A database system designed so that more than one user can access a file or record at the same time.
The system requires concurrency checking so that two users don’t attempt to update the same
record at the same time.

natural join (SQL) A join which takes two database files (or tables) and creates a new, wider table consisting of
all possible concatenated records (or rows), where the new table contains two identical columns,
one of which is dropped.

nested queries (SQL) A single query consisting of both an outer and inner query. Allows for more efficient
retrieval of data from large tables by combining multiple operations into one.

GLOSSARY 607

nesting Placing one operation inside another, such as nesting a function within another by specifying the
nested function as a parameter of the first.

non-Windows application Any application which doesn’t require the Windows environment. Typically, a DOS program.

normalization The representation of data entities in their simplest forms, for the purpose of quickest access and
most efficient storage. The normalization process includes the elimination of redundant data
groups, and the elimination of redundant data elements.

null value A zero or empty value.

Object An object is one instance of a Class. It has properties and behaviors inherited from the Class that
define what it is.

OCX control A custom window control for processing end user input or displaying data (a VBX that works).

ODBC The Open Database Connectivity standard supported by many Windows applications. Provides a
standard API for accessing multiple database file formats via replaceable file drivers, and Client/
Server support. The ODBC SDK is published by Microsoft.

ODBC Administrator A redistributable Microsoft application for adding, maintaining or deleting individual ODBC
drivers within a system. Usually located in the Windows\System directory, the executable file
name is ODBCADM.EXE.

ODBC Control Panel appletA Windows Control Panel interface to the ODBC administrator.

ODBC driver A driver library containing the individual functions supporting standard ODBC calls for a
particular file format.

OLE Object Linking and Embedding. A method for accessing data and documents created by one
application, through a different application.

one-to-many relationship A connection between two data entities in which there may exist one corresponding value in the
primary key of one database file or table, to many identical values in the foreign key of another
table. The relationship implicitly describes the direction of the relation. For example, the relation
of states to cities implies a state may have many cities. Also called a parent-child relation.

one-to-one relationship A connection between two data entities in which there may exist one and only one corresponding
value in the primary key of one database file or table, to a single identical value in the foreign key
of another table. For example, the relation of customer name to internet address. The data is
usually split into two separate tables for storage savings; all customers have names, but only a
minority have internet addresses.

608 CLARION 5 USER’S GUIDE

option structure (Clarion) A structure containing mutually exclusive controls, such as radio buttons.

origin The upper left corner of a window or control, expressed in x,y coordinates (0,0).

orphan A portion of text or data separated from its complementary preceding data by a page break.

outer join (SQL) A join which includes all records from one database file, and only those records from
another in which the values in a selected field (or fields) match those in the first.

overlay (Clarion) A variable or field sharing the same location as another. Acts as a data “re-declaration,
and provides more efficient storage. Most useful in “either/or” situations when a variable and its
overlay are of similar types but utilize different pictures.

page footer The section of a report composed after the last detail that will fit on a page has been composed.

page header The section of a report composed before the first detail to print on a page.

page overflow In Clarion, the point at which the report library composes enough data to complete a page; the
library will either send the page to the Windows spooler at that point, or first check to verify there
are no “widows,” if the application so specifies.

palette The table of available colors which a given window may user for painting.

parameter An argument or optional variable passed to a procedure.

PCX image A standard graphics file format, offering moderate compression, originally developed by the Zsoft
corporation. The Windows Paintbrush accessory supports this format.

pel Equivalent to pixel; abbreviation for picture element. The smallest screen unit addressed in graphic
mode; a dot.

pen In Windows, the active drawing or painting element; you can set its color, size, etc.

picture token (Clarion) A formatting string, which specifies a specific “picture” or masking format for
displaying and editing variables. The picture token begins with the “@” character.

pixel Equivalent to pel; abbreviation for picture element. The smallest screen unit addressed in graphic
mode; a dot.

GLOSSARY 609

point size A measurement expressed in points; one point equals 1/72nd inch, or 1/28 centimeter.

pointer The mouse cursor. Or, an index entry which locates or “points” to the corresponding data record.

 polymorphism The ability of a base class method to call methods of classes derived from the base class—without
knowing at compile-time exactly what method is actually going to be called.

popup menu A menu that appears disconnected from other visual elements. Windows 95 and Clarion frequently
displays popup menus when the user clicks the right mouse button. By convention, the menu is
associated with the item clicked on.

prefix (Clarion) A short identifying string for a data structure. Provides a method for resolving variable
names when, for example, two database files include fields whose names are the same.

primary key (SQL) A database field or expression which uniquely identifies each record in the table or database
file.

print job One complete task sent to the Windows print spooler (accessible from Print Manager).

print structure (Clarion) The parts of a report structure, which include the group break structure, detail, header,
footer, and form.

printer driver An external library file containing low level instructions and functions by which the Windows GDI
library sends specific commands to the printer.

printer font A typeface resident in the printer’s RAM.

procedure (Clarion) A set of executable statements which may be executed repeatedly.

progress bar (Clarion) A control that displays a graphic representation of a dynamic value by progressively
coloring in a rectangle as the value changes.

program MAP (Clarion) The “layout” of modules, procedures and functions, which the compiler uses to logically
assemble the file. The MAP structure contains the prototypes which declare the functions,
procedures, and external source modules used in a PROGRAM or MEMBER module.

project system (Clarion) The IDE component which tracks the modules which comprise the application to be
built, including source code and external libraries. The Project System also stores the various
pragma, compiler and linking options.

610 CLARION 5 USER’S GUIDE

prompt A text label which normally appears near a screen control, to identify the control.

property (Clarion) An attribute of a window, control, or other Clarion object.

property assignment syntax(Clarion) Specific language format for setting or retrieving the value of a control property.

property sheet A dialog intended to allow the convenient grouping of closely related items in a single place.

prototype To define the parameter(s) and return data types for a procedure or function. Within Clarion,
prototypes are defined within the MAP structure.

PUT statement (Clarion) A statement which executes an update to a given record, and writes it to disk.

query (SQL) An operation upon a database table which results in another table or subset of the first.

Query by Example A query built by “filling-in the blanks” in a form representing the fields in a database table. The
end user types in “example elements” which represent the possible answers to the query.

queue (Clarion) A specialized memory structure containing a doubly-linked list of values.

RAD (Rapid Application Development) The construction of applications accelerated by the use of
development management tools such as data dictionaries, and the reuse of programs and code
wherever possible.

radio button A control for eliciting a mutually exclusive choice from an end user.

range constraint A bounds for a database operation limiting the operation to a set of records for which a given field
falls within specified starting and ending values.

raster font A bitmapped typeface, stored as a pattern of dots.

read only (Clarion) A field or variable which is displayed but not modified.

RECORD (Clarion) A data structure representing one row in a database table.

redirection file (Clarion) A list of alternate subdirectories to search for source code, object or library files.

GLOSSARY 611

reference variable (Clarion) An indirection to another data variable (the target). The reference variable label can
substitute for the target variable anyplace in executable code. Depending upon the target data type,
the reference variable may contain the address in memory of the target, or a more complex internal
data structure.

referential integrity The process by which an application “follows through” on an update to a key field in one file, to
check its related record in another file. This maintains valid parent-child relationships within the
database. The Application Generator can automatically generate the executable code to support
referential integrity constraints when you select options in the Relate dialog.

region A specialized control whose sole function is to provide a reference for a screen area in x,y
coordinates.

registry (Clarion) A specialized initialization file storing values and parameters in binary format. These
come from the Templates and are used by the Application Generator.

relationship A logical link between records in data files based upon a duplicate (linking) field.

report form (Clarion) A report element defined once, when first composing the report, then printed on all
pages of the report.

resource file An external file containing data for a window control, such as an icon file.

restore button A window control which resizes a window from a maximized state to the last size prior to
maximizing.

rich text format (RTF) A common word processing file format, originally designed for transportability between word
processing systems across different operating systems. The default format for the source document
for the Windows help file format.

ROLLBACK (Clarion) To restore an earlier state of a database, undoing the effect of one or more active
transactions. Restores data held in a temporary file managed by the file driver.

ROUTINE (Clarion) A series of executable statements local to a procedure or function. Following execution
of the ROUTINE, program control returns to the calling procedure or function.

run time library A dynamic link library providing essential support for basic application functions. For example,
the Clarion run-time library provides all the “housekeeping” functions such as checking message
queues, and managing the allocation and deallocation of all device contexts (for windows and
reports).

schema The map or catalog of a database describing its files or tables, fields, and relations.

612 CLARION 5 USER’S GUIDE

scope A range of records selected for a given operation. Also, the “boundaries” beyond which a given
variable is unavailable to another procedure or function.

scroll bar Standard window control for changing the view of data within a window, displaying more of a
document or application controls than currently visible.

SDK Software Development Kit.

select To indicate to the system that the next command should act upon an on screen object, by placing
the mouse cursor over it and pressing the left mouse button.

SELECT statement (SQL) A statement setting the fields and tables for viewing, and for subsequent operations.

SELECT statement (Clarion) Sets the next control to receive input focus.

selected event An event generated and sent to the ACCEPT loop when a control obtains focus.

sequential access The ability to manipulate all the records in a database file or table in the sequence defined by the
key or index.

server A remote computer providing data storage or services to other linked computers.

SET statement A Clarion language statement preparing a file for sequential processing upon a group of records.

SHARE.EXE The MS-DOS executable responsible for supporting multi-user access to a single file.

sheet (Clarion) A control that contains multiple tab controls. Designed to display multiple related
“pages” of controls. See also property sheet.

sort Physically rearrange all database records in a specified order, and store the results in a new
database file or table.

source code file (Clarion) A text file containing Clarion language statements in a structured format, which the
compiler can compile and link into an executable program.

spin control A specialized edit box control, with two “increaser” and “decreaser” controls, linked to an array of
values. When the end user increases or decreases the control, it updates to display the next value in
the array.

GLOSSARY 613

SQL Structured Query Language; a database language for maintaining a relational database; most often
utilized in mainframe and client/server applications.

stack memory A portion of memory which usually stores the most recent parameter data utilized by procedures
and commands executed by a program or application.

statement A single executable command.

static text A window control which displays a string constant, and never receives focus; primarily used for
labeling other controls or displaying information and instructions.

static variable (Clarion) A persistent variable, which maintains its value from one use within a procedure to the
next.

status bar An area of a window, usually found at the bottom, in which the program can display prompts and
information.

standard behavior (STD) (Clarion) A predefined set of operations associated with a menu command; the actions are
automatically supported by the run-time library, without requiring specific code on the part of the
application.

stream mode A special mode for several of the Clarion database drivers which optimizes file input/output.

swap file A system file maintained by Windows for maintaining virtual memory as required by the system.

syntax A rule specifying the specific format of a language statement.

system colors The default colors shared by all custom Windows palettes.

system date The date maintained by the system clock.

tab (Clarion) A control that defines one of several “pages” consisting of a group of other controls.
These tab “pages” are designed to be displayed in a single tabbed dialog by a sheet control.

tab order The sequence in which each control in a window gains focus upon a TAB key press.

table (SQL) A structured collection of data, consisting of a row of fields or column headings plus zero
or more rows of data. Each row contains exactly one value for each of the fields. Within Clarion,
the table corresponds to a specific FILE, ALIAS, or VIEW structure.

614 CLARION 5 USER’S GUIDE

tabular report A listing of data labels and their corresponding values, arranged in a row of column labels,
followed by additional rows of data arranged by column.

tag For file drivers (such as FoxPro and dBase IV) supporting multiple indexes within the same index
file, the indicator marking an individual index.

target file Indicates to the project system the name of the application or library file to be built.

task A currently executing Windows application.

template procedure (Clarion) A pre-written source code module written in the Clarion Template Language, containing
“boiler-plate” Clarion language code, instructions for processing it at code generation, plus a user
interface for gathering the customization instructions from the developer.

text control A multi-line edit control which automatically supports word wrap.

text file An ASCII file.

text justification A paragraph alignment style which lines up the edges of the paragraph at left, right, left and right,
or centers the entire line.

third normal form A test or measure of how closely a database meets relational theory tests for data normalization.

thread In a multi-threaded operating system such as Windows NT, the thread is the basic entity to which
the operating system allocates a slice of CPU time. The thread has access to the same code, data,
and system resources as the task (program) which started it. Clarion START threads do not receive
separate “timeslices” from Windows 3.1; the run time library “slices” the Clarion thread and
“divides” it among the Clarion START threads.

thumb The box control on a scroll bar.

timer A Windows resource which can automatically send a message to an application at pre-defined
intervals.

token A structured symbol or series of symbols, recognized and parsed by the compiler. Operators, and
variable names are examples of tokens.

toolbar A horizontal or vertically arranged group of command buttons, and/or other controls, generally
remaining accessible the entire time a program executes.

GLOSSARY 615

transaction The logical event during which an input or entry to a database record, held for sequential
management with other entries, is written to disk. Failure of any of the disk writes during the
transaction would compromise the integrity of the database.

tree control Displays a logically hierarchical list of items in collapsible outline format. In Clarion , a small
square filled with a plus or minus symbol, followed by a folder, represents an expandable tree
control.

untyped parameter (Clarion) Within a function prototype, specifies the data type of a parameter is to be resolved at tun
time.

USE variable (Clarion) An attribute indicating a variable whose value should display in a window or report
control.

validity check An executable code procedure which checks end user input against an expression defining
acceptable values for a given field.

VBX control A custom window control for processing end user input or displaying data.

VCR controls A set of icons designed for use in navigating a browse or list; the images on the controls bearing a
similarity to the controls on a video cassette recorder.

vector font A scalable typeface, such as a TrueType font.

vector graphic A binary file representation of a graphic or line art; defines the image as a series of lines and
curves, allowing for smooth resizing. Clarion supports the .WMF (Windows Metafile) vector
format.

view A virtual file containing selected fields from one or more related database files.

virtual table A data table or view which exists in memory only, constructed from one or more tables or data
files which may exist on disk.

watch variable A variable designated for monitoring by the Debugger.

widow A portion of text or data separated from its complementary following data by a page break.

window frame The window boundary. Dialog window frames are not resizeable. End users can resize other
windows by dragging the frame.

616 CLARION 5 USER’S GUIDE

window pane A specialized window which acts as a “part” of a greater window. This allows an end user to
divide an active window into separate sections which may then be scrolled independently or in
sync.

WinExec The standard Windows API function for calling another application. Supported in Clarion via the
RUN statement.

Wizard A series of dialogs that guide the user through a process, supplying defaults and limiting the user
options to only those still available after each decision point, thereby controlling and simplifying
the process from the user’s perspective.

X axis The horizontal axis. Used for locating controls; the leftmost pixel in a window is position zero.

Y axis The vertical axis. Used for locating controls; the upper pixel in a window is position zero.

INDEX 617

INDEX

Symbols

!= .. 478
#APPLICATION template ... 142
#ASSERT ... 135
#ASSERT checking ... 135
#FREEZE ... 105
#Freeze

180, 229, 330, 332, 334, 337, 338, 341, 344, 345
#LINK .. 105, 106
#MESSAGE ... 135
#ORIG ... 105, 106
% Modulus .. 403, 478
%FieldToolOptions ... 65
%FileToolOptions ... 51
%KeyToolOptions ... 76
& Concatenate .. 404, 478
(... ... 403
* Multiply ... 403, 478
+ Plus 403, 468, 478, 492, 493, 497
- Minus 403, 468, 478, 492, 493, 497
-> .. 478
. .. 478
... ... 105, 107

REPORTs ... 106
.APP file .. 20, 89
.CLW file .. 149, 385
.CUR .. 286
.DBD ... 430, 447
.DCT file ... 89
.DLL ... 90, 103, 565, 566

Creating .. 438
.EXE Plus .DLLs .. 575
.EXP ... 430
.LIB .. 90, 435
.LIC .. 302
.LPK ... 302
.OBJ ... 435
.OLR ... 298, 299, 300, 303
.olr .. 296
.PRJ ... 20, 426, 427, 558
.RED .. 28
.RSC ... 436, 573
.SHP ... 443
.TPL ... 141
.TPW .. 141

.TXA ... 130

.WMF ... 330
/ Divide .. 403, 478
::= ... 478
< Less Than .. 403, 478
<= Less or Equal ... 403, 478
<,> .. 195
<> Not Equals ... 403, 478
= Equals .. 403, 478
> More Than .. 403, 478
>= More or Equal .. 403, 478
? ... 218, 233, 241, 257
\! ... 296
^ Exponentiation ... 403, 478
| .. 478
~ ... 436
16-bit application .. 429
24-bit color ... 181
32 Bit Only ... 51
32-bit application .. 429
3D Look .. 183, 288

A

ABSOLUTE ... 338, 341
Accelerator key .. 200, 222, 226, 551

Creating .. 195
Accept button ... 411, 412, 413, 414
ACCEPT loop ... 591
accepted event ... 591
access key ... 591
Action controls ... 217
Action for Legacy embeds ... 134
Actions ... 170
active window ... 591
ActiveX Controls

License files .. 302
ActiveX objects

compound storage files ... 303
Adding Records ... 512
Alert ... 171
Alert Keys dialog .. 171
Alias .. 52, 591
Align Toolbox

Report Formatter .. 319
Alignment menu

Window formatter ... 174, 324
Allow control types to change .. 137
Allow conversion from list to drop list 137
ALONE .. 338, 341
ALRT .. 226
Always on top ... 184

618 CLARION 5 USER’S GUIDE

AND .. 404, 478
ANSI character set ... 591
API ... 591
API Functions .. 553

Linking ... 556
Prototyping .. 554

Append .. 591
applet ... 591
APPLICATION ... 150
Application ... 592

Creating ... 89, 95
Directory .. 89
Export ... 130
Import .. 130
Maintaining ... 124, 135
Multi user development ... 132
Organization .. 559
Organizing ... 122
Specify an Icon ... 434
synchronize with dictionary ...

126, 127, 129, 136, 172, 174, 180, 229, 322, 323,
324, 330, 332, 334, 337, 338, 341, 344, 345

Application Converter .. 525
Abort ... 532
All .. 532
Apply ... 532
Assertion ... 532
Configure the Conversion Rules 529
Conversion Rules .. 526
goals ... 527
Ignore .. 532
Omit .. 532
recompiling .. 533
Uncomp ... 532
Using the Conversion Wizard .. 528
Writing Your Own Conversion Rules 533

application defaults .. 92
Application Defaults and Configuration 23
Application Frame .. 540
Application Generator ... 88, 592

Defaults and Configuration ... 131
Application Menu ... 124
application modal windows 148, 183, 197, 236
Application Options ... 23, 131
APPLICATION template ... 142
Application Tree 91, 99, 122, 127, 592

Edit Menu .. 123
Sorting .. 122
suppress duplicate procedure display 131

Application Tree dialog ... 91
application window .. 540, 592
Application Wizard ... 132

Array .. 592
Definition ... 59

Array Index
Warning ... 431

Arrow cursor ... 547
ASCII character set .. 592
Assembler code

Debugger
16-bit .. 469

Assembler opcodes
Debugger Options

16-bit .. 464
ASSERT checking ... 135
assignment statement .. 592
AT attribute .. 158, 220
attribute .. 592
Attributes

Controls ... 218
Auto Number .. 75
Auto tile

Debugger Options
16-bit .. 465

auto-increment field ... 592
Auto-Populate ... 51, 54
Automatic Save

Text Editor ... 398
AutoSize ... 297
AVE .. 362

B

background priority .. 592
Background processing ... 539
Backup Files .. 28

Text Editor ... 398
Balloon Help .. 231
Band View ... 315, 326, 592
Bands Menu ... 325
BCD math .. 71
BEVEL ... 239, 276, 283, 291
Bevel Style ... 291
BFLOAT4 ... 58
BFLOAT8 ... 58
BINARY

Data types ... 58
Binary Coded Decimal (BCD) math 71
Binary Large OBjects ... 58
binary memo .. 592
BIND .. 592
BINDABLE attribute ... 51
Bitmaps .. 593
BLOB ... 58
Block Indent ... 393

INDEX 619

Block Options
Text Editor ... 397

BMP ... 286
Bold .. 227
bookmarks

text editor .. 399
Boolean .. 593
Border

color .. 593
List box .. 210

Column group .. 214
Window ... 179

BOX control ... 163, 288
Report ... 375

Box Properties
Colors .. 289
Name .. 289
Position ... 290
Setting ... 288
Use .. 289

Box Properties dialog ... 289, 375
break field .. 593
Break Group ... 325, 335
Break Point dialog .. 472
Break Properties dialog ... 359
Breakpoints .. 593

Debugger
16-bit .. 471
32-bit .. 495

Removing .. 475
BringWindowToTop .. 593
Browse ... 593
Browse Wizard ... 97
Browsing Data Files ... 501
BUILD .. 74

Indexes .. 72
built-in .. 593
button .. 542, 593
BUTTON control .. 162
Button properties

Actions .. 235
Call a Procedure .. 236
No Special Action ... 237
Run a Program ... 237

Default ... 234
Drop ID .. 235
Icon ... 233
Immediate ... 234
Name .. 233
Parameter ... 232
Required ... 233
Setting ... 232

STD ID .. 234
Text .. 232

Button Properties dialog .. 232
button text .. 222
BYTE data type .. 57

C

C4Conv.INI ... 533
C4Conv.pr .. 533
C5EDT.INI ... 23, 396, 399
C5RUN[x].DLL .. 441, 443
calculated field ... 593
CALL Function ... 558
Called Procedures dialog .. 108
calling Clarion executables with non-Clarion execu 582
Calling convention .. 555
CAP ... 61, 255
capitalization mode .. 61
Capitals ... 255, 259, 263
Caption bar .. 179

Report formatter .. 316
Cascade ... 550

Data Integrity ... 80
cascading menu ... 593
Case Sensitive ... 593

Keys .. 75
CASE structure ... 412, 593
Change Access Key ... 104
Change Case

Text Editor ... 390
Change Module ... 127
Change Template ... 127
Character

Data types ... 57
character string .. 593
CHECK attribute .. 202
Check Box ... 162, 542, 594

Report ... 378
Check Box Properties

Actions .. 246
Assign values ... 246
Hide/unhide controls .. 247

Drop ID .. 245
Field or variable .. 243
Help ... 246
Icon ... 245
Justification .. 243, 244
Name .. 243
Position ... 246
Setting ... 243
Use .. 243

620 CLARION 5 USER’S GUIDE

Check Box Properties dialog ... 243
Check button ... 411, 413
Checkpoint ... 82
Child Window .. 149, 594
Choices ... 67, 68
Clarion 4 Betas .. 530
Clarion executables ... 441
Clarion file extensions

.APP .. 89

.CLW ... 149

.DCT ... 33, 89

.PRJ ... 426, 558
Clarion standard date .. 594
class ... 594
Clear all other attributes if omitted in dictionar 137
Clear HELP, MSG, TIP if omitted in dictionary 137
click .. 594
client ... 594
client application .. 594
client server architecture .. 594
client server networking ... 594
CLIP ... 297
clipboard .. 594
Clock .. 181
Close .. 594
CNT .. 362
CODE ... 92
code generation ... 135
Code generation messages ... 135
code section ... 594
Code template

embedding .. 116
COLOR .. 267
Color .. 170, 181, 186, 552

Debugger Options
16-bit .. 466

Text Editor .. 397, 398
Color Dialog .. 224, 594
Colors

customizing text editor .. 400
column ... 594
Column Display Pictures .. 507
Column groups

List box .. 214
Column Heading .. 60
Column Justification ... 506
Column width ... 506
Columns, working with ... 505
Combo Box ... 255, 543, 594

Defined .. 206
COMBO control ... 163
COMBO controls

creating ... 249
Combo Properties

Entry Mode ... 255
Entry pattern ... 255
Picture token ... 255
Read Only ... 256
Setting ... 255

command ... 595
Command Toolbox

Window Formatter ... 159
comment .. 595
Comment Block

text editor .. 399
Comments

data dictionary .. 57
commit ... 595
common file dialog ... 595
Compatible Mode ... 297
Compile and link .. 448

Other projects ... 434
Compile options

Individual files ... 433
Storing ... 426

Compile Options dialog 428, 433, 448
compile times ... 135
compiler directive ... 595
Compound Storage File ... 296
Compound Storage file 298, 299, 300
Compound Storage Files ... 302

benefits ... 303
compound storage files

license files ... 303
Computed field ... 402
concatenate .. 404, 595
concurrency checking .. 595
Conditional Breakpoints ... 472
Conditional Expressions .. 410
Conditional field ... 402
Conditional Generation .. 135
conditional statement ... 595
Conditionals dialog ... 406, 410
Configuration

Application Generator ... 131
Dictionary Editor ... 83
Text Editor ... 396
Window Formatter ... 151

Consistency ... 536
constant ... 595
Constant Number ... 404
Constant Text ... 404
Constrained Dragging .. 169
context menu ... 595

INDEX 621

control alignment ... 595
Control label text .. 546
Control menu ... 595

Window formatter .. 174
Control Panel

Debugger Options
16-bit .. 463

Control Properties .. 595
Actions .. 170
Data dictionary field or memory variable 218
Font ... 170
Name .. 218
Position ... 171
Setting ... 218
USE ... 218

control size, default 161, 164, 175, 190
Control Template .. 118

Report Formatter .. 326
Window Formatter 161, 174, 176, 324

control templates
reminder to use ... 132

Controls ... 97, 595
Alignment of .. 165
Appearance ... 228
Availability to user ... 228
Balloon help .. 231
BOX ... 163
BUTTON ... 162
CHECKBOX .. 162
COMBO .. 163
Copying ... 172
Custom ... 217, 294
ELLIPSE ... 163
Enable/disable .. 228
ENTRY .. 162
Font specification .. 227
freezing ... 126, 127, 129, 136
GROUP ... 162
Help ... 230
Hiding .. 228
Hot key .. 225
IMAGE ... 163
Interactive .. 217
LINE .. 163
LIST .. 163
Messages .. 231
Mode ... 228
Non-interactive .. 217
OPTION .. 162
Positioning ... 220
positioning .. 169, 355
PROGRESS .. 163

PROMPT ... 162
protect from subsequent dictionary update

180, 229, 330, 332, 334, 337, 338, 341, 344, 345
RADIO ... 162
REGION .. 163
Scrolling behavior ... 228
SHEET .. 162
Size ... 221
SPIN .. 163
TAB ... 162
TEXT ... 162
Tool tip ... 231
Types ... 217
VBX .. 217, 294
Visual Basic ... 217, 294

Controls Menu
Report Formatter .. 324

Controls Toolbox
Report Formatter .. 316
Window Formatter .. 160, 318

Conventions
documentation .. 16

Conversion
Clarion for DOS3.007 .. 43
Data dictionary .. 43

Conversion Rules
Application Converter ... 526

Conversion Wizard
Application Converter ... 525

converting applications .. 525
Converting Data Files .. 515
Converting Legacy Data .. 521
cool switch ... 595
cooperative multitasking .. 596
Coordinates

Windows and controls ... 221
Copy ... 550

Controls ... 172
Procedures .. 127
Report elements .. 322, 323
Text Editor ... 389

Copy and Paste
Data dictionary .. 81
Fields .. 81
Files .. 81

CREATE attribute ... 50
Create Map File ... 432
Creating Your Application’s Windows 147
criteria .. 596
critical error .. 150
Crosshairs cursor .. 230, 547
CSTRING ... 57

622 CLARION 5 USER’S GUIDE

currency format .. 417
current directory ... 596
Current Line

Debugger .. 475
current record .. 596
Cursor ... 187, 547, 596

Appearance ... 230
Custom Control Properties

Cursor ... 307
Metafile ... 307
Text .. 306

Custom Control Registry ... 305
Custom controls ... 294

Report ... 381
customize procedures .. 109
Cut ... 550

Text Editor ... 389
Cut and Paste

Embedded Source .. 117

D

Data
Declaring variables ... 106
Display format .. 60, 223, 416
Duplication .. 36
Encryption ... 50
Integrity .. 39, 79
MODULE ... 107
Normalization .. 36
Picture token .. 60, 223, 416
Validation .. 66

Data button .. 97
Data Dictionary ... 33, 596

Adding file alias .. 45, 52
Adding Files .. 45
Benefits of ... 33
Conversion of .. 43
Copy and Paste ... 81
Creating .. 40
Defining defaults ... 33
Defining fields ... 34
Designing .. 36
Editing Dictionary Properties .. 43
Information stored ... 33
Managing .. 81
Managing files ... 34
Naming .. 40
Opening ... 35, 43
Password .. 44
Quick Load .. 45
Synchronization

126, 127, 129, 136, 172, 174, 180, 229, 322, 323,
324, 330, 332, 334, 337, 338, 341, 344, 345

Versions .. 82
data dictionary field pool .. 47
data dictionary global data ... 47
Data entry format ... 69
Data File .. 596

access ... 500
conversion ... 515
statistics .. 504

Data Integrity ... 500
Data management ... 36
data section ... 596
Data Type ... 57
Data Types ... 596

BFLOAT4 .. 58
BFLOAT8 .. 58
BLOB .. 58
BYTE ... 57
CSTRING .. 57
DATE ... 58
DECIMAL .. 58
Equivalents ... 555
GROUP ... 59
LONG .. 57
MEMO ... 58
PDECIMAL .. 58
Performance .. 58
PICTURE .. 57
PSTRING .. 57
REAL ... 58
SHORT .. 57
SREAL .. 58
STRING .. 57
TIME ... 58
Translating ... 554
ULONG ... 57
USHORT ... 57

Data validation .. 40, 596
input formatting ... 422
Must be in List ... 68
No Checks .. 66
Numeric ... 67
Required field .. 67
True or False. .. 67

Database ... 596
administrator ... 596
definition .. 596
Design .. 36, 596
integrity ... 597
Tables .. 36

Database driver libraries
Linking ... 435

INDEX 623

Database Driver Registry .. 24
Database drivers .. 597
Database Manager .. 500
Datatypes

choosing .. 70
DATE .. 58
Date

century interpretation formula ... 421
format .. 420
on reports .. 366
Validation .. 420

Dates
datatypes .. 70

dBase format ... 597
DBMS ... 597
DDE .. 583, 597
DDE server .. 584
DDE services

Debugging ... 471
DDECLIENT .. 584
DDEEXECUTE ... 584, 588
DDEITEM ... 584
DDEPOKE ... 589
DDEREAD ... 584
DDEWRITE .. 584
Debug ... 21, 135, 597
Debug Mode ... 430, 447
Debug Options ... 446
Debuggee ... 447, 597
Debugger

Breakpoints
16-bit .. 471
16-bit conditional .. 472
16-bit unconditional .. 471
32-bit .. 495
Deleting 16-bit .. 475

Starting
16-bit .. 460
32-bit ... 453, 482, 488

Debugger Options
16-bit ... 462

Active DLLS ... 465
Assembly single step ... 463
Auto tile .. 465
Clarion soft mode ... 462
Clear Desktop .. 465
Colors ... 466
Control Panel ... 463
Disable kernel messages ... 463
Disassembly on .. 463
Disassembly opcodes .. 464
Extended Stack Trace .. 463

Global find text ... 464
Iconize when inactive ... 464
Ignore DLL files .. 463
Maximum disassembly windows 465
Maximum source windows ... 465
Message Groups .. 466
No horizontal scroll .. 464
Order record fields ... 464
Position .. 465
Redirection file ... 465
Report missing source ... 464
Restart ... 465
Sleep Mode .. 465
Smart Single Stepping ... 464
Soft mode ... 462

32-bit ... 490
Clarion Runtime DLL .. 490
Give debugger focus .. 491
Install as system debugger .. 491
Procedure window on startup 491
Redirection File .. 490
Stop at entrypoint ... 490
Stop at first line .. 490
Stop on dynamic DLL load ... 491

Debugger Windows .. 447
16-bit

Active procedures .. 469
Assembler code ... 469
Disassembly ... 469
Global variables ... 468
Library States ... 470
Machine Registers ... 470
Registers .. 470
Source code ... 467
Windows Messages ... 470

32-bit ... 491
Assembler .. 494
Disassembler ... 494
Globals ... 492
Memory .. 495
Procedures in ... 492
Source .. 494
Stack Trace ... 493

Debugging
Already active program ... 461
DDE services .. 471
Line Numbers .. 448
Loading the Source Files

16-bit .. 461
32-bit .. 489

Navigating
16-bit .. 475

624 CLARION 5 USER’S GUIDE

Navigation
32-bit .. 496

Preparing your project .. 447
Running the Program

16-bit .. 474
Single module ... 448
Trace

16-bit .. 476
Debugging Process ... 446
DECIMAL ... 58
decimal justification .. 214
deep assignment ... 597
default .. 597
DEFAULT attribute ... 234
default button ... 597
Default presentation method .. 69
Default property definition .. 101
Default settings .. 541
default spacing ... 155
default value ... 62
default window position .. 597
Default Window Structures .. 148
Defaults

Defining with Data Dictionary ... 33
defaults

application wide .. 92
DEFAULTS.CLW .. 149
Define

Fields .. 40
Files ... 40, 46
Keys .. 41

Defining Your Application’s Windows 156
Delete

Report elements .. 322, 323
Source elements ... 390
Window elements .. 172

Deleted Records .. 513
delimiter ... 598
Delphi, calling Clarion executables from 582
dependent entity .. 598
deploying application files .. 443
Derived From ... 57
Design guidelines .. 541
Design principles ... 535
Designing windows .. 146
desktop .. 598
Detail

Report .. 325, 340
DETAIL structure .. 598
dialog ... 598
Dialog Boxes .. 540
Dialog units ... 177, 189, 598

dictionary
default ... 131

Dictionary can override size ... 138
dictionary, changing ... 124
Dictionary dialog .. 34

Add Relation button .. 41
Related File ... 41

Dictionary Editor .. 32
Assign Description to Message .. 84
Assign Description to tooltip ... 84
configuration ... 83
Default Driver .. 83
Default THREAD Attribute ... 83
Display Field Description .. 84
Display Field Picture ... 85
Display Field Prefix ... 85
Display Field Type ... 85
Display File Description .. 83
Display File Driver ... 84
Display File Prefix ... 84
Display Key Description .. 85
Display Key Prefix ... 85
Display Other Key Attributes ... 85
Display Primary Key Status .. 85
Display UNIQUE Flag ... 85
Functions ... 33, 39
Key Type .. 85
Opening .. 43
Prompt to use Quick Load .. 84
Sort dictionary files alphabetically 83

Dictionary Field
Report Formatter .. 326

Dictionary Properties
Comments tab ... 43

DIM .. 59
dimensions ... 59
direct access to data files .. 500
Directness .. 537
DISABLE .. 220
Disable controls ... 228
Disable Field Prompts .. 134
Disable Item ... 201
disabled .. 598
Display Format ... 416
Display Pictures

columns ... 507
Display Repeated Functions .. 131
Display warning if could not synchronize 139
Distortion

Report graphics .. 373
Distributing Applications .. 441
DIV ... 478

INDEX 625

Divide ... 403
Divide by zero .. 432
division of labor .. 565
DLL ... 90, 103, 553
Do Not Populate This Field .. 64
document ... 598
Document Windows ... 540
document-centric design ... 598
Documentation Conventions .. 16
DOS buffer ... 598
double-click .. 598
DoVerb ... 295
drag .. 598
Drag and drop .. 185, 235, 240, 242, 245, 254, 260, 264,

268, 273, 275, 277, 281, 284, 286, 598
dragging controls .. 169, 355
Drawing windows ... 146
Driver strings ... 510, 599
Drop Combo

Window Formatter ... 163
Drop down list ... 543, 599

creating ... 249
Defined .. 206
Properties ... 249
Window Formatter ... 163

Drop ID ... 185
drop list. See Drop down list
Duplicate

Report elements .. 322, 323
Text Editor ... 390
Window elements .. 172

duplicate procedure names ... 133
Dynamic Data Exchange ... 583
dynamic link library 553, 599. See also DLL

E

Edit errors in context .. 140
Edit Expression dialog ... 478
Edit Menu ... 388
Edit menu .. 172, 549
Edit Picture Dialog ... 416
Edit Picture dialog .. 416
Edit Variable dialog .. 479
Editing Data ... 512
Editing Memos ... 513
Editing Records ... 512
Editing Source code .. 110, 111
Editing Variables

At run time
16-bit debugger .. 478
32-bit debugger .. 493

Debugger .. 478

Editing Variables at Run Time
Debugger 32-bit .. 497

Editor .. 384
Editor options and settings ... 23, 396
ELLIPSE control .. 290

Report ... 376
Window ... 163

Ellipse Properties
Colors .. 290
Name .. 290
Position .. 290, 292, 301
Setting ... 290
Use .. 290

Ellipse Properties dialog .. 290
ellipsis (...) button .. 107, 180

edit data declarations ... 107, 108
edit REPORT declaration .. 106
edit WINDOW declaration ... 105
Window ... 105

Embed Point .. 109
Embed points ... 170
Embedded source .. 599

Defining ... 103, 106, 107, 108
embedded source code

code template ... 116
Cutting and Pasting ... 117
managing ... 113, 117
Priority ... 114

Embedded Source dialog 94, 111, 266
embedding objects ... 299
Embeditor ... 110, 599

configuration ... 139
Embeds button ... 108
Enable #ASSERT checking ... 135
Enable controls .. 228
Enable embed commenting ... 136
enabled .. 599
encapsulation ... 599
ENCRYPT attribute .. 50
encryption .. 599
Enter .. 171
ENTRY control .. 162, 217, 261
Entry Patterns ... 182, 420
Entry Properties

Actions .. 264
Embedded Source ... 266
Files .. 266
List lookup validation .. 265
Lookup Procedure .. 265

Drop ID .. 264
Entry Mode ... 263
Entry pattern ... 261

626 CLARION 5 USER’S GUIDE

Entry Patterns ... 261
Field or variable .. 261
Help ... 264
Immediate ... 264
Justification ... 261
Justification Offset .. 262, 280
Name .. 261
Picture token ... 261
Position ... 264
Read Only ... 263
Required ... 263
Setting ... 261
Use .. 261

Equals .. 403
equi-join ... 599
Error log ... 135
Esc ... 171
event .. 599
event driven programming .. 535, 599
Event-driven ... 538
EVENT:AlertKey .. 226
EVENT:Timer ... 181
EVENT:vbxevent .. 306
Excel .. 295
Excel format ... 599
Exclude Nulls .. 76, 77
exclusive access .. 599
executable ... 438, 441, 599
Exit ... 549
expand ... 599
Export .. 566
Export Block

Text Editor ... 388
Export Fields .. 51
Export the Clarion for Windows Run-time Functions 581
expression ... 403, 600
extension .. 600
Extension templates .. 118

Window Formatter .. 174, 324
Extensions button ... 118, 124, 129
EXTERNAL .. 576
External .. 566
EXTERNAL - DLL .. 64
EXTERNAL - LOCAL ... 64
external .DLL ... 565
External functions .. 553
External Name .. 63, 75
external name .. 600
external procedure ... 600
External Resources

Linking ... 436
External routines .. 435

External Source Code Files ... 434
EXTERNAL-DLL .. 576
ExternalDLL ... 125
ExternalLib ... 125
ExternalObj .. 125
ExternalSource .. 125

F

Favorite Pictures .. 416
Feedback ... 537
Field Equate Label .. 195, 218, 600
field event ... 600
Field Mapping .. 79
Field Name .. 56
Field Pool, data dictionary ... 47
Field Properties

(decimal) Places ... 59
Case attribute .. 61
Characters .. 59
Comments ... 64
Description .. 57
Dimensions ... 59
Extra Vertical Space .. 65
Help ID .. 65
Immediate ... 62
Justification ... 62
Message ... 65
Place Over .. 63
Reference ... 59
Tool Tip .. 65
Validity Checks .. 66

Field Properties dialog .. 34, 66, 107
Field/Key Definition dialog .. 55, 72
Fields .. 175, 600

Adding new ... 55
Adding or modifying .. 55
Adding to reports .. 358
Changing ... 55
Data validation .. 40
Declaring data type ... 40
Declaring length .. 40
Defined .. 37
Defining ... 55
Defining Field Properties .. 56
Definition of ... 40
Deleting ... 55
Moving .. 55
Naming .. 40
Report ... 358

Fields Toolbox .. 391
Fields toolbox

INDEX 627

Text Editor ... 113
Fields/Keys button ... 55
FieldToolOptions .. 65
File Alias

Purpose and function .. 52
Share mode .. 52

File Alias dialog
Comments tab ... 52
General tab ... 52
Options tab .. 52

File Alias Properties
Alias File ... 53
Auto-Populate ... 54
Comments ... 53
Description .. 53
Name .. 53
User Options ... 54

File Definitions ... 510
File extensions

.TPW, .TPL .. 141
file handle .. 600
File Management .. 34, 566
File Menu .. 130, 548

Creating .. 194
File Names

Specification of .. 34
File Properties

Auto-Populate ... 51
Comments ... 51
Description .. 48
Driver Options ... 48
Enable File Creation ... 50
Encrypt Data Records ... 50
Field Binding ... 51
File .. 47
File Driver .. 48
Full Pathname .. 47, 49
Generate Last ... 47
Global .. 47
OEM Collation ... 50
Open in Current Thread .. 50
Owner Name ... 48
Pool ... 47
Prefix .. 48, 53
Reclaim Deleted Records ... 50
User Options ... 51

File Relationships
Defining ... 34
Foreign Key ... 41
Managing .. 34
Many-to-Many ... 37
Many-to-One ... 78

Map By Name ... 42
Map By Order .. 42
One-to-Many .. 37, 78
One-to-One ... 37
Primary Key .. 41

File schematic .. 103
file sharing ... 83
File Statistics .. 504
Files

Accessing .. 103
Add alias to dictionary .. 45, 52
Add to dictionary .. 40, 45
Adding Relations ... 78
Convert ... 265
converting ... 515
Definition of .. 40, 46
File driver .. 40
Naming ... 40, 47
Prefix ... 40
Quick Load ... 40, 45
Relations ... 78
Sorting .. 104
Specifying driver options ... 48
Specifying file description ... 48
Specifying file driver .. 48
Specifying full pathname .. 47, 49
Specifying owner name .. 48
Specifying prefix ... 48, 53
Variable file names ... 49, 50

FileToolOptions .. 51
fill color ... 600
Filter ... 600
Find .. 509

Debugger 32-bit .. 497
Text Editor ... 391

Find Last Error
Debugger .. 475

Find Next
Debugger .. 475

Find Procedure
Debugger .. 475

Find text
Debugger .. 475
Debugger Options

16-bit .. 464
Fixed columns

List box .. 211
Column group .. 214

flow diagram ... 99
Focus .. 170, 600
folder .. 600
Font .. 600

628 CLARION 5 USER’S GUIDE

Report ... 323
Window ... 170

FONT attribute ... 227
font dialog .. 600
font style ... 600
Font substitution .. 228
Footer

Report ... 345
foreground priority .. 601
Foreign Key ... 41, 78, 601

Defined .. 37
Form .. 96, 332, 601
form letter ... 601
form report style ... 601
Form Tab .. 65
FORMAT attribute ... 208, 251
Format for display .. 416
format string ... 601
Format Structure .. 390
formatter ... 601
Formatting Columns .. 505
formatting reports .. 313
Formula Class .. 407
Formula Editor 105, 402, 405, 407, 409
Formulas .. 118
Formulas Dialog ... 405
Frame ... 540
Frame Type .. 179
Freeze

Field Properties ... 60
File Properties ... 51

Freeze a control
180, 229, 330, 332, 334, 337, 338, 341, 344, 345

FROM ... 67, 68
FROM attribute .. 258
Frozen Controls 126, 127, 129, 136
function .. 601

G

GDI ... 601
Generate Global Data as External 567, 568, 569
Generate source code ... 22
Generate template globals and ABCs as EXTERNAL 576
GIF image ... 286, 601
Global Compile and Link Options .. 429
Global Data .. 106

generation of ... 143
Global data. See also Module Data
global data, data dictionary .. 47
Global menu selections ... 191
Global Options dialog ... 428, 447

global procedures .. 135
Global Properties dialog .. 92
Global Request .. 237
global variable .. 601
Go

Debugger 16-bit .. 474
Debugger 32-bit .. 497

Go Cursor
Debugger 16-bit .. 474
Debugger 32-bit .. 497

Goto Line
Debugger .. 475

grand totals ... 338, 340, 363
graph .. 601
Graphic Controls

Report ... 372
Graphical User Interface .. 601
Graphics

Report ... 372
Graphics file ... 287
grayed .. 601
Greater than ... 403
Greater than or Equal .. 403
Green check ... 101
Grid Settings

Report Formatter .. 327
Toobar ... 204
Window Formatter ... 174

Grid snap ... 602
Report Formatter .. 327
Window Formatter .. 151, 177

group .. 602
Group Box ... 545, 602

Report ... 379
Group BREAK Properties .. 336
Group Breaks ... 335
GROUP control ... 59, 162, 282
Group development ... 561
Group Footer

Report ... 325
Group Header

Report .. 325, 360
Group Properties

Accelerator key ... 282
BEVEL .. 283
Boxed .. 284
Caption .. 282
Drop ID .. 284
Help ... 284
Hidden ... 284
Position .. 284, 287
Setting ... 282
Text .. 282

INDEX 629

Group Properties dialog ... 282
GUI environment .. 536

H

Handles ... 158, 602
Headers

Report ... 334
Heading Text

List box .. 209
Column group .. 214

Height ... 189
Windows and controls ... 221

Help
Context string .. 231
Keyword ... 197, 231
Message ... 231
Online help for windows and controls 230
Topic .. 65
Windows Help File .. 231

Help Compiler ... 187, 602
help context string .. 602
Help ID .. 65, 187, 197
Help menu ... 551
help system .. 602
help topic ... 602
hide .. 602
Hide/Unhide Controls .. 228, 247
Hiding Columns ... 505
hiding input data .. 263
Hiding the Clarion for Windows Run-time Library 579
Highlight Multiple List Items ... 251
HLP ... 65, 137
HLP attribute .. 197
Holding Records .. 514
Hot key .. 170, 200, 201, 222, 225

Enter ... 201
Esc .. 201
Tab .. 201

Hourglass cursor .. 547
How to Use Help .. 551

I

I-Beam cursor ... 230, 547, 602
I/O .. 602
ICO .. 204, 286
Icon .. 180, 566, 575, 602

specify an application icon .. 434
Iconize when inactive

Debugger Options
16-bit .. 464

Iconized state ... 180
IDE ... 602
identifier ... 602
IF structure ... 410
Ignore Freeze attribute setting ... 138
IMAGE control .. 286

Report ... 373
Window ... 163

Image Properties
File .. 287
Name .. 287
Position ... 287
Scroll bars ... 287
Setting ... 286
Use .. 287

Image Properties dialog .. 286, 373
IMM .. 62
IMM attribute .. 234, 259, 264, 277
Immediate .. 181
implicit variable .. 603
Import File

Text Editor ... 388
Import from Application .. 130
import library .. 603
Imported application names .. 133
importing data ... 515, 521
include file .. 603
Indent block .. 393
Indentation ... 62
independent entity ... 603
index file ... 603
Indexes ... 74, 75

BUILDing ... 72
Defined .. 72

inheritance ... 603
INI file ... 603
Initial Value ... 62
Initiate Thread .. 96
Inner ... 105
inner join .. 104
Input Key dialog 170, 195, 201, 225
INS ... 61
Insert Key Components dialog .. 41
Insert Key dialog .. 227
Insert/Overwrite .. 259, 263
insertion point .. 603
Install .. 443
Integer

Data types ... 57
Intellidate ... 421
Inter-Process Communication ... 583
Interactive Controls .. 232

630 CLARION 5 USER’S GUIDE

interface ... 603
IPC ... 583
ISAM .. 603
Italic .. 227

J

Job Name .. 329
join ... 603
join, inner v outer ... 104
JPG ... 286, 373, 603
Justification ... 258, 261, 279

columns ... 506
Field .. 62
List box

Column group .. 214

K

Keep synchronized with original .. 299
Kernel ... 603
Kernel messages

Debugger Options
16-bit .. 463

KEY attribute .. 225
Key Components .. 73, 77
Key Properties

Auto-number ... 75
Auto-Populate ... 76
Case Sensitive .. 75
Defining ... 74
Description .. 72
External Name .. 73
Key Component .. 73
Name .. 72
Population Order ... 76
Sort Order ... 77
Type .. 74

Key Properties dialog .. 41, 72
Fields tab .. 41
General tab ... 41

Key Properties dialogs ... 74
key-in template picture ... 604
keyboard accelerator ... 604
Keys .. 170, 604

Adding or modifying .. 72
Component Order ... 77
Components .. 41
Defined ... 37, 72
Defining ... 40
Definition of ... 41
Empty .. 76

Foreign ... 41, 78
Linked field .. 79
Mapping .. 79
Naming .. 41
Nulls .. 76
Primary .. 41, 78
Specify which fields will become part of your key 41
Unique .. 75, 78

Keys tab ... 41
KeyToolOptions .. 76
keyword .. 604

L

Label ... 179, 604
labels

printing .. 368
Landscape reports ... 331
Last on Line ... 211
latched button .. 245
left outer join .. 104
Less Than .. 403
Less Than or Equal .. 403
LIB file ... 90, 604

Creating .. 438
LIBs

creating ... 572
License agreement .. 561
license file .. 604
License Files

OCX .. 302
Line Color .. 593
LINE control ... 288

Report ... 374
Window ... 163

Line Numbers .. 431
Line Properties

Color ... 288
Name .. 288
Position ... 288
Setting ... 288
Use .. 288

Line Properties dialog ... 288, 374
Link .. 21
Link Error: procedure@F is unresolved 572
Linked field ... 79
Linkers ... 439
linking ... 435
linking 16-bit applications ... 436, 573
Linking API Functions .. 556
linking objects .. 299
linking resource files ... 436, 573

INDEX 631

List
Marking Selections ... 251

List Box ... 249, 543, 604
Creating .. 249
Defined .. 205
Multi-row records .. 211
Report ... 379
Show Root .. 214

List Box Format
Report .. 322, 323
Window ... 172

List Box Formatter .. 204
Border

Column group .. 214
Column

Scroll bar ... 209, 214
Column Groups ... 214
Column headers

Indent ... 209
Justification .. 209
Text ... 209

Columns
Borders ... 210
Color ... 212
Fixed .. 211
Font .. 212
Hierarchal display ... 214
Icons ... 213
Indent ... 210
Justification .. 210
No scroll ... 211
Picture token .. 210
Resizeable ... 210
Tree controls .. 214
Underline .. 211
Width .. 209

Fixed column
Column group .. 214

Heading Text
Column group .. 214

Indent
Column group .. 214

Justification
Column group .. 214

No scroll
Column group .. 214

Resizeable
Column group .. 214

Scroll bar ... 207
Underline

Column group .. 214
LIST control

Window ... 163
List Field Properties dialog ... 206, 214
List Properties

Actions .. 254
Cell selection ... 253
Data source ... 250
Drag ID .. 254
Drop ID .. 254
Drop list size ... 250
Field or variable .. 249
Help ... 254
Hide Selection ... 253
Immediate ... 253
Item selected .. 249, 251
Justification ... 251
Justification Offset ... 251
Name .. 249
Position ... 254
Scroll bars ... 253
Scrolling .. 252
Selectable by column .. 253
Setting ... 249
Use .. 249
VCR scrolling controls .. 252

List Properties dialog .. 206, 249
literal .. 604
Local Data .. 123
local data .. 106, 604
Local menu selections ... 191
Local variables ... 97
Locate

Debugger 16-bit .. 475
Debugger 32-bit .. 497

Locator
Multi-column Combo Box .. 212

lock ... 604
Lock a Control

180, 229, 330, 332, 334, 337, 338, 341, 344, 345
Locked Controls 126, 127, 129, 136
locked field or record .. 604
Log events ... 135
logical operator .. 604
Logo

Report ... 373
LONG ... 57
lookup .. 265
Lookup Key .. 265
Lookup Procedure ... 265
lookup related records ... 103
lookup table ... 604
LOOP structure .. 605

632 CLARION 5 USER’S GUIDE

M

macros
text editor .. 393

Mailmerge document ... 372
Main procedure .. 99
maintain your application

GROUPs ... 217
Maintaining the Application Tree 91, 122
Maintaining your Application

applying dictionary changes
126, 127, 129, 136, 172, 174, 180, 229, 322, 323,
324, 330, 332, 334, 337, 338, 341, 344, 345

Make ... 21, 98
MAKE file ... 426
Making LIBs and DLLs for Other Environments 582
Managing embedded source 113, 117
many-to-many relationship .. 605
many-to-one relationship ... 605
MAP ... 119
Map By Name .. 42
Map by Name .. 79
Map By Order .. 42
Map file .. 432
margin .. 153
margins on reports .. 331, 335
Mark list items .. 251
MASK attribute 182, 255, 257, 261, 420, 605
Master .APP file ... 561
MAX ... 362
maximize box ... 605
Maximize button ... 183
Maximized .. 179
MDI ... 148, 183, 198, 236, 540
MDI Child Window .. 149, 183
MDI Parent ... 150
MDI Parent Frame .. 150
Measurement units

Report formatter .. 352
Media Control Interface ... 605
MEMO .. 58

printing .. 376
memo ... 605
Memory variables

Attributes ... 56
Menu ... 548, 605

Accelerator key ... 196
Actions .. 197
Call a Procedure ... 197
CHECK attribute ... 202
Copy and Paste ... 198
Creating a menu .. 190, 195

Delete .. 202
Disabling ... 201
Do Not Merge .. 200
Help ID .. 197
Help Menu ... 199
Hot Key ... 200
Merging ... 191
Merging Order ... 192
Message ... 196
OLE Control .. 296
Right Justify .. 200
Run a Program .. 198
Standard Windows Behavior (SWB) 198
Standard Windows commands 191
Toggle (on/off) Item ... 202
Toggling ... 201
Window menu ... 199

Menu Editor 96, 174, 193, 194, 202
Menu Editor dialog .. 194, 195
Menu item .. 96
Menu Menu .. 174
Menu Text ... 196
Menubar

NOMERGE ... 200
Menus

Aligning text .. 195
Special Characters .. 195

Merging
Menu ... 191

Merging Order .. 192
Toolbars .. 203

MESSAGE ... 541
Message bar .. 181
message box .. 605
Message display .. 231
Message field ... 196
message queue ... 605
Messages

source code generation .. 135
Metafile .. 605

Report ... 382
Microsoft Excel .. 584
MIN .. 362
minimize box .. 606
Minus ... 403
Missing source

Debugger Options
16-bit .. 464

mnemonic access key ... 606
mnemonic key .. 222
MOD ... 478
MODAL attribute .. 150

INDEX 633

Modal Window ... 606
modeless dialog ... 606
Modeless windows 148, 183, 197, 236
modular systems .. 90
MODULE .. 125
Module ... 606

Maintaining .. 125
Module Data ... 106, 107, 122
Module Data dialog .. 108
Module Name .. 102
Module Properties dialog ... 107
MODULE structure .. 438
Modulus ... 403
Money .. 71
More Than .. 403
More Than or Equal ... 403
Mouse

Appearance of cursor ... 230
Mouse clicks ... 170, 201
Move .. 127
MSG .. 65, 84, 137
MSG attribute .. 196, 231
Multi User Development .. 132, 562
Multi user Development ... 561
multi-column COMBO .. 212
multi-column reports .. 368
Multi-line data entry field .. 266
Multi-Line Text

Report ... 376
multi-page dialogs .. 545
multi-tasking .. 539, 606
multi-user database ... 606
Multi-zone status bar ... 185
multilevel index ... 606
multimedia ... 553
multiple controls

setting attributes .. 217
Multiple Document Interface 540, 606
Multiple Fields .. 175
multiple selection ... 606

N

NAME attribute .. 63
name clash action .. 133
Naming Generated Source Modules 126
natural join ... 606
Navigating Through a File .. 508
Navigation keys .. 226
Nested CASEs ... 414
Nested IFs ... 414
nested queries ... 606

nesting ... 607
New .. 548
New Key Properties dialog ... 72, 73
New Structure dialog ... 148
Next Error

Text Editor .. 389, 395
NIL-Pointer ... 431
NO DUP attribute ... 75
NOBAR attribute .. 253
NOCASE attribute .. 75
NOMERGE

Menubar .. 200
non-display input .. 263
Non-interactive controls ... 279
non-Windows application ... 607
Normal ... 255
Normalization .. 36, 607
NOT ... 404, 478
Not Equals ... 403
Noun-Verb principle ... 548
Novell Paths ... 48
null value .. 607

O

Object ... 607
object embedding .. 299
Object Files and Libraries .. 435
object linking .. 299
Object Linking and Embedding .. 295
OCX ... 295

License files .. 302
Property Sheet .. 172

OCX control .. 295, 607
Window Formatter ... 163

ODBC ... 607
ODBC Administrator .. 607
ODBC Control Panel applet ... 607
ODBC driver .. 49, 607
OEM Collation .. 50
Offset ... 258

field display ... 62
OLE ... 553, 607

Compound Storage file 298, 299, 300
object embedding ... 299
object linking ... 299

OLE Control ... 295
Document .. 299
Keep synchronized with original 299
Menus ... 296
Sizing Mode .. 297
Window Formatter ... 163

634 CLARION 5 USER’S GUIDE

OLE Properties
Colors .. 301
Name .. 297
Use .. 297

OLE Server
Activating .. 295
Open ... 172

OLR .. 296
On-line help ... 230
One-based tree .. 214
one-piece .EXE

how to make .. 571
when to use ... 570

one-to-many relationship ... 607
one-to-one relationship .. 607
Open .. 549
Operands ... 403
Operators ... 403

% ... 403
& .. 404
() .. 403
* ... 403
+ .. 403
- ... 403
/ ... 403
< .. 403
<= .. 403
<> .. 403
= .. 403
> .. 403
>= .. 403
AND .. 404
NOT ... 404
OR ... 404
XOR .. 404

OPT attribute ... 76
Option box .. 238

Report ... 377
option buttons .. 543
OPTION control

Window ... 162
Option Properties

BEVEL .. 239
Boxed .. 240
Button number .. 239
Caption .. 238
Data dictionary field or memory variable 239
Drop ID .. 240
Help ... 240
Hidden ... 240
Name .. 239
Parameter ... 238

Position ... 240
Text .. 238
Use .. 239

option structure .. 608
Options

wizard (code generation) .. 64
Options Menu

Report Formatter .. 326
OR ... 404, 478
origin .. 608
orphan .. 608
orphans ... 338, 343
Other Environments, calling Clarion executables 582
OTHER FILES ... 103
outer join ... 104, 608
Outline controls .. 99
OVER ... 63
Overlay .. 63, 608
OVR ... 61

P

Pack Segments .. 432
Page breaks ... 337, 340, 343, 361
Page Footer ... 608

Report ... 325
Page Form

Report ... 325
Page Header .. 608

Report ... 325
page header

positioning ... 326
Page Margins ... 352
page numbers .. 365

resetting ... 337, 340, 343
Page Orientation .. 352
page overflow ... 608
Page Totals .. 363
PAGEAFTER ... 338, 340, 343
PAGEBEFORE .. 337, 340, 343
pages ... 545
pagination on reports 337, 338, 340, 343
Palette ... 181, 608
PALETTE attribute ... 286
Panel control .. 291
Panel Properties .. 291

BEVEL .. 291
Colors .. 291
Name .. 291
Use .. 291

paper orientation .. 331
Paper Size .. 331, 352

INDEX 635

parameter .. 608
parameter passing ... 119
pass parameters .. 119
PASSWORD .. 62
Password ... 44

Data dictionary .. 44
PASSWORD attribute .. 263
Paste .. 550
Patterns .. 182
PCX image .. 286, 608
PDECIMAL .. 58
pel .. 608
pen ... 608
Phone Numbers ... 71
PICTURE ... 57
Picture .. 180
Picture Dialog .. 416
Picture Editor ... 416
Picture token 60, 182, 223, 416, 608

Report ... 358
pixel .. 608
Placing Controls in a Window .. 189
Plain language ... 537
Plus .. 403
point size .. 609
pointer .. 609
polymorphism .. 609
Pool

picture tokens pick list ... 416
Pop up message .. 65
Populate Field Toolbox ... 391
Populate Field toolbox ... 164

Window Formatter ... 319
Populate Menu

Report Formatter .. 326
Window Formatter ... 175

Population Order ... 64, 76
Popup menu .. 128, 169, 609

Debugger .. 494
Report formatter .. 321
Window Formatter .. 159, 179

porting applications .. 525
Portrait reports ... 331
Position

Report .. 322, 323
Window ... 171

Position button ... 220
Positioning and Alignment

Report ... 354
Positioning controls

Window Formatter ... 165
positioning controls ... 169, 355

Positioning windows and controls .. 220
PowerBuilder, calling Clarion executables from 582
PowerPoint ... 295
Prefix

report .. 330
prefix .. 609
PREVIEW .. 330
Preview! ... 178

Report ... 367
Report Formatter .. 327
Window Formatter ... 159

Previous Error
Text Editor .. 389, 395

PRIMARY attribute ... 75
Primary Key ... 41, 75, 78, 609

Defined .. 37
Print .. 549
Print data ... 500
Print engine .. 313
print job .. 609
Print Manager

job name ... 329
Print Preview ... 330, 367
Print Setup ... 549
print source code

Text Editor ... 388
Print spooler ... 314
PRINT statement ... 313
print structure ... 609
printer driver ... 609
printer font .. 609
Printing Data .. 522
Printing labels .. 368
Printing memos .. 376
Priority

embedded source code .. 114
priority levels .. 140
Procedure .. 609
Procedure hierarchy display .. 131
Procedure Menu .. 127
Procedure properties

Data .. 106
Defining Embedded Source 103, 106, 107, 108
Description .. 102
Editing .. 123, 128
Files .. 103
List of .. 101
Module Name ... 102
Other procedures .. 108
Prototype ... 102
Reports ... 106
Type .. 100

636 CLARION 5 USER’S GUIDE

Windows .. 105, 107, 108
Procedure Properties dialog

Use .. 101
Procedure Type dialog ... 127
Procedure Wizard .. 132
Procedures

Calling ... 108
Change procedure type .. 127
Copying ... 127
Creating .. 127
customizing ... 128
Deleting ... 124
Finding .. 124
new .. 127
Renaming .. 127

Procedures per Module ... 131
Procedures, redistributing .. 126
ProcStep

Debugging ... 474
Progam editor .. 384
program MAP ... 609
Programs to Execute ... 437
Progress Bar Properties

Drop ID .. 285
Help ... 286
Name .. 284
Position ... 286
Range of Values .. 285
Setting ... 284
Use .. 284

PROGRESS control .. 163, 609
Progress Properties dialog .. 284
Project

Adding Source Code ... 434
Editing/managing .. 21
Maintaining ... 124, 135, 429
Maintaining modules ... 125
Multi user development ... 132

Project Editor dialog .. 22, 434, 447
Project Organization .. 559
Project Properties

Build Release System ... 430
Create Map File .. 432
Debug Mode ... 430
Defines .. 431
Line Numbers .. 431
Memory Model .. 429
Pack Segments ... 432
Run-Time Library .. 430
Stack Size ... 432
Target OS .. 429
Target Type .. 429

Title ... 429
project statistics ... 21
Project System ... 609
Project Tree dialog ... 427
prompt .. 610
PROMPT control ... 162, 282
Prompt Properties

Setting ... 282
Prompt Text .. 60
PROP:Deactivate ... 296
PROP:DoVerb .. 295
PROP:Icon ... 434
property .. 610
Property assignment syntax 185, 610
Property Sheet .. 545, 610
Property Sheet Properties

Drop ID .. 273
Help .. 273, 301
Name .. 269
Position ... 273
Setting ... 269
Spread .. 271
Use .. 269
Wizard ... 271

Property Toolbox
Report Formatter .. 319
Window Formatter .. 220, 223, 228

Prototype .. 102, 610
External procedures .. 438

prototypes, global .. 135
Prototyping ... 119
Prototyping API Functions ... 554
PSTRING ... 57
Push button .. 232
PUT statement ... 610

Q

QBE ... 511
query .. 610
Query by Example .. 511, 610
QUEUE .. 250

in a list box .. 205
queue ... 610
Quick Load ... 84

Defined .. 45

R

RAD ... 610
Radio Button ... 543, 610

Report ... 377

INDEX 637

Radio Button Properties
Drop ID .. 242
Help ... 243
Icon ... 242
Justification ... 241
Name .. 241
Parameter .. 241, 243
Position ... 243
Setting ... 238
Use .. 241
Value ... 241

Radio Button Properties dialog .. 241
RADIO control

Window ... 162
range constraint ... 610
raster font ... 610
Read only ... 610
READONLY .. 62
READONLY attribute 256, 259, 263, 268
REAL .. 58
Real number

Data types ... 58
RECLAIM ... 50
RECORD ... 610
Record

Defined .. 37
Record Count ... 504
Record Key .. 74
Record Length ... 504
Record Picture ... 60
Redirection file .. 28, 610

Debugger Options
16-bit .. 465

Redo .. 173
Reference variable .. 59, 611
Referential Integrity ... 79, 500, 611
Reformat .. 505
Refreeze frozen control after synchronize 138
region ... 611
REGION control .. 163, 275
Region Properties

BEVEL .. 276
Colors .. 276
Drag ID .. 277
Drop ID .. 277
Help ... 278
Immediate ... 277
Name .. 276
Position ... 278
Setting ... 275
Use .. 276

Registering Database Drivers .. 24

Registering Templates ... 142
Registering VBX Controls .. 26
Registers

16-bit
Debugger Windows .. 470

Registry .. 611
REGISTRY.TRF ... 141
related files

accessing .. 103
Relational database theory .. 36
Relational model .. 36
Relational Theory

Relational Operations ... 38
Join ... 38
Project .. 38
Select ... 38

Relationship .. 78, 611
Foreign Key ... 78
Linked field .. 79
Map by... .. 79
Primary Key .. 78

Relationship Properties dialog 34, 78, 80
Releasing Records .. 514
Rename Procedure .. 127
Replace

Text Editor ... 392
Replace All

Text Editor ... 393
Report

Adding Fields .. 358
AVE ... 361
Box .. 375
Breaks ... 335
Check Box ... 378
CNT ... 361
Custom Controls ... 381
Data .. 358
Detail ... 340
Ellipse ... 376
Fields ... 340, 358
Font ... 323
Footer .. 345
Graphic Controls ... 372
Graphics .. 372
Group Box ... 379
Group Breaks .. 335
Group Header ... 360
Header .. 334
Line ... 374
List Box ... 379
MAX .. 361
Metafile ... 382

638 CLARION 5 USER’S GUIDE

MIN ... 361
Multi-Line Text ... 376
Option Box .. 377
overlapping sections or text .. 353
Page Breaks ... 361
Page Margins .. 352
page numbers ... 365
Page Orientation ... 352
Paper Size ... 352
Picture token ... 358
Position .. 322, 323
Positioning and Alignment .. 354
Printing Dates ... 366
Processing Order .. 313
Radio Button ... 377
SUM .. 361
Totals ... 361

report engine ... 313
report form ... 611
Report Formatter

Align Toolbox ... 319
Band View ... 315
Bands Menu .. 325
Caption bar ... 316
Control Template ... 326
Controls Menu ... 324
Controls Toolbox ... 316
Dictionary Field ... 326
Edit Menu .. 322
Form .. 332
Measurement unit ... 352
Opening .. 315
Options Menu .. 326
Populate Menu .. 326
Popup Menu .. 321
Preview! .. 327
Property Toolbox ... 319
Rulers .. 316
starting .. 123
Using ... 312
View Menu .. 326

Report Margins .. 326
report margins .. 331, 335
Report prefix .. 330
Report Properties .. 329

Editing ... 321
report sections

positioning ... 326
REPORT structure .. 313, 329
Reports

Defining ... 106
reports

pagination ... 337, 338, 340, 343

REQ attribute 67, 233, 259, 263, 268, 275
Require a dictionary ... 131
Require Unique Value .. 75
required fields .. 67
RESET ... 362
Reset Controls ... 70
Reset on .. 362
Resizeable ... 179

List box .. 210
Column group .. 214

resource file .. 436, 611
resource files ... 573
restore button ... 611
Restrict

Data Integrity ... 80
Return Values .. 121
Reusable code

Data entry format .. 69
Revision number .. 82
rich text format (RTF) ... 611
right-click .. 128
ROLLBACK .. 611
Root

List Box ... 214
rounding ... 71
ROUTINE ... 611
Ruler

Report formatter .. 316
Run .. 98
Run-time Index ... 72
Run-Time Library .. 430, 611

External ... 579
Local .. 436, 571
Standalone .. 438

Runtime index .. 72

S

Sample Window
Window Formatter ... 159

Save ... 549
Save All

Text Editor ... 388
Save As .. 549
schema .. 611
Scientific Notation .. 419
scope ... 612
screen painter .. 390
Screen Picture ... 60
Screen tips ... 231
Scroll Bar ... 612

List box column .. 209, 214

INDEX 639

Scrolling
Controls ... 228
List boxes .. 252

SDK .. 612
Search and Find .. 509
Search for Help On .. 551
Search menu

Text Editor ... 391
search path .. 28
select .. 612
Select Driver dialog .. 428
Select Field dialog .. 190, 243
Select Font dialog .. 227
Select Key dialog ... 265
Select Multiple List Items ... 251
Select Procedure Type dialog .. 100
Select Source dialog .. 490
SELECT statement .. 612
selected event .. 612
selecting controls ... 172
sequential access .. 612
server ... 612
SET .. 612
Set Control Order

Report Formatter .. 324
Window Formatter ... 173

Set Tab Order
Window Formatter ... 173

SHARE.EXE .. 612
SHEET control ... 162, 269, 545, 612
SHEET structure .. 273
Ship List ... 443
SHORT .. 57
Show Alignbox ... 177
Show Boxes ... 214
Show Commandbox .. 177
Show Fieldsbox .. 178
Show Level .. 214
Show Lines .. 214
Show priority levels .. 140
Show Propertybox ... 177
Show Root

List Box ... 214
Show Toolbox ... 177
Showing Columns .. 505
Simplicity .. 537
Size .. 170

Windows and controls ... 221
snap to grid .. 151
Soft mode

Debugger Options
16-bit .. 462

Software Development Kit ... 538
sort ... 612
Sort data .. 500
Sort Embeds Alphabetically ... 134
Sort Order .. 77
Sorting ... 104
Sorting data files .. 503
Source code ... 102
Source code editor ... 384
source code file .. 612
Source code generation .. 135

messages .. 135
source code generation ... 22

local vs global MAPs ... 135
procedures per module ... 131

Source code management .. 561
source module

numbering/naming .. 126
source modules

procedures within .. 126
Special Characters

Menus, within .. 195
SPIN control ... 163, 256, 544, 612
Spin Properties

Data source ... 257
Drop ID .. 260
Entry Mode ... 259
Entry pattern ... 256
Entry Patterns .. 255, 257
From .. 257
Help ... 260
Immediate ... 259
Justification ... 258
Justification Offset ... 258
Picture token ... 256
Position ... 260
Range limits .. 258
Read Only ... 259
Required ... 259
Setting ... 256
Step value ... 258
Use .. 257

split a project .. 565
SQL .. 613
SREAL ... 58
stack memory .. 613
Stack Overflow ... 431
Stack Size .. 432
Stack Trace

Debugger .. 493
Debugger Options

16-bit .. 463

640 CLARION 5 USER’S GUIDE

standard behavior .. 613
Standard Windows Action .. 234
Standard Windows Behavior 191, 198
Standard Windows Commands ... 191
START .. 148, 183, 197, 236
START function .. 150
statement ... 613
STATIC ... 64
Static controls .. 217
Static Index ... 72, 74
Static text .. 544, 613
static variable ... 613
Status bar ... 181, 196, 613
Status bar message ... 65
Status Widths ... 184
STD ID .. 199, 234
Step

Debugging ... 474
Step Assembler

Debugger 32-bit .. 497
Step Over Assembler

Debugger 32-bit .. 497
Step Over Source

Debugger 32-bit .. 497
Step Source

Debugger 32-bit .. 497
Sticky breakpoint ... 471
Storage Class .. 63
Storage File ... 296
stream mode .. 613
Stretch .. 297
Strikeout .. 170, 227
STRING ... 57
String control .. 279
String Formatting ... 416
String Properties

Drop ID .. 281
Field or variable .. 279
Help ... 281
Justification ... 279
Name .. 279
Picture token ... 279
Position ... 281
Text .. 279
Use .. 279
Variable string ... 280

String Properties dialog ... 279
Style ... 170
Sub-Application .. 566
Sub-totals ... 363
SubMENU .. 198
Subroutines

Defining ... 108

SUM ... 362
Surrounding Break .. 325, 359
swap file ... 613
synchronize application and dictionary 216
synchronize dictionary and application

126, 127, 129, 136, 172, 174, 180, 229, 322, 323,
324, 330, 332, 334, 337, 338, 341, 344, 345

Synchronize Report definitions .. 136
Synchronize Window definitions .. 136
syntax ... 613
Syntax check .. 409
system colors ... 613
system date ... 613
System Debugger .. 491
System menu .. 150, 182
System messages ... 538
System topic .. 584
System{PROP:Icon} .. 434

T

Tab .. 171, 545
tab .. 613
TAB control .. 162
Tab order ... 173, 613
Tab Properties

Drop Id .. 275
Help ... 275
Name .. 274
Position ... 275
Required field .. 274
Setting ... 273
Text .. 274
Use .. 274
variable .. 274

TAB structure ... 273
tab text ... 222
Tabbed dialogs ... 545
Table ... 36, 613

Defined .. 38
tabs on a sheet .. 270
Tabstop

Text Editor ... 389
tabular report ... 614
tag .. 614
Tallies .. 362, 363
TALLY ... 362
Target file ... 427, 438, 441, 614
task .. 614
Team Projects .. 562
Template Class .. 407
Template maintenance .. 143
template procedure .. 614

INDEX 641

Template properties ... 143
Template Registry

configuration ... 141
Template Registry Options ... 23, 141
Template set .. 141
Templates

Maintaining .. 141
Test button ... 159
Test data

Report ... 327
Text .. 222

Appearance of ... 227
TEXT control ... 266, 544, 614

Window Formatter ... 162
Text Control Properties

Capitalization/case .. 267
Drop ID .. 268
Field or variable .. 267
Help ... 269
Justification ... 267
Name .. 267
Position ... 269
Read Only ... 268
Required ... 268
Scroll bars ... 268
Setting ... 266
Use .. 267

Text Editor .. 384
Color Options .. 397
colors .. 400
Copy .. 389
Cut .. 389
Duplicate ... 390
Find Marked Text ... 393
Find Next ... 393
Find Previous .. 393
Managing windows ... 386
Opening .. 385
Paste ... 389
print source code .. 388
Replace ... 392
Replace All .. 393
Search ... 391
Undo ... 388

Text editor
bookmarks .. 399
Comment Block ... 399
macros .. 393
next error ... 395
previous error .. 395
Save Options ... 398

Text Editor configuration ... 23, 399

Text Editor options and settings 23, 396
text file .. 614
text justification .. 614
text wrapping .. 282
third normal form .. 614
THREAD ... 50, 64, 83
Thread .. 96, 150, 614
three dimensional 239, 277, 283, 291
thumb ... 614
Tile ... 550
TIME .. 58
Time format .. 421
TIMER .. 539
Timer ... 181, 614
Times

datatypes .. 70
TIP .. 66, 84, 137
Tip .. 231
title pages ... 338, 340
To Do procedure ... 95, 99
Toggle Controls .. 247
token .. 614
Tool tip 65, 160, 161, 167, 231, 317, 320
Toolbar ... 614

Creating .. 190
Grid Settings ... 204
Latched buttons .. 245
Merging ... 203
Window Formatter ... 165

Toolbar Menu ... 175
Toolbox

Property ... 220, 223, 228
Window Formatter .. 160, 184

TOOLOPTIONS .. 51, 65, 76
TopSpeed Driver .. 49
Total type ... 362
Totals

custom .. 362
Report ... 361

Trace .. 135
transaction ... 615
Tree controls ... 99, 615

Show Root .. 214
TRN attribute ... 280
TSIMPLIB.EXE .. 557
TXA .. 130
Typing Mode .. 61

U

ULONG .. 57
UNC ... 48

642 CLARION 5 USER’S GUIDE

Unconditional Breakpoints ... 471
Undeleting Records ... 514
Underline ... 227

List box
Column group .. 214

Undo ... 173, 550
Text Editor ... 388

Unique key ... 75
Universal File Names ... 48
untyped parameter ... 615
Update column headers .. 138
UpperCase

text editor .. 399
Uppercase ... 61, 255, 259, 263
UPR .. 61, 255
USE .. 218
USE variable .. 615
User Choice controls ... 217
User control ... 536
User Options .. 51, 54, 65, 76
USHORT .. 57
Using .. 362

V

Validation ... 40
validity check ... 500, 615
VALUE .. 67, 68
Values ... 67, 68
variable label .. 218
Variable length

Data types ... 58
variable pick list .. 391
Variable String ... 280
Variables .. 107

memory allocation ... 63
quick access to ... 391

VBX .. 178, 305, 306, 615
Registering .. 305

VBX Control Properties
Field or variable .. 306
Setting ... 305
Use .. 306

VBX Control Properties dialog ... 306
VBX Custom Control Registry ... 26
VBX Events .. 309
VBX Registry ... 178
VCR buttons ... 252
VCR controls .. 615
vector font .. 615
vector graphic ... 373, 615
Version number .. 82
view .. 615

View Menu .. 177, 550
Report Formatter .. 326

virtual table .. 615
Visual Basic ... 305
Visual Basic Control Properties

Setting ... 308
Visual C++, calling Clarion executables from 582
Visual consistency ... 536
Visual design ... 159
Visual editing ... 390

W

Watch Expressions .. 472
Debugger .. 476

watch variable .. 615
Watermark ... 332
widow ... 615
widows .. 338, 343
Width .. 189

Windows and controls ... 221
Window Formatter .. 97, 151, 156

Align Toolbox ... 165
Calling from text editor .. 147
Command Toolbox .. 159
Control Templates .. 174, 324
Controls Toolbox ... 160
Creating Menus ... 190
Creating menus ... 195
Creating toolbars .. 190
Delete .. 172
Duplicate ... 172
Extension templates .. 174, 324
Fields Toolbox .. 164, 318
Grid Settings ... 174
Grid settings .. 151
Margin Defaults ... 153
Menu ... 169
Menu Editor .. 193, 194
Menu Text .. 196
Populate Defaults .. 152
Popup menu .. 169
Property Toolbox ... 165
Redo ... 173
Sample Window .. 159
Set Control Order .. 173
Set Tab Order .. 173
Spread Defaults .. 155
starting .. 123
Tools .. 159
Undo ... 173
Using ... 146

window frame ... 615

INDEX 643

Window menu .. 550
Creating .. 194

window painter ... 390
window pane .. 616
Window properties

3D Look ... 183
Actions .. 170
Always on top .. 184
Auto Display .. 183
Cursor ... 187
Drop ID .. 185
Entry Patterns ... 182
Font ... 170
Frame Type ... 179
Height .. 189
Help ID .. 187
Hot key .. 170
Icon ... 180
Initial Size .. 179
Label ... 179
MASK .. 182
Maximize Box .. 183
MDI Child .. 183
Message ... 188
Modal .. 182
Palette ... 181
Position .. 171, 188
Size ... 179
Status Bar ... 181
System Menu .. 182
Timer ... 181
Toolbox .. 184
Width ... 189

Window Properties dialog
Using ... 178

window text .. 222
Windows

Aligning controls ... 165
API calls .. 553
application modal 148, 183, 197, 236
Borders ... 179
Child .. 149
Colors .. 286
Creating .. 147
Customizing .. 156
Default structures .. 148
Defining .. 105, 107, 108
Document .. 540
Dynamically alter ... 179
Empty .. 149
Font specification .. 227
General purpose ... 149
Help ... 230

Hot key .. 225
Messages .. 231
MODAL attribute ... 150
modeless ... 148, 183, 197, 236
Navigation keys ... 226
Palette ... 286
Placing controls ... 189
Positioning ... 220
Preview! .. 159
Properties ... 178
Size ... 221

Windows API Functions ... 556
Windows elements .. 540, 542
Windows Message ... 473
Windows Messages

16-bit
Debugger Windows .. 470

Windows Print Manager
job name ... 329

WINDOWS.CLW .. 554
WINDOWS.LIB ... 554
WinExec ... 616
WITHNEXT ... 338, 343
WITHPRIOR ... 338, 341, 343
Wizard ... 54, 545, 616

Default on/off settings ... 132
Starting ... 126

Wizard dialog ... 101
Word .. 295
word wrap ... 266, 268, 282
Word-wrapping

Reports ... 376
Text Control ... 268
Text Editor ... 396

wrapping text ... 266, 282
WSLDIAL .. 436, 573

X

X axis ... 616
XOR ... 404

Y

Y axis ... 616
YIELD ... 539

Z

Zero Divide .. 432
ZIP Codes .. 70
Zoom .. 297

Report Formatter .. 326

644 CLARION 5 USER’S GUIDE

NOTES 645

646 CLARION 5 USER’S GUIDE

NOTES 647

648 CLARION 5 USER’S GUIDE

	Contents
	Foreword
	Documentation Conventions
	Typeface Conventions
	Keyboard Conventions
	Other Conventions

	1 - Clarion's Development Environment
	Overview
	Applications and Projects

	Basic Environment Commands
	File Commands
	Application and Project Commands-The Project Menu
	Run Configuration
	Debug Configuration
	Application Only Commands-The Project Menu

	Configuring the Environment
	Helper (Object) Program Registration
	Database Driver Registry
	VBX Custom Control Registry

	Search Paths-the Redirection File
	Redirection File Syntax
	Redirection Macros
	Redirection File Sections

	2 - Dictionary Editor
	About This Chapter
	About the Data Dictionary
	Benefits of Using a Data Dictionary
	Dictionary Editor Functions
	Two Entries to theDictionary Editor

	Designing Your Dictionary and Your Database
	Normalization
	Keys
	Relational Operations
	The Dictionary Editor

	Creating a Data Dictionary
	Opening the Dictionary Editor
	Adding Files to the Dictionary
	Quick Load
	Importing File Definitions
	File Properties

	Adding File Aliases to the Dictionary
	Why Use Aliases
	The File Alias Dialog

	Adding or Modifying Fields
	Defining Field Properties
	Choosing a Datatype

	Adding or Modifying Keys
	Setting Key Properties
	Key Component Fields

	Adding or Modifying Relationships
	Setting Referential Integrity Constraints

	Managing Your Dictionary
	Copying And Pasting
	Dictionary Revisions

	Configuring the Dictionary Editor

	3 - Application Generator
	About This Chapter
	Creating the Application (.APP) File
	Global Application Settings
	Global Template Settings
	Global Data and Variables
	Global Embed Points
	Global Extensions

	Overview: Developing Your Application
	Adding a Procedure to Your Application
	Application Tree
	Defining the Procedure Type

	Setting Procedure Properties
	Procedure Files
	Procedure Windows
	Procedure Reports
	Procedure Data
	Calls to Other Procedures
	Embedded Source Code
	Procedure Formulas
	Procedure Extensions

	Prototyping and Parameter Passing
	Adding Parameters to the Prototype
	Adding Parameters to the PROCEDURE Statement
	Passing Parameters in the Procedure Call

	Maintaining Your Application
	Application Tree Views/Tabs
	Locator
	Edit Menu-Edit Procedure Properties
	Application Menu-Edit Application Properties
	Procedure Menu-Edit Procedure Properties
	Popup Menu-Edit Procedure Properties
	File Menu-Application Import/Export Commands

	Configuring the Application Generator
	Application
	Registry
	Generation
	Synchronization
	Editor

	Templates and the Template Registry
	Configuring the Template Registry
	Registering Templates
	Template Registry Maintenance

	4 - Window Formatter
	About This Chapter
	Window Creation Overview
	Choosing a Window Type
	 Default Window Structures

	Configuring the Window Formatter
	Grid
	Populate Defaults
	Margin Defaults
	Spread Defaults

	Using the Window Formatter
	Typical Window Design Process
	Window Formatter Tools
	Window Formatter Menus
	Window Properties Dialog
	Placing Controls in a Window

	Menu Editor
	Merging MDI Menus
	Planning and Implementing Menus
	Calling the Menu Editor
	Creating Your Application's Menus
	Implementing Standard Windows Behavior
	Menu Positions and Merging Behavior
	Adding Hot Keys
	Other Menu Behavior-Disabling and Toggling
	Managing Your Menus

	Toolbars
	Merging Toolbars
	Adding Toolbars

	List box Formatter
	List Overview
	Understanding the List box Formatter
	List box Formatter General Tab
	List box Formatter Appearance Tab
	Creting Column Groups

	5 - Controls and Their Properties
	Overview
	About This Chapter
	Setting Control Properties with the Data Dictionary
	Types of Controls

	Common Control Attributes
	Setting the USE Attribute
	Setting the AT Attribute
	Setting the Text Attribute
	Setting the Display Picture
	Setting the COLOR Attribute
	Setting the KEY Attribute
	Setting the ALRT Attribute
	Setting the FONT Attribute
	Setting Control Modes
	Setting Help Attributes

	Interactive Controls
	Button Properties
	Radio Button Properties
	Check Box Properties
	Check Box Behavior
	Creating List Boxes
	List (and Combo Box) Properties
	Combo Box Properties
	Spin Box Properties
	Entry Box Properties
	Text Properties
	Sheet Properties
	Tab Properties
	Region Properties

	Non-Interactive Controls
	String Properties
	Prompt Properties
	Group Box Properties
	Progress Bar Properties
	Image Properties
	Line Properties
	Box Properties
	Ellipse Properties
	Panel Properties

	6 - Custom Controls
	Overview
	OLE Controls
	OLE Container Overview
	OLE Control Properties

	OLE Controls with OCXs
	ActiveX Controls, License Files, and Compound Storage Files

	VBX Controls
	Registering .VBXs
	VBX Properties
	VBX Operation

	7 - Report Formatter
	Overview
	Clarion's Report Engine
	Report Formatter Interface
	Opening the Report Formatter
	Band View
	Report Formatter Toolboxes
	Report Formatter Menus

	Report Structures and Properties
	Report Properties
	Form
	Page Header
	Group Breaks
	Group Header
	Detail
	Group Footer
	Page Footer

	8 - Creating Reports
	About This Chapter
	Common Reporting Tasks
	Creating the Report Procedure
	Specifying Files
	Specifying Keys (Sort Order)
	Specifying Which Records to Print (Range Limits & Filters)
	Specifying Paper Size and Orientation
	Specifying Report Margins
	Positioning and Alignment
	Specifying a "Pre-printed" Form
	Specifying Page Headers and Footers
	Specifying Column Headers and Report Titles
	Specifying Fields to Print (variable text)
	Specifying Group Breaks
	Specifying Page Breaking Behavior
	Creating Totals and Calculated Fields
	Page Numbers
	Displaying Print Dates
	Implementing Print Preview
	Printing Labels (Dynamically)
	Printing One Record per Page
	Printing Mail-Merge Documents
	Printing Graphics
	Printing Multi-line Text with Word-wrap
	Reports That Look Like Windows

	9 - Text Editor
	About This Chapter
	Opening the Text Editor
	Managing Text Editor Windows
	Using the Text Editor Tools
	File Menu
	Edit Menu
	Tool Bar
	Populate Field Toolbox
	Search Menu
	Block Indent
	Macros

	Editing Errors
	Configuring the Text Editor
	Application Options Dialog
	Editor Options Dialog
	Text Editor INI File

	10 - Formula Editor
	Overview
	Expressions
	Formula Editor Tools
	Formulas Dialog
	Formula Editor
	Conditionals Dialog

	All Formula Editor Assignments
	Preliminary Steps

	Unconditional Assignments
	Conditional Assignments
	Creating an IF Structure
	Creating a CASE Structure
	Nesting Structures

	11 - Picture Editor
	Edit Picture Dialog
	Favorite Pictures Pool
	String
	Numeric and Currency
	Scientific
	Date
	Time
	Pattern
	Key-in Template

	12 - Project System
	Overview
	Hand Coded Projects
	Compile and Link Options
	Global Compile and Link Options
	Individual Source Module Compile Options

	Component Files
	Projects to Include
	Application Icon
	Source Code Files
	Database Driver Libraries
	Library, Object, and Resource Files
	Programs to Execute

	The Target File
	.LIB Files
	.DLL Files

	Distributing Files
	Choosing a Configuration
	Installing and Accessing Your Application's DLLs
	The Ship List

	13 - Debuggers
	Overview
	The Debugging Process
	Preparing Your Projects for Debugging
	Locating Page Faults (GPF)
	Starting the Debugger from a Popup Menu

	16-bit Debugger
	Tutorial
	Starting the Debugger
	Loading the Source Files
	Setting Debugger Options
	Debugger Windows
	Setting Breakpoints
	Running the Program
	Working with Source Code
	Editing Watch Expressions
	Editing Variables at Run Time

	32-bit Debugger
	Tutorial
	Starting the Debugger
	Loading the Source Files
	Setting Debugger Options
	Debugger Windows
	Setting Breakpoints
	Running the Program
	Editing Variables at Run Time

	14 - Database Manager
	Overview
	Browsing Data Files
	Closing Data Files
	Sort Order
	File Statistics

	Working with Columns
	Hiding Columns
	Showing Columns
	Reformatting Columns
	Column Justification
	Column Width
	Column Display Pictures
	Column Headers

	Working with Data Files
	Navigating Through a File
	Locate (Key) Command
	Search and Find Next
	Sending Driver Strings
	Saving File Definitions as Source Code

	Using Query-by-Example
	Editing Data
	Editing Records
	Adding Records
	Editing Memos
	Showing Deleted Records
	Undeleting Records
	Holding and Releasing Records

	Converting Data Files
	Immediate Conversion
	Generating Source for File Conversion
	Editing Source Code to Make Field Assignments
	Converting Legacy Data

	Printing Data

	15 - Application Converter
	Overview
	Application Converter Goals

	Using the Conversion Wizard
	Starting the Conversion Process
	Dispose of Proposed Changes-Confirm Conversion Window

	Writing Your Own Conversion Rules
	Compiling Conversion Rules

	Appendix A - Windows Design Issues
	About This Chapter
	Design Principles
	User Control
	Event Driven Programming
	Background Processing

	Windows
	Multiple Document Interface (MDI)
	Application Window
	Document Windows and Dialog Boxes

	Window Elements
	Buttons
	Check Boxes
	Radio Buttons
	List Boxes
	Combo Boxes
	Drop-Down List Boxes
	Text Boxes
	Spin Boxes
	Static Text
	Group Boxes
	Sheets and Tabs
	Wizards
	Control Labels
	Cursors

	Menus
	File Menu
	Edit Menu
	View Menu
	Window Menu
	Help Menu
	Accelerator Keys

	Color

	Appendix B - Making API Calls
	Overview
	Prototyping API Functions
	Linking API Functions
	Windows API Functions
	Other API Functions
	CALL

	Appendix C - Development and Deployment Strategies
	Overview-EXEs, .LIBs, and .DLLs
	Multi-Programmer Development
	Enabling and Organizing Team Projects
	Procedure Oriented Approach
	Module Oriented Approach
	Sub-Application Approach

	One-Piece EXEs
	When to Use One-Piece EXEs
	How to Implement One-Piece EXEs

	EXE Plus DLLs
	When to Implement
	How to Implement
	Hiding the Clarion Run-time Library
	Making LIBs and DLLs for Other Environments

	Appendix D - DDE-Dynamic Data Exchange
	Overview
	Capabilities
	DDE Conversation-Client to Server
	Initializing the Conversation
	Sending DDE Commands
	Sending Data from Client to Server

	Appendix E - Glossary
	Index

